

Carte d'entrée 100 Méch/s isolée à fibre optique

Le système isolé à fibre optique comprend jusqu'à 12 émetteurs qui sont raccordés à la carte réceptrice GN1202B intégrée dans un appareil de base de la série GEN à l'aide d'un câble à fibre optique.

En convertissant le signal analogique en signal numérique et en le transmettant à la carte réceptrice par un câble à fibre optique, la transmission n'ajoute pas de dérive ou d'erreur au signal mesuré. La compensation automatique de la longueur de câble fait correspondre la phase de toutes les voies isolées par fibre optique à n'importe quelle voie d'entrée analogique standard. Les émetteurs GN112 et GN113 offrent une isolation alimentée en continu à 1,8 kV RMS. Les émetteurs GN110 et GN111 offrent une isolation plus élevée en utilisant une alimentation par batterie permettant une durée de fonctionnement continue de 30 heures. Le système assure une protection anti-repliement supérieure, la meilleure de sa catégorie, grâce à une approche multi-étages unique. La combinaison au 1er étage d'un filtre anti-repliement analogique à 6 pôles avec le convertisseur A/N crée un flux de données numérique anti-repliement à une vitesse constante de 100 Méch/s.

Série GEN GN1202B

Carte d'entrée 100 Méch/s isolée à fibre optique

Caractéristiques spécifiques

- 12 émetteurs par carte réceptrice
- Connexion numérique par fibre optique, sans bruit/erreur ou dérive
- Longueur de câble jusqu'à 1000 m
- Compensation auto. de la longueur de câble
- Émetteur alimenté par batterie
- Émetteur alimenté en continu avec isolation de 1,8 kV RMS
- Plages d'entrée de ± 20 mV à ± 100 V
- Filtres anti-repliement analog./num.
- Valeurs d'étalonnage mémorisées dans l'émetteur
- Émetteur de 25 Méch/s ou 100 Méch/s
- Résolution de 15 ou 14 bits
- Calculateurs temps réel reposant sur la base de données de formules
- Déclenchement sur résultats temps réel
- Évén. num./Timer/Compteur pris en charge

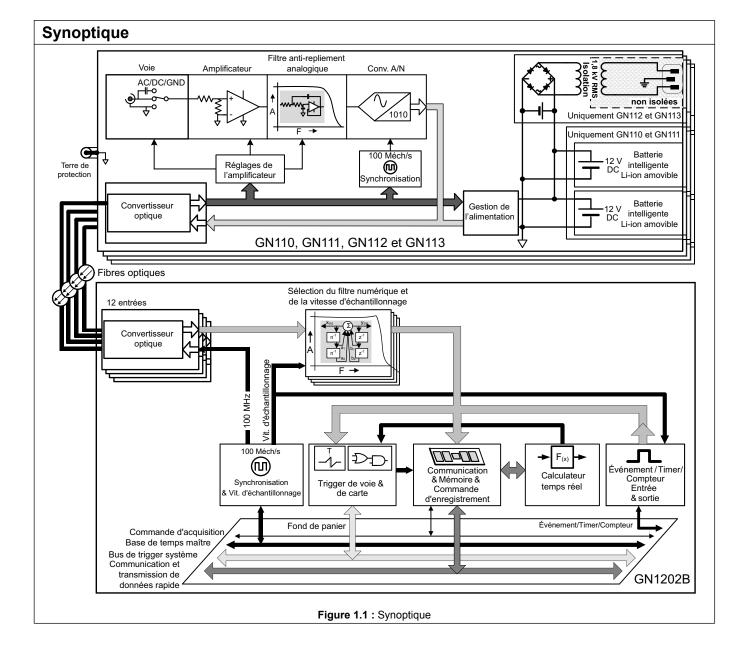
Le 2^{ème} étage envoie le flux de données à 100 Méch/s dans un filtre numérique sélectionnable par l'utilisateur afin de réduire le signal à la bande passante maximum désirée. Le filtrage numérique prend en charge des caractéristiques de filtrage Bessel ou Butterworth d'ordre 8.

Le 3^{ème} étage décime le signal filtré de 100 Méch/s à la vitesse d'échantillonnage désirée.

Le filtrage numérique avant décimage garantit un résultat de grande qualité, sans repliement, à bruit ultra-faible et en synchronisme de phase.

Les calculateurs en temps réel reposant sur une base de données de formules proposent des programmes mathématiques permettant de résoudre quasiment n'importe quel problème mathématique en temps réel. La détection numérique dynamique des cycles permet une sauvegarde en temps réel, ainsi que la sortie numérique de résultats de calcul comme TrueRMS sur toutes les voies analogiques, couple, angle, vitesse et Timer/ Compteur avec une latence de 1 µs. La fonction mathématique voie à voie crée des voies calculées avec une latence de 1 µs pour obtenir des calculs de la puissance mécanique et/ou de la puissance électrique sur plusieurs phases (non limitées à trois) (P, Q, S) ou même du rendement. Des résultats calculés en temps réel peuvent être utilisés pour déclencher l'enregistrement ou signaler des alarmes à l'extérieur.

Aperçu des fonctions	
Modèle de récepteur	GN1202B
Modèles d'émetteur	GN110, GN111, GN112 et GN113
Vitesse d'échantillonnage maximum par voie	100 Méch/s En cas de raccordement du GN111 ou du GN113, la vitesse d'échantillonnage maximum est limitée à 25 Méch/s pour toutes les voies
Mémoire par récepteur	8 Go (4 Géch)
Voies analogiques	1 entrée par émetteur (GN110, GN111, GN112 ou GN113)
Filtres anti-repliement	Filtre anti-repliement analogique à bande passante fixe combiné à un filtre anti-repliement numérique surveillant la vitesse d'échantillonnage
Résolution du convertisseur A/N	14 bits GN111 et GN113 : 15 bits en utilisant un suréchantillonnage fois quatre
Isolation	Émetteur-récepteur et émetteur-terre
Type d'entrée	Entrées différentielles asymétriques isolées
Pinces de courant / sondes de tension passives	Sondes de tension asymétriques passives
Capteurs	Non pris en charge
TEDS	Non pris en charge
Calculateurs temps réel reposant sur la base de données de formules (option)	Grand choix de programmes mathématiques programmables par l'utilisateur
Événement numérique/Timer/Compteur	16 événements numériques et 2 voies Timer/Compteur. En raison de limites techniques, certaines vitesses d'échantillonnage ne prennent pas en charge les Événements numériques/Timer/Compteur
Transmission de données standard (CPCI jusqu'à 200 Mo/s)	Non prise en charge
Transmission de données rapide (PCle jusqu'à 1 Go/s)	Prise en charge
Largeur de slot	1


Sortie de résultats calculés en temps réel					
	Interface de programmation EtherCAT® CAN / CAN FD Ethernet GEN DAQ				
Nombre max. de résultats par bloc	240	240	240		
Nombre max. de blocs de résultats par seconde	2000	1000	1000		
Latence	En fonction d'Ethernet	1 ms	Vitesse de bus CAN		

Appareils de base pris en char	ge										
	GEN2tB	GEN3t	GEN4tB	GEN7tA	GEN17tA	GEN3i/GEN3iA	GEN7i/ GEN7iA	GENZi (4)	GEN5i (4)	GEN7t (4)	GEN16t ⁽⁴⁾
GN1202B				Oui					N	on	
Interface de programmation GEN DAQ	Oui Oui ⁽¹⁾ Non		on								
EtherCAT®	Non Oui Non Non		on								
CAN / CAN FD	Oui Non Oui Oui ⁽²⁾ Oui ⁽³⁾ Non Nor		on								

- (1) Fermer Perception pour permettre l'accès à l'interface de programmation GEN DAQ.
- (2) Les modèles plus anciens n'ont pas de port USB. Contacter Support-EPT@hbm.com pour obtenir une mise à niveau à installer par l'utilisateur.
- (3) Nécessite une modification personnalisée du système.
- (4) Appareil de base remplacé par une version plus récente.

Capteurs et sondes analogiques pris en charge				
Mode Amplificateur	Capteurs et sondes analogiques pris en charge Fonctionnalités, câblage et accessoires			
Tension de base	 Tensions électriques, différentielles et asymétriques Sondes asymétriques actives Sondes différentielles actives Pinces de courant 	t ± 20 mV à ± 100 V BNC métallique		

Capteurs numériques pris en charge (entrée niveau TTL)				
Type d'entrée Timer/Compteur	Mode de mesure	Fonctions		
Horloge unidirectionnelle et bidirectionnelle Signal Direction Réinitia- lisation 3/4 5 6 5 4 7 1 Réinitia- lisation Réinitia- lisation	 Angle Fréquence/Vitesse Comptage/Position 	 Fréquence de comptage jusqu'à 5 MHz Réglage de la largeur minimale du signal d'entrée Plusieurs options de réinitialisation Le RT-FDB peut ajouter une voie calculée Fréquence/Vitesse basée sur la mesure de l'angle 		
Codeur incrémental ABZ (en quadrature) Signal Direction 1/2 3 4 3 2 1 La roue tourne en sens horaire La roue tourne en sens antihoraire	 Angle Fréquence/Vitesse Comptage/Position 	 Fréquence de comptage jusqu'à 2 MHz Comptage à précision simple, double et quadruple Réglage de la largeur minimale du signal d'entrée Suivi des transitions pour éviter les dérives de comptage Plusieurs options de réinitialisation Le RT-FDB peut ajouter une voie calculée Fréquence/Vitesse basée sur la mesure de l'angle 		

Caractéristiques et incertitude de mesure

Les caractéristiques techniques sont établies en utilisant une température ambiante de 23 °C.

Pour améliorer l'incertitude de mesure, le système pourrait être réajusté à une température ambiante spécifique afin de minimiser l'impact de la dérive de température.

