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Measurement of Symmetrical Components in 
Three-Phase Systems 

Summary 

The growing proportion of renewable energy requires these energy producers to also achieve high reliability and 
defined behavior in critical operating situations. The symmetrical components method can be used to assess and 
evaluate the operating points of renewable energy producers. This report explains the basic theoretical principles 
behind this method, and its practical implementation in a modern measurement system. 

1. Introduction 

The energy transition – i.e. the generation of electricity from renewable energy – is setting major challenges for 
energy suppliers, grid operators and system manufacturers. The large and still growing contribution of wind power 
to electricity generation, in particular, means that the technical requirements have to be very exacting, if a reliable 
energy supply is to be guaranteed. 

In the development of wind turbines, manufacturers have gained a lot of experience in testing the individual 
components. The trialling and testing of wind turbines as a system is becoming ever more complex; firstly, 
because system output is continually increasing, and secondly, because the technical certification guidelines are 
becoming more and more exhaustive. 

In order to certify the electrical characteristics of wind turbines in field tests or system test benches in accordance 
with the Technical Guideline TR3 [4] of the Federation of German Windpower and other Renewable Energies 
(FGW e.V.), a precise measurement system with highly efficient mathematical analysis is needed. In this report, 
we present and explain mathematical methods aimed at describing and evaluating the behavior of wind turbines 
at the grid feed-in point. 

2. Symmetrical Three-Phase System 

In a three-phase network, with its generators, cables, transformers, current converters and consumer devices, a 
symmetrical operating state is usually desirable. In other words, the currents and voltages in the three phases of 
the three-phase system have identical RMS values, and the voltages and currents have a phase shift of 120° in 
relation to each other. Figure 2.1 shows the equivalent circuit diagram, vector diagram and associated line chart 
of a symmetrical three-phase system. The phasors of the individual phase voltages and currents can be 

converted into one another using the three-phase operator  120jea .  
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Fig. 2.1: Symmetrical three-phase system: a) Equivalent circuit, b) Phasor diagram, and c) Line chart of voltages and currents 

 

A symmetrical three-phase system can be analyzed by means of a single-phase equivalent circuit. For example, if 
the impedance is known the current in phase 1 can be calculated from  

Z

U
I 1

1   
(2.02) 

The currents and voltages in the other two phases can be calculated by multiplying them by the three-phase 
operators, as shown in equation 2.01. 

3. Symmetrical Components 

If the symmetry in a three-phase network is disrupted, e.g. due to a short circuit, ground fault or power outage, the 
symmetrical components method is often used to calculate and describe it. The basic idea behind symmetrical 
components originated from C.L. Fortescue in 1918 [1]. 

It is based on the mathematical principle that every asymmetrical three-phase voltage system ( 1U , 2U  and 3U ) 

can be described by three symmetrical three-phase systems. These three symmetrical three-phase systems are 
known as symmetrical components, also see [2]. 
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The symmetrical components are referred to as the positive posU , negative negU and zero sequence system 0U . 

The three-phase operator is 
 120jea , as mentioned above. These relationships naturally apply not just to 

voltages, but also to the currents in a three-phase system.  

In order to break the three-phase voltages ( 1U , 2U  and 3U ) down into their symmetrical components, 

equation 3.01 must be transformed as follows:  
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(3.02) 

  

3.1 Three-Phase System with Cyclic-Symmetrical Impedances 

Circuit 3.1a) clearly presents the advantages of using the analysis of symmetrical components. The three voltage 
sources supply the circuit. These voltage sources may represent both the simple model of a three-phase 

generator and a converter feed. In addition, LZ  is the self-impedance of the three-phase system. The three 

phases are mutually coupled by coupling impedance KZ . The neutral impedance EZ is the impedance in the 

neutral conductor. 

