PERCEPTION ANALYSIS

Overview

••••

Within Perception, customers can define their own formulas to compute results in seconds rather than hours. A "formula database" is used to enter math expressions like CH1*CH2 or MAX@CH1 to compute results immediately when new data arrives. The formula results can be re-used in other formulas to get even more advanced answers.

Perception Analysis

Specifications

Answers instead of data

By simply typing in the required expression like sum = $Ch_1 + Ch_2$ the user can set up Perception to do even the most complex math. No programming know-how is required to do this. Simply type in the expression as you would into a scientific calculator. There is no limit in the number of expressions to be entered, it might be just one or thousands. Results from an expression become variables in the "datapool" and can be re-used in other expressions. You may look for the maximum of a trace, the minimum, cut out the segment in between and multiply just this with another trace segment, or cut out another trace. Result traces can be displayed just as analog input traces or re used for more math.

To make result generation easier, it is possible to use multiple operators per formula.

Example:

UpTime = $@MaxPos(I_1) - @MaxPos(U_1)$ computing the time difference of the maxima of current and voltage in a single go.

Acts on Sweeps or Review data

O nce the formula database entry is done, it acts automatically upon updated data. It also tries to catch up to the "live" in a review-math-while-recording fashion by computing power and incoming data as fast as allows.

Best case – if sample rates allow and math is not too complex – the desired math will already be perfomed while recording. *Perception* will display the acquired data in the review-while-recording- mode and this window will show both the raw as well as any derived data. The amount of delay between incoming raw data and displayed raw and math data depends on the amount of data, the PC throughput, and math complexity. It ranges from nearly zero like "live" to "can't do it at all" during recording.

Worst case – if millions of samples are coming in simultaneously - the required math is performed after the acquisition has stopped. Then the results are computed and displayed as desired. No more interaction. If a new recording is started, new data and therefore new results are replacing the old ones.

See a current and a voltage rolling in and get the power calculated in "close to realtime". In any case, the required math is performed at the end of a recording. There is never the danger of a data loss caused by heavy calculations. Storage always has priority over computation, but Analysis will stay "near real-time" if time allows.

2

Perception Analysis Specifications

An actual application: filter signals, calculate resultant and determine relevant values

Recording In	Functions	
Recording Time	Waveforms, title, comment (optional) Local time, UTC: time & date	Basic Math Adv. Math
ystem Varia	bles and Constants	
te ne atus nstants	Short & long format Local & UTC Acquisition & trigger & trigger count e (2,7) and Pi (3,14)	Statistics
isplay Varia	bles and Information	
tive Trace ew Irsors Irsor info	Source and name Start time, end time Active, passive, 1, 2 X-position, Y-value	Trigonometrie Generate Edit Create Filtering
		Search
		Information

Math	Add, subtract, multiply,
	divide, parenthesis
Math	Invert, absolute value,
	differentiate, exponential,
	integrate, logarithmic ln
	and log, power, square root
tics	Area, cycles, energy,
	falltime, frequency,
	histogram, maximum, pos.
	of maximum, maximum
	in range, mean value,
	minimum, pos. of minimum,
	minimum in range, period,
	pulse width, rise time, RMS
	value, standard deviation
nometric	Arctangens, cosine,
	sine, tangens
rate	Noise, ramp, sinewave,
	squarewave
	Clip, cut, join, remove
	glitch, X-shift
e	XY-array, Y-array
ing	Reduce, resample to
•	2^n, SAEJ211, smooth
h	Next hill pos., ~level
	crossing, ~ valley pos.,
	previous hill pos., ~ level
	crossing, ~ valley pos.
nation	Length, sweep, trigger time,
nation	value at position, X-delta
	(high, low), X-first, X-last
	Convert using table, verify
	against ref. waveforms

Head Office	France	Germany	UK	USA	PR China
HBM GmbH	Sales Office	Sales Office	Sales Office	Sales Office	Sales Office
Im Tiefen See 45	LDS Test and Measurement SARL	LDS Test and Measurement GmbH	HBM United Kingdom Limited	LDS Test and Measurement LLC	LDS Test and Measurement
64293 Darmstadt	9 ave du Canada, Les Ulis, BP 221	Carl-Zeiss-Ring 11-13	1 Churchill Court, 58 Station Road	8551 Research Way, M/S 140	Room 2912, Jing Guang Centre
Germany	91942 Courtaboeuf Cedex	85737 Ismaning	North Harrow, Middlesex, HA2 75A	Middleton, WI 53562	Beijing, China 100020
Tel: +49 6151 8030	Tel: +33 (0)1 64 86 45 45	Tel: +49 89 92 33 33 0	Tel: +44 (0) 208 515 6100	Tel : +1 (608) 821 6600	Tel: +86 10 6597 4006
Email: info@hbm.com	Email: info@hbm.com	Email: info@hbm.com	Email: info@uk.hbm.com	Email: info@hbm.com	Email: info@hbm.com

HBM Genesis HighSpeed products were previously sold under the Nicolet brand. The Nicolet brand is owned by Thermo Fisher Scientific Inc. Corporation.

HBM reserves the right to change this document without notice. It provides outline specification only and cannot be used as the basis of any contract.