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Measurement of Symmetrical Components in
Three-Phase Systems

Summary

The growing proportion of renewable energy requires these energy producers to also achieve high reliability and
defined behavior in critical operating situations. The symmetrical components method can be used to assess and
evaluate the operating points of renewable energy producers. This report explains the basic theoretical principles
behind this method, and its practical implementation in a modern measurement system.

1. Introduction

The energy transition — i.e. the generation of electricity from renewable energy — is setting major challenges for
energy suppliers, grid operators and system manufacturers. The large and still growing contribution of wind power
to electricity generation, in particular, means that the technical requirements have to be very exacting, if a reliable
energy supply is to be guaranteed.

In the development of wind turbines, manufacturers have gained a lot of experience in testing the individual
components. The trialling and testing of wind turbines as a system is becoming ever more complex; firstly,
because system output is continually increasing, and secondly, because the technical certification guidelines are
becoming more and more exhaustive.

In order to certify the electrical characteristics of wind turbines in field tests or system test benches in accordance
with the Technical Guideline TR3 [4] of the Federation of German Windpower and other Renewable Energies
(FGW e.V.), a precise measurement system with highly efficient mathematical analysis is needed. In this report,
we present and explain mathematical methods aimed at describing and evaluating the behavior of wind turbines
at the grid feed-in point.

2. Symmetrical Three-Phase System

In a three-phase network, with its generators, cables, transformers, current converters and consumer devices, a
symmetrical operating state is usually desirable. In other words, the currents and voltages in the three phases of
the three-phase system have identical RMS values, and the voltages and currents have a phase shift of 120° in
relation to each other. Figure 2.1 shows the equivalent circuit diagram, vector diagram and associated line chart
of a symmetrical three-phase system. The phasors of the individual phase voltages and currents can be

converted into one another using the three-phase operator g =g*?”.

(2.01)
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Fig. 2.1: Symmetrical three-phase system: a) Equivalent circuit, b) Phasor diagram, and c) Line chart of voltages and currents

A symmetrical three-phase system can be analyzed by means of a single-phase equivalent circuit. For example, if
the impedance is known the current in phase 1 can be calculated from

Ql (2.02)
|_1 ==
Z

The currents and voltages in the other two phases can be calculated by multiplying them by the three-phase
operators, as shown in equation 2.01.

3. Symmetrical Components

If the symmetry in a three-phase network is disrupted, e.g. due to a short circuit, ground fault or power outage, the
symmetrical components method is often used to calculate and describe it. The basic idea behind symmetrical

components originated from C.L. Fortescue in 1918 [1].

It is based on the mathematical principle that every asymmetrical three-phase voltage system (U,, U, and U,)

can be described by three symmetrical three-phase systems. These three symmetrical three-phase systems are
known as symmetrical components, also see [2].

L_Jl 1 11 lipos
L_JZ - gz g‘ 1 lineg
U] a a 1]y,
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The symmetrical components are referred to as the positive U negative Llneg and zero sequence system U ;.

pos’
The three-phase operator is g=ej12°°, as mentioned above. These relationships naturally apply not just to

voltages, but also to the currents in a three-phase system.

In order to break the three-phase voltages (U,, U, and U;) down into their symmetrical components,
equation 3.01 must be transformed as follows:

2
ons 1 1 a2 a 1y, (3.02)
L_Jneg _g 1 a a L_Jz
u, | jr 1 1]y,

3.1 Three-Phase System with Cyclic-Symmetrical Impedances

Circuit 3.1a) clearly presents the advantages of using the analysis of symmetrical components. The three voltage
sources supply the circuit. These voltage sources may represent both the simple model of a three-phase

generator and a converter feed. In addition, Z, is the self-impedance of the three-phase system. The three

phases are mutually coupled by coupling impedance Z, . The neutral impedance Z.is the impedance in the
neutral conductor.

