Organisational information

- To enable audio, activate your PC speakers or connect headphones to your PC.
- All participants' microphones are muted during the webinar.
- If you have any questions, please use the 'Questions and answers' window.

7 🥐 🥐 🥐 🥐 🥐

- Questions will be answered at the end of the presentation.
- The webinar is being recorded and will soon be made available on our website together with the presentation materials – you will then receive an e-mail notification.

Welcome to the webinar: "Measurement Uncertainty of Force Measurements"

Thomas Kleckers

- Product Manager Industrial Measurement (IMS) at HBM
- Degree in Engineering
- 16 years of experience in development (strain gauges)
- Product manager for force sensors
- E-Mail: thomas.kleckers@hbm.com

Thomas Kleckers

© HBM

Agenda

- General remarks / definitions
- Accuracy classes
- Systematic errors
- How to estimate a measurement uncertainty
- Example
- Not precise enough?

- New more strict regulations and standards require lower measurement uncertainty
- End-of-the-line-Tests: lower tolerance optimize the yield of your production

=> Lower measurement uncertainty helps to reach goals and ensure that the measurement equipment can be used for years

© HBM

Prof. Werner Richter:

"A measurement result without an uncertainty calculation is so much disputable that it should not be mentioned

Kleckers

- It is important to know
 - what the value of my measurement uncertainty is
 - how I can improve my accuracy

Terms and definitions

Terms and definitions

Resolution

This measurement device has a resolution of 1 mm

A DMP41 has 2 Mio digits in a measurement range of +/- 2.5 mV/V Resolution: 2,5mV/V/1Mio=0,0025 µV/V

© HBM

Accuracy class

Accuracy class?

Strain gauge full bridge, 5 or 10 mV/V measuring range, bridge excitation AC / carrier frequency				
Accuracy class		0.05		
Carrier frequency (sine)	Hz	z 4800 ± 1.5		
Bridge excitation voltage (effective)	V	1 and 2.5 (±5 %)		
Transducers that can be connected		strain gauge full bridges		
Permissible cable length between MX840B and transducer	m	< 100		

Туре			S2M						
Nominal (rated) force	F _{nom}	Ν	10	20	50	100	200	500	1000
Accuracy									
Accuracy class						0.02	<u> </u>		
Relative reproducibility and repeatability errors without rotation	b _{rg}					0.02			
Relative reversibility error	v					0.02			
Non-linearity	d _{lin}	%				0.02			
Pelative creen over 30 min	d					0 00			

Accuracy class ?

Amplifier:

- Linearity
- Repeatability
- TCZero
- TC of amplification

Transducer:

- · Linearity error
- Hysteresis
- · Creep
- · Zero point return
- Repeatability in unchanged mounting position
- TCZero
- TCSpan

Accuracy class ?

Everybody can do whatever he/she wants!

- No standard existing
- % of full scale
- Do not mix up with
 - Measurement uncertainty
 - Accuracy class according ISO376

- You can not compare sensors from different suppliers
- You can not calculate any errors or uncertainties with the accuracy class
- BUT: Choosing a DAQ-System that fits to the sensor- this works!

HBM

It is known if the difference is positive or negative as well as the value of the deviation

→ have to be corrected

Example

The influence of the weight of load introduction parts are used: => Tare your measurement chain

HBM

According test certificate?

According individual

calibration?

What is the accuracy of my measurement chain?

Sorry, depends on

Measurement chain Hysteresis Linearity TCZero TCSpan Bending moment sensitivity	Process Temperatures Side load existing? Hmidity?	Post process or real time calculation Used filter Rounding error 		
Measurement uncertainty				
Adjustment of the measurement chain		Calibration Daks-Calibration?		
According da	tasheet?	Calibration in mounting		

position?

HBM

0

Influences on the measurement uncertainty,

Other measurement errors (not systematic)

It is **not** known if the error is positive or negative as well as the value

→ Measurement uncertainty

HBM

A way to estimate the measurement uncertainty realistically

(Accuracy class) X measurement value

Use of the GUM standard

A down to earth way of calculating the individual measurement uncertainty

HBM

GUM = "*Guide to the Expression of Uncertainty in Measurement*"

- For highest scientific demands
- complex
- High effort

"The determination of the measurement uncertainty is not a routine job or a math's problem- a detail knowledge about the measurement task is required"

Methods according GUM-standard

Method A

- Get a suitable number of individual measurements
- Calculate the mean value
- The measurement uncertainty can be calculated by calculating the standard deviation of the results

Method B

- Use of existing information on influences that have an impact on the measurement uncertainty
- Calculating the resulting measurement uncertainty by using the single results above

Method B is the better choice for force measurements in most case

HBN

Strategy with measurement uncertainty:

- Calculation of the individual errors
- Statistical characteristic of the individual properties
- Geometrical addition
- Taking care for the range of uncertainty

We need to state: No single error is dependent on another one!