Toute source d'erreur de l'amplificateur analogique suit la courbe = $\mathbf{a}x + \mathbf{b}$.

- a % d'erreur de la valeur, représente l'erreur qui augmente de façon linéaire en raison de l'augmentation de la tension d'entrée ; elle est souvent appelée erreur de gain.
- b % d'erreur de la plage, représente l'erreur lors de la mesure de 0 V ; elle est souvent appelée erreur d'offset.

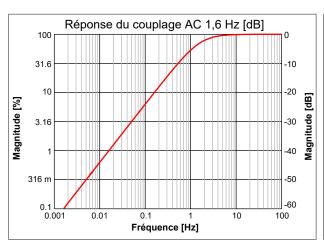
Pour l'incertitude de mesure, ces erreurs peuvent être considérées comme des sources d'erreur indépendantes.

Le bruit n'est pas une source d'erreur indépendante en dehors des caractéristiques standards.

Les caractéristiques relatives au bruit sont ajoutées séparément si vous avez besoin d'une exactitude dynamique échantillon par échantillon. Ajouter l'erreur de bruit (valeur RMS) uniquement pour l'incertitude de mesure échantillon par échantillon.

Pour l'exactitude de la puissance, par exemple, l'erreur de bruit (valeur RMS) est déjà comprise dans les caractéristiques de puissance.

Les limites Réussite/Échec sont des caractéristiques à distribution rectangulaire. Par conséquent, l'incertitude de mesure est égale à 0,58 * valeur spécifiée.


Ajout/retrait ou échange de cartes

Les caractéristiques indiquées s'appliquent à des cartes étalonnées et utilisées dans le même appareil de base, avec la même configuration de l'appareil de base et les mêmes slots que ceux dans lesquels les cartes se trouvaient lors de l'étalonnage.

Si des cartes sont ajoutées, retirées ou changées de position, les conditions thermiques qui s'y appliquent changent, ce qui entraîne des erreurs de dérive thermique supplémentaires. L'erreur maximale attendue peut atteindre deux fois l'erreur de valeur et de plage spécifiée et la réjection de mode commun peut être réduite de 10 dB.

Il est donc fortement conseillé de procéder à un nouvel étalonnage après toute modification de la configuration.

Entrée analogique GN110, GN111, GN112 et GN113 (émetteur)				
Voies	1			
Connecteur	1 ; BNC métallique			
Type d'entrée	Entrées différentielles asymétriques isolées (BNC raccordé à une ligne commune isolée)			
Couplage d'entrée				
Modes de couplage	AC / DC / GND			
Fréquence du couplage AC	1,6 Hz (±10 %) ; - 3 dB			

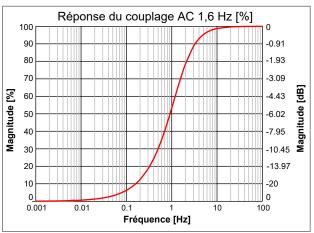


Figure 1.2 : Représentation de la réponse du couplage AC

9	
Impédance	1 MΩ (± 2 %) // 38 pF (± 5 %)
Plages	± 20 mV, ± 50 mV, ± 100 mV, ± 200 mV, ± 500 mV, ± 1 V, ± 2 V, ± 5 V, ± 10 V, ± 20 V, ± 50V et ± 100 V
Offset (décalage)	± 50 % avec 1000 paliers (0,1 %) La plage ± 100 V a un décalage fixe de 0 %
Erreur de plage DC (limites Réussite/Échec)	
Large bande	0,1 % de la plage ± 50 μV
Filtre Bessel	0,1 % de la plage ± 50 μV
Dérive de l'erreur plage DC	GN110 et GN111 : ±(60 ppm + 10 μV)/°C (±(36 ppm + 6 μV)/°F) GN112 et GN113 : ±(100 ppm + 10 μV)/°C (±(60 ppm + 6 μV)/°F)
Erreur de valeur DC (limites Réussite/Échec)	
Large bande	0,1 % de la valeur ± 50 μV
Filtre anti-repliement analogique Bessel	0,1 % de la valeur ± 50 μV
Dérive de l'erreur valeur DC	GN110 et GN111 : ±100 ppm/°C (± 60ppm/°F) GN112 et GN113 : ±(100 ppm + 10 μV)/°C (±(60 ppm + 6 μV)/°F)
Bruit RMS (50 Ω avec terminaison) (limites Réuss	site/Échec)
Large bande	0,05 % de la plage ± 100 μV
Filtre anti-repliement analogique Bessel	0,05 % de la plage ± 100 μV
Mode commun (se réfère à la terre lorsque la terr Nécessite un environnement LAB protégé et des	e de protection n'est pas raccordée) procédures de travail conformes à la norme EN 50191:2000
Réjection de mode commun (CMR)	> 72 dB à 80 Hz (GN110 et GN111 : typiquement > 100 dB)
Tension de mode commun max.	1,8 kV RMS (GN112 et GN113) >1,8 kV RMS (GN110 et GN111) ; limites fixées par l'isolation due à l'entrefer de l'émetteur et du câble à fibre
Courant de polarisation d'entrée	< 2 nA
Temps de montée	14 ns

Entrée analogique GN110, GN111, GN112 et GN113 (émetteur)			
Protection contre la saturation d'entrée			
Modification de l'impédance de surtension	L'activation du système de protection contre les surtensions entraîne une diminution de l'impédance d'entrée. La protection contre les surtensions est désactivée tant que la tension d'entrée reste inférieure à 200 % de la plage d'entrée sélectionnée ou à 250 V, selon la plus petite des deux valeurs.		
Tension maximale sans détérioration	± 125 V DC ; plages < ± 2 V ± 250 V DC ; plages ≥ ± 2 V		
Temps de récupération après saturation	Retour à une exactitude de 0,1 % en moins de 50 ns après une saturation de 200 % Retour à une exactitude de 10 % en moins de 10 ns après une saturation de 200 %		

Conversion analogique/numérique			
Vitesse d'échantillonnage par voie 1 éch/s à 100 Méch/s			
Résolution conv. A/N ; un conv. A/N par voie	14 bits		
Type de convertisseur analogique-numérique Convertisseur flash à plusieurs étages en pipeline CMOS, LTC2254			
Précision de la base de temps	Définie par l'appareil de base : ± 3,5 ppm ; altération après 10 ans ± 10 ppm		

HBK: UNRESTRICTED 6 B05282_03_F00_00

Filtres anti-repliement

Remarque sur les voies de synchronisme de phase. Chaque caractéristique de filtrage et/ou bande passante de filtre choisie a sa propre réponse de phase.

L'utilisation de réglages de filtre différents (Large bande / Bessel IIR / Butterworth IIR / etc.) ou de différentes bandes passantes de filtrage peut entraîner des incohérences de phase entre les voies.

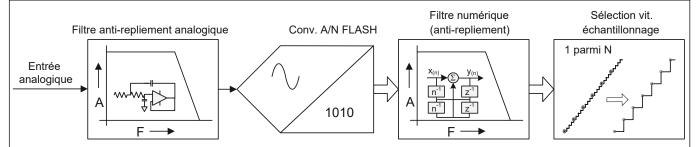


Figure 1.3 : Synoptique de filtres anti-repliement analogiques et numériques combinés

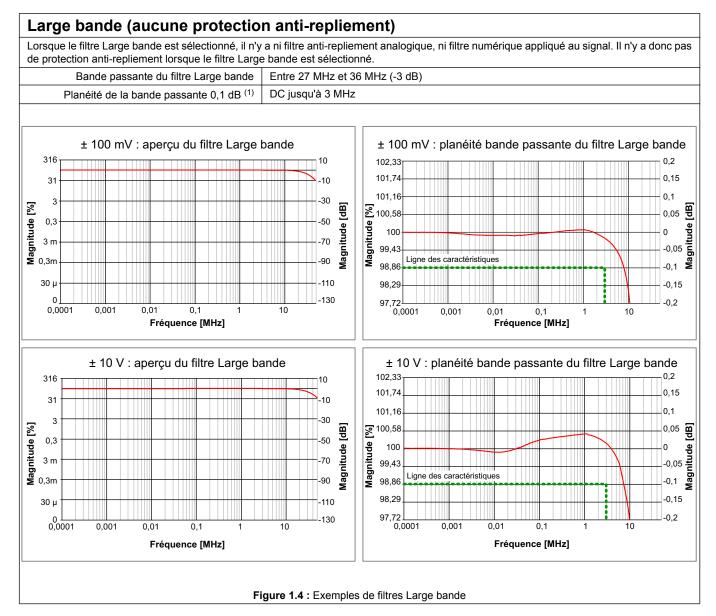
Tout repliement est empêché par un filtre anti-repliement analogique raide à fréquence fixe intégré dans la façade du convertisseur analogiquenumérique. Le convertisseur A/N utilise toujours une vitesse d'échantillonnage fixe. Cette vitesse d'échantillonnage fixe du convertisseur analogique-numérique évite d'avoir recours à des fréquences de filtrage différentes pour l'anti-repliement analogique. Juste derrière le convertisseur A/N, un filtre numérique de haute précision est utilisé comme protection anti-repliement avant que le souséchantillonnage numérique ne soit réalisé pour obtenir la vitesse d'échantillonnage souhaitée par l'utilisateur. Le filtre numérique est programmé

échantillonnage numérique ne soit réalisé pour obtenir la vitesse d'échantillonnage souhaitée par l'utilisateur. Le filtre numérique est programmé sur une fraction de la vitesse d'échantillonnage utilisateur et suit automatiquement toute sélection de la vitesse d'échantillonnage effectuée par l'utilisateur. Comparé aux filtres anti-repliement analogiques, le filtre numérique programmable offre des avantages supplémentaires tels qu'un filtre d'ordre supérieur avec une coupure progressive raide, un plus grand choix de caractéristiques de filtrage, une sortie numérique exempte de bruit et aucun déphasage supplémentaire entre voies utilisant les mêmes paramètres de filtrage.