First of all, the source voltages are represented by symmetrical components. For this purpose, simultaneous
equation 3.01 is illustrated by an equivalent circuit diagram. By applying these equations in formal methods, we

obtain the voltage U, by connecting the voltage sources U,,U . and U, in series. Accordingly, voltage U,
is composed of L_Jo,gzgpos and aU, .. Likewise, voltage U ; is the sum of U,,,aU . and a’ U ¢y - TO clarify

this further, this circuit can be interpreted as the series connection of an AC generator (L_JO) and a clockwise

three-phase generator that forms the positive sequence system, and an anti-clockwise three-phase generator that
represents the negative sequence system.

Now we can apply the superposition theorem, as with every linear system.

Here, the voltages of two systems are always set to negative, enabling a simple calculation of the current that
flows due to the third system. In this way, three equivalent circuits as shown in Figure 3.1c) are obtained.

Zero- Positive- Negative-
sequence sequence sequence

1 pos 1 neg Lo

U pos l Zpos =21-Zx u negl Zneg=Z1-Zx Uo l Zo=2,+27+3Z¢

b)

Fig. 3.1: Description of a three-voltage source with cyclic-symmetrical load impedances through symmetrical components
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Positive sequence system: The circuit of the positive sequence system concurs with the single-phase
equivalent circuit diagram of the symmetrical three-phase system. If the feed is symmetrical, the positive

sequence component of the input voltage corresponds to voltage U, . The impedance of the positive sequence
system is calculated from the difference between self-impedance and coupling impedance. The impedance of the
positive sequence system is not dependent on the neutral impedance Z ., as this system does not produce any
current via the neutral conductor in the case of cyclic-symmetrical impedance. Therefore, where the impedance in
the positive sequence system is concerned, it is irrelevant whether the star points are grounded or not.

Elements connected in a triangle must first be converted into star connections. In the symmetrical three-phase
network, all star points have the same potential, regardless of whether or not they are interconnected.

Negative sequence system: The equivalent circuit diagram basically has the same layout as the positive
sequence system. With a symmetrical feed, the negative sequence component equals zero (L_Jneg =0).Ina

cyclic-symmetrical network, the negative sequence impedance is the same as the positive sequence impedance.

Zero sequence system: The zero sequence system is suppled by the zero sequence component of the three-
voltage source. With symmetrical three-phase voltages, the negative sequence component equals zero

(L_Jo =0). The way in which the star points are connected is of fundamental importance in the zero sequence
system. Currents in the zero sequence system must flow through the star connections. If the star points of the
source and load are not interconnected, no zero sequence current can flow (Zg — ). In zero sequence
impedance, the effect of the neutral impedance is trebled, because current 31, is flowing in the neutral
conductor.

3.2 Power Calculation in Symmetrical Components

Where quantities are sinusoidal, the complex apparent power in the three-phase system can be calculated from
the sum of the three phase powers, as follows:

S=U,l;+U, 1, +U,l; (3.08)

If all voltages and currents are now described by their symmetrical components, the complex apparent power can
also be calculated by means of

*

S =3-(U el s #U g g +Uo 1) 309

pos=pos ' neg—n

This relation can be derived from formal calculation on the one hand, and recognized from the equivalent circuit

diagrams in Figure 3.1c) on the other hand. Together with the associated currents (lposlneglo), the voltage

sources (L_JPOS,L_Jneg,L_JO)teII us the apparent power. Since every equivalent circuit of symmetrical components
represents the single-phase equivalent circuit of a symmetrical three-phase system, these powers must be
multiplied by a factor of 3.

3.3 Calculating an Asymmetrical Three-Phase System

The symmetrical components method is now demonstrated with the aid of an example. To do so, we will examine
the circuit shown in Figure 3.1a). The circuit is supplied by an asymmetrical three-phase system with
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U, =148.7ve’**, U, =67.5ve *** and U, =148.7ve ™" (3.05)

The associated vector diagram is shown in Figure 3.2a).
The self-impedance is ;L =100+ j?Q and the coupling impedance estimated as ;K =0Q). The source and

load star points should not be connected to one another (;E =).

