
PNRF Reader SDK

Perception

English

User Manual

I2
69

7-
1.

1
en

Document version 1.1 - July 2009

For HBM's Terms and Conditions visit www.hbm.com/terms

HBM GmbH
Im Tiefen See 45
64293 Darmstadt

Germany
Tel: +49 6151 80 30

Fax: +49 6151 8039100
Email: info@hbm.com

www.hbm.com/highspeed

Copyright © 2009

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Perception PNRF Reader

2 I2697-1.1 en

http://www.hbm.com/terms

LICENSE AGREEMENT AND WARRANTY
For information about LICENSE AGREEMENT AND WARRANTY refer to
www.hbm.com/terms.

Perception PNRF Reader

I2697-1.1 en 3

http://www.hbm.com/terms

4 I2697-1.1 en

Table of Contents Page
1 Perception PNRF SDK 7

1.1 General 7

1.2 SDK Audience 8

1.3 What you can expect 9

2 Getting it all to work 10

2.1 Introduction 10

3 Inside the PNRF 16

3.1 Introduction 16

3.2 Search for recorders and channels 17

4 Reading Waveform Data 21

4.1 Introduction 21

4.2 A word on segments 22

4.3 Before we start 23

4.4 Write the code 25

4.5 Verify the result 31

4.6 Begin and end of recording 32

4.7 Data Values (from Info sheet) 33

A Interfacing with MATLAB 34

A.1 Introduction 34

A.2 Getting started 35

A.3 Fetch data 37

A.4 Begin and end of recording 41

A.5 Data Values (from Info sheet) 42

A.6 GUI example 44

B Enumerations 45

B.1 Introduction 45

B.1.1 List of enumerations 45

C Summary of Commands 48

C.1 Introdution 48

C.1.1 List of properties and methods 48

D Triggers and Markers 51

D.1 Introduction 51

D.2 Triggers 52

D.3 Markers 53

Perception PNRF Reader

I2697-1.1 en 5

E Sweeps and Segments 54

E.1 Introduction 54

E.2 Continous data 55

E.3 Sweeps 56

E.4 Mixed data 58

F Using C++ 61

F.1 Introduction (Using C++) 61

F.2 Initialization 62

F.3 Main 63

F.4 Process the data 64

G Using C# 68

G.1 Introduction (Using C#) 68

G.2 Initialization 69

G.3 Process the data 70

H NRF Files 74

H.1 Introduction 74

I LRF Files 75

I.1 Introduction 75

Perception PNRF Reader

6 I2697-1.1 en

1 Perception PNRF SDK
1.1 General

Introduction
Welcome to the PNRF Software Development Kit (PNRF SDK). This SDK
provides the software, documentation and examples required to use the PNRF
Application Programmers Interface (API). This document gives you an
introduction to the PNRF API. The interface allows you to write external
programs that can read data files generated by Perception software in the
Perception Native Recording File (PNRF) format.

This document is not intended to be a PNRF API reference. In this document
we will give you only an introduction to the API. Once completed you should
be able to find your way in the API.

In this document examples are written in Microsoft Visual Basic .NET, using
the Microsoft Visual Studio 2005 development environment.

Features

l Read waveform data from any Perception Native Recording File (*.pnrf) file

Installation
The PNRF SDK contains everything you need to install and use the PNRF API.
When you received the SDK on a CD you must install the SDK from the CD
onto your hard disk; you cannot use the API from the CD.

To install:

1 Start Windows 2000, XP and insert the CD in the CD-Rom drive.
2 In the Windows Task Bar click the Start button, point to and click Run....
3 In the Run dialog type d:\setup (or e:\setup, depending on your CD-ROM

drive assignment) in the Open: text input field and click OK.
4 Follow the on-screen instructions.

Perception PNRF Reader

I2697-1.1 en 7

1.2 SDK Audience
You must be proficient in your programming language and compiler usage in
order to write custom PNRF API programs.

The SDK includes sample projects for Microsoft Visual Basic .NET.

The documentation assumes you understand your HBM equipment and basic
acquisition terminology.

Understanding acquisition terminology is vital to understanding digital
recordings: trigger, sample rate, pre-/post trigger, etc.

Perception PNRF Reader

8 I2697-1.1 en

1.3 What you can expect
The PNRF Reader SDK gives you access to the proprietary PNRF File format.
The format itself is not documented: you can not retrieve the data or any
other information just by studying a file format description. To use the
PNRF Reader SDK and to actually read data from a PNRF file you will need to
write your own program. The PNRF Reader SDK provides you the tools needed
to get data and information from a PNRF file:

l The required software components (DLL's). These components act as a
software layer between the file contents and a programming language.
This layer can provide information on what is in the file, not on how it is in
the file. Use this layer to request data and information.

l The information on how to use this software layer: this manual. This manual
is an introduction to the use of the software layer, not a comprehensive
reference. Appendices are supplied for additional information.

Apart from writing a dedicated stand-alone program it is also possible to
interface directly to other programs. There are a number of analysis packages
that include a programming environment that allows you to include external
DLL's and make use of them. Refer to the documentation supplied with your
package to find out the possibilities.

Figure 1.1: Exchange of PNRF file(s)

 The PNRF Reader API translates your com-
mands and data requests. Data is returned in

ready-to-use blocks.

Perception PNRF Reader

I2697-1.1 en 9

2 Getting it all to work
2.1 Introduction

In this introduction we will demonstrate how to set up a Visual Basic application
that uses the PNRF API. We will also show how to create a simple program
that takes information from a PNRF file and displays the result.

Step 1
Start the Visual Basic .NET development environment. In the New Project start-
up screen select a Visual Basic Project that creates a Windows Application.
We will name this project "Ex1 PNRF Open".

The project will be created and you are now presented a form.

Step 2
First we need to include the PNRF API function calls in this project.

To do this select the Add Reference... command in the Project menu. You
are now presented a list of registered references. Use the Browse... button to
open the Select Component dialog. In this dialog browse to the C:\Program
Files\Common Files\HBM\Components folder. In this folder select
percPNRFLoader.dll and percRecordingInterface.olb and click Open to
add these files to the list of References. Select OK.

Figure 2.1: Component dialog

Now the RecordingLoaders and RecordingInterface are added to your list of
included references. You can use the Object Browser to have a look at the
included functionality: select one of the references and expand the tree to see
what's inside.

Perception PNRF Reader

10 I2697-1.1 en

Step 3
Select Code in the View menu. Now you can enter the actual programming
code. Your view should look like this:

Figure 2.2: Visual Basic - Enter programming code

Enter the following code below the line that starts with Inherits:

Dim FromDisk As
RecordingLoaders.PNRFLoader

' Required

Dim MyData As
RecordingInterface.IRecording

' Required

Dim WithFileName As String ' Optionally at this point
Dim CanLoad As Integer ' Optionally at this point

Step 4
We will now enter the code required for the actual program. Select in the
(Form1 Events) section the Load event. Or select the form designer and
double-click on the form. Your View will now look like this:

Perception PNRF Reader

I2697-1.1 en 11

Figure 2.3: Visual Basic - Load event

Below the line that starts with Private Sub enter the following code:

FromDisk = New RecordingLoaders.PNRFLoader

At this point the PNRFLoader is available as an object. We now can open a
recording file if we know the location and name of the file. Assume:

WithFileName = "E:\My Documents\My Recordings
\Recording001.pnrf"

then we can enter:

MyData = FromDisk.LoadRecording(WithFileName)

However, to make sure that the loader can read the selected file we will re-
arrange and add the following code. This also includes output.

CanLoad = FromDisk.CanLoadRecording(WithFileName)
If (CanLoad < 100) Then
 Style = vbOKOnly + vbExclamation
 Text = "This file cannot be loaded."
 Result = MsgBox(Text, Style, "Load Recording")
 Output.Text = "no data"
Else
 MyData = FromDisk.LoadRecording(WithFileName)
 Output.Text = MyData.Title
End If

Perception PNRF Reader

12 I2697-1.1 en

The FromDisk.CanLoadRecording() returns a value between 0 and 100.
A zero value indicates that the loader can definitely not load the requested file,
a value of 100 means the loader can read and interpret the file for sure. A value
in between can be interpreted as a percentage of certainty to do a succesful
load.

Make sure you have included a label with name Output on your form window.

Step 5
To test your first program (!) select function key F5 to run the program. When
all is well the program should run without error messages and the title of the
recording should be displayed on your form.

Figure 2.4: PNRF Loader dialog

The complete code of this program could look like this (without error trapping):

Perception PNRF Reader

I2697-1.1 en 13

Figure 2.5: Visual Basic - Complete Code (Example)

Within your program you can set breakpoints for debugging purposes: a
position in a program at which execution pauses and control returns to you.

When execution pauses you can investigate properties from objects through
the Watch Window. This is a helpful tool when developing software with the
PNRF API.

You can set a watch and have a look at the various properties as well as the
current values of the properties.

Here an example is given in which the MyData object is used as watch
expression.

Perception PNRF Reader

14 I2697-1.1 en

Figure 2.6: Various properties - PNRF Recording file

Here you can see the various basic properties of a PNRF Recording File.

In the next chapter we will investigate these properties in more detail.

Perception PNRF Reader

I2697-1.1 en 15

3 Inside the PNRF
3.1 Introduction

By now you should know how to create a Visual Basic .NET project an how to
load a PNRF data file. So, let's go one step further and try to find out what data
is actually stored within the file.

In general data (or waveforms) of multiple sources is stored within a single file.
All HBM Genesis HighSpeed equipment/software uses the concept of a
recorder. A recorder can have one or more channels that acquire data. All
channels within a single recorder have the same timebase settings: sample
rate, recording length and trigger parameters. As an extension to this concept,
groups are used to combine various channels into a logical configuration. This
does not alter the arrangement of the channels within the recorders.

Therefore, within a PNRF recording file, information and properties is stored
as part of groups, recorders and channels. Within this document we will only
describe the use of recorders and channels.

A recording can be a single continuous acquisition, a collection of acquisition
sections (sweeps) or a combination of both. We will look into these concepts
a little bit later in this document.

Perception PNRF Reader

16 I2697-1.1 en

3.2 Search for recorders and channels
In this chapter we will demonstrate how recorders and channels are organized
within the PNRF file and how we can have a look at properties of these items.

Create a dialog
In the example we will search and display the names of the recorders and the
channels in the file as well as the type of channels. A "next" command button
will be used to step through the various items.

Create a dialog that looks like this in designer mode:

Figure 3.1: PNRF Inspect dialog

A Type

B RecName

C ChName

D NxtButton

E NOFChannelsCnt

F NOFRecordersCnt

Write the code
First we will start with the declaration of various global variables. Add these to
the ones we have defined in the previous chapter.

Dim MaxRecorders As Integer ' number of
recorders in file

Perception PNRF Reader

I2697-1.1 en 17

Dim MaxChannels As Integer ' number of
channels in file

Dim CurrentRecorder As Integer ' recorder to
inspect

Dim CurrentChannel As Integer ' channel to
inspect

Dim MaxChannelsInCurrentRecorder As
Integer

' number of
channels

 ' in selected
recorder to inspect

Proceed as we have done in the previous chapter to open the file. If the file
cannot be opened set:

MaxRecorders = 0
MaxChannels = 0
NOFRecordersCnt.Text = MaxRecorders
NOFChannelsCnt.Text = MaxChannels

When the file can be opened, load the file and retrieve the number of recorders
and the number of channels and display this information:

MaxRecorders = MyData.Recorders.Count
MaxChannels = MyData.Channels.Count
NOFRecordersCnt.Text = MaxRecorders
NOFChannelsCnt.Text = MaxChannels

If you want your code to be bullet proof, add a test to verify if MaxChannels
> 0. In rare circumstances files can be created without data. This is noted by
Channels.Count = 0.

The actual retrieval of the information is done in the NxtButton_Click
routine. However, before we can start we need to initialise some stuff:

Perception PNRF Reader

18 I2697-1.1 en

CurrentRecorder = 1
CurrentChannel = 1
If ((MaxRecorders = 1) And (MaxChannels = 1)) Then
 NxtButton.Enabled = False
Else
 NxtButton.Enabled = True
End If
RecName.Text = MyData.Recorders(1).Name
ChName.Text = MyData.Recorders(1).Channels(1).Name
If (MyData.Recorders(1).Channels(1).ChannelType =
RecordingInterface.DataChannelType.DataChannelType
_Analog)
Then
 Type.Text = "Analog"
Else
 Type.Text = "Digital"
End If

First we set the current recorder and channel to "1". When there is only one
recorder with one channel, the NxtButton is disabled.

Now we can fetch the recorder and channel name. The recorder has two
'names': Name and PhysicalName. The PhysicalName is the name given by
the system and typically reflects the physical position of the recorder within an
acquisition mainframe. The Name is set by a user and defaults to the
PhysicalName.

Finally the type of the channel is determined. Currently this can be either
analog or digital.

The NxtButton_Click routine can have the following code:

MaxChannelsInCurrentRecorder =
MyData.Recorders(CurrentRecorder).
Channels.Count
CurrentChannel = CurrentChannel + 1
If (CurrentChannel > MaxChannelsInCurrentRecorder) Then
 CurrentChannel = 1
 CurrentRecorder = CurrentRecorder + 1
 If (CurrentRecorder > MaxRecorders) Then
 CurrentRecorder = 1
 End If
End If

Perception PNRF Reader

I2697-1.1 en 19

RecName.Text = MyData.Recorders(CurrentRecorder).Name
ChName.Text = MyData.Recorders(CurrentRecorder).
Channels(CurrentChannel).Name
If (MyData.Recorders(CurrentRecorder).Channels
(CurrentChannel).
ChannelType = RecordingInterface.DataChannelType.
DataChannelType_Analog) Then
 Type.Text = "Analog"
Else
 Type.Text = "Digital"
End If

The second part of this routine deals with the display of the results of the
selected recorder and channel as we have seen in the initialization section.

The first part of the routine is used to step through the recorders and channels.

When all is OK you can run the program and the final result should look like
this:

Figure 3.2: PNRF Inspect dialog (Result)

Perception PNRF Reader

20 I2697-1.1 en

4 Reading Waveform Data
4.1 Introduction

Within the PNRF data files waveform data is stored on a per-channel basis,
i.e. within the stored data of a channel all information is available to reconstruct
the complete waveform. Although channels are bundled in recorders and
groups, no additional information is necessary to reconstruct the original data.
The fact that channels belong to a recorder, however, can be used to simplify
programming. All channels within a single recorder have the same timebase
settings: sample rate, recording length and trigger parameters.

There are many ways to retrieve data from a PNRF file. In this chapter we will
concentrate on one type only: the retrieval of raw data (1:1) in floating point
format. Other types will be mentioned briefly when applicable.

Perception PNRF Reader

I2697-1.1 en 21

4.2 A word on segments
An important concept within the PNRF file is the concept of a segment: a
portion of the data that spans a time interval in which the timebase (x-axis
information) as well as the amplifier (y-axis information) remain stable, i.e. there
are no changes. A segment is a self-contained piece of recorded waveform
data.

Within a recording there can be 0 (zero), 1 or more segments, Zero being no
data. To retrieve data from a recording, you need to specify the start and end
time of the data that you want to retrieve. The relevant number of segments
will be returned as we will demonstrate in this chapter.

Perception PNRF Reader

22 I2697-1.1 en

4.3 Before we start
Before we start we will introduce a Microsoft Visual Basic .NET feature that will
simplify the actual programming as well as the resulting code: namespaces.

So far we have used fully qualified names for our coding. Fully qualified names
are object references that are prefixed with the name of the namespace where
the object is defined. This happens when we create a reference to the PNRF
classes (by choosing Add Reference from the Project menu) and then use the
fully qualified name for the object in our code. E.g.:

RecordingInterface.DataChannelType.DataChannelType_Analog

Fully qualified names prevent naming conflicts because the compiler can
always determine which object is being used. However, the names themselves
can get long and cumbersome. To get around this, we use namespaces that
we define in the project properties.

To do this proceed as follows:

1 In your design environment select your project in the solution explorer.
2 In the menu select Project > Properties
3 In the dialog that comes up select in the left-hand column: Common

Properties > Imports
4 In the Namepace text field enter RecordingInterface and click Add

Import.
5 Do the same for RecordingLoaders
6 When done click OK.

Perception PNRF Reader

I2697-1.1 en 23

Figure 4.1: PNRF Inspect Property Pages dialog

Perception PNRF Reader

24 I2697-1.1 en

4.4 Write the code

Declarations
Before we start: make sure you have included the RecordingLoaders in your
list of Project > References as well as the RecordingInterface (see chapter
“Getting it all to work” on page 10 for details). Also import both namespaces
as decribed earlier.

Add the following lines to the public declarations:

Dim FromDisk As PNRFLoader ' Required
Dim MyData As IRecording ' Required
Dim WithFileName As String ' Optionally at this point
Dim CanLoad As Integer ' Optionally at this point
Dim MySource As IDataSrc ' Recording data source
Dim Result As Object ' Intermediate result
Dim Segments As
IDataSegments

' The data segments

Note Since we are using imported namespaces, the complete prefixes can be
ommitted. We now have direct access to the interfaces.

Initialization
The first part of the program is globally the same as in previous examples:
create a loader, and verify if the file can be loaded. Here also note the absence
of the prefix.

Dim Style, Text, Result ' initialise variables
CanLoad = 0
FromDisk = New PNRFLoader ' create new loader object
WithFileName = "E:\My Documents\My Recordings
\ForPNRFexample106.pnrf"
CanLoad = FromDisk.CanLoadRecording(WithFileName) ' test
If (CanLoad < 100) Then
 Style = vbOKOnly + vbExclamation
 Text = "This file cannot be loaded."
 Result = MsgBox(Text, Style, "Load Recording")
 Application.Exit()
Else
 ' here goes the code if we can open the file
End If

At this point we can load the file:

MyData = FromDisk.LoadRecording(WithFileName)

Perception PNRF Reader

I2697-1.1 en 25

Load data
Now the file is open and we can have a look of what is inside. We already have
seen how to select recorders and channels in Chapter 3. For the sake of
simplicity we will fetch data only from a fixed recorder/channel in the next
example.

Create a data source
To fetch data from a channel we will need to create a data source. To do this,
proceed as follows:

MySource = MyData.Recorders(1).Channels(1).DataSource
 (DataSourceSelect.DataSourceSelect_Mixed)

Note that there are multiple types of datasources:

Figure 4.2: Multiple types of datasources

l Continuous: the retrieved data is continuous data only, i.e. in a mixed
(dual-rate) recording the sweep (transient) data is ommitted.

l Mixed: use this mode by default. Now you are able to retrieve both types
of data, continuous and sweeps.

l Sweeps: use this mode to retrieve sweeps only.
l Timemarks: can be used on recorder level only. Refer to the appendix on

triggers.

Note When using sweeps, retrieving data between sweeps will yield empty results.

Since we now have an interface to a data source, we can try to get some data
out of it:

MySource.Data(0, 100, Result)

This will retrieve data starting at t=0 seconds through t=100 seconds and place
it in the intermediate Result object we have defined earlier.

Create a label on the form and add the following code:

Perception PNRF Reader

26 I2697-1.1 en

Segments = Result
Label1.Text = Segments.Count

This will copy the data from Result into our Segments interface and display
the segment count. The complete code after the between the Else and End
If statement will look like this:

Else
 ' here goes the code if we can load
 MyData = FromDisk.LoadRecording(WithFileName)
 MySource = MyData.Recorders(1).Channels(1).DataSource
 (DataSourceSelect.DataSourceSelect_Mixed)
 MySource.Data(0, 100, Result)
 Segments = Result
 Label1.Text = Segments.Count
End If

Note Segments.Count can be 0 (zero) even if there is data in the file. When the
actual data starts at a time > 0 and you request data before that point, no
segments and no data will be available.

Inside a segment
Now that we have segments of data we would like to see what is in there. A
variety of information is available. The most relevant ones at this point are:

l NumberOfSamples: the number of samples that are available within this
segment in range 1 to 1 Gig (= segment limit).

l StartTime / EndTime: the start and end time respectively of this segment,
expressed in seconds.

l SampleInterval: the time between two consecutive samples, expressed
in seconds.

As we will see later in this section, the data can be retrieved as floating point
data, integer data and original data:

l Floating point data: this data is in floating point format and scaled to the
user scaling. The user scaling can be found by using the YRange or
YFullRange methods.

l Integer data: raw ADC data. Needs to be scaled using the Y0 and YStep
properties.

l Original data: one of the above, depending on the type of input channel.

The units of both the X-axis and Y-axis can be found by using the
MySource.XUnit and MySource.YUnit respectively.

Perception PNRF Reader

I2697-1.1 en 27

With this information we must be able to retrieve and display data.

Create a dialog
Using the form we already have, remove the label that we used so far and add a
ListView to the form. In this ListView we will use 3 columns, one for an index,
one for the time and one for the actual value of the data. Make sure you have
set the View property to Details.

Select the Colums property and click the More (...) button. This will call up the
ColumnHeader Collection Editor. Create the three columns as shown below.

Figure 4.3: PNRF Read Data and Column Header Collection Editor dialog

Continue with the code
Before we continue add the following declarations at the beginning of the code:

Dim i, Samples As Integer
Dim TimeStamp As Double

In the code we have come to the point that we have fetched a number of
segments with data in it. We will concentrate on one segment only.

Replace the line:

Label1.Text = Segments.Count

Perception PNRF Reader

28 I2697-1.1 en

in the previous example code with:

Samples = Segments(1).NumberOfSamples

Now we know the number of samples contained in the first segment. Note that
this can be up to 1 GigaSample! We will use this to fetch the actual data:

Segments(1).Waveform(DataSourceResultType.DataSourceResul
tType_
Double64, 1, Samples, 1, Result)

The first parameter of this method defines the data type result as we have
discussed earlier. Here we opt for the floating point data.
The second parameter is the first sample to fetch. Initially this should be "1".

Note The third parameter defines the total number of samples we want. This can
be less than the total number of samples available. You should limit this to a
reasonable value that fits easily in PC memory like 1 MegaSample (can be 4
MegaByte).

The next parameter sets the reduction factor. A reduction factor of "1"
retrieves all samples on a one-by-one basis. A reduction factor of 3 or higher
reduces the data by returning minmax pairs. Min-max pairs are also convenient
for display purposes.

The last parameter defines the result location. The data is returned in the
Result object. When you select a reduction factor of 2 or higher, the data is
returned in Result as min-max pairs. In Visual Basic this will now be a two-
dimensional array with Result(0, x) being the maximum values and Result(1, x)
being the corresponding minimum values.

Now we can do some initialization stuff for the ListView as follows:

' create the listview entries
For i = 1 To Samples
 ListView1.Items.Add("")
Next
' add the x- and y-units to the column headers
ListView1.Columns(1).Text =
"X-Axis (" + MySource.XUnit + ")"
ListView1.Columns(2).Text =
"Y-Value (" + MySource.YUnit + ")"

Perception PNRF Reader

I2697-1.1 en 29

This will create sufficient ListView items. Also the column headers are modified
to reflect the current X- and Y-units.

Finally we can present the data.

' fill the entries
For i = 0 To Samples - 1
 ' calculate time: start + index * step
 TimeStamp = Segments(1).StartTime + i * Segments(1).
 SampleInterval
 ' show index, time and value
 ListView1.Items(i).Text = Format(i, "0000")
 ListView1.Items(i).SubItems.Add(Format(TimeStamp,
 "000.00000"))
 ListView1.Items(i).SubItems.Add(Format(Result(i),
 "E"))
Next

Note The indices run from 0 to Samples-1.

When all is well and we run the program, the result could look like this:

Figure 4.4: PNRF Read Data result list box

Creating and filling the ListView entries can take a long time. Therefore make
sure that the number of samples is a few thousand or less.

Perception PNRF Reader

30 I2697-1.1 en

4.5 Verify the result
To verify what has been accomplished you can use Perception to compare the
results.

Start Perception and load the same file. Zoom in on a part of the channel data
that falls inside the loaded segment, until you can see the individual samples
(little squares). Drag a cursor to a location using 'sample snap': while dragging
the cursor hold down the Controlkey. The cursor will snap to samples. Press
the spacebar to call up the cursor window. Compare the results.

Perception PNRF Reader

I2697-1.1 en 31

4.6 Begin and end of recording
In this chapter we have concentrated on fetching data from one segment,
ranging from a - random - starting point to a - random - end point.

How do we find out what data is available? I.e. what is the very first starting
point, very last end point and when did the recording start in the real world?

The very first relative start and very last relative end time can be found using
the properties MySource.Sweeps.StartTime and
MySource.Sweeps.EndTime. These values define the relative time of the
first sample and the relative time of the last sample after the start of recording,
no matter what is in between.

The relative start of the recording is always t=0. The corresponding real world
time can be found using the UTC time function:

MySource.GetUTCTime(Year, YearDay, UTCTime, Valid)

in which:

l Year: integer representing the year, e.g. 2006
l YearDay: integer representing the number of the day within the year, e.g.

11 represents January 11, 40 represents February 9
l UTCTime: double representing the number of seconds after midnight. E.g.

49242.0 represents 13h40:42 (13x3600 + 40x60 + 42 = 49242)
l Valid: boolean is true when UTC time is available.

This concludes the introduction to the PNRF reader. Refer to the various
appendices for more information on specific topics.

Perception PNRF Reader

32 I2697-1.1 en

4.7 Data Values (from Info sheet)
Values from the Perception Info sheet (when available) are stored also within
a PNRF file. You can retrieve these values through the recording interface:

Dim Icount As Integer
Dim DVType As DataSourceDataType
Dim DVValue As String

ICount = MyData.DataValues.Count
DVType = MyData.DataValues(1).DataType
DVValue = MyData.DataValues("Comment").Value

Perception PNRF Reader

I2697-1.1 en 33

A Interfacing with MATLAB
A.1 Introduction

MATLAB® is a well-known language for technical computing. It integrates
computation, visualization, and programming in an environment where
problems and solutions are expressed in familiar mathematical notation.

MATLAB provides interfaces to clients or servers communicating via
Component Object Model (COM). In this section we will describe how you can
interface MATLAB to the PNRF Reader using COM. Most of what has been
said in this manual is also true for the MATLAB environment. The syntax
however is different.

The examples in this section use the default MATLAB desktop and are given
as command line input. Version 7.1 (R14) of MATLAB is used to create these
examples. Version 7.1 and Version 7.3 (R2006b) were used to test the
examples.

Perception PNRF Reader

34 I2697-1.1 en

A.2 Getting started

Create COM automation server and load data
To create a COM automation server you will need to use the actxserver as
follows:

h = actxserver('progid')

This creates a COM server, and returns COM object, h, representing the
server's default interface. Progid is the programmatic identifier of the
component to instantiate in the server. For our application this becomes:

>> FromDisk = actxserver('Perception.Loaders.PNRF')

FromDisk =

 COM.Perception_Loaders_PNRF

>> FromDisk.get
 Description: 'Perception Recording File'
 Extension: 'PNRF'

>>

To see the properties available through the FromDisk interface we use get. To
list the methods use invoke:

>> FromDisk.invoke
 CanLoadRecording = int32 CanLoadRecording(handle,
 string)
 LoadRecording = handle LoadRecording(handle, string)
 LoadRecordingFromInterface = handle
 LoadRecordingFromInterface(handle, handle)

>>

To interface to the data use:

>> MyData = FromDisk.LoadRecording('D:\temp\matlab.pnrf')

MyData =

Perception PNRF Reader

I2697-1.1 en 35

 Interface.Perception_Recording_Interface.IRecording

>>

Inspect the file contents
At this point we have access to the recording interface of the PNRF file. Use
MyData. get and MyData.invoke for additional information. Use this method
to find the various capabilities as shown below.

>> MyData.Recorders.get
Count: 5

Recording: [1x1 Interface.Perception_Recording_
 Interface.IRecording]

>> MyData.Recorders.invoke
 Item = handle Item(handle, Variant)
>>

This means that there are 5 recorders and you can access each recorder by
using the Item method. Continue to investigate until you see the following:

>> MyData.Recorders.Item(1).Channels.Item(1).get
Name: 'Ch A1'

Recording: [1x1 Interface.Perception_Recording_
 Interface.IRecording]

Recorder: [1x1 Interface.Perception_Recording_
 Interface.IDataRecorder]

ChannelType: 'DataChannelType_Analog'
TimeShift: 0

>> MyData.Recorders.Item(1).Channels.Item(1).invoke
 DataSource = handle DataSource(handle,
 DataSourceSelect)
>>

Perception PNRF Reader

36 I2697-1.1 en

A.3 Fetch data
Now you see the actual data source. This method returns a handle to the data
source interface and requires the parameter DataSourceSelect as one of
the following:

1 DataSourceSelect_Continuous
2 DataSourceSelect_Sweeps
3 DataSourceSelect_Mixed

To create the interface, assuming continuous data, use:

>> ItfData =
MyData.Recorders.Item(1).Channels.Item(1).DataSource(1)

ItfData =

 Interface.Perception_Recording_Interface.IDataSrc

>>

When a non-structure (empty) array is returned, try DataSource(3).
Investigate:

>> ItfData.get
Name: 'Ch A1'

XUnit: 's'
YUnit: 'Volt'

DataType: 'DataSourceDataType_AnalogWaveform'
TimeInfo: 'DataSourceTimeInfo_Implicit'

Status: 'DataSourceStatus_Static'
Value: NaN

Sweeps: [1x1 Interface.Perception_Recording_
 Interface.IDataSweeps]

Properties: [1x1 Interface.Perception_Recording_
 Interface.IProperties]

>> ItfData.invoke
 Data = Variant(Pointer) Data(handle, double, double)
 GetUTCTime = [int32, int32, double, bool]
 GetUTCTime(handle)
 GetValueAtTime = Variant GetValueAtTime(handle, double)
>>

Assume we want the data between 63 and 78 seconds:

Perception PNRF Reader

I2697-1.1 en 37

>> SegmentsOfData = ItfData.Data(63, 78)

SegmentsOfData =

 Interface.Perception_Recording_Interface.
 IDataSegments

>> SegmentsOfData.get
 Count: 1

>> SegmentsOfData.invoke
 Item = handle Item(handle, int32)
 Positions = [SafeArray Pointer(double), SafeArray
 Pointer(double), SafeArray Pointer(int32)]
 Positions(handle)
>>

There is one segment of data with the following information:

>> SegmentsOfData.Item(1).get
StartTime: 63

EndTime: 78
SampleInterval: 2.0000e-004

NumberOfSamples: 75001
RelationToPrevio

us:
'SegmentRelation_None'

Y0: 0
YStep: 3.3333e-004

DisplayFrom: 10
DisplayTo: -10

Perception PNRF Reader

38 I2697-1.1 en

>> SegmentsOfData.Item(1).invoke
 BestReductionFactor = int32 BestReductionFactor
 (handle, int32)
 DisplayRange = [double, double] DisplayRange(handle)
 MathCalculations = [Variant(Pointer), Variant(Pointer),
 Variant(Pointer), Variant(Pointer)]
 MathCalculations(handle,
 int32, int32, int32)
 Waveform = Variant(Pointer) Waveform(handle,
 DataSourceResultType, int32, int32, int32)
 XFullRange = [double, double] XFullRange(handle)
 XRange = [double, double, double, int32] XRange(handle)
 YFullRange = [double, double, double, double, double,
 double]
 YFullRange(handle)
 YRange = [double, double] YRange(handle)
>>

Use the Waveform method to get the data. This method requires the following:

l DataSourceResultType: the data can be retrieved as floating point data
(4), integer data (2) and original data (-1).

l FirstSample (int32): the first sample to retrieve.
l ResultCount (int32): the number of samples to retrieve.
l Reduction (int32): reduction factor

Perception PNRF Reader

I2697-1.1 en 39

Example:

>> WaveformData = SegmentsOfData.Item(1).Waveform(4, 1,
200, 1)

WaveformData =

 Columns 1 through 9

...

>>

And to create a nice plot:

>> plot (WaveformData)
>> title(ItfData.Name)
>>

Figure A.1: MATLAB Plot

Perception PNRF Reader

40 I2697-1.1 en

A.4 Begin and end of recording
To find the real world start of recording use:

>> [year day time valid] = ItfData.GetUTCTime

year =
 2006
day =
 11
time =
 49219
valid =
 1
>>

To find the relative start and stop of the recording use:

>> ItfData.Sweeps.get
Count: 1

StartTime: 62.5500
EndTime: 78.9330

>>

You use ItfData.Sweeps.Item(i).get to fetch information about a
specific sweep "i". Example: assume two segments. The results can be as
follows:

>> ItfData.Sweeps.get
Count: 2

StartTime: 9.6000
EndTime: 11.9330

>> ItfData.Sweeps.Item(1).get

StartTime: 9.6000
EndTime: 10.0998

TriggerTime: 9.7000
TriggerSource: 'TriggerSource_Manual'

Finished: 1

>> ItfData.Sweeps.Item(2).get

StartTime: 11.4332
EndTime: 11.9330

TriggerTime: 11.5332
TriggerSource: 'TriggerSource_Manual'

Finished: 1
>>

Perception PNRF Reader

I2697-1.1 en 41

A.5 Data Values (from Info sheet)
Values from the Perception Info sheet are stored also within a PNRF file. You
can retrieve these values through the recording interface:

>> MyData.get
Title: 'pnrf_example_runup'

Recorders: [1x1 Interface.Perception_Recording_
 Interface.IDataRecorders]

Channels: [1x1 Interface.Perception_Recording_
 Interface.IDataChannels]

TimeTagRecorders: []
Sweeps: []

Filename: 'D:\temp\pnrf_example_runup.pnrf'
Comment: ''
Groups: [1x1 Interface.Perception_Recording_

 Interface.IDataGroups]
PreferredDisplayLayout: [1x9001 char]

DataValues: [1x1 Interface.Perception_Recording_
 Interface.IDataValues]

>> MyData.DataValues.get

Count: 3

>> MyData.DataValues.Item(1).get

Value: ''
DataType: 'DataSourceDataType_String'

Name: 'Comment'
Units: ''

>> MyData.DataValues.Item(2).get

Value: 'Administrator'
DataType: 'DataSourceDataType_String'

Name: 'UserName'
Units: ''

>> MyData.DataValues.Item(3).get

Value: 'LDS Test and Measurement'
DataType: 'DataSourceDataType_String'

Name: 'Company'
Units: ''

>> MyData.DataValues.Item('Comment').get

Value: ''
DataType: 'DataSourceDataType_String'

Name: 'Comment'
Units: ''

>>

Perception PNRF Reader

42 I2697-1.1 en

Note Legacy PNRF files do not contain DataValues. Therefore the array will be
empty in these files.

Perception PNRF Reader

I2697-1.1 en 43

A.6 GUI example
The following diagram shows an example of a MATLAB program with a user
interface. The program allows you to select a file. Once opened it gives details
about the recording. You can select a channel to be displayed.

Figure A.2: MATLAB GUI

Perception PNRF Reader

44 I2697-1.1 en

B Enumerations
B.1 Introduction

Various methods require a number as a means to select an option. these
numbers are defined. This appendix lists all the enumerations that are currently
in use.

B.1.1 List of enumerations
typedef enum {
 DataSourceSelect_Continuous = 1,
 DataSourceSelect_Sweeps = 2,
 DataSourceSelect_Mixed = 3,
 DataSourceSelect_Timemarks = 10
} DataSourceSelect;

typedef enum {
 DataChannelType_Analog = 1,
 DataChannelType_Event = 2
} DataChannelType;

typedef enum {
 DataSourceDataType_Unknown = 0,
 DataSourceDataType_Numerical = 1,
 DataSourceDataType_String = 2,
 DataSourceDataType_AnalogWaveform = 3,
 DataSourceDataType_DigitalWaveform = 4,
 DataSourceDataType_TimeMarks = 10
} DataSourceDataType;

typedef enum {
 DataSourceResultType_Original = 0xffffffff,
 DataSourceResultType_Int16 = 2,
 DataSourceResultType_Double64 = 4
} DataSourceResultType;

typedef enum {
 DataSourceStatus_Static = 0,
 DataSourceStatus_Dynamic = 1
} DataSourceStatus;

Perception PNRF Reader

I2697-1.1 en 45

typedef enum {
 DataSourceTimeInfo_Implicit = 0,
 DataSourceTimeInfo_Explicit = 1,
 DataSourceTimeInfo_External = 2
} DataSourceTimeInfo;

typedef enum {
 SegmentRelation_None = 0,
 SegmentRelation_Continuous = 1,
 SegmentRelation_Overlapped = 2
} SegmentRelation;

typedef enum {
 DataSrcInfoMaskItem_Name = 1,
 DataSrcInfoMaskItem_XUnits = 2,
 DataSrcInfoMaskItem_YUnits = 4,
 DataSrcInfoMaskItem_UTCTime = 8
} DataSrcInfoMaskItem;

typedef enum {
 TriggerSource_NoTrigger = 0,
 TriggerSource_Unknown = 1,
 TriggerSource_Bus = 2,
 TriggerSource_Manual = 3,
 TriggerSource_External = 4,
 TriggerSource_Auto = 5,
 TriggerSource_Display = 6,
 TriggerSource_Channel = 7,
 TriggerSource_MyChannel = 99,
 TriggerSource_NoData = 0x80000000,
 TriggerSource_Mask = 65535
} TriggerSourceInfo;

typedef enum {
 TimeMarkType_Trigger = 1,
 TimeMarkType_TriggerAnnotation = 2,
 TimeMarkType_BookMark = 4,
 TimeMarkType_Marker = 8,
 TimeMarkType_VoiceMark = 16,
 TimeMarkType_EventMark = 32
} TimeMarkType;

Perception PNRF Reader

46 I2697-1.1 en

typedef enum {
 EventMark_RecordingStart = 1,
 EventMark_RecordingEnd = 2
} EventMarkType;

Perception PNRF Reader

I2697-1.1 en 47

C Summary of Commands
C.1 Introdution

Each object within the PNRF Reader and Recording interface can have
properties and methods. This appendix lists the most relevant properties and
methods that are currently in use.

C.1.1 List of properties and methods

PNRFLoader
 Properties
 Description File type description
 Extension File type extension
 Methods
 CanLoadRecording Yes / No
 LoadRecording Load recording

IRecording
 Properties
 Title Title of recording
 Recorders All recorders
 Channels All channels
 Sweeps Sweeps collection
 Filename Filename
 Comment Comment
 Groups Groups collection
 PreferredDisplayLayout Proprietary XML stream
 DataValues Data of Perception Info

sheet
 Methods
 GetUTCTime UTC time start of recording
 DeleteOnRelease Delete file on release of

i'fces

IRecording.Recorders
 Properties
 Count Number of recorders
 Methods
 Item Retrieve interface

IRecording.Recorders.Item(i) = IDataRecorder
 Properties
 Name Name of recorder
 PhysicalName Physical name of recorder
 Channels All channels in recorder

Perception PNRF Reader

48 I2697-1.1 en

IRecording.Recorders.Item(i) = IDataRecorder
 Triggers Collection of trigger

infos
 XUnits X-Units (timebase)

IDataRecorder.Channels
 Properties
 Count Number of channels
 Methods
 Item Retrieve interface

IDataRecorder.Channel.Item(i) = IDataChannel
 Properties
 Name Name of channel
 ChannelType Type of channel
 Methods
 DataSource Retrieve pointer to data

source

IDataSrc
 Properties
 Name Name of data source
 XUnit Timebase units
 YUnit Y-axis units
 DataType Type of data, e.g. analog
 TimeInfo Timebase source
 Sweeps Sweeps information
 Properties Collection of properties
 Methods
 Data Fetch data segments

IDataSrc.Sweeps
 Properties
 Count Number of sweeps
 StartTime Start time of total

recording
 EndTime End time of total recording
 Methods
 Item Retrieve interface to

sweeps

Perception PNRF Reader

I2697-1.1 en 49

IDataSrc.Sweeps.Item(i) = IDataSweep
 Properties
 StartTime Start time of this sweep
 EndTime End time of this sweep
 TriggerTime Time of trigger
 TriggerSource Source of trigger
 Finished Sweep has finished yes /

no
 Methods
 GetInfo Get trigger information

IDataSegments
 Properties
 Count Number of data segments

returnedby a call to the
Data method ofIDataSrc

 Methods
 Item Retrieve interface to

segment

IDataSegments.Item(i) = IDataSegment
 Properties
 StartTime Start time of this segment
 EndTime End time of this segment
 SampleInterval Time interval between

samples
 NumberOfSamples Number of samples in

thissegment
 Y0 Y0 value
 YStep Input range / ADC # of

values
 Methods
 Waveform Returns the data

Perception PNRF Reader

50 I2697-1.1 en

D Triggers and Markers
D.1 Introduction

There is more to a recording then only data. Within a recording you can also
have markers. The following markers are currently supported within the PNRF
Definition:

l Bookmark indicates text annotation of data.
l Marker a manually initiated mark, usually from a front panel button.
l Trigger indicates a trigger event.
l Trigger Annotation indicates a trigger condition.
l Voicemark a microphone / sound annotation of data.
l Eventmark indicates any other type of event. Currently the begin and end

of a recording are supported.

Within a recording any number of these markers can be present. Therefore
these markers are grouped in a separate data stream.

Note The type of markers available depends on the instrument that created the
recording. Therefore some markers may not be available as type of markers.

For programming details refer to the relevant chapters in this document.

Perception PNRF Reader

I2697-1.1 en 51

D.2 Triggers
Triggers and trigger annotations are easily accessed through the
Recording.Recorders interface as well as the DataSource.Sweeps
interface:

Dim TriggerCount, TriggerTime, TriggerType, TriggerSource

MyData = FromDisk.LoadRecording(WithFileName)
TriggerCount = MyData.Recorders(1).Triggers.Count
TriggerTime = MyData.Recorders(1).Triggers(1).Time
TriggerType = MyData.Recorders(1).Triggers(1).MarkType

When there are sweeps you can continue with:

MySource = MyData.Recorders(1).Channels(1).DataSource
 (DataSourceSelect.DataSourceSelect_Mixed)
TriggerTime = MySource.Sweeps(1).TriggerTime
TriggerSource = MySource.Sweeps(1).TriggerSource

Perception PNRF Reader

52 I2697-1.1 en

D.3 Markers
To access the various markers you will need to use a different technique. As
mentioned earlier, any number of markers can be present. Therefore these
markers are grouped in a separate data stream.

To gain access to this datastream we use again the DataSource concept.
However, we will now retrieve a TimeMarks stream of data. And, instead of a
list of segments, a collection of markers is returned.

Dim MyMarkers As ITimeMarks

Instead of fetching data from a channel, we will now fetch data from the
recorder, using the TimeMarks data stream:

MySource = MyData.Recorders(1).DataSource
 (DataSourceSelect.DataSourceSelect_Timemarks)
MySource.Data(0, 63, Result)
MyMarkers = Result
TriggerCount = MyMarkers.Count

Examine the first marker:

TriggerType = MyMarkers(1).MarkType
TriggerTime = MyMarkers(1).Time

A more sophisticated approach uses the following code:

Dim MyEventMark As IEventMark
Dim MyTriggerMark As ITrigger

Select Case MyMarkers(1).MarkType
 Case TimeMarkType.TimeMarkType_EventMark
 MyEventMark = MyMarkers(1)
 TriggerTime = MyEventMark.Time
 TriggerType = MyEventMark.EventType()
 Case TimeMarkType.TimeMarkType_Trigger
 MyTriggerMark = MyMarkers(1)
 TriggerTime = MyTriggerMark.Time
 TriggerSource = MyTriggerMark.TriggerSource
End Select

In the above code the type of marker determines the end result. For events the
event type can be returned. For triggers the trigger source is available.

Perception PNRF Reader

I2697-1.1 en 53

E Sweeps and Segments
E.1 Introduction

Each PNRF file contains one (1) recording. A recording has a start time and a
stop time. Between these times data can be stored in various ways. However,
all time information is related to a single start and stop time. Even if we would
theoretically combine two recordings into one file, the end result would be a
single recording with modified start and stop times. Although a recording is
started at relative time t=0, this does not mean data is also archived starting
at that time.

Within the PNRF definition a recording can have the following types of data
storage by nature:

l Continuous: data is acquired and stored as a continuous data stream
without gaps. There is one begin and one end.

l Sweeps: data is stored in blocks. Each block is a sweep and has its own
start and stop time. Each sweep has a trigger. A recording can have
multiple sweeps.

l Mixed: the stored data is a mixture of continuous data and sweeps, each
with their own sample rate.

When you want to fetch data from a PNRF file you will need to consider this
data source select issue. The safest option is to go always for the mixed data
source.

When you retrieve the data, you will get initially a list of segments. Each
segment is a piece of data with its own X- and Y- information as well as begin
and end time. Data may be segmented due to timebase changes as well as
amplifier range changes. Also gaps create segements.

We will demonstrate the concepts of segments with some examples.

Perception PNRF Reader

54 I2697-1.1 en

E.2 Continous data
Assume a continous recording as depicted in Figure E.1.

Figure E.1: Continous data recording

Use either the continuous or mixed mode select for the data source.

Start and end of the complete recording can be found by using the properties
MySource.
Sweeps.StartTime and MySource.Sweeps.EndTime.

If you want to retrieve data between 6 and 8 seconds you will use something
like:

MySource.Data(6, 8, Result)
Segments = Result
Label1.Text = Segments.Count

At this point Segments.Count should be one (1), i.e. the data you requested
is contained within one segment. You can have a look at the properties of
Segments(1) to find out the details.

Perception PNRF Reader

I2697-1.1 en 55

E.3 Sweeps
Assume a recording with sweeps as shown in Figure E.2.

Figure E.2: Recording with sweeps (Part 1)

This is a single recording starting at t=2 that ends at t=12. When you want to
retrieve data select either the sweeps or mixed mode select for the data
source.

If you use MySource.Data(3, 5, Result) or MySource.Data(9, 11,
Result) or something equal, the result will be a single segment.

In the following example we will retrieve data from the same file between t= 4
and t=10. To fetch this data proceed as usual:

MySource.Data(4, 10, Result)
Segments = Result
Label1.Text = Segments.Count

The value of Segments.Count however will now be 2.

Perception PNRF Reader

56 I2697-1.1 en

Figure E.3: Recording with sweeps (Part 2)

Use Segments(1) and Segments(2) to find out the details of each segment.

Perception PNRF Reader

I2697-1.1 en 57

E.4 Mixed data
Within a PNRF file both continuous data and sweeps can be available. In this
situation two data streams are available: one continuous and one with sweeps,
typically at a higher sample rate. Depending on the choises you make you will
get continuous data, sweeps or both.

Refer to Figure E.4.

Figure E.4: Recording with continous data and sweeps

Here a situation is depicted in which both continuous data and sweeped data
are available. Now there are three basic options:

A Request a single segment of sweeped data: use sweep data or mixed
data as data source:

MySource = MyData.Recorders(1).Channels(1).DataSource
 (DataSourceSelect.DataSourceSelect_Sweeps)
MySource.Data(3, 5, Result)

MySource = MyData.Recorders(1).Channels(1).DataSource
 (DataSourceSelect.DataSourceSelect_Mixed)
MySource.Data(3, 5, Result)

Perception PNRF Reader

58 I2697-1.1 en

As result a single segment will be returned with the sweeped data in it. Using
the continuous data source would result in the situation as described at (C).

B Request a single segment of continuous data: select continuous or mixed
data as data source:

MySource = MyData.Recorders(1).Channels(1).DataSource
 (DataSourceSelect.DataSourceSelect_Continuous)
MySource.Data(6, 8, Result)

MySource = MyData.Recorders(1).Channels(1).DataSource
 (DataSourceSelect.DataSourceSelect_Mixed)
MySource.Data(6, 8, Result)

As result a single segment will be returned with the continuous data in it. Using
the sweeps data source would return nothing.

C Request a single segment of continuous data that overlaps sweep data:
select continuous as data source:

MySource = MyData.Recorders(1).Channels(1).DataSource
 (DataSourceSelect.DataSourceSelect_Continuous)
MySource.Data(9, 11, Result)

As result a single segment will be returned with the continuous data in it. Using
the sweeps or mixed data source would return the sweeped data as described
at (A).

Usually you will not know exactly what kind of data is in the file. Therefore you
will retrieve a section with 'random' start and end point. Depending on the type
of data source select you can have various results.

Refer to Figure E.5

Perception PNRF Reader

I2697-1.1 en 59

Figure E.5: Recording with continous data, sweeps and mixed mode

Assume we want to select the data between t=4.5 and t=10.5.

A Use sweeps: you will get two segments, one ranging from 4.5 to 5.5
seconds, the other one starting at 8.5 seconds and ending at 10.5
seconds.

B Select continuous. The result will be a single segment that comprises the
complete requested data.

C Select mixed mode: now you will get three segments. The first one ranges
from 4.5. to 5.5 seconds, containing (high speed) sweep data. The second
segment has (slow speed) continuous data, starting at 5.5 seconds* and
ending at 8.5 seconds. The last segment again has sweep data up to 10.5
seconds.

* Actually the time between the last sample of the segment and the first sample
of the next segment will be somewhere between
IDataSegment.SampleInterval of the segment and the
IDataSegment.SampleInterval of the next segment. Due to the nature of
HBM digitizing equipment however, the exact timing of these samples is
correct and they are synchronized.

Perception PNRF Reader

60 I2697-1.1 en

F Using C++
F.1 Introduction (Using C++)

C++ (pronounced "see plus plus") is a general-purpose, high-level
programming language with low-level facilities. It is a statically typed free-form
multi-paradigm language supporting procedural programming, data
abstraction, object-oriented programming, generic programming and RTTI.
Since the 1990s, C++ has been one of the most popular commercial
programming languages.

In this appendix we will give an example of how to use the PNRF API with C+
+. The code is also included "as-is" with the PNRF Reader SDK and developed
in the Microsoft Visual Studio development environment (2005 edition).

Perception PNRF Reader

I2697-1.1 en 61

F.2 Initialization
Initialize the program. Depending on your requirements include the various
libraries. Include the Loader and Recording interface by ID rather than by
actual name.

// PNRFLoadExample.cpp: Defines the entry point
// for the console application.

#include"stdafx.h" // standard stuff
#include<stdio.h>
#include<conio.h>
#include<iostream> // basic console I/O
#include<atlcomcli.h>
using namespace std;
// #import "percRecordingInterface.olb" no_namespace
#import"libid:8098371E-98AD-0070-BEF3-21B9A51D6B3E"
no_namespace
// #import "percPNRFLoader.dll" no_namespace
#import"libid:8098371E-98AD-0062-BEF3-21B9A51D6B3E"
no_namespace

char cAnyKey; // key input
double dStart, dEnd; // start and stop time
BSTR myUnits; // units
VARIANT myCompany; // company name

Perception PNRF Reader

62 I2697-1.1 en

F.3 Main
The main program uses CoInitialize to initialize the COM library on the current
thread. Applications must initialize the COM library before they can call COM
library functions.

After this the actual program ProcessFile() is called.

Once done CoUninitialize closes the COM library on the current thread,
unloads all DLLs loaded by the thread, frees any other resources that the
thread maintains, and forces all RPC connections on the thread to close.

int _tmain(int argc, _TCHAR* argv[])
{
 CoInitialize(NULL);
 ProcessFile();
 cout << endl << "Done. Press any key to quit." << endl;
 _getch();
 CoUninitialize();
 return 0;
}

Perception PNRF Reader

I2697-1.1 en 63

F.4 Process the data
The procedure ProcessFile is used to process the data. We start with some
initialization and also fetch some information. DataValues are not always
available in a PNRF file. Therefore you must check if these values exist. Usually
three values are available by default: comment, user and company. You can
access these by index number or actual name.

After the information is displayed key input is used to continue or quit.

void ProcessFile()
{
 IRecordingLoaderPtr itfLoader;
 itfLoader.CreateInstance(__uuidof (PNRFLoader));
 // Enter the name of the pnrf recording here
 IRecordingPtr itfRecording = itfLoader->LoadRecording
 ("d:\\Temp\\pnrf_example_runup.pnrf");
 // print recording name
 _tprintf(TEXT("Recording title: %s\n"),
 (wchar_t *)itfRecording->Title);
 // print company name when data values are available
 if (itfRecording->DataValues != NULL)
 {
 myCompany = itfRecording->DataValues->
 Item["Company"]->GetValue();
 _tprintf(TEXT("Company: %s\n"),
 (wchar_t*)myCompany.bstrVal);
 }
 // connect to data source channel 1
 IDataSrcPtr MySource = itfRecording->Channels->
 Item[1]->DataSource[DataSourceSelect_Mixed];
 // fetch YUnits
 MySource->get_YUnit(&myUnits);
 _tprintf(TEXT("Y Unit: %s\n", (wchar_t*)myUnits);
 // fetch start and stop time
 MySource->Sweeps->get_StartTime(&dStart);
 MySource->Sweeps->get_EndTime(&dEnd);
 _tprintf(TEXT(

"Start time: %lf s, End time: %lf s\n\n"),
 dStart, dEnd);
 cout <<

"Press any key to continue, or Q to quit\n\n";
 cAnyKey = _getch();
 if ((cAnyKey == 'Q') || (cAnyKey == 'q'))
 return;

The result could look like this:

Perception PNRF Reader

64 I2697-1.1 en

Figure F.1: DOS window of the PNRFLoad.exe

We continue by connecting to the data an investigating the number of
segments. Quit when there is no data, or when no segments are found.

 // create data array as variant
 CComVariant myData;

 // Get data between start and stop time
 MySource->Data(dStart, dEnd, &myData);

 // if object is empty: quit
 if (myData.vt == VT_EMPTY)
 {
 _tprintf(TEXT("No Data"));
 return;
 }

 // create segments pointer
 IDataSegmentsPtr itfSegments = myData.punkVal;

 int iSegIndex = 1; // segment index
 int iCount = itfSegments-

>Count;
// number of
segements

 if (iCount < 1)
 {
 _tprintf(TEXT("No Segments found\n"));
 return;
 }

Perception PNRF Reader

I2697-1.1 en 65

At this point we can loop through all available segments and display the data.
Before we actually display the data we display the number of data points and
give the option to continue or quit.

 // loop through all available segments
 for (iSegIndex = 1 ; iSegIndex <= iCount ;

iSegIndex++)
 {
 // pointer inside segment data
 IDataSegmentPtr itfSegment = NULL;
 itfSegments-

>get_Item(iSegIndex,);&itfSegment);
 int lCnt = itfSegment->NumberOfSamples;

 // display info before continuing
 _tprintf(TEXT("Segment %d: %d samples\n"),

iSegIndex,
 lCnt);
 cout << "Press any key to continue, or Q to

quit" ;
 cAnyKey = _getch();
 if ((cAnyKey == 'Q') || (cAnyKey == 'q'))
 return;
 // variant data array for segment data
 CComVariant varData;
 // fetch data
 itfSegment-

>Waveform(DataSourceResultType_Double64, 1,
 lCnt, 1, &varData);
 //If there is no data, process next segment
 if (varData.vt == VT_EMPTY)
 continue;
 //If it isn't an array, something is wrong here
 if (!(varData.vt & VT_ARRAY))
 continue;
 // Get data out through the use of the safe

array
 // and store locally
 SAFEARRAY* satmp = NULL;
 satmp = varData.parray;

 if (satmp->cDims > 1)
 {
 // It's a multi dimensional array
 _tprintf(TEXT("Too many dimensions.\n"));
 continue;
 }
 double *pData;

Perception PNRF Reader

66 I2697-1.1 en

 SafeArrayAccessData(satmp,(void**)&pData);
 double X0 = itfSegment->StartTime;
 double DeltaX = itfSegment->SampleInterval;
 double X, Y;

 for (int i = 0; i < (int)satmp-

>rgsabound[0].cElements;
 i++)
 {
 X = X0 + i * DeltaX;
 Y = pData[i];
 _tprintf(TEXT("%d (X, Y) = (%g, %g)\n"), i

+1, X,
 Y);
 }
 SafeArrayUnaccessData(satmp);
 }
}

This concludes our C++ example.

Perception PNRF Reader

I2697-1.1 en 67

G Using C#
G.1 Introduction (Using C#)

C# (pronounced see sharp) is an object-oriented programming language
developed by Microsoft as part of their .NET initiative, and later approved as
a standard by ECMA and ISO. C# has a procedural, object-oriented syntax
based on several other programming languages (most notably Delphi and
Java) with a particular emphasis on simplification.

The de facto standard implementation of the C# language is Microsoft C#
compiler, included in every installation of .NET Framework. The original .NET
Framework distributions from Microsoft included several language-to-IL
compilers, including the two primary languages:
C# and Visual Basic. The bulk of the differences between C# and VB.NET from
a technical perspective are syntactic sugar. That is, most of the features are
in both languages, but some things are easier to do in one language than
another.

It should be noted that all .NET programming languages share the same
runtime engine, and when compiled produced binaries that are seamlessly
compatible with other .NET programming languages, including cross language
inheritance, exception handling, and debugging.

In this appendix we will give an example of how to use the PNRF API with C#.
The code is also included "as-is" with the PNRF Reader SDK and developed
in the Microsoft Visual Studio development environment (2005 edition).

Perception PNRF Reader

68 I2697-1.1 en

G.2 Initialization
Start a new project and include the correct references. To do this select the
Add Reference... command in the Project menu. You are now presented a
list of registered references. Use the Browse... button to open the Select
Component dialog. In this dialog browse to the C:\Program Files\Common
Files\HBM\Components folder. In this folder select percPNRFLoader.dll
and percRecordingInterface.olb and click Open to add these files to the list
of References. Select OK. Now the RecordingLoaders and RecordingInterface
are added to your list of included references.

Depending on your installation you can also include the COM reference
Perception PNRF Loader when available. This will load the two references in
one go.

Now you can initialize the program.

using System;
using System.Collections.Generic;
using System.Text;
using RecordingLoaders;
using RecordingInterface;

namespace Ex1_CSharp_PNRF_Load
{
 classProgram
 {
 static void Main(string [] args)
 {
 object myCompany; // company name
 string myUnits; // units
 double dStart; // start time
 double dEnd; // stop time

 ConsoleKeyInfo cki = newConsoleKeyInfo ();

Perception PNRF Reader

I2697-1.1 en 69

G.3 Process the data
We start with some initialization and also fetch some information. DataValues
are not always available in a PNRF file. Therefore you must check if these
values exist. Usually three values are available by default: comment, user and
company. You can access these by index number or actual name.

After the information is displayed key input is used to continue or quit.

 // create a pnrfloader
 PNRFLoader FromDisk = new PNRFLoader();
 // enter the correct name of the pnrf file here
 String WithFileName = "D:\\Temp\

\pnrf_example_dual.pnrf" ;
 // load recording
 IRecording myData =

FromDisk.LoadRecording(WithFileName);
 // print recording name
 Console.WriteLine(myData.Title);
 if (myData.DataValues != null)
 {
 // only when data values are available
 myCompany =

 myData.DataValues["Company"].Value;
 Console.WriteLine("Company: " + myCompany);
 }
 // connect to the first channel as data source
 IDataSrc mySource =

myData.Channels[1].get_DataSource
 (DataSourceSelect.DataSourceSelect_Mixed);

 // display the y-units
 myUnits = mySource.YUnit;
 Console.WriteLine("Y unit: " + myUnits);

 // get start and stop time
 dStart = mySource.Sweeps.StartTime;
 dEnd = mySource.Sweeps.EndTime;
 Console.WriteLine("Start time: {0} s, End time:

{1} s\n",
 dStart, dEnd);
 Console.WriteLine("Press any key to continue or

Q to quit.\n");
 cki = Console.ReadKey(true);
 if (cki.Key == ConsoleKey.Q)
 return;

The result at this point could look like this (no data values present):

Perception PNRF Reader

70 I2697-1.1 en

Figure G.1: DOS window of the CSharp PNRF Load.exe

We continue by connecting to the data an investigating the number of
segments. Quit when there is no data, or when no segments are found.

 // create data array as object
 object mySegmentData = null;
 // fetch data
 mySource.Data(dStart, dEnd, out

mySegmentData);
 if (mySegmentData == null)
 Console.WriteLine("No Data.");
 return;
 }

 // convert object into segment information
 IDataSegments mySegments = mySegmentData as
 IDataSegments;

 int iSegIndex = 1; // segment index
 int iCount = mySegments.Count; // number of
 // segments
 if (iCount < 1)
 {
 Console.WriteLine("No segments found.\n");
 return;
 }

At this point we can loop through all available segments and display the data.
Before we actually display the data we display the number of data points and
give the option to continue or skip the segment.

Perception PNRF Reader

I2697-1.1 en 71

 // loop through all available segments
 for (iSegIndex = 1; iSegIndex <= iCount;

iSegIndex++)
 {
 // create a single segment
 IDataSegment mySegment =

mySegments[iSegIndex];
 int iCnt = mySegment.NumberOfSamples;
 Console.WriteLine("\nSegment {0}:
 {1} samples\n",
 iSegIndex, iCnt);
 Console.WriteLine("Press any key to continue or
 S to skip");
 cki = Console*.ReadKey(true);
 if (cki.Key == ConsoleKey.S)
 continue;

 // create object to hold segment data
 object varData;
 // fetch data
 mySegment.Waveform(DataSourceResultType.
 DataSourceResultType_Double64, 1, iCnt,

1,
 out varData);

 if (varData == null)
 {
 Console.WriteLine("No valid data

found.");
 return;
 }

 // convert object to actual double values
 double[] dSamples = varData as double[];

 double X0 = mySegment.StartTime;
 double DeltaX = mySegment.SampleInterval;
 double X, Y;

 for (int i = 0; i < dSamples.Length; i++)
 {
 X = X0 + i * DeltaX;
 Y = dSamples[i];
 Console.WriteLine("{0}: X = {1}, Y =

{2}",
 i+1, X, Y);
 }
 }

Perception PNRF Reader

72 I2697-1.1 en

 Console.WriteLine("\nDone. Press any key to
quit.");

 Console.ReadKey();
 }
 }
}

This concludes our C# example.

Perception PNRF Reader

I2697-1.1 en 73

H NRF Files
H.1 Introduction

The PNRF Reader SDK also supports reading Odyssey/Vision NRF files.
Reading an NRF file requires changing a single line of code in the various code
examples.

Visual Basic
FromDisk = New RecordingLoaders.NRFLoader

MATLAB
The Progid for the NRF loader is ‘Perception.Loaders.NRF’.

>> FromDisk = actxserver('Perception.Loaders.NRF')

C#
 // create a nrfloader
 IRecordingLoader FromDisk = new NRFLoader() ;

C++
 IRecordingLoaderPtr itfLoader;
 itfLoader.CreateInstance(__uuidof (NRFLoader));

Perception PNRF Reader

74 I2697-1.1 en

I LRF Files
I.1 Introduction

The PNRF Reader SDK also supports reading Dimension LRF files. Reading
an LRF file requires one or two changes in the various code examples
depending on the programming tools in use.

Visual Basic
Add a reference to C:\Program Files\Common Files\HBM\Components
\LRFLoader.dll

Use the following code to create an instance of the CLRFRecordingLoader

FromDisk = New PerceptionLrfLoader.CLRFRecordingLoader

MATLAB
The Progid for the NRF loader is ‘Perception.Loaders.LRF’.

>> FromDisk = actxserver('Perception.Loaders.LRF')

C#
Add a reference to C:\Program Files\Common Files\HBM\Components
\LRFLoader.dll

Use the following code to create an instance of the CLRFRecordingLoader

 // create a nrfloader
 IRecordingLoader FromDisk = new CLRFRecordingLoader() ;

C++
To reference the LRF loader the following #import statement must be added.

// #import "LRFLoader.dll" no_namespace

#import"libid:8098371E-98AD-0069-BEF3-21B9A51D6B3E"
no_namespace

Use the following code to create an instance of the CLRFRecordingLoader

Perception PNRF Reader

I2697-1.1 en 75

 IRecordingLoaderPtr itfLoader;
 itfLoader.CreateInstance(__uuidof
(CLRFRecordingLoader));

Perception PNRF Reader

76 I2697-1.1 en

Index

A

A word on segments .. 22

B

Before we start ... 23
Begin and end of recording 32, 41

C

Continous data ... 55
Create COM automation server and load data 35

D

Data Values (from Info sheet) 33, 42

E

Enumarations
Introduction ... 45

F

Fetch data .. 37

G

General ... 7
Installation ... 7

Getting it all to Work
Introduction ... 10

Getting it all to work
Test ... 13

GUI example ... 44

I

Imprint ..
Interfacing with MAT LAB

Introduction ... 34

Interfacing with MATLAB
Getting started .. 35
Inspect the file contents 36

Introduction
Inside the PNRF .. 16

Introduction (Using C#) .. 68

L

Legacy PNRF files .. 43
LICENSE AGREEMENT AND WARRANTY 3
List of enumerations ... 45
LRF Files

C# .. 75
C++ ... 75
Introduction ... 75
MATLAB .. 75
Visual Basic ... 75

M

Markers .. 53
TimeMarks ... 53

MATLAB GUI .. 44
MATLAB Plot .. 40
Microsoft Visual Basic .NET 7
Mixed data .. 58

Continuous data .. 58
Mixed mode .. 60
Sweeps .. 58

N

NRF Files
C# .. 74
C++ ... 74
Introduction ... 74
MATLAB .. 74
Visual Basic ... 74

P

PNRF API function ... 10

Perception PNRF Reader

I2697-1.1 en 77

PNRF Recording File
Properties .. 15

R

Reading Waveform Data
Introduction ... 21

S

SDK Audience .. 8
Search for recorders and channels 17

Create a dialog .. 17
Write the code ... 17

Summary of Commands
Introdution ... 48
List of properties and methods 48

Sweeps ... 56
Sweeps and Segments

Introduction ... 54
Recording .. 54

T

Triggers .. 52
Triggers and Markers

Introduction ... 51

U

Using C++
CoInitialize ... 63
CoUninitialize .. 63
Initialization .. 62
Introduction ... 61
Main ... 63
PNRFLoad.exe .. 65
Process the data ... 64
ProcessFile .. 64

V

Verify the result ... 31
Perception ... 31

Visual Basic .. 10
Visual Basic .NET development environment 10

W

What you can expect ... 9
Write the code .. 25

Declarations .. 25
Initialization .. 25
Load data .. 26

Write the code/Load data
Create a data source 26
Create a dialog .. 28
Inside a segment ... 27
Result .. 29

Perception PNRF Reader

78 I2697-1.1 en

Head Office
HBM
Im Tiefen See 45
64293 Darmstadt
Germany
Tel: +49 6151 8030
Email: info@hbm.com

France
HBM France SAS
46 rue du Champoreux
BP76
91542 Mennecy Cedex
Tél:+33 (0)1 69 90 63 70
Fax: +33 (0) 1 69 90 63 80
Email: info@fr.hbm.com

Germany
HBM Sales Office
Carl-Zeiss-Ring 11-13
85737 Ismaning
Tel: +49 89 92 33 33 0
Email: info@hbm.com

UK
HBM United Kingdom
1 Churchill Court, 58 Station Road
North Harrow, Middlesex, HA2 7SA
Tel: +44 (0) 208 515 6100
Email: info@uk.hbm.com

USA
HBM, Inc.
19 Bartlett Street
Marlborough, MA 01752, USA
Tel : +1 (800) 578-4260
Email: info@usa.hbm.com

PR China
HBM Sales Office
Room 2912, Jing Guang Centre
Beijing, China 100020
Tel: +86 10 6597 4006
Email: hbmchina@hbm.com.cn

© Hottinger Baldwin Messtechnik GmbH. All rights reserved.
All details describe our products in general form only.
They are not to be understood as express warranty and do
not constitute any liability whatsoever.

measure and predict with confidence I2
69

7-
1.

1
en

	Perception PNRF Reader
	Table of Contents
	1 Perception PNRF SDK
	1.1 General
	1.2 SDK Audience
	1.3 What you can expect

	2 Getting it all to work
	2.1 Introduction

	3 Inside the PNRF
	3.1 Introduction
	3.2 Search for recorders and channels

	4 Reading Waveform Data
	4.1 Introduction
	4.2 A word on segments
	4.3 Before we start
	4.4 Write the code
	4.5 Verify the result
	4.6 Begin and end of recording
	4.7 Data Values (from Info sheet)

	A Interfacing with MATLAB
	A.1 Introduction
	A.2 Getting started
	A.3 Fetch data
	A.4 Begin and end of recording
	A.5 Data Values (from Info sheet)
	A.6 GUI example

	B Enumerations
	B.1 Introduction
	B.1.1 List of enumerations

	C Summary of Commands
	C.1 Introdution
	C.1.1 List of properties and methods

	D Triggers and Markers
	D.1 Introduction
	D.2 Triggers
	D.3 Markers

	E Sweeps and Segments
	E.1 Introduction
	E.2 Continous data
	E.3 Sweeps
	E.4 Mixed data

	F Using C++
	F.1 Introduction (Using C++)
	F.2 Initialization
	F.3 Main
	F.4 Process the data

	G Using C#
	G.1 Introduction (Using C#)
	G.2 Initialization
	G.3 Process the data

	H NRF Files
	H.1 Introduction

	I LRF Files
	I.1 Introduction

	Index