First of all, the source voltages are represented by symmetrical components. For this purpose, simultaneous 
equation 3.01 is illustrated by an equivalent circuit diagram. By applying these equations in formal methods, we 

obtain the voltage 1U  by connecting the voltage sources 0U , posU  and negU in series. Accordingly, voltage 2U  

is composed of 0U , posUa 2
 and negUa . Likewise, voltage 3U  is the sum of 0U , posUa  and negUa 2

. To clarify 

this further, this circuit can be interpreted as the series connection of an AC generator ( 0U ) and a clockwise 

three-phase generator that forms the positive sequence system, and an anti-clockwise three-phase generator that 
represents the negative sequence system. 

Now we can apply the superposition theorem, as with every linear system. 

Here, the voltages of two systems are always set to negative, enabling a simple calculation of the current that 
flows due to the third system. In this way, three equivalent circuits as shown in Figure 3.1c) are obtained. 
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Fig. 3.1: Description of a three-voltage source with cyclic-symmetrical load impedances through symmetrical components 
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Positive sequence system: The circuit of the positive sequence system concurs with the single-phase 
equivalent circuit diagram of the symmetrical three-phase system. If the feed is symmetrical, the positive 

sequence component of the input voltage corresponds to voltage 1U . The impedance of the positive sequence 

system is calculated from the difference between self-impedance and coupling impedance. The impedance of the 

positive sequence system is not dependent on the neutral impedance EZ , as this system does not produce any 

current via the neutral conductor in the case of cyclic-symmetrical impedance. Therefore, where the impedance in 
the positive sequence system is concerned, it is irrelevant whether the star points are grounded or not.  

Elements connected in a triangle must first be converted into star connections. In the symmetrical three-phase 
network, all star points have the same potential, regardless of whether or not they are interconnected. 

 
Negative sequence system: The equivalent circuit diagram basically has the same layout as the positive 

sequence system. With a symmetrical feed, the negative sequence component equals zero )0( negU . In a 

cyclic-symmetrical network, the negative sequence impedance is the same as the positive sequence impedance. 

 

Zero sequence system: The zero sequence system is suppled by the zero sequence component of the three-
voltage source. With symmetrical three-phase voltages, the negative sequence component equals zero 

)0( 0 U . The way in which the star points are connected is of fundamental importance in the zero sequence 

system. Currents in the zero sequence system must flow through the star connections. If the star points of the 

source and load are not interconnected, no zero sequence current can flow )( EZ . In zero sequence 

impedance, the effect of the neutral impedance is trebled, because current 03I  is flowing in the neutral 

conductor. 

 

3.2 Power Calculation in Symmetrical Components 

Where quantities are sinusoidal, the complex apparent power in the three-phase system can be calculated from 
the sum of the three phase powers, as follows: 
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(3.03) 

If all voltages and currents are now described by their symmetrical components, the complex apparent power can 
also be calculated by means of  
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(3.04) 

 

This relation can be derived from formal calculation on the one hand, and recognized from the equivalent circuit 

diagrams in Figure 3.1c) on the other hand. Together with the associated currents  0III negpos , the voltage 

sources ),,( 0UUU negpos tell us the apparent power. Since every equivalent circuit of symmetrical components 

represents the single-phase equivalent circuit of a symmetrical three-phase system, these powers must be 
multiplied by a factor of 3. 

3.3 Calculating an Asymmetrical Three-Phase System 

The symmetrical components method is now demonstrated with the aid of an example. To do so, we will examine 
the circuit shown in Figure 3.1a). The circuit is supplied by an asymmetrical three-phase system with  
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 6.3

1 7.148 jVeU ,  5.61

2 5.67 jVeU  and  165

3 7.148 jVeU  (3.05) 

 

The associated vector diagram is shown in Figure 3.2a). 

The self-impedance is  710 jZ L
 and the coupling impedance estimated as  0KZ . The source and 

load star points should not be connected to one another ( EZ ). 