do brait of adour dopridoago cappioniontairo ont	
Large bande	Lorsque le filtre Large bande est sélectionné, il n'y a ni filtre anti-repliement analogique, ni filtre numérique appliqué au signal. Il n'y a donc pas de protection anti-repliement lorsque le filtre Large bande est sélectionné. Le filtre Large bande ne doit pas être utilisé lors de l'analyse des données enregistrées dans un domaine fréquentiel. Avec le filtre Large bande, la résolution améliorée n'est pas possible à des vitesses d'échantillonnage faibles.
Bessel (Fc à -3 dB)	Ce filtre Bessel analogique peut être utilisé pour réduire les signaux à bande passante plus élevée. Les filtres Bessel sont généralement utilisés lors de l'analyse des signaux dans le domaine temporel. Ils sont particulièrement adaptés pour la mesure de signaux transitoires ou de signaux à flanc raide comme les ondes carrées ou les réponses sur échelon. Avec le filtre Bessel, la résolution améliorée n'est pas possible à des vitesses d'échantillonnage faibles.
Bessel IIR (Fc à -3 dB)	Lorsque le filtre Bessel IIR est sélectionné, il s'agit toujours d'une combinaison d'un filtre anti-repliement analogique Bessel avec un filtre Bessel IIR numérique qui permet d'éviter le repliement à des vitesses d'échantillonnage faibles. Les filtres Bessel sont généralement utilisés lors de l'analyse des signaux dans le domaine temporel. Ils sont particulièrement adaptés pour la mesure de signaux transitoires ou de signaux à flanc raide comme les ondes carrées ou les réponses sur échelon. La résolution améliorée est possible en effectuant un suréchantillonnage combiné à un filtrage numérique aux vitesses d'échantillonnage suivantes : résolution de 15 bits jusqu'à 25 Méch/s et résolution de 16 bits jusqu'à 10 Méch/s.
Butterworth IIR (Fc à -3 dB)	Lorsque le filtre Butterworth IIR est sélectionné, il s'agit toujours d'une combinaison d'un filtre anti-repliement analogique Butterworth avec un filtre Butterworth IIR numérique qui permet d'éviter le repliement à des vitesses d'échantillonnage faibles. Ce filtre est particulièrement adapté pour le domaine fréquentiel. Lors d'une analyse dans le domaine temporel, ce filtre convient particulièrement pour les signaux correspondant (pratiquement) à des ondes sinusoïdales. La résolution améliorée est possible en effectuant un suréchantillonnage combiné à un filtrage numérique aux vitesses d'échantillonnage suivantes : résolution de 15 bits jusqu'à 25 Méch/s et résolution de 16 bits jusqu'à 10 Méch/s.

B05282_03_F00_00 7 HBK: UNRESTRICTED

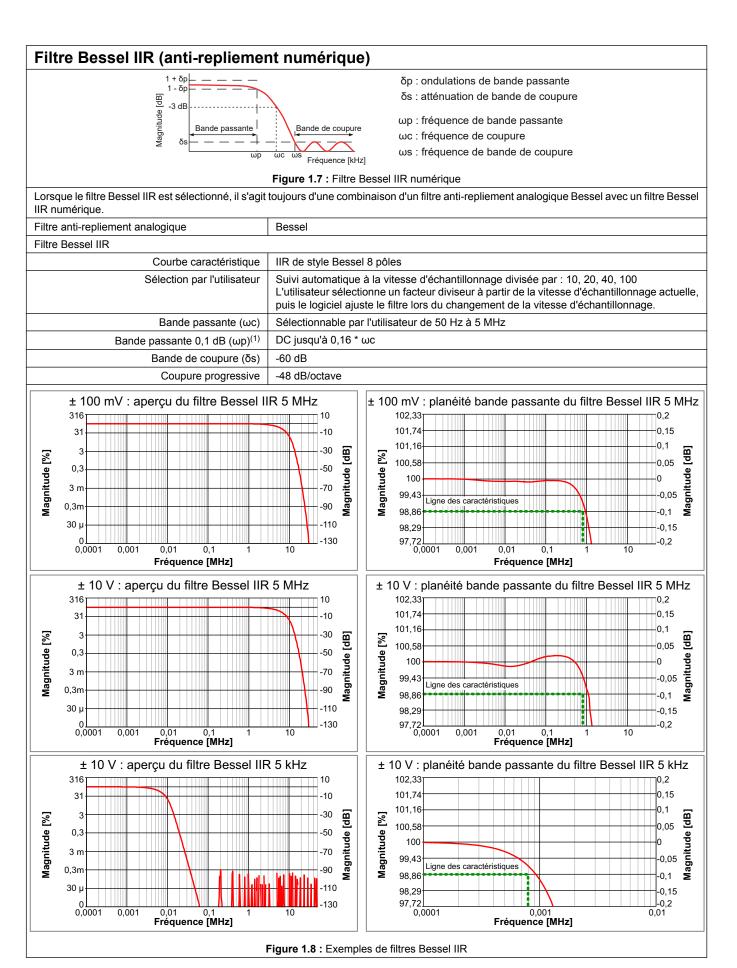
Sélection de la bande passante et des caractéristiques de filtrage par rapport à la vitesse d'échantillonnage

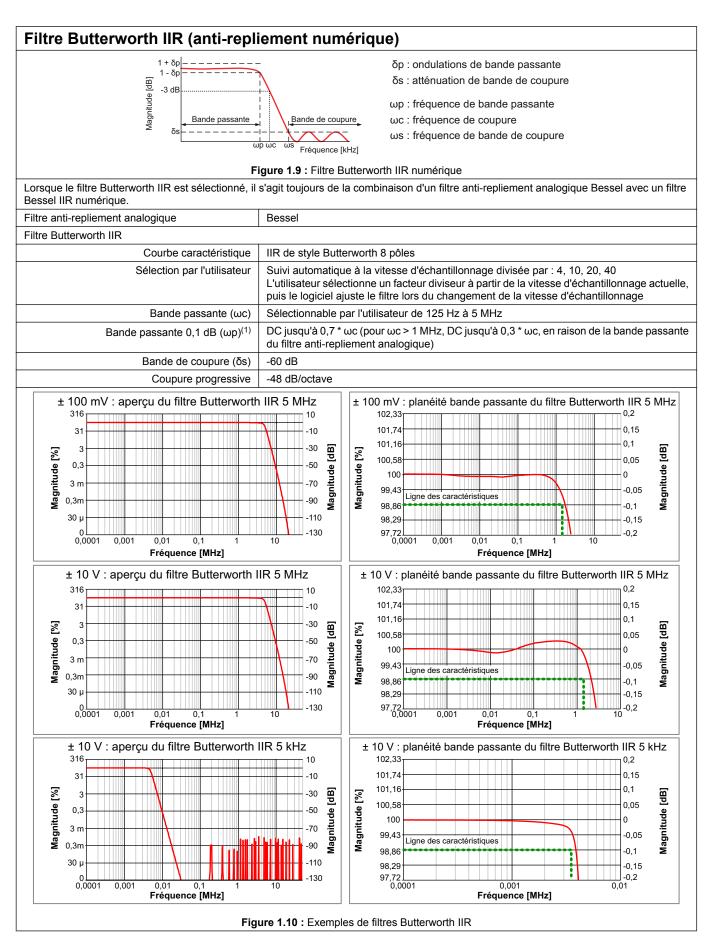

Le filtrage numérique avant décimage garantit un résultat de grande qualité, sans repliement, à bruit ultra-faible et en synchronisme de phase.

	Large bande ⁽¹⁾	Analogique ⁽²⁾	Filtres passe-bas anti-repliement numériques (deuxième étage après l'anti- repliement analogique)			après l'anti-	
	Pas de filtre anti-repliement	Filtre anti-repliement Bessel	Butterworth IIR	Bessel IIR Butterworth IIR	Bessel IIR Butterworth IIR	Bessel IIR Butterworth IIR	Bessel IIR
Vit. échantill.			1/4 Fe	1/10 Fe	1/20 Fe	1/40 Fe	1/100 Fe
100 Méch/s	LB	10 MHz			5 MHz	2,5 MHz	1 MHz
50 Méch/s	LB	10 MHz		5 MHz	2,5 MHz	1,25 MHz	500 kHz
25 Méch/s	LB	10 MHz		2,5 MHz	1,25 MHz	500 kHz	200 kHz
12,5 Méch/s	LB	10 MHz	3,125 MHz	1,25 MHz	625 kHz	312,5 kHz	125 kHz
10 Méch/s	LB	10 MHz	2,5 MHz	1,25 MHz	500 kHz	250 kHz	100 kHz
5 Méch/s	LB	10 MHz	1,25 MHz	500 kHz	250 kHz	125 kHz	50 kHz
2,5 Méch/s	LB	10 MHz	12,5 kHz	250 kHz	125 kHz	62,5 kHz	25 kHz
2 Méch/s	LB	10 MHz	500 kHz	200 kHz	100 kHz	50 kHz	20 kHz
1,25 Méch/s	LB	10 MHz	312,5 kHz	125 kHz	62,5 kHz	31,25 kHz	12,5 kHz
1 Méch/s	LB	10 MHz	250 kHz	125 kHz	50 kHz	25 kHz	10 kHz
500 kéch/s	LB	10 MHz	125 kHz	50 kHz	25 kHz	12,5 kHz	5 kHz
400 kéch/s	LB	10 MHz	100 kHz	40 kHz	20 kHz	10 kHz	4 kHz
250 kéch/s	LB	10 MHz	62,5 kHz	25 kHz	12,5 kHz	6,25 kHz	2,5 kHz
200 kéch/s	LB	10 MHz	50 kHz	20 kHz	10 kHz	5 kHz	2 kHz
125 kéch/s	LB	10 MHz	25 kHz	12,5 kHz	6,25 kHz	2,5 kHz	1,25 kHz
100 kéch/s	LB	10 MHz	20 kHz	10 kHz	5 kHz	2 kHz	1 kHz
50 kéch/s	LB	10 MHz	12,5 kHz	5 kHz	2,5 kHz	1,25 kHz	500 Hz
40 kéch/s	LB	10 MHz	10 kHz	4 kHz	2 kHz	1 kHz	400 Hz
25 kéch/s	LB	10 MHz	6,25 kHz	2,5 kHz	1,25 kHz	625 Hz	250 Hz
20 kéch/s	LB	10 MHz	5 kHz	2 kHz	1 kHz	500 Hz	200 Hz
12,5 kéch/s	LB	10 MHz	2,5 kHz	1,25 kHz	625 Hz	312,5 Hz	125 Hz
10 kéch/s	LB	10 MHz	2 kHz	1 kHz	500 Hz	250 Hz	100 Hz
5 kéch/s	LB	10 MHz	1,25 kHz	500 Hz	249 Hz	125 Hz	50 Hz
4 kéch/s	LB	10 MHz	1 kHz	400 Hz	200 Hz	100 Hz	
2,5 kéch/s	LB	10 MHz	625 Hz	250 Hz	125 Hz	62,5 Hz ⁽³⁾	
2 kéch/s	LB	10 MHz	500 Hz	200 Hz	100 Hz	50 Hz ⁽³⁾	
1,25 kéch/s	LB	10 MHz	312,5 Hz	125 Hz	62,5 Hz ⁽³⁾		
1 kéch/s	LB	10 MHz	250 Hz	100 Hz	50 Hz ⁽³⁾		
500 éch/s	LB	10 MHz	125 Hz	50 Hz ⁽³⁾			
400 éch/s	LB	10 MHz	100 Hz				

⁽¹⁾ Le filtre Large bande n'empêche pas l'anti-repliement analogique pour le convertisseur analogique-numérique.

⁽²⁾ Il est possible de sélectionner le filtre anti-repliement analogique Bessel dans toutes les vitesses d'échantillonnage.


⁽³⁾ Uniquement pris en charge en cas de sélection du filtre Bessel IIR.


(1) Mesurée à l'aide d'un calibreur Fluke 5700, normalisée en DC

Filtre Bessel (anti-repliement analogique) δp : ondulations de bande passante δs : atténuation de bande de coupure Magnitude [dB] ωp : fréquence de bande passante Bande de coupure Bande passante ωc : fréquence de coupure ωs : fréquence de bande de coupure Fréquence [kHz] Figure 1.5: Filtre Bessel analogique Filtre Bessel analogique Bande passante 10 MHz ± 1 MHz (-3 dB) Courbe caractéristique Bessel 6 pôles, réponse sur échelon optimale Planéité de la bande passante 0,1 dB (ωp)⁽¹⁾ DC jusqu'à 1 MHz Bande de coupure (δs) -50 dB à ωs = 60 MHz Coupure progressive du filtre Bessel -30 dB/octave analogique: ± 100 mV : planéité bande passante ± 100 mV : aperçu Bessel analogique 10 MHz du filtre Bessel analogique 10 MHz 316 102,33 101,74 0.15 31 101,16 0 1 Magnitude 100 100 99,43 98,86 Magnitude [dB] Magnitude [%] 0,3 3 m igne des caractéristique 0,3m 30 µ -130 97,72 0,0001 0,0001 0,001 10 0,001 0,1 Fréquence [MHz] Fréquence [MHz] ± 10 V : planéité bande passante ± 10 V : aperçu Bessel analogique 10 MHz du filtre Bessel analogique 10 MHz 102.33 0.2 316 101,74 0,15 101,16 Magnitude 100.588. 99,438. 98,866 0,05 Magnitude [%] Magnitude [dB] 0,3 3 m Ligne des caractéristiques 0.3m 98.29 -0.15 30 µ 0,0001 Fréquence [MHz] Fréquence [MHz] Figure 1.6 : Exemples de filtres Bessel analogiques

(1) Mesurée à l'aide d'un calibreur Fluke 5700, normalisée en DC

(1) Mesurée à l'aide d'un calibreur Fluke 5700, normalisée en DC

(1) Mesurée à l'aide d'un calibreur Fluke 5700A, normalisée en DC

Synchronisme de phase voie à voie			
L'utilisation de réglages de filtre différents (Large entraîne des incohérences de phase entre les vo	bande / Bessel / Bessel IIR / Butterworth IIR) ou de différentes bandes passantes de filtrage pies.		
Différence de phase voie à voie Typiquement ± 10 ns avec les mêmes filtres sélectionnés (≥ 100 Hz)			
Compensation de la longueur de câble à fibre optique Oui, se fait automatiquement lorsque la communication optique est établie Le délai du câble à fibre optique est compensé afin d'être en synchronisme de phase aver les voies d'acquisition de données GEN standards.			
Délai typique du câble à fibre optique	± 20 ns		
Délai du câble à fibre optique	5 ns/m ; délai compensé par la compensation de la longueur de câble		

Événement numérique/Timer/Compteur

Le connecteur d'entrée Événement numérique/Timer/Compteur se trouve sur l'appareil de base. Pour son emplacement exact et l'affectation de ses broches, voir les caractéristiques techniques de l'appareil de base.

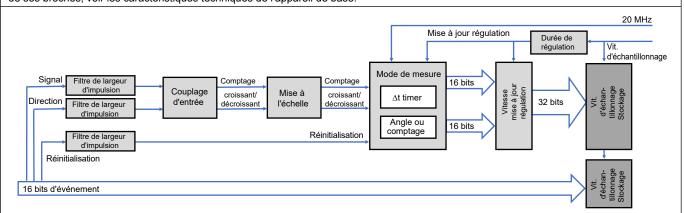


Figure 1.11: Synoptique Timer/Compteur

Figure 1.11 : Synoptique Timer/Compteur				
Vitesse d'échantillonnage de la carte	Vitesse d'échantillonnage Événement numérique/Timer/Compteur			
≤ 10 Méch/s et 20 Méch/s	Vitesse d'échantillonnage			
40 Méch/s et 100 Méch/s	20 Méch/s limitée par la vitesse d'échantillonnage des événements numériques de 20 Méch/s sur l'appareil de base			
12,5 Méch/s, 25 Méch/s et 50 Méch/s	Non prises en charge, non compatibles avec la vitesse d'échantillonnage des événements numériques de 20 Méch/s sur l'appareil de base			
Événements d'entrée numériques	16 par carte			
Niveaux	Niveau d'entrée TTL, niveau d'inversion programmable par l'utilisateur			
Entrées	1 broche par entrée, certaines broches sont partagées avec les entrées Timer/Compteur			
Protection contre les surtensions	± 30 V DC en permanence			
Largeur d'impulsion minimale	100 ns			
Fréquence maximale	5 MHz			
Événements de sortie numériques	2 par carte			
Niveaux	Niveaux de sortie TTL, protégés contre les courts-circuits			
Événement de sortie 1	Sélectionnable par l'utilisateur : trigger, alarme, réglage sur Haut ou Bas			
Événement de sortie 2	Sélectionnable par l'utilisateur : enregistrement actif, réglage sur Haut ou Bas			
Sélections utilisateur pour l'événement de sortie n	umérique			
Trigger	1 impulsion haute par trigger (sur chaque trigger de voie de cette carte uniquement) Largeur d'impulsion minimale de 12,8 µs 200 µs ± 1 µs + retard d'impulsion de ± 1 période d'échantillonnage			
Alarme	Haut lorsque la condition d'alarme de la carte est activée, Bas lorsqu'elle est désactivée 200 µs ± 1 µs + retard d'événement d'alarme de ± 1 période d'échantillonnage			
Enregistrement actif	Impulsion haute lors de l'enregistrement, impulsion basse en mode inactif ou pause Retard de sortie de l'enregistrement actif 450 ns			
Réglage sur Haut ou Bas	Sortie réglée sur Haut ou Bas ; contrôle possible par des extensions d'interfaces logicielles personnalisées (CSI, Custom Software Interface) ; le retard dépend de l'implémentation logicielle			
Timer/Compteur	2 par carte			
Niveaux	Niveaux d'entrée TTL			
Entrées	3 broches : signal, réinitialisation et direction Toutes les broches sont partagées avec les entrées d'événement numériques			
Couplage d'entrée	Unidirectionnel, bidirectionnel et codeur incrémental ABZ (en quadrature)			
Modes de mesure	Comptage (C) Angle (0 à 360 degrés) Fréquence (Δcomptage / Δt) Vitesse de rotation (Δcomptage / Δt / 60 s)			
Exactitude du timer	± 25 ns (20 MHz)			
Durée de mesure	1 à n échantillons (Δt maxi. sélectionnable par l'utilisateur)			
Durée de mesure et vit. de mise à jour des valeurs	La durée de mesure définit la vitesse de mise à jour maximum des valeurs mesurées			
Durée de mesure et fréquence minimale	Fréquence ou vitesse de rotation minimale mesurée = 1 / durée de mesure			

Couplage d'entrée signal unidirectionnel et bidirectionnel Le couplage d'entrée unidirectionnel et bidirectionnel est utilisé lorsque le signal de direction est stable. Δs Signal Direction Réinitialisation ∆s ¦∆h Comptage croissant Comptage décroissant Réinitialisation Figure 1.12: Horloge unidirectionnelle et bidirectionnelle 3 broches : signal, réinitialisation et direction (utilisée uniquement pour le comptage Entrées bidirectionnel) Filtre de largeur d'impulsion minimale 100 ns, 200 ns, 500 ns, 1 μ s, 2 μ s, 5 μ s Fréquence maximale du signal d'entrée 4 MHz Largeur d'impulsion minimale (Δw) 100 ns Entrée de réinitialisation Sensibilité niveau Niveau d'inversion sélectionnable par l'utilisateur Temps de positionnement minimum avant le 100 ns flanc du signal (Δs) Temps de maintien minimum après le flanc du 100 ns signal (Δh) Options de réinitialisation Manuelle À la demande de l'utilisateur via une commande logicielle Début de l'enregistrement Valeur de comptage mise à 0 au début de l'enregistrement Première impulsion de réinitialisation Après le début de l'enregistrement, la première impulsion de réinitialisation met la valeur du compteur à 0. Les impulsions de réinitialisation suivantes sont ignorées. Chaque impulsion de réinitialisation La valeur du compteur est remise à 0 à chaque impulsion de réinitialisation externe. Entrée de direction Sensibilité niveau d'entrée Utilisée uniquement en mode bidirectionnel Low : le compteur augmente / fréquence positive High: le compteur diminue / fréquence négative Temps de positionnement minimum avant le 100 ns flanc du signal (Δs) Temps de maintien minimum après le flanc du 100 ns signal (Δh)

Couplage d'entrée codeur incrémental ABZ (en quadrature)

Utilisé généralement pour surveiller les appareils en rotation/mouvement à l'aide d'un décodeur avec deux signaux qui sont toujours en quadrature de phase. Permet par ex. d'avoir une interface directe avec des couplemètres et des capteurs de vitesse de HBM.

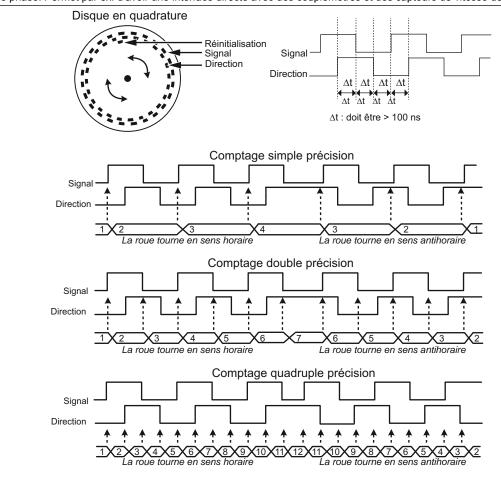


Figure 1.13 : Modes de comptage bidirectionnel en quadrature

ga			
Entrées	3 broches : signal, direction et réinitialisation		
Filtre de largeur d'impulsion minimale	100 ns, 200 ns, 500 ns, 1 µs, 2 µs, 5 µs		
Fréquence maximale du signal d'entrée	2 MHz		
Largeur d'impulsion minimale	200 ns (2 * Δt)		
Temps de positionnement minimum	100 ns (Δt)		
Temps de maintien minimum	100 ns (Δt)		
Exactitude	Précision simple (X1), double (X2) ou quadruple (X4)		
Couplage d'entrée	Codeur incrémental ABZ (en quadrature)		
Entrée de réinitialisation			
Sensibilité niveau	Niveau d'inversion sélectionnable par l'utilisateur		
Temps de positionnement minimum avant le flanc du signal (Δt)	100 ns		
Temps de maintien minimum après le flanc du signal (Δt)	100 ns		
Options de réinitialisation			
Manuelle	À la demande de l'utilisateur via une commande logicielle		
Début de l'enregistrement	Valeur de comptage mise à 0 au début de l'enregistrement		
Première impulsion de réinitialisation	Après le début de l'enregistrement, la première impulsion de réinitialisation met la valeur du compteur à 0. Les impulsions de réinitialisation suivantes sont ignorées.		
Chaque impulsion de réinitialisation	La valeur du compteur est remise à 0 à chaque impulsion de réinitialisation externe.		

HBK: UNRESTRICTED 16 B05282_03_F00_00

Mode de mesure Angle

En mode de mesure Angle, le compteur utilise un angle maximum défini par l'utilisateur et revient à zéro lorsque cette valeur de comptage est atteinte. L'angle mesuré peut être synchronisé avec l'angle mécanique grâce à l'entrée de réinitialisation. Les calculateurs temps réel peuvent extraire la vitesse de rotation de l'angle mesuré indépendamment de la synchronisation mécanique.

Options d'angle	
Référence	Sélectionnable par l'utilisateur. Permet d'utiliser la broche de réinitialisation pour relier l'angle mécanique à l'angle mesuré
Angle au point de référence	Défini par l'utilisateur pour spécifier le point de référence mécanique
Impulsion de réinitialisation	La valeur de l'angle est réglée sur la valeur "Angle au point de référence" définie par l'utilisateur
Impulsions par tour	Valeur définie par l'utilisateur pour spécifier la résolution du codeur / du comptage
Impulsions maximum par tour	32 767
Vitesse de rotation maximum	30 * vitesse d'échantillonnage (exemple : une vitesse de 10 kéch/s correspond à 300 000 tr/min maximum)

Mode de mesure Fréquence/Vitesse

Utilisé pour mesurer n'importe quel type de fréquence, par exemple le régime moteur ou des capteurs actifs ayant un signal de sortie à fréquence proportionnelle.

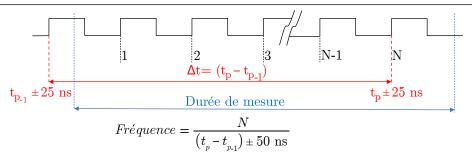


Figure 1.14 : Mesure de fréquence

Exactitude	0,1 %, avec une durée de mesure de 40 µs ou plus. Avec des durées de mesure inférieures, il est possible d'utiliser les calculateurs temps réel ou la base de données de formules de Perception pour augmenter la durée de mesure et améliorer l'exactitude de façon plus dynamique, par exemple en se basant sur des cycles mesurés.
Durée de mesure	Période d'échantillonnage (1/vitesse d'échantillonnage) jusqu'à 50 s. La durée de mesure minimum est de 50 ns. Peut être sélectionnée par l'utilisateur pour commander la vitesse de mise à jour indépendamment de la vitesse d'échantillonnage

Mode de mesure Comptage/Position

Le mode Comptage/Position sert surtout à surveiller le mouvement de l'appareil testé.

Pour réduire la sensibilité aux erreurs de comptage/position dues à des problèmes d'horloge, utiliser le filtre de largeur d'impulsion minimale ou activer l'ABZ au lieu du couplage d'entrée unipolaire/bipolaire.

Plage du compteur	0 à 2^{31} ; comptage unidirectionnel -2^{31} à $+2^{31}$ - 1 ; comptage bidirectionnel
-------------------	---

Inexactitude maximale du timer

L'exactitude du timer est un compromis entre la vitesse de mise à jour et l'exactitude minimum requise. Le tableau ci-dessous présente la relation entre la fréquence du signal mesuré, la durée de mesure sélectionnée (vitesse de mise à jour) et l'exactitude du timer. La distribution de l'inexactitude doit être considérée comme étant rectangulaire.

de l'inex	actitude doit	ètre considéré		nt rectangulai						
Calculer sant :	Inexactitude = $\pm \left(\frac{(Fr\acute{e}quence\ du\ signal*50\ ns)}{INT((Fr\acute{e}quence\ du\ signal-1)*Dur\acute{e}e\ de\ mesure)}\right)*100\%$									
Durée			Fréquences	supérieures	du signal :	fréquence du	ı signal (2 MI	Hz à 10 kHz)		
mes.	2 MHz	1 MHz	500 kHz	400 kHz	200 kHz	100 kHz	50 kHz	40 kHz	20 kHz	10 kHz
1 µs	±10,000 %									
2 µs	±3,333 %	±5,000 %								
5 µs	±1,111 %	±1,250 %	±1,333 %	±2,000 %						
10 µs	±0,526 %	±0,556 %	±0,625 %	±0,667 %	±1,000 %					
20 µs	±0,256 %	±0,263 %	±0,278 %	±0,286 %	±0,333 %	±0,500 %				
50 µs	±0,101 %	±0,102 %	±0,103 %	±0,105 %	±0,111 %	±0,125 %	±0,133 %	±2,000 %		
0,1 ms	±0,050 %	±0,051 %	±0,051 %	±0,051 %	±0,053 %	±0,056 %	±0,063 %	±0,067 %	±0,100 %	
0,2 ms			25 %		±0,026 %	±0,026 %	±0,028 %	±0,029 %	±0,033 %	±0,050 %
0,5 ms		,	±0,010 %		,	±0,010 %	±0,010 %	±0,0011%	±0,0011%	±0,0013%
1 ms			±0,0050 %			±0,0051%	±0,0051%	±0,0051%	±0,0053 %	±0,0056 %
2 ms			.,	±0,00)25 %	-,	1,111	.,	±0,0026 %	±0,0026%
5 ms						010 %				
10 ms						005 %				
20 ms						025 %				
50 ms					· · · · · · · · · · · · · · · · · · ·	010 %				
100 ms					•	005 %				
Durée			Fréquence	es inférieures	-,		u signal (40 F	lz à 5 kHz)		
mes.	5 kHz	4 kHz	2 kHz	1 kHz	500 Hz	400 Hz	200 Hz	100 Hz	50 Hz	40 Hz
0,5 ms	±0,0133 %	±0,0200 %						10011		
1 ms	±0,0063 %	±0,0067 %	±0,0100 %							
2 ms	±0,0028 %	±0,0029 %	±0,0033 %	±0,0050 %						
5 ms	±0,0010 %	±0,0011%	±0,0011%	±0,0013%	±0,0013%	±0,0020 %				
10 ms	±0,00051%	±0,00051%	±0,00053 %			· ·	±0,00100%			
20 ms	±0,00025%			±0,00026 %		-	+	±0.00050 %		
50 ms				±0,00010 %					+0 00013 %	+0 00020 %
				±0,000051%			· ·		-	-
	20,000000 70	20,000000 70		20,000001 70		1	20,000000 70	20,000000 70		
	0.0000/					0.010%				
	0.200%					0.009%	\			
						0.008%				
	0.150%					0.007%				
Exactitude [%]					Exactitude [%]	0.006%				
ig (0.100%				itud	0.005%				
Kact					Kact	0.004%				
ெ										
	0.050%					0.003%				
						0.002%				
	0.0000/					0.001%				
	0.000% 1	10	100	10	000	0.0000/				
		F=:	aa aku akuu ak s	L11=1		0.000%	1.0	10.0	100.0	1000.0
			ce du signal [nce du signal		- 7.5.
Durée de mesure — 50 us — 0.1 ms — 0.2 ms — 0.5 ms Durée de mesure — 1 ms — 2 ms — 5 ms — 10 ms — 20 ms — 50 ms — 100 ms								5 ms — 10 ms —	20 ms — 50 ms	— 100 ms¦
						maximale du t				