HINT: HBM Seminar "Uncertainty of measurement chains"

Tension measurement for a component test

- Load cell U2B/5KN
- Range of force (Sinus)
- Temperature range
- Frequency
- Testing duration
- Zero point setting
- Adjustment according datasheet

Capacity 5 kN between 0 and 1 kN 23° C up to 45° C 15 Hz 30 min before every test 5 kN = 2 mV/V

HBM

Data sheet of the U2B:

- Tolerance of rated output:
- Linearity deviation.:
- Hysteresis
- TCSpan:
- TCZero:
- Creep (30 min):

MV = Measurement Value

- ± 0.2% (I
- ± 0,1%
- (related to MV) (related to FS)
- 0,15 % (related to FS)
- ± 0,1% (realted to MV)
- ± 0,05% (related to FS)
- ± 0,06% (related to MV)

FS = Full scale

HBM

Tolerance of the rated output (related to actual value)

$\Delta_{d C} = 0.2$ % of 1 kN = <u>2 N</u>

Linearity deviation

(Related to full scale)

S [mv/v]

$\Delta_{d \text{ lin}} = 0,1 \% \text{ of } 5 \text{ kN} = 5 \text{ N}$

 $\Delta_{hys} = 0.15$ % of 5 kN = <u>7,5 N</u>

• Influence of changes TCZero and TCSpan in temperature on output the zero point: TCZero (Related to full scale)

TCSpan TCSpan TCZero Force (N)

 $\Delta_{TK0} = 0.05$ % of 5 kN $\cdot (45^{\circ}C-23^{\circ}C)/10K = 5.5$ N

HBM

TCZero and TCSpan

 $\Delta_{\text{TKC}} = 0,1 \% \text{ of } 1 \text{ kN} \cdot (45^{\circ}\text{C}-23^{\circ}\text{C})/10\text{K} = 2.2 \text{ N}$

• Creep

(related to actual value)

$\Delta_{cr} = 0,06$ % of 1 kN = **<u>0.6N</u>**

© HBM

- Tolerance of the rated output (related to actual value) $\Delta_{d C} = 0.2 \%$ von 1 kN = <u>2 N</u>
- Linearity deviation (Related to full scale) $\Delta_{d \text{ lin}} = 0,1 \% \text{ von } 5 \text{ kN} = 5 \text{ N}$
- Hysteresis (Related to full scale) $\Delta_{hys} = 0.15 \%$ von 5 kN = 7,5 N
- TCSpan (Related to actual value)

 $\Delta_{TKC} = 0,1 \% \text{ von } 1 \text{ kN} \cdot (45^{\circ}\text{C}-23^{\circ}\text{C})/10\text{K} = \underline{2.2 \text{ N}}$ • **TCZero (related to full scale)** $\Delta_{TK0} = 0,05 \% \text{ von } 5 \text{ kN} \cdot (45^{\circ}\text{C}-23^{\circ}\text{C})/10\text{K} = \underline{5,5 \text{ N}}$ • **Creep (related to actual value)** $\Delta_{cr} = 0,06 \% \text{ von } 3 \text{ kN} = \underline{0.6N}$

HBN

$$U_{ges} \approx \sqrt{\Delta_{dC}^2 + \Delta_{dlin}^2 + \Delta_{hys}^2 + \Delta_{TKC}^2 + \Delta_{TK0}^2 + \Delta_{cr}^2}$$

= $\sqrt{(2 \text{ N})^2 + (5 \text{ N})^2 + (7.5 \text{ N})^2 + (2.2 \text{ N})^2 + (5.5 \text{ N})^2 + (0.6 \text{ N})^2}$
 $\approx 10,98 \text{ N}$

Uncertainty: 1,1%....too big??

Lower capacity

(lower influence of all parameters that related to full scale)

- More stable temperature conditions

(lower influence of TCZero/TCSpan)

Calibration at HBM

(Lower linearity deviation, lower tolerance of sensitivity)

© HBM

Influence of the load cell

Linearity er	ror		
Capacity	Up to now	New	Improvemen
1.25 kN	0.03	0.02	33%
2.5 kN	0.03	0.02	33%
5 kN	0.03	0.02	33%
12.5 kN	0.04	0.03	25%
25 kN	0.04	0.03	25%
50 kN	0.04	0.035	13%
125 kN	0.04	0.035	13%
250 kN	0.04	0.035	13%
500 kN	0.06	0.05	17%

Hysteresis			
Capacity	Up to now	New	Improvement
1.25 kN	0.03	0.02	33%
2.5 kN	0.03	0.02	33%
5 kN	0.03	0.02	33%
12.5 kN	0.04	0.035	13%
25 kN	0.04	0.035	13%
50 kN	0.05	0.035	30%
125 kN	0.05	0.04	20%
250 kN	0.05	0.04	20%
500 kN	0.05	0.05	0%

Use the robustness of HBM's U10M series: 200 % calibration

- Tolerance of the rated output (related to actual value) $\Delta_{d C} = 0.02 \%$ von 1 kN = <u>0,2 N</u>
- Linearity deviation (related to full scale) $\Delta_{d \text{ lin}} = 0.02 \text{ \% von } 2.5 \text{ kN} = 0.5 \text{ N}$
- Hysteresis (related to full scale) $\Delta_{hys} = 0.02 \%$ von 2.5 kN = 0.5 N
- TCSpan (related to actual value)

 $\Delta_{\text{TKC}} = 0,015 \text{ \% von 1 kN} \cdot (45^{\circ}\text{C}-23^{\circ}\text{C})/10\text{K} = 0.33 \text{ N}$

- TCZero (related to full scale)
 Δ_{TK0} = 0,015 % von 5 kN ·(45°C-23°C)/10K = 0.4125 N
- Creep (related to actual value)

 $\Delta_{cr} = 0,02 \%$ von 3 kN = **<u>0.2N</u>**

Error: 1,03 N (=0,13%) (2,06 N (=0,26%) in case of k = 2)

Additional informationen

More information can be found on our website: www.hbm.com/force

© HBM

HBM Academy

If you want to learn more:

On-site training: We bring the expertise to you

- Please contact the HBM Academy team if you are interested in HBM Academy creating an on-site training course specifically tailored to your company's needs.
- mail: seminare@hbm.com
- phone: +49 6151 8038061

Any questions?

- If you have any questions, please do not hesitate to contact us: webinar@hbm.com
- Or email the presenter directly: <u>thomas.kleckers@hbm.com</u>

www.hbm.com