

Measuring Power Losses in Electric Motors and Inverters

§ 1 4

Learn more at <u>https://www.hbm.com/eDrive</u>

Agenda

- 1. Introduction
- 2. Inverter losses
- 3. Motor Losses
- 4. Measurement Uncertainty

HOTTINGER

UNRESTRICTED

Losses

Each component has losses in energy between states 4/2

- ▲ Losses create heat
- 🖌 Losses decrease range 📎
- Losses result in increased weight/volume 2
- Characterize losses so we can:
 - Understand them
 - Mitigate them
 - Manage them

Inverter Losses

Inverter Switch operation

Conduction Losses

- Switch has an "on resistance" Q
- ✓ Power loss = $I^2R_{switchOn} = I_{ds} V_{ds}$
- Number of switches
- Resistance is a function of temperature
- Other resistances in the circuit will cause losses
- Key to Measurement
 - Time aligned electric & mechanical
 - Calculations
- Accuracy

Switching losses

- $P = f^*(E_{on} + E_{off}) = I_{ds}^* V_{ds}$
 - Frequency = f
 - Energy loss on/off
- ▲ Losses increase with frequency
- Losses increase with turn on/off time <i>O
 - T_{rise}
 - T_{fall}

- Key to Measurement
 - High speed
 - Differential
 - Recorded data

Inverter Loss Measurement

Accurately measure DC in & AC out

- Estimate On resistance with TC and equation
 - Calculate losses
 - Time aligned temperatures
- Measure P_{on} & P_{off} with differential measurement across switch
 - Scope card @ 250MS/s

Inverter Switch On and Off Example

Real Example – Load Step

Motor Losses

Copper Losses - Resistive

- Losses due to resistance of the motor windings
- $P_{copper} = I_{ph}^{2} * R_{windings}$
- ▲ Temperature dependent 🌡
 - $R_{winding} = R_0^* (1 + \alpha^* (T T_0))$
 - Temp $\square \rightarrow \Omega \square$
 - Can be reduced by cooling III
- Measured with phase current and temperatures
- Key to Measurement
 - Time aligned electric & mechanical
 - Custom sensors and calculations
- Accuracy

Motor Circuit equation highlighting the resistive element

Copper Losses - Skin Effect

- AC frequency makes the conductor look smaller
- $R_{ac} = R_{dc}^* k^* \sqrt{f}$
 - K = gauge factor
 - F = frequency in MHz
- ▲ Effects high fundamentals and switching frequencies ∞
- Taken into effect with resistance used in the copper loss equation
- Key to Measurement
 - Custom equations
 - Custom sensors
 - accuracy

Frequency	Skin Depth	Graphic
5 Hz	29.7 mm	
50 Hz	9.38 mm	
500 Hz	2.97 mm	
5 kHz	.938 mm	0
50 kHz	.297 mm	0

Iron Losses - Hysteresis

- Magnetizing iron requires energy
- ▲ Losses happen every sine wave œ
 - Property of the iron & permeability
- $P_{b} = \eta^{*} f^{*} V^{*} B_{max}^{n}$
 - η Steinmetz hysteresis coefficient (material property)
 - n Steinmetz exponent (material property)
 - V Volume
 - f Frequency
 - B Max flux density
- Key to Measurement
 - Data to understand variables → Sensitivity
 - Accuracy
 - Custom Calculations
- Time aligned electric & mechanical

Iron Losses - Eddy Currents

- Faraday's law states "any change in the environment of a coil of wire will cause a voltage to be induced in the coil, regardless of how the magnetic change is produced"
 - The magnetism of the flux will self induce EMF
 - Current will flow in the core ightarrow losses
 - Thinner laminations have a higher resistance ${\mathbb Q}$

✓ $P_e = K_e * B_{max}^2 * f^2 * t^2 * V$

- K_e eddy current constant
- B Max flux density
- f frequency
- t Thickness
- V Volume
- Key to Measurement
 - Data to understand variables \rightarrow Sensitivity
 - Accuracy

16

Custom Calculations

Mechanical losses

- ✓ Internal windage €
- ▲ Bearing Friction 🛞
- Misalignment
- Keys to measurement
 - Accuracy
 - Custom sensors

Dynamic Losses

- Load changes will result in magnetizing currents that are greater than normal operation
- Inrush currents happen even with variable frequency excitation
- Key to Measurement
 - Real time cycle detection
 - Time alignment Electric and Mech

Motor Loss Measurement

- Accurately measure AC in & Mechanical out
- Measure copper/iron losses thermocouples and equations
- Measure mechanical losses with equation or a curve based on measurement

Measurement Uncertainty

Measuring Power Losses → A Differential Problem

- 500 kW inverter
- 95% efficiency

		Measurement chain erre	or @ 1%	Measurement chain error @ C	Measurement chain error @ 0,1%	
	"Truth"	Measured	Error	Measured Err	or	
Input	500 kW	500 kW +/- 5 kW	1%	500 kW +/- 0.5 kW 0,1	%	
Output	475 kW	475 kW +/- 4.75 kW	1%	475 kW +/- 0.475 kW 0,1	%	
Losses	25 kW	25 kW +/- 9.75 kW	39,0%	25 kW +/- 0.975 kW 3,9	%	
Conduction	5 kW	5kW +/- 9.75 kW	6	5 kW +/975 kW 19.	5%	

If you want to achieve <u>reasonable measurements</u> for derived values like **Power Loss** you need the <u>most accurate measurement</u> you can get

Measurement Uncertainty and Losses

Real Example – Load Step

Measurements of raw signals

High accuracy measurement gives you ability to trust values

eDrive Value

- Simple data collection of electro-mechanical signals
- Fast and accurate Power Meausrements
 - Lowest Measurement Uncertainty (MU)
 - Lowest MU across the frequency range
 - Lowest Torque MU
- Custom Equations
- Recorded Data
 - Recorded data will allow you to refine models in post process with 1 test
- ²⁵ Local Support & Training

Thank You

Mitch Marks Business Development at HBK -Hottinger, Brüel & Kjær

Brüel & Kjær

www.hbkworld.com | © HBK – Hottinger, Brüel & Kjær | All rights reserved

File: HBM eDrive - Short Customer Introduction 2020 04 v03 en - public