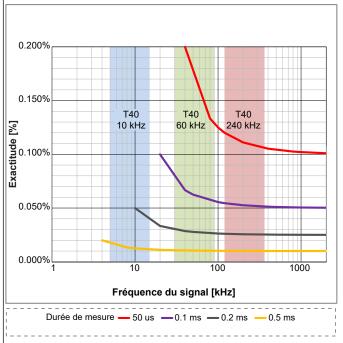
Incertitude de mesure du couple en utilisant les mesures de fréquence

Lorsque les voies Timer/Compteur sont utilisées pour mesurer le couple, l'incertitude de mesure introduite par les inexactitudes du timer peut être calculée à l'aide des exemples suivants basés sur les couplemètres T40 d'HBK.

Le couplemètre T40 est disponible en 3 variantes pour la sortie fréquence : 10 kHz, 60 kHz ou 240 kHz en fréquence centrale.

Les sorties fréquence minimum et maximum sont indiquées dans les caractéristiques techniques, comme indiqué dans le tableau suivant.

Variante du T40	-Sortie fréquence pleine échelle	+Sortie fréquence pleine échelle
T40 - 10 kHz	5 kHz	15 kHz
T40 - 60 kHz	30 kHz	90 kHz
T40 - 240 kHz	120 kHz	360 kHz


En superposant ces plages utiles aux courbes d'inexactitude du timer de la Figure 1.15 on obtient la Figure 1.16 (voir ci-dessous)

- Il reste à équilibrer la vitesse de mise à jour (bande passante du couple) par rapport à l'exactitude requise pour le couple.
- Calculer l'inexactitude en utilisant la -sortie fréquence pleine échelle et la durée de mesure souhaitée.
- Les inexactitudes suivantes sont calculées en utilisant une vitesse de rotation minimale de 60 tr/min.

Durée de mesure sélectionnée	Inexactitude maximum : T40 - 240 kHz	Inexactitude maximum : T40 - 60 kHz	Inexactitude maximum : T40 - 10 kHz
50 μs (courbe rouge à gauche)	0,1200 %	0,1500 %	Impossible
100 μs (courbe violette à gauche)	0,0546 %	0,0750 %	Impossible
500 μs (courbe orange à gauche)	0,0101 %	0,0107 %	0,0125 %
1 ms (courbe bleue à droite)	0,0050 %	0,0052 %	0,0063 %
2 ms (courbe rouge à droite)	0,0025 %	0,0025 %	0,0028 %
5 ms (courbe grise à droite)	0,0010 %	0,0010 %	0,0010 %

Pour K = 1 (probabilité de 70 %), utiliser la distribution rectangulaire spécifiée et les valeurs d'inexactitude maximum pour calculer : Incertitude de mesure = inexactitude maximum * 0,58 (facteur de conversion pour la distribution rectangulaire)

Incertitude de mesure K = 1 (probabilité d'environ 70 %)	Inexactitude maximum : T40 - 240 kHz	Inexactitude maximum : T40 - 60 kHz	Inexactitude maximum : T40 - 10 kHz
50 μs (courbe rouge à gauche)	0,0696 %	0,0870 %	Impossible
100 μs (courbe violette à gauche)	0,0316 %	0,0435 %	Impossible
500 μs (courbe orange à gauche)	0,0059 %	0,0062 %	0,00725 %
1 ms (courbe bleue à droite)	0,0029 %	0,0029 %	0,00365 %
2 ms (courbe rouge à droite)	0,00145 %	0,0015 %	0,00162 %
5 ms (courbe grise à droite)	0,00058 %	0,0006 %	0,00058 %

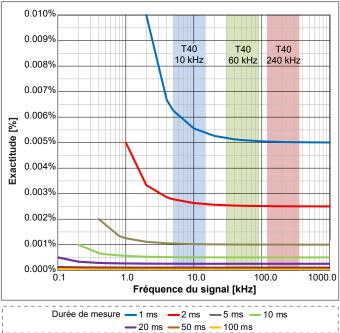


Figure 1.16 : Plage utile du couple en fonction de l'inexactitude et de la durée de mesure

Incertitude de mesure de la vitesse (tr/min) en utilisant les mesures de fréquence

Lorsque les voies Timer/Compteur sont utilisées pour mesurer la vitesse (tr/min), l'incertitude de mesure introduite par les inexactitudes du timer peut être calculée à l'aide de l'exemple suivant.

Prendre le nombre d'impulsions par rotation spécifié dans les caractéristiques techniques du capteur de vitesse pour calculer la plage de fréquence de la sortie du capteur :

Fréquence minimum = vitesse de rotation minimum utilisée durant l'essai * nombre d'impulsions par rotation / 60 s

Fréquence maximum = vitesse de rotation maximum utilisée durant l'essai * nombre d'impulsions par rotation / 60 s

Impulsions du capteur de vitesse par rotation	Fréquence à 60 tr/min	Fréquence à 10 000 tr/min	Fréquence à 20 000 tr/min
180	180 Hz	30 kHz	60 kHz
360	360 Hz	60 kHz	120 kHz
1024	1024 Hz	170,7 kHz	341,3 kHz

En superposant ces plages utiles aux courbes d'inexactitude du timer de la Figure 1.15 on obtient la Figure 1.17 (voir ci-dessous)

- Il reste à équilibrer la vitesse de mise à jour (mises à jour par seconde des changements de position angulaire) par rapport à l'exactitude requise pour la vitesse de rotation.
- En utilisant les graphiques, trouver les intersections entre les fréquences de fonctionnement superposées et les courbes de la durée de mesure.
- À titre d'exemple, les intersections suivantes peuvent être trouvées dans les graphiques (à 60 tr/min).

Durée de mesure sélectionnée	Capteur à 180 impulsions	Capteur à 360 impulsions	Capteur à 1024 impulsions
2 ms (courbe rouge)	Enregistrement impossible à 60 tr/min	Enregistrement impossible à 60 tr/min	0,00256 %
5 ms (courbe grise)	Enregistrement impossible à 60 tr/min	0,0018 %	0,0010 %
10 ms (courbe verte)	0,0009 %	0,0006 %	0,00051 %

Pour K = 1 (probabilité de 70 %), utiliser la distribution rectangulaire spécifiée et les valeurs d'inexactitude maximum pour calculer : Incertitude de mesure = inexactitude maximum * 0,58 (facteur de conversion pour la distribution rectangulaire)

Incertitude de mesure K = 1 (probabilité d'environ 70 %)	Capteur à 180 impulsions	Capteur à 360 impulsions	Capteur à 1024 impulsions
2 ms (courbe rouge)	Enregistrement impossible à 60 tr/min	Enregistrement impossible à 60 tr/min	0,00148 %
5 ms (courbe grise)	Enregistrement impossible à 60 tr/min	0,00104 %	0,00059 %
10 ms (courbe verte)	0,00052 %	0,00035 %	0,00030 %

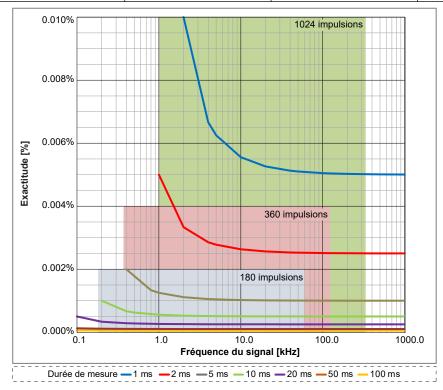
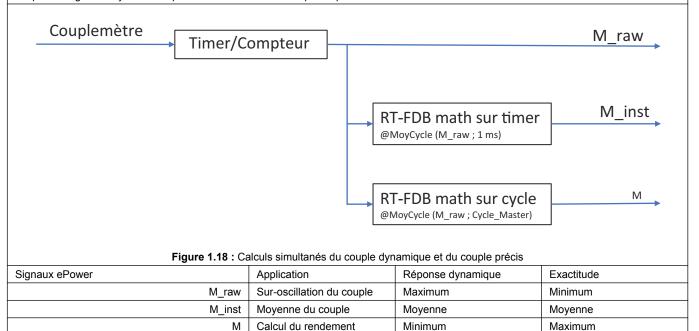


Figure 1.17 : Plage utile de la vitesse de rotation en fonction de l'inexactitude et de la durée de mesure


HBK: UNRESTRICTED 20 B05282_03_F00_00

Mesure simultanée de la sur-oscillation dynamique du couple et du rendement du couple précis

Si une vitesse de mise à jour élevée est nécessaire pour mesurer la sur-oscillation dynamique du couple, par exemple, utiliser une durée de mesure de 50 µs et une fonction RT-FDB pour calculer la valeur moyenne pour chaque cycle électrique.

Le signal du couple mesuré provenant de la voie Timer/Compteur aura une exactitude de 0,15 à 0,17 % tandis que le calcul du couple pour le cycle électrique (généralement inférieur ou égal à 1 ms) permet d'avoir une exactitude de 0,0075 %.