First of all, transformation equation 3.1 is used to present the source voltages as symmetrical components:

U o =100.4ve'*¥ U, =49.3Ve " and U =14.9ve *** (3.06)
Im 4 Im m
I3
>
R U pos
U \
23w _ . U
T @, o
S Y I >
y Re Y Re \ pos Re
13 1 1y =neg |neg
Y
a) b) C)
Fig. 3.2: Asymmetrical three-phase system a) Phasor diagram of phase voltages and currents, b) of voltages and c) currents in symmetrical
components

The associated vector diagram is shown in Figure 3.2b). In order to fully obtain the elements of the equivalent
circuits shown in Figure 3.1, the impedances

Zos=Zny =2, —Z,=10Q+ j7Q and Z =0 (3.07)

£ pos ~ Eneg
must be calculated. Therefore, we can now calculate the currents in the symmetrical components.

U o U . (3.08)
1, =0 =823Me 57, |, =" —4,04Ae % and |, = 20 = 0A
= pos “neg =0

These currents in symmetrical components can be transformed back into the real system with the aid of
equation 3.1.

1,=10.3Ae 772", |, =432 1% and |, =11.28 1" (3.09)

4. Analysis of Asymmetrical Faults in the Three-Phase Network

If the symmetry of a three-phase system is disrupted, e.g. due to short circuit, ground fault or a power outage, the
use of symmetrical components can considerably simplify analysis. This procedure is illustrated by means of the

network in Figure 4.1a). The three-phase network is supplied by a symmetrical voltage source (El,EZ and Ej,).

The internal impedance is cyclic-symmetrical in nature. Under these preconditions, we obtain the equivalent
circuits in symmetrical components as shown in Figure 4.1b). In this case, a voltage source is only present in the

equivalent circuit diagram of the positive sequence system, with Epos =E,.
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<E! zZ o
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E b . — [ }»o0
4;2 iZk Z ZAK 1) U I neg
—O——— 1< #+»o Y - l
U neg
<£3 W 4 Z‘K 13
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o)
— ° Zy=Z,+27Zx+3Z¢
Ze 1o
l Uo
a) b)

Fig. 4.1: Symmetrical three-phase system with associated equivalent circuit diagrams in symmetrical components

4.1 Two-Pole Short Circuit

The first fault we will examine is a two-pole short circuit without contact with ground. The equivalent circuit
diagram in Figure 4.2 shows the asymmetrical fault with a low-impedance connection R between L2 and L3. With
a resistor between phases L2 and L3, we see the unbalanced conditions of a real system, as follows:

L = 0

L, -1, .01

U,-U, = R,
If these equations are transformed into the symmetrical components system, the following relations are obtained:

0
| = - (4.02)

—~ pos ~neg

U U = Rl

~ pos~ L neg ~ pos

These relations can be taken into consideration by suitable circuitry in the equivalent circuit diagrams. As shown
in Figure 4.2, the positive and negative sequence systems must be connected to the low-ohmic resistor. The zero
sequence system is not connected, as no zero sequence system current can flow.

For the currents in the positive and negative sequence systems:
(4.03)

E
| =—1 = —pos where E_=E;
—pos —neg 7 7 +R —P —
_pos+_neg

Back transformation then produces the short-circuit current

HBM Test and Measurement ® info@hbm.com ® www.hbm.com

HBM public Page 6



(4.04)

Zpos=Z,-Zx
— O >o——

lpos
EPOSl@ lgpos [] R

Zneg =7Z,-Zx
—{__ 0

1 neg
R l U neg

Lo =2, +27¢+37Z¢
—{__+»—0

1o
l Uy

L0

a) b)

Fig. 4.2: Equivalent circuit for a two-pole short circuit without contact with ground
a) Real three-phase system b) Symmetrical components

4.2 Single-Pole Ground Fault

A low-impedance connection between one of the three conductors (L1, L2, L3) and ground constitutes a single-
pole ground fault. In high-voltage networks, the single-pole ground fault is one of the most frequently occurring
faults.

