Measuring Torque Ripple And Its Effects On Electric Power And Noise & Vibration

Mitch Marks Business Development -Electrification HBK

CHARGED VIRTUAL CONFERENCE

EV ENGINEERING

*

Ed Green Principal Staff Engineer - Sound and Vibration Engineering Services HBK

Presenters

- Mitch Marks
 - BSEE, MSEE University of Wisconsin WEMPEC
 - Joined HBM in 2017 (became HBK)
 - Business Development Electrification
 - Previous experience:
 - Motor manufacturing
 - Controls

2 PUBLIC

- Traction motor testing

- Ed Green
 - Ph.D. Purdue University Ray W. Herrick Laboratories (1995)
 - Joined Bruel & Kjaer Sound & Vibration Measurement A/S in 2011 (became HBK)
 - Principal Staff Engineer at HBK Sound and Vibration Engineering Services
 - Previous experience:
 - High Voltage Product Engineer
 - Research Engineer

Agenda

- 1. Introduction to Torque Ripple
- 2. Frequency Content of Torque Ripple
- 3. Why We Care About Torque Ripple
- 4. Measuring Torque Ripple
- 5. Torque Ripple's Correlation to Noise and Vibration
- 6. NVH Case Study Simulation of Different Motors into a Car
- 7. NVH Case Study Permanent Magnet Synchronous Traction Motor

HBK - Comprehensive Equipment and Service

- Dynamic Power Analyzer
 - Accuracy
 - Dynamics
 - Time alignment for mechanical and electrical measurements
- Highest accuracy torque cells
 - Accuracy up to .02%
 - Bandwidth up to 6 kHz
- World Famous Microphones & Accelerometers for over 75 years
- Testing Services
 - Measurement, troubleshooting, test design, target cascading, source path contribution analysis, simulation
 - North America, Europe, and Asia

Introduction to Torque Ripple

Torque Ripple is a Periodic Disturbance in Torque

- Torque is not a static
- Torque ripple has a frequency and amplitude
- Ripple is proportional to frequency
- Torque ripple has several potential sources
- Many test stands show heavily filtered torque

36 ripples / electrical cycle

Torque Ripple Sources

- Electrical excitation
 - 3, 6, n phase excitation
 - Inverter switching
 - Harmonics
- Machine construction
 - Magnets
 - Slots
- Mechanical resonances
- Machine alignment

7 PUBLIC

Frequency Content of Torque Ripple

Inverter Voltage Influence on Mechanical Torque

- Torque has frequency component
- Inverter control type effects torque
 - PWM excitation on the left
 - 6 step excitation on the right
- These effects will result in NV at the machine and down stream

Why We Care About Torque Ripple

Vibration, Noise, and Fatigue

- Torque ripple results in vibrations
 - Gear chatter in gear boxes
 - Lifetime and durability concerns
- Torque ripple can excite structures
 - Result in noise
 - Result in resonant vibrations
- Motors spin at high speed objectionable whining noise

Efficiency Measurements in Motors

Internal Combustion Engine

- Engine efficiency 30-40%
- A 3% error in an engine gives 39% instead of 36%

Electric Motor

- ▲ Motor efficiency 85-98%
- A 3% error in a motor gives 101% instead of 98%
- We believe this!
- Need highly accurate torque and speed that accounts for **SMALL** disturbances in the average
- 80 kW @ 20k RPM → 2093 Rad/sec x 38.22 Nm → .25 Nm offset is 500 W →.625 %

Ripples / Rotation is constant!

Measuring Torque Ripple

Accuracy, Bandwidth, and Time Alignment for Transients

- Accuracy lets you trust small values from large capacity sensors
- Low bandwidth and filtering augment phase and amplitude information
- Time alignment is necessary for control calibration
- Filters augment data used for efficiency
 - Results in very slow tests
 - Results in incorrect data

Full Bandwidth Torque – 100Hz Filtered Torque – 10 Hz Filtered Torque –

Millbrook Revolutionary Test Facilities

- Testing facilities in Livonia MI, Hayward CA, Leyland UK, and Bedford UK
- 19 year history offering testing solutions
- Specialized in electric motors, axles, transmission, and gear box testing
- ▲ All locations have access to:
 - Permanent magnet machines
 - High speed machines
 - eAxle rig
 - 90 degree gearbox (20k RPM)

Key Elements in a Torque Ripple Test Stand – MRE

- High performance dynamometers
 - Featuring induction load machines
 - Stiff speed control & great disturbance rejection
 - Closed loop control featuring EtherCAT
 - Variety of test profiles available
- High end instrumentation
 - HBM T12HP
 - eDrive Power Analyzer
- Experienced eMotor testing staff
 - Maximize run time
 - Bring electrification industry knowledge to traditionally mechanical customers
 - Knowledgeable in high speed operation

17 PUBLIC

Speed Ramp

- Speed ramp with a constant torque
 - Measure power
 - Measure torque
- Torque ripple can effect measured output power with incorrect measurement time
- Torque ripple problems may not be obvious to engineers measuring power
- Power is typically measured over a long period where torque ripple averages out

Torque Ripple Data – Time Domain

- Speed ramp with fixed torque
- Note torque ripple & torque ripple percentage
- 2 obvious resonant points
- ✓ Up to 70% torque ripple at certain points
- Normal 5% torque ripple

Good opportunity to bring in the NVH team

Torque Ripple's Correlation to Noise and Vibration

Motor Construction – Sources of Vibration

- Torque follows the envelope of AC excitation
 - Slow speed ripple proportional to electrical frequency
 - Function of winding distribution
- Permanent magnets interact with slot teeth
 - Magnets want to stick to iron
 - Function of magnets
 - Function of slots
- Forces not in the direction of torque can excite housing
 - Interaction of rotor and stator produce a rotating radial force which can be much stronger than the tangential force that produces the desired torque
 - Radial forces mechanically excites the stator producing vibration/sound

Motor Construction – Sources of Vibration (cont.)

- Consider the simple synchronous motor. The rotor is a powerful magnet, the stator is iron, and they are separated by as small of a gap as possible
- A Radial forces and lesser tangential forces produce stator vibration and motor torque ripple which increase as load increases
- The fundamental excitation frequency is:

$$f_{ex}(Hz) = \frac{pN}{60}$$

p is number of pole pairs *N* is the rpm

Noise and Vibration – Basic Mechanisms

For this synchronous motor, expect strong vibration 10th order (ten pole pairs)

Many other orders are present due to many things like slot geometry, mechanical imperfections and deformations, magnetic imperfections, and current imperfections

23 PUBLIC

Impact of Automotive Torque Ripple

- The torque ripple is resisted at the engine mounts and suspension attachments
- Dynamic force inputs into the body
- Noise, vibration, and shudders

NVH Case Study – Simulation of Different Motors into a Car

Hybrid Model for Virtual Powertrain NVH Evaluations

Measured Data

Virtual Vehicle

Model Variants

Interior Sound – Induction Motor Run-up to 80mph

Interior Sound – Switch Reluctance Motor Run-up to 80mph

IM vs. SRM Overall Level

- Great insight into noise produced by radial forces versus torque ripple – torque ripple produces similar noise (solid versus dashed line).
- The tones from the switch reluctance motor generates higher loudness than the induction motor (blue versus orange).
- The torque ripple for the switch reluctance motor has a high contribution around 300 rpm exceeding the gear noise at that speed.

NVH Case Study – Permanent Magnet Synchronous Traction Motor

Problem: Customer was Interested in Initial Torque Ripple Characterization for NVH

- Machine was suspected to have a torque ripple issue
- Desired initial investigation
- Torque ripple is a new concept to NV engineers
- Torque ripple analysis may require new investments for an NV group
- Four pole pairs

Electric Powertrain and NVH Testing

Torque Ripple Colormaps for 200 Nm Load

 Strong lines at 4th order for current and voltage as
expected

Torque Ripple Colormaps for 200 Nm Load

In this case torque ripple is caused by strong 340 Hz resonance excited by several high orders

Simultaneous measurement of NVH quantities and current and torque provides the complete picture

THANK YOU - QUESTIONS?

Mitch Marks Business Development -Electrification HBK Mitchell.marks@hbkworld.com

Ed Green Principal Staff Engineer – Sound and Vibration Engineering Services HBK Ed.green@hbkworld.com