Comme les deux signaux sont disponibles simultanément, le signal dynamique vous permet d'analyser le comportement de sur-oscillation du couple. Le signal du cycle électrique sera alors extrêmement précis pour les calculs de rendement.

Sortie d'alarme						
Sélection par carte	Activation/désactivation sélectionnable par l'utilisateur					
Modes d'alarme des voies analogiques						
De base	Contrôle : au-dessus ou en dessous du niveau					
Double	Contrôle : à l'extérieur ou à l'intérieur des limites					
Niveaux d'alarme des voies analogiques						
Niveaux	Au maximum 2 détecteurs de niveau					
Résolution	16 bits (0,0015 %) pour chaque niveau					
Modes d'alarme des voies Événement	Contrôle du niveau Haut ou Bas					
Alarmes multivoies	OU logique pour les alarmes de toutes les voies mesurées					
Sortie d'alarme	Active pendant une condition d'alarme valide, sortie prise en charge via l'appareil de base					
Niveau de la sortie d'alarme	Haut ou Bas, sélectionnable par l'utilisateur					
Retard de sortie d'alarme	515 μs ± 1 μs + 1 période d'échantillonnage au maximum 516 μs par défaut, compatible avec le comportement standard. Le retard minimum pouvant être sélectionné est le plus petit retard disponible pour toutes les cartes d'acquisition utilisées dans l'appareil de base. Retard égal au retard de la sortie Trigger OUT.					

Déclenchement						
Qualifieur/trigger de voie	1 par voie ; entièrement indépendant par voie ; trigger ou qualifieur sélectionnable par					
	logiciel					
Étendue pré- et post-trigger	0 % à 100 % du bloc mémoire					
Vitesse de trigger maximum	400 triggers par seconde					
Retard de déclenchement maximum	1000 secondes après un trigger					
Trigger manuel (logiciel)	Pris en charge					
Trigger externe IN						
Sélection par carte	Activation/désactivation sélectionnable par l'utilisateur					
Flanc Trigger IN	Montant/Descendant, sélectionnable par l'appareil de base, identique pour toutes les cartes					
Largeur d'impulsion minimale	500 ns					
Retard Trigger IN	± 1 µs + 1 période d'échantillonnage au maximum					
Envoyer à Trigger externe OUT	L'utilisateur peut choisir de transmettre l'entrée Trigger externe IN au connecteur BNC de la sortie Trigger externe OUT					
Trigger externe OUT						
Sélection par carte	Activation/désactivation sélectionnable par l'utilisateur					
Niveau de la sortie Trigger OUT	Haut/Bas/Maintenir haut ; sélectionnable par l'appareil de base, identique pour toutes les					
	cartes					
Largeur d'impulsion de la sortie Trigger OUT	Haut/Bas : 12,8 µs Maintenir haut : actif du premier trigger de l'appareil de base jusqu'à la fin de l'enregistrement Largeur d'impulsions créée par l'appareil de base ; pour plus d'informations, se référer aux caractéristiques techniques de l'appareil de base					
Retard de la sortie Trigger OUT	Sélectionnable (10 µs à 516 µs) ± 1 µs + 1 période d'échantillonnage au maximum 516 µs par défaut, compatible avec le comportement standard. Le retard minimum pouvant être sélectionné est le plus petit retard disponible pour tout les cartes d'acquisition utilisées dans l'appareil de base					
Déclenchement multivoies						
Voies de mesure	OU logique pour les triggers de tous les signaux mesurés ET logique pour les qualifieurs de tous les signaux mesurés					
Voies calculées	OU logique pour les triggers de tous les signaux calculés (RT-FDB) ET logique pour les qualifieurs de tous les signaux calculés (RT-FDB)					
Niveaux des triggers de voies analogiques						
Niveaux	Au maximum 2 détecteurs de niveau					
Résolution	16 bits (0,0015 %) pour chaque niveau					
Direction	Montante/Descendante ; contrôle de direction unique pour les deux niveaux en fonction du mode sélectionné					
Hystérésis	0,1 à 100 % de la pleine échelle ; définit la sensibilité des triggers					
Détection/rejet d'impulsion	Possibilité de sélectionner Désactiver/Détection/Rejet. Période maximum : 65 535 échantillons					
Modes des triggers de voies analogiques						
De base	Passage POS ou NEG ; un seul niveau					
Double niveau	Un passage POS et un passage NEG ; deux niveaux individuels, OU logique					
Modes des qualifieurs de voies analogiques	1 0 11 11 0 11 11 0 11 11 11 11 11 11 11					
De base	Contrôle : au-dessus ou en dessous du niveau. Activation/désactivation du trigger avec un seul niveau					
Double	Contrôle : à l'extérieur ou à l'intérieur des limites. Activation/désactivation du trigger avec deux niveaux					
Trigger de voie d'événement						
Voies d'événement	Trigger d'événement individuel par voie d'événement					
Niveaux	Trigger sur flanc montant, flanc descendant ou les deux					
Qualifieurs	Actif Haut ou Actif Bas pour chaque voie d'événement					
Qualifieurs	Actil Flagt on Actil Das honi chadne voie a everlentent					

HBK: UNRESTRICTED 22 B05282_03_F00_00

Mémoire embarquée	
Par carte	8 Go (4 Géch)
Organisation	Distribution automatique entre les voies activées
Diagnostics de mémoire	Test automatique de la mémoire lorsque le système est sous tension, mais n'enregistre pas
Taille des échantillons de stockage des voies analogiques et d'événement numériques	16 bits, 2 octets/échantillon
Taille des échantillons de stockage des voies Timer/Compteur	32 bits, 4 octets/échantillon

Calculateurs temps réel reposant sur la base de données de formules (option à commander séparément)

L'option de calcul en temps réel reposant sur une base de données de formules (RT-FDB) propose un grand choix de programmes mathématiques permettant de résoudre quasiment n'importe quel problème mathématique en temps réel. La structure de la base de données permet à l'utilisateur de définir une liste d'équations mathématiques semblable à la base de données de formules de Perception. La vitesse d'échantillonnage maximale prise en charge est de 2 Méch/s.

Selon la version de Perception, vous pouvez exécuter plus ou moins de fonctions que celles décrites dans le tableau ci-dessous.

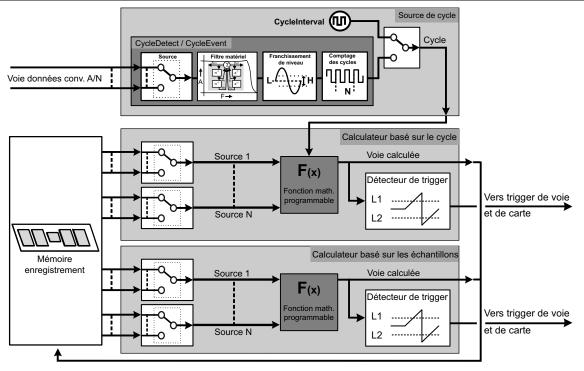


Figure 1.19 : Calculateurs temps réel avec base de données de formules (RT-FDB)

La base de données de formules temps réel prend en charge la liste suivante de calculs (chaque calcul est décrit plus en détail dans le manuel).

Utilisation	Résultats basés sur les échantillons - synchrone	Résultats basés sur le cycle - asynchrone	Sauvegarde dans l'enregistrement PNRF	Sortie temps réel
Calculs de base				
+ (addition)	✓	✓	✓	(1)
- (soustraction)	✓	✓	✓	(1)
* (multiplication)	✓	✓	✓	(1)
/ (division)	✓	₩	✓	(1)
Calculs avancés	1	1		
Abs	✓	₩	✓	(1)
Atan	✓	₩	✓	(1)
Atan2	✓	✓	✓	(1)
Cosine	✓	₩	✓	(1)
DegreesToRadians	✓	₩	✓	(1)
Min	✓	₩	✓	(1)
Max	✓	✓	✓	(1)
Modulo	✓	₩	✓	(1)
RadiansToDegrees	✓	₩	✓	(1)
Sine	✓	✓	✓	(1)
Sqrt	✓	✓	✓	(1)
Tan	✓	*	✓	(1)

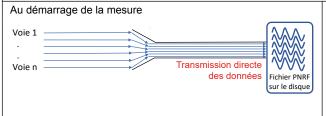
HBK: UNRESTRICTED 24 B05282_03_F00_00

Utilisation	Résultats basés sur les échantillons - synchrone	Résultats basés sur le cycle - asynchrone	Sauvegarde dans l'enregistrement PNRF	Sortie temps réel	
Calculs booléens	-	•			
Equal	✓	✓	✓	✓	
GreaterEqualThan	✓	₩	✓	*	
GreaterThan	✓	✓	✓	*	
LessEqualThan	✓	✓	✓	√	
LessThan	✓	✓	✓	✓	
NotEqual	✓	✓	✓	✓	
InsideBand	✓	✓	✓		
OutsideBand	✓	✓	✓		
And	✓	✓	✓	√	
Or	·	√	✓	·	
Xor	•	•	•	·	
Not	•	√	•	·	
Calculs basés sur le cycle	· · · · · · · · · · · · · · · · · · ·	· ·	¥	•	
CycleArea		✓	✓	√	
CycleBusDelay		✓	✓	√	
CycleCount		*	✓	√	
CycleCrestFactor		✓	✓	√	
CycleEnergy		*	✓	*	
CycleFundamentalPhase		✓	✓	(2)	
CycleFundamentalRMS		✓	✓	✓	
CycleFrequency		✓	✓	✓	
CycleMax		✓	✓	· · · · · · · · · · · · · · · · · · ·	
CycleMean		₩	→	·	
CycleMin		✓	·	· · · · · · · · · · · · · · · · · · ·	
CyclePeak2Peak		✓	√	· ·	
CyclePhase		•	→	· ·	
CycleRMS		•	•	· ·	
CycleRPM		*	•	•	
CycleSampleCount		•	•	•	
CycleTHD ⁽²⁾		•	√	(2)	
Source de cycle		*	*	*	
CycleDetect ⁽⁴⁾		*	✓		
CycleEvent		₩	✓		
CycleInterval			•		