First of all, transformation equation 3.1 is used to present the source voltages as symmetrical components: 

 3.294.100 j

pos VeU ,  3.413.49 j

neg VeU  and  9.16

0 9.14 jVeU  (3.06) 
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Fig. 3.2: Asymmetrical three-phase system a) Phasor diagram of phase voltages and currents, b) of voltages and c) currents in symmetrical 
components 

The associated vector diagram is shown in Figure 3.2b). In order to fully obtain the elements of the equivalent 
circuits shown in Figure 3.1, the impedances  

 710 jZZZZ KLnegpos
 and 0Z  (3.07) 

must be calculated. Therefore, we can now calculate the currents in the symmetrical components. 

 7.523.8 j

pos

pos

pos Ae
Z

U
I ,  3.7604.4 j

neg
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neg Ae
Z

U
I  and A

Z
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I 0
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0
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(3.08) 

These currents in symmetrical components can be transformed back into the real system with the aid of 
equation 3.1.  

 4.27

1 3.10 jAeI ,  8.115

2 32.4 jAeI  and  1.130

3 28.11 jAeI  (3.09) 

 

4. Analysis of Asymmetrical Faults in the Three-Phase Network 

If the symmetry of a three-phase system is disrupted, e.g. due to short circuit, ground fault or a power outage, the 
use of symmetrical components can considerably simplify analysis. This procedure is illustrated by means of the 

network in Figure 4.1a). The three-phase network is supplied by a symmetrical voltage source (
1E , 2E and 3E ). 

The internal impedance is cyclic-symmetrical in nature. Under these preconditions, we obtain the equivalent 
circuits in symmetrical components as shown in Figure 4.1b). In this case, a voltage source is only present in the 

equivalent circuit diagram of the positive sequence system, with 1EE pos  . 
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Fig. 4.1: Symmetrical three-phase system with associated equivalent circuit diagrams in symmetrical components 

 

4.1 Two-Pole Short Circuit 

The first fault we will examine is a two-pole short circuit without contact with ground. The equivalent circuit 

diagram in Figure 4.2 shows the asymmetrical fault with a low-impedance connection R between L2 and L3. With 
a resistor between phases L2 and L3, we see the unbalanced conditions of a real system, as follows:  
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(4.01) 

If these equations are transformed into the symmetrical components system, the following relations are obtained: 
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(4.02) 

 
These relations can be taken into consideration by suitable circuitry in the equivalent circuit diagrams. As shown 
in Figure 4.2, the positive and negative sequence systems must be connected to the low-ohmic resistor. The zero 
sequence system is not connected, as no zero sequence system current can flow. 

For the currents in the positive and negative sequence systems: 
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(4.03) 

 

Back transformation then produces the short-circuit current 
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Fig. 4.2: Equivalent circuit for a two-pole short circuit without contact with ground  

a) Real three-phase system b) Symmetrical components 

 

4.2 Single-Pole Ground Fault 

A low-impedance connection between one of the three conductors (L1, L2, L3) and ground constitutes a single-
pole ground fault. In high-voltage networks, the single-pole ground fault is one of the most frequently occurring 
faults.  

To analyze this fault, first of all the real circuit is examined in Figure 4.3b), and the equations that described the 
fault situation are presented thus 
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(4.05) 

In these equations, the real quantities are now replaced by symmetrical components. Consequently, the fault 
situation can be described in its entirety using symmetrical components: 
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(4.06) 

These conditions can be brought about by connecting the equivalent circuit diagrams together, as shown in 
Figure 4.3b). Since the individual equivalent circuit diagrams are connected in series, all three currents must be 
identical, as required by equation 4.3. Moreover, the sum of the partial voltage is the same as the voltage drop 

posIR 3 . Therefore, the following is obtained for the currents in the positive, negative and zero sequence 

systems: 

RZZZ

E
III

Enegpos

pos

negpos
3

0


  where 1EE pos   
(4.07) 

From the equation used for back transformation 01 IIII negpos  , we obtain the short-circuit current 
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(4.08) 

for a single-pole ground fault. 
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Fig. 4.3: Equivalent circuit for a single-pole ground fault 
a) Real three-phase system b) Symmetrical components 

 

5. Measurement of Symmetrical Components 

Symmetrical components can be employed to evaluate the behavior of decentralized energy producers in the 
grid. The characteristics of the grid variables over time are measured at various operating points and incidents, 
and the symmetrical components of the voltages and currents are measured at the grid connection point. Figure 
5.1 illustrates the measurement configuration using a wind turbine as an example. Here, further mechanical 
variables such as the temperature of the components are also measured, so that the overall system can be 
evaluated. 
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Fig. 5.1: Connection of a data recorder for measuring the characteristic over time of the system variables of a wind turbine 
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5.1 Phasors 

In order to present a real variable as a phasor, first of all the fundamental must be ascertained from the 
characteristic over time with the aid of a Fourier analysis. This is because in real technical applications in energy 
systems, pure sine or cosine signals are just a theoretical paradigm. As the following equation shows 

)2sin(ˆ)2cos(ˆ)2( sin,1cos,11 ftuftuftu f  
 

(5.01) 

the characteristic of the fundamental over time has a sine and a cosine proportion. The amplitudes of these 
proportions can be obtained using Fourier integrals: 
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(5.02) 

Here, T  is the cycle duration and 
T

f 1  the associated frequency of the periodic time characteristic. In 

electrical engineering, AC quantities are normally presented as complex RMS phasor fU 1 .  

The relationship between a phasor and the time function is described as follows:  

 

     ftuftueUftu ftj

ff   2sinˆ2cosˆ2)2( sin,1cos,1

2

11   
 

(5.03) 

By evaluating the equation above, we obtain the real and the imaginary part of  
phasor as a function of the Fourier coefficients:  
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(5.04) 

The RMS value of the fundamental can be calculated from the Fourier coefficients by means of  

2
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sin,1

2

cos,1

1

uu
U f


 . 

 

(5.05) 

Figure 5.2 contains an example of this method being used for a voltage and current characteristic. The cycle 

duration is ascertained at the voltage signal )(1 tu . The rectangular function plotted below indicates correct 

recognition of the cycle duration. The complex RMS value of the current leads the voltage vector by the angle  .  

This mathematical description naturally also applies to voltages and currents in the other two phases 
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Fig. 5.2: Characteristic of the voltage and current over time, with associated fundamentals and phasors 

 

5.2 Phasors of Symmetrical Components 

The defining equations for the symmetrical components give rise to rules of calculation, which enable us to 
calculate the complex amplitudes of the positive, negative and zero sequence systems from the Fourier 
coefficients of the measured phase variables. The formulas are obtained as follows, using the positive sequence 
system as an example.  

From the defining equation for the positive sequence component 
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(5.06) 

and sin,1cos,11 jUUU f  , sin,2cos,22 jUUU f  and sin,3cos,33 jUUU f  , the complex amplitude of the 

positive sequence system can be determined by separating them into real and imaginary: 
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(5.07) 

The complex amplitude of the negative sequence system can be calculated in the same way. 
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(5.08) 

For the zero sequence system, we obtain: 
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(5.09) 
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With the variables of the zero sequence system, it is important to note that RMS values in accordance with 
Technical Guideline TR3 are used. 

The active and reactive power values of the positive sequence system component of the fundamental are: 
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(5.10) 

In the same way, the active and reactive power values of the negative sequence system component are 
calculated as follows: 
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(5.11) 

For the zero sequence system component, the active and reactive power values of the fundamental are: 
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(5.12) 

 

A data set of example calculations is available to download [5]. Figure 5.3 presents an abridged version of the 

results of these calculations. The three-phase current is symmetrical – so here only a positive sequence system is 

present. The three voltages form an asymmetrical three-phase system. The zero sequence system only exists 
with the voltages. 
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Fig. 5.3: Characteristics of the voltages and currents of a three-phase system over time, with the calculated fundamentals and symmetrical 
components, plus associated phasor diagram 
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6. Summary 

This article presents the basic principles and use of the symmetrical components method. First of all, we are 
introduced to the relevant transformation equations. The advantages of using this calculation method are 
presented using a two-pole and single-pole ground fault as an example. The relationship between the measured 
characteristics of time-dependent quantities and the associated phasors is discussed at some length. The 
formulas derived using this approach and the procedure for applying the symmetrical components method can be 
tested with the aid of a data set. 
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8. Formulas in Perception for Calculating the Symmetrical Components 
Number of Periods

n 1

Allocations

i_1 @Sqrt(2)*50*@SineWave(1e4; 400e1; 50;0-90) + 2*@SineWave(1e4; 400e1;2000;0) A

i_2 @Sqrt(2)*50*@SineWave(1e4; 400e1; 50; -120-90)+2*@SineWave(1e4; 400e1;2000;-120) A

i_3 @Sqrt(2)*50*@SineWave(1e4; 400e1; 50; -240-90)+2*@SineWave(1e4; 400e1;2000;-240) A

u_1 @Sqrt(2)*230*@SineWave(1e4; 400e1; 50; -15-90)+20*@SineWave(1e4; 400e1;2000;0)+10*@SineWave(1e4; V

u_2 1.4*@Sqrt(2)*230*@SineWave(1e4; 400e1; 50; -140-90)+ 20*@SineWave(1e4; 400e1;2000;- V

u_3 0.3*@Sqrt(2)*230*@SineWave(1e4; 400e1; 50; -265-90)+ 20*@SineWave(1e4; 400e1;2000;- V

Cycle Information

cycle_u_1_rfe @CycleDetect(@FilterBesselLP(Formula.u_1; 1; 100; 1);0; 10)

cycle_u_1 @CycleDetect((Formula.cycle_u_1_rfe+1)*0,5;0,7;0,1;0)

t @Integrate(@Abs(Formula.cycle_u_1)) s

f @CycleFrequency(Formula.u_1; 1; Formula.cycle_u_1) Hz

i_1f @CycleFundamental(Formula.i_1; 1; Formula.cycle_u_1) A

u_1f @CycleFundamental(Formula.u_1;1;Formula.cycle_u_1) V

Fourier Coeeficients

u_1_cos 2*@CycleMean(Formula.u_1*@Cosine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) V

u_1_sin 2*@CycleMean(Formula.u_1*@Sine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) V

u_2_cos 2*@CycleMean(Formula.u_2*@Cosine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) V

u_2_sin 2*@CycleMean(Formula.u_2*@Sine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) V

u_3_cos 2*@CycleMean(Formula.u_3*@Cosine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) V

u_3_sin 2*@CycleMean(Formula.u_3*@Sine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) V

i_1_cos 2*@CycleMean(Formula.i_1*@Cosine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) A

i_1_sin 2*@CycleMean(Formula.i_1*@Sine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) A

i_2_cos 2*@CycleMean(Formula.i_2*@Cosine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) A

i_2_sin 2*@CycleMean(Formula.i_2*@Sine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) A

i_3_cos 2*@CycleMean(Formula.i_3*@Cosine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) A

i_3_sin 2*@CycleMean(Formula.i_3*@Sine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) A

Positive Sequence Components

u_pos_cos 1/6*(2*Formula.u_1_cos-Formula.u_2_cos-Formula.u_3_cos-@Sqrt(3)*(Formula.u_3_sin-Formula.u_2_sin)) V

u_pos_sin 1/6*(2*Formula.u_1_sin-Formula.u_2_sin-Formula.u_3_sin-@Sqrt(3)*(Formula.u_2_cos-Formula.u_3_cos)) V

i_pos_cos 1/6*(2*Formula.i_1_cos-Formula.i_2_cos-Formula.i_3_cos-@Sqrt(3)*(Formula.i_3_sin-Formula.i_2_sin)) A

i_pos_sin 1/6*(2*Formula.i_1_sin-Formula.i_2_sin-Formula.i_3_sin-@Sqrt(3)*(Formula.i_2_cos-Formula.i_3_cos)) A

Negative Sequence Components

u_neg_cos 1/6*(2*Formula.u_1_cos-Formula.u_2_cos-Formula.u_3_cos-@Sqrt(3)*(Formula.u_2_sin-Formula.u_3_sin)) V

u_neg_sin 1/6*(2*Formula.u_1_sin-Formula.u_2_sin-Formula.u_3_sin-@Sqrt(3)*(Formula.u_3_cos-Formula.u_2_cos)) V

i_neg_cos 1/6*(2*Formula.i_1_cos-Formula.i_2_cos-Formula.i_3_cos-@Sqrt(3)*(Formula.i_2_sin-Formula.i_3_sin)) A

i_neg_sin 1/6*(2*Formula.i_1_sin-Formula.i_2_sin-Formula.i_3_sin-@Sqrt(3)*(Formula.i_3_cos-Formula.i_2_cos)) A

Zero Sequence Components

u_0_cos 1/(3*@Sqrt(2))*(Formula.u_1_cos+Formula.u_2_cos+Formula.u_3_cos) V

u_0_sin -1/(3*@Sqrt(2))*(Formula.u_1_sin+Formula.u_2_sin+Formula.u_3_sin) V

i_0_cos 1/(3*@Sqrt(2))*(Formula.i_1_cos+Formula.i_2_cos+Formula.i_3_cos) A

i_0_sin -1/(3*@Sqrt(2))*(Formula.i_1_sin+Formula.i_2_sin+Formula.i_3_sin) A

Positive Sequence Power Quantities

P_pos 3/2*(Formula.u_pos_cos*Formula.i_pos_cos + Formula.u_pos_sin*Formula.i_pos_sin) W

Q_pos 3/2*(Formula.u_pos_cos*Formula.i_pos_sin - Formula.u_pos_sin*Formula.i_pos_cos) var

Negative Sequence Power Quantities

P_neg 3/2*(Formula.u_neg_cos*Formula.i_neg_cos + Formula.u_neg_sin*Formula.i_neg_sin) W

Q_neg 3/2*(Formula.u_neg_cos*Formula.i_neg_sin - Formula.u_neg_sin*Formula.i_neg_cos) var

Zero Sequence Power Quantities

P_0 3/2*(Formula.u_0_cos*Formula.i_0_cos + Formula.u_0_sin*Formula.i_0_sin) W

Q_0 3/2*(Formula.u_0_sin*Formula.i_0_cos - Formula.u_0_cos*Formula.i_0_sin) var

Voltage RMS of Positive, Negative and Zero Sequence

U_pos @Sqrt(3/2*(Formula.u_pos_cos*Formula.u_pos_cos + Formula.u_pos_sin*Formula.u_pos_sin)) V

U_neg @Sqrt(3/2*(Formula.u_neg_cos*Formula.u_neg_cos + Formula.u_neg_sin*Formula.u_neg_sin)) V

U_0 @Sqrt(3/2*(Formula.u_0_cos*Formula.u_0_cos + Formula.u_0_sin*Formula.u_0_sin)) V

Active and Nonactive Current RMS of Positive, Negative and Zero Sequence

I_P_pos Formula.P_pos/@Sqrt(3)/Formula.U_pos A

I_Q_pos Formula.Q_pos/@Sqrt(3)/Formula.U_pos A

I_P_neg Formula.P_neg/@Sqrt(3)/Formula.U_neg A

I_Q_neg Formula.Q_neg/@Sqrt(3)/Formula.U_neg A

I_P_0 Formula.P_0/@Sqrt(3)/Formula.U_0 A

I_Q_0 Formula.Q_0/@Sqrt(3)/Formula.U_0 A

cos(phi)

cos_phi_pos Formula.P_pos/(@Sqrt(Formula.P_pos*Formula.P_pos + Formula.Q_pos*Formula.Q_pos))

cos_phi_neg Formula.P_neg/(@Sqrt(Formula.P_neg*Formula.P_neg + Formula.Q_neg*Formula.Q_neg))

cos_phi_0 Formula.P_0/(@Sqrt(Formula.P_0*Formula.P_0 + Formula.Q_0*Formula.Q_0))  

 