To analyze this fault, first of all the real circuit is examined in Figure 4.3b), and the equations that described the
fault situation are presented thus

R-1, = U,

lz_ = 0 (4.05)

1, = 0
In these equations, the real quantities are now replaced by symmetrical components. Consequently, the fault
situation can be described in its entirety using symmetrical components:
l = Ly = I

—~pos ~neg

3R-1,, = U, + U +Ug (4.06)

~ pos ~ neg

These conditions can be brought about by connecting the equivalent circuit diagrams together, as shown in
Figure 4.3b). Since the individual equivalent circuit diagrams are connected in series, all three currents must be
identical, as required by equation 4.3. Moreover, the sum of the partial voltage is the same as the voltage drop

3R-lp05. Therefore, the following is obtained for the currents in the positive, negative and zero sequence

systems:
E (4.07)

— P where Epos = El
pos +;neg +;E +3R

—pos =_neg =lO = Z

From the equation used for back transformation 1, =1 .+ 1., +1,, we obtain the short-circuit current

g
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|- E, (4.08)
T Z ot Zeg +Ze )+ R

for a single-pole ground fault.

ZposzZL'ZK
Eposl

E

L1 ZL ll Ql

=2 7. Z ZAK I, U,

»—@—:’—‘b—o
Es | z %1y, JR
Ze

a) b)

Fig. 4.3: Equivalent circuit for a single-pole ground fault
a) Real three-phase system b) Symmetrical components

5. Measurement of Symmetrical Components

Symmetrical components can be employed to evaluate the behavior of decentralized energy producers in the
grid. The characteristics of the grid variables over time are measured at various operating points and incidents,
and the symmetrical components of the voltages and currents are measured at the grid connection point. Figure
5.1 illustrates the measurement configuration using a wind turbine as an example. Here, further mechanical
variables such as the temperature of the components are also measured, so that the overall system can be
evaluated.

<_
Inverter Gearbox -—
S E> 3T
| | J 3
‘\E ; G wind
\(\\ 75
\P\Grid ) 5
\\\
\\\ ///
Data Recorder -

PC
(R U LWL

Fig. 5.1: Connection of a data recorder for measuring the characteristic over time of the system variables of a wind turbine
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5.1 Phasors

In order to present a real variable as a phasor, first of all the fundamental must be ascertained from the
characteristic over time with the aid of a Fourier analysis. This is because in real technical applications in energy
systems, pure sine or cosine signals are just a theoretical paradigm. As the following equation shows

Uy (27ft) =0, . - COS(27t) + 0, g, - SIN(24t) (5.01)

the characteristic of the fundamental over time has a sine and a cosine proportion. The amplitudes of these
proportions can be obtained using Fourier integrals:

A

G u, (t) cos(2ft)dt

1,c0s —

L|'—-"'

—

(5.02)

u, . =

1,sin

—||I\J —||I\J

u, (t) sin(2t)dt

—_—

t-

_|

Here, T is the cycle duration and f =% the associated frequency of the periodic time characteristic. In

electrical engineering, AC quantities are normally presented as complex RMS phasor U ; .

The relationship between a phasor and the time function is described as follows:

Uy (27ft) =2 -R{U, & |=0, , cos(27At)+ 0, , sin(27At)
(5.03)

By evaluating the equation above, we obtain the real and the imaginary part of
phasor as a function of the Fourier coefficients:

A A

. u .
1cos 1sin __ JU

_1f - \/_ \/_ 1,c0s

The RMS value of the fundamental can be calculated from the Fourier coefficients by means of

A 2 A 2
ul,cos + ul,sin
Uy, Z\/f- (5.05)

Figure 5.2 contains an example of this method being used for a voltage and current characteristic. The cycle
duration is ascertained at the voltage signal Ul(t)- The rectangular function plotted below indicates correct
recognition of the cycle duration. The complex RMS value of the current leads the voltage vector by the angle ¢ .

Lsin (5.04)

This mathematical description naturally also applies to voltages and currents in the other two phases
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\ / \ / \ G, =325V, 0, =0V, U =325V
oA N Iy =70,7A I =17.59A, 1, ;, =68.49A
| / N[/ | b
N N N
89
R 7 7
! JAHORN F 1N ?
oV Ly
\ \ \ Us
A A A
A hi
a) -400,0 V - c)
0 5 ms/div

Fig. 5.2: Characteristic of the voltage and current over time, with associated fundamentals and phasors

5.2 Phasors of Symmetrical Components

The defining equations for the symmetrical components give rise to rules of calculation, which enable us to
calculate the complex amplitudes of the positive, negative and zero sequence systems from the Fourier
coefficients of the measured phase variables. The formulas are obtained as follows, using the positive sequence
system as an example.

From the defining equation for the positive sequence component

. 1 2
Llpos :U pos,cos JU pos,sin :§ Ulf +§Q2f +g LASf) (5.06)
mit g=—3+j£ gzz_l_jﬁ
2 2 2 2
and U, =U; = JUpgn. Uy =U, = U, gand Uy =U; o — JUgg,. the complex amplitude of the

positive sequence system can be determined by separating them into real and imaginary:

. 1(,. . . . .
u pos,cos g(zul,cos - uz,cos - u3,cos - ﬁ(us,sin - u2,sin))

(5.07)
- 1 ( . R . Nele . )
upos,sin = g 2u1,sin - u2,sin - u3,sin - 3(u2,cos - u3,cos)
The complex amplitude of the negative sequence system can be calculated in the same way.
- 1 (2 n n n J3(4 n )
uneg,cos - g ul,cos - u2,cos - u3,cos - (ub,sin - u3,sin) (5.08)
- 1 ( . . R NETl R )
uneg,sin = g 2ul,sin - u2,sin _u3,sin - 3(u3,cos _u2,cos)
For the zero sequence system, we obtain:
u0,cos = 3ﬁ (l:il,cos + ljz,cos + l:|\3,cos) (5.09)

u0 sin T i(ljl sin + 02 sin + lj&’. sin)
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With the variables of the zero sequence system, it is important to note that RMS values in accordance with
Technical Guideline TR3 are used.

The active and reactive power values of the positive sequence system component of the fundamental are:

3

A ~ n ~
P =—(u I + U ossind vossi )
pos ‘5 \"poscos’ poscos pos,sin' pos,sin (5.10)
3 (A o R - )
ons - E u pos,cosI possin u pos,sinI possin

In the same way, the active and reactive power values of the negative sequence system component are
calculated as follows:

o _3 O b
neg E l'lneg|cos|net,;,cos + unengi"I”eg'Si” (5.11)
3 (G ey b i)
Qneg = 7 Uneg,costneg.sin ™ Uneg sintneg sin

2

For the zero sequence system component, the active and reactive power values of the fundamental are:

P0 = 3(l'IO,coslo,cos + uO.sin'Qsin)

i i 5.12
QO = 3(u0.cos|0,sin - uO,sinlo,sin) ( )

A data set of example calculations is available to download [5]. Figure 5.3 presents an abridged version of the
results of these calculations. The three-phase current is symmetrical — so here only a positive sequence system is

present. The three voltages form an asymmetrical three-phase system. The zero sequence system only exists
with the voltages.

500,0 V T ; :.150 st,e
[ ositve - Sequence
ul(t) N ‘ U = 2193V, U, =201 5V = U, = -15.5V - j206 .1V
A A [ N N A A A I . N .
NW V\A\A f | Ly ‘ NW V\A\A | v WJ V\A\A f | T =159 AT g0 = B8 A9A = 1y =12,44 A~ 4B 43A
P I o | A -
| "y N\ | LA | Negative - Sequence
\ [ NMN \ i M\;\N\N X [ U o =112 AV Uy 0 = 203V = U = 1947V - j17.2V
] ) Y ] " ] Py =0A g =0A 1, =0A- jOA
PAAMMA V\A il M A/\Nf\v\f;\w \ A X g = ]
un i % ‘ N 1 x“ ‘ | i %erc - Sequence . )
I \/\/\/VAN ¥ W w-— § Uy = 66,38, 0y, =-6.54V = U, =46.94V ~ j4.6V

Ty =0A, iy, =0A= 1, =0A- jOA

-500,0 V[
80,0 A

neg

lpos

5 ms/div

800 A

gpos

Fig. 5.3: Characteristics of the voltages and currents of a three-phase system over time, with the calculated fundamentals and symmetrical
components, plus associated phasor diagram
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6. Summary

This article presents the basic principles and use of the symmetrical components method. First of all, we are
introduced to the relevant transformation equations. The advantages of using this calculation method are
presented using a two-pole and single-pole ground fault as an example. The relationship between the measured
characteristics of time-dependent quantities and the associated phasors is discussed at some length. The
formulas derived using this approach and the procedure for applying the symmetrical components method can be
tested with the aid of a data set.
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8. Formulas in Perception for Calculating the Symmetrical Components

Number of Periods

n 1
Allocations
i1 @Sqrt(2) *50*@SineWave(1e4; 400e1; 50;0-90) + 2* @Sine Wave(1e4; 400e 1;2000;0) A
i2 @Sqrt(2)*50*@SineWave(1led; 400e1; 50; -120-90)+2*@Sine Wave (1e4; 400e1;2000;-120) A
i3 @Sqrt(2) *50* @SineWave(1e4; 400e1; 50; -240-90)+2* @Sine Wave( 1e4; 400e 1;2000;-240) A
u_l @Sqrt(2)*230*@SineWave(1e4; 400e 1; 50; -15-90)+20* @Sine Wave(1e4; 400e 1;2000;0)+10* @SineWave(1e4; V
u_2 1.4*@Sqrt(2)*230*@SineWave(1e4; 400e1; 50; -140-90)+ 20* @Sine Wave(1e4; 400e1;2000;- \Y
u_3 0.3*@Sqrt(2)*230*@SineWave(1e4; 400e1; 50; -265-90)+ 20* @Sine Wave (1e4; 400e 1;2000;- \
Cycle Information
cycle_u_1_rfe @CycleDetect(@FilterBesselLP(Formula.u_1; 1; 100; 1);0; 10)
cycle_u_1 @CycleDetect((Formula.cycle_u_1_rfe+1)*0,5;0,7;0,1;0)
t @Integrate(@Abs(Formula.cycle_u_1)) s
f @CycleFrequency(Formula.u_1; 1; Formula.cycle_u_1) Hz
i_1f @CycleFundamental(Formula.i_1; 1; Formula.cycle_u_1) A
u_1f @CycleFundamental(Formula.u_1;1;Formula.cycle_u_1) \
Fourier Coeeficients
u_1_cos 2*@CycleMean(Formula.u_1*@Cosine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) V
u_1 sin 2*@CycleMean(Formula.u_1*@Sine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) V
u_2_cos 2*@CycleMean(Formula.u_2*@Cosine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) V
u_2_sin 2*@CycleMean(Formula.u_2*@Sine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) V
u_3_cos 2*@CycleMean(Formula.u_3*@Cosine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) V
u_3_sin 2*@CycleMean(Formula.u_3*@Sine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) V
i_1_cos 2*@CycleMean(Formula.i_1*@Cosine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) A
i_1_sin 2*@CycleMean(Formula.i_1*@Sine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) A
i_2_cos 2*@CycleMean(Formula.i_2*@Cosine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) A
i_2_sin 2*@CycleMean(Formula.i_2*@Sine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) A
i_3_cos 2*@CycleMean(Formula.i_3*@Cosine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) A
i_3_sin 2*@CycleMean(Formula.i_3*@Sine(2*System.Constants.Pi*Formula.f*Formula.t);1; Formula.cycle_u_1) A
Positive Sequence Components
u_pos_cos 1/6*(2*Formula.u_1_cos-Formula.u_2_cos-Formula.u_3_cos-@Sqrt(3)*(Formula.u_3_sin-Formula.u_2_sin)) V
u_pos_sin 1/6*(2*Formula.u_1_sin-Formula.u_2_sin-Formula.u_3_sin-@Sqrt(3)*(Formula.u_2_cos-Formula.u_3_cos)) V
i_pos_cos 1/6*(2*Formula.i_1_cos-Formula.i_2_cos-Formula.i_3_cos-@Sqrt(3)*(Formula.i_3_sin-Formula.i_2_sin)) A
i_pos_sin 1/6*(2*Formula.i_1_sin-Formula.i_2_sin-Formula.i_3_sin-@Sqrt(3)*(Formula.i_2_cos-Formula.i_3_cos)) A
Negative Sequence Components
u_neg_cos 1/6*(2*Formula.u_1_cos-Formula.u_2_cos-Formula.u_3_cos-@Sqrt(3)*(Formula.u_2_sin-Formula.u_3_sin)) V
u_neg_sin 1/6*(2*Formula.u_1_sin-Formula.u_2_sin-Formula.u_3_sin-@Sqrt(3)*(Formula.u_3_cos-Formula.u_2_cos)) V
i_neg_cos 1/6*(2*Formula.i_1_cos-Formula.i_2_cos-Formula.i_3_cos-@Sqrt(3)*(Formula.i_2_sin-Formula.i_3_sin)) A
i_neg_sin 1/6*(2*Formula.i_1_sin-Formula.i_2_sin-Formula.i_3_sin-@Sqrt(3)*(Formula.i_3_cos-Formula.i_2_cos)) A
Zero Sequence Components
u_0_cos 1/(3*@Sqrt(2))*(Formula.u_1_cos+Formula.u_2_cos+Formula.u_3_cos) \"
u_0_sin -1/(3*@Sqrt(2))*(Formula.u_1_sin+Formula.u_2_sin+Formula.u_3_sin) \"
i_0_cos 1/(3*@Sqrt(2))*(Formula.i_1_cos+Formula.i_2_cos+Formula.i_3_cos) A
i_0_sin -1/(3*@Sqrt(2))*(Formula.i_1_sin+Formula.i_2_sin+Formula.i_3_sin) A
Positive Sequence Power Quantities
P_pos 3/2*(Formula.u_pos_cos*Formula.i_pos_cos + Formula.u_pos_sin*Formula.i_pos_sin) w
Q_pos 3/2*(Formula.u_pos_cos*Formula.i_pos_sin - Formula.u_pos_sin*Formula.i_pos_cos) var
Negative Sequence Power Quantities
P_neg 3/2*(Formula.u_neg_cos*Formula.i_neg_cos + Formula.u_neg_sin*Formula.i_neg_sin) w
Q_neg 3/2*(Formula.u_neg_cos*Formula.i_neg_sin - Formula.u_neg_sin*Formula.i_neg_cos) var
Zero Sequence Power Quantities
PO 3/2*(Formula.u_0_cos*Formula.i_0_cos + Formula.u_0_sin*Formula.i_0_sin) w
Q0 3/2*(Formula.u_0_sin*Formula.i_0_cos - Formula.u_0_cos*Formula.i_0_sin) var
Voltage RMS of Positive, Negative and Zero Sequence
U_pos @Sqrt(3/2*(Formula.u_pos_cos*Formula.u_pos_cos + Formula.u_pos_sin*Formula.u_pos_sin)) \"
U_neg @Sqrt(3/2*(Formula.u_neg_cos*Formula.u_neg_cos + Formula.u_neg_sin*Formula.u_neg_sin)) \
u_o0 @Sqrt(3/2*(Formula.u_0_cos*Formula.u_0_cos + Formula.u_0_sin*Formula.u_0_sin)) \
Active and Nonactive Current RMS of Positive, Negative and Zero Sequence
1_P_pos Formula.P_pos/@Sqrt(3)/Formula.U_pos A
1_Q_pos Formula.Q_pos/@Sqrt(3)/Formula.U_pos A
1_P_neg Formula.P_neg/@Sqrt(3)/Formula.U_neg A
1_Q_neg Formula.Q_neg/@Sqrt(3)/Formula.U_neg A
1P O Formula.P_0/@Sqrt(3)/Formula.U_0 A
1_.Q0 Formula.Q_0/@Sqrt(3)/Formula.U_0 A
cos(phi)
cos_phi_pos Formula.P_pos/(@Sqrt(Formula.P_pos*Formula.P_pos + Formula.Q_pos*Formula.Q_pos))
cos_phi_neg Formula.P_neg/(@Sqrt(Formula.P_neg*Formula.P_neg + Formula.Q_neg*Formula.Q_neg))
cos_phi_0 Formula.P_0/(@Sqrt(Formula.P_0*Formula.P_0+ Formula.Q_0*Formula.Q_0))
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