Calculateurs temps réel commander séparément		Dase de donnée	s de formules (of	olion a
Utilisation	Résultats basés sur les échantillons - synchrone	Résultats basés sur le cycle - asynchrone	Sauvegarde dans l'enregistrement PNRF	Sortie temps réel
Filtrage matériel des signaux				
${\tt HWFilter}^{(4)}$	✓		✓	
Filtrage logiciel des signaux			1	
FilterBesselBP	✓		✓	
FilterBesselHP	*		✓	
FilterBesselLP	₩		✓	
FilterButterworthBP	₩		✓	
FilterButterworthHP	₩		✓	
FilterButterworthLP	₩		✓	
FilterChebyshevBP	₩		✓	
FilterChebyshevHP	✓		✓	
FilterChebyshevLP	✓		✓	
Calcul spécial				
HarmonicsIEC61000	✓		✓	
Integrate	₩		✓	
Transformation du signal		1	1	
DQZeroTransformation (Park) (3)	✓		1	(1)
${\tt SpaceVectorTransformation}^{(3)}$	✓		₩	
$\begin{array}{ll} {\tt SpaceVectorInverse} \\ {\tt Transformation}^{(3)} \end{array}$	✓		1	
Génération des signaux	I	ı	I I	
SineWave	₩		✓	
Ramp	₩		₩	
Fonctions trigger	•	•	'	
TriggerOnBooleanChange			Marque trigger	
TriggerOnLevel			Marque trigger	

- (1) Seuls les résultats basés sur le cycle peuvent être utilisés pour la sortie temps réel. Utiliser le calcul CycleMean sur des données de voies enregistrées ou sur des résultats basés sur les échantillons pour activer la sortie temps réel de ces données.
- (2) Le temps nécessaire pour calculer la sortie dépend de la durée de cycle maximale et de la vitesse d'échantillonnage. Selon les réglages sélectionnés, la latence de sortie peut augmenter. HBM considère ces calculs comme étant non déterministes. Toutes les valeurs de sortie temps réel publiées (déterministes et/ou non déterministes) ont toujours la même latence.
- (3) Cette formule est uniquement disponible si la licence eDrive a été ajoutée à Perception.
- (4) La sortie de HWFilter est utilisée pour CycleDetect.

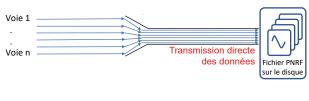
Statstream® temps réel


Numéro de brevet : 7 868 886

Extraction en temps réel des paramètres de base des signaux.

Prend en charge le défilement et l'affichage des courbes en temps réel, ainsi que les vumètres temps réel lors de l'enregistrement. Lors de la lecture d'enregistrements, cette fonction améliore la vitesse pour l'affichage et le zoom de très gros enregistrements. Il réduit également le temps de calcul des valeurs statistiques sur une grande quantité de données.

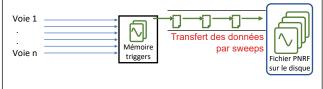
Voies analogiques	Maximum, Minimum, Moyenne, Crête-crête, Écart type et valeurs efficaces (RMS)					
Voies Événement/Timer/Compteur	Maximum, Minimum et Crête-crête					


Modes d'enregistrement des données

Enregistrement des données sur PC ou disque de l'appareil de base. L'enregistrement sur un disque est limité par une **vitesse d'échantillonnage globale**, la durée d'enregistrement est limitée par la **taille du disque**.

Remarque: comme la limitation de la vitesse d'échantillonnage globale dépend du débit Ethernet et du disque de stockage utilisé, ainsi que du fait que le PC et le disque ne doivent pas être utilisés à d'autres fins que l'enregistrement des données, il est fortement recommandé, pour des vitesses d'échantillonnage élevées, de tester la configuration choisie avant d'effectuer l'essai.

Attente du trigger

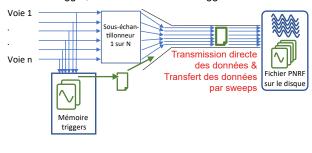


Enregistrement des données sur PC ou disque de l'appareil de base. L'enregistrement déclenché par trigger sur un disque est limité par une vitesse d'échantillonnage globale, la durée d'enregistrement est limitée par la taille du disque.

Remarque: comme la limitation de la vitesse d'échantillonnage globale dépend du débit Ethernet et du disque de stockage utilisé, ainsi que du fait que le PC et le disque ne doivent pas être utilisés à d'autres fins que l'enregistrement des données, il est fortement recommandé, pour des vitesses d'échantillonnage élevées, de tester la configuration choisie avant d'effectuer l'essai.

Non recommandé pour les essais de transitoires / uniques / destructifs.

Attente du trigger, d'abord vers mémoire triggers


Enregistrement déclenché par trigger des données de mesure vers la mémoire triggers sur la carte d'acquisition de données.

L'enregistrement déclenché par trigger des données de mesure vers la mémoire triggers n'a **pas de limites liées à la vitesse**

d'échantillonnage, la durée d'enregistrement est limitée par la taille de la mémoire triggers. Les données enregistrées dans la mémoire triggers sont transférées vers un disque aussi vite que possible.

Remarque : ce mode d'enregistrement garantit que les données seront toujours enregistrées selon les réglages définis par l'utilisateur. Recommandé pour les essais de transitoires / uniques / destructifs.

Au démarrage de la mesure, vitesse réduite et attente du trigger, d'abord vers mémoire triggers

Enregistrement des données sur PC ou disque de l'appareil de base et enregistrement simultané déclenché par trigger des données de mesure vers la mémoire triggers sur la carte d'acquisition de données.

L'enregistrement de données à vitesse réduite sur un disque est limité par une vitesse d'échantillonnage globale et la durée d'enregistrement est limitée par la taille du disque. L'enregistrement déclenché par trigger des données de mesure vers la mémoire triggers n'a pas de limites liées à la vitesse d'échantillonnage, la durée d'enregistrement est limitée par la taille de la mémoire triggers. Les données enregistrées dans la mémoire triggers sont transférées vers un disque aussi vite que possible. Comme ces données sont transférées en même temps que l'enregistrement des données de mesure à vitesse réduite, le système utilise la bande passante de la vitesse d'échantillonnage globale.

Remarque: comme la limitation de la vitesse d'échantillonnage globale dépend du débit Ethernet et du disque de stockage utilisé, ainsi que du fait que le PC et le disque ne doivent pas être utilisés à d'autres fins que l'enregistrement des données, il est fortement recommandé, pour des vitesses d'échantillonnage élevées et un nombre important de triggers par seconde, de tester la configuration choisie avant d'effectuer l'essai.

Comparaison des modes d'enregistrement Trigger re-Limitation de la vi-Enregistre-D'abord vers quis pour détesse d'échantillon-Données enregisment direct mémoire trigmarrer l'enrenage globale trées max. sur disque gistrement gers Au démarrage de la mesure Oui Espace libre sur le Oui Non Non disque Attente du trigger Oui Espace libre sur le Oui Non Oui disque Attente du trigger, d'abord vers mémoire Mémoire triggers Non Oui Oui Non triggers Au démarrage de la mesure, vitesse ré-Vitesse rédui-Espace libre sur le Oui Non Non duite et te: disque attente du trigger, d'abord vers mémoire Vit. échantill. : Non Mémoire triggers Non Oui Oui triggers

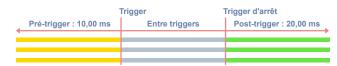
La vitesse d'échantillonnage globale est une limite lorsque les données sont transmises directement vers le disque

La vitesse de transmission directe globale maximale par appareil de base est définie par le type d'appareil de base et le disque SSD, le débit Ethernet, le disque du PC ainsi que d'autres paramètres du PC

Lorsque la vitesse d'échantillonnage globale sélectionnée est supérieure à la vitesse de transmission directe globale du système, la mémoire sur chaque carte d'acquisition de données fonctionne comme une mémoire FIFO. Dès que cette mémoire FIFO est pleine, l'enregistrement est suspendu (l'enregistrement des données est provisoirement arrêté). Pendant cette période, la mémoire FIFO est transférée vers un disque. Lorsque toutes les mémoires FIFO sont vides, l'enregistrement reprend automatiquement. Des notifications utilisateur sont ajoutées au fichier d'enregistrement pour permettre d'identifier les suspensions d'enregistrement après l'enregistrement.

Attente du trigger Attente du trigger, d'abord vers mémoire triggers Au démarrage de la mesure, vitesse réduite et attente du trigger, d'abord vers mémoire triggers Sweep Trigger d'arrêt Pré-trigger Entre triggers Post-trigger Défini par un signal trigger, des données pré-trigger et post-trigger, ainsi qu'éventuellement des données entre triggers et/ou un signal trigger d'arrêt. Segments de données enregistrés par trigger Données enregistrées avant un signal trigger. Données pré-trigger Remarque : si un signal trigger est reçu avant que toutes les données pré-trigger ne soient enregistrées, le trigger est accepté et le volume de données pré-trigger enregistré est automatiquement réduit aux données pré-trigger disponibles à l'instant du trigger. Données enregistrées après un trigger ou un signal trigger d'arrêt. Données post-trigger Remarque : l'enregistrement des données post-trigger peut être redémarré ou retardé en fonction de la sélection "Le post-trigger commence" Données enregistrées suite à un ou plusieurs re-trigger(s) ou en attendant le trigger d'arrêt. Données entre triagers La longueur des données entre triggers n'est pas spécifiée, mais est ajoutée selon l'horloge des signaux triggers ou triggers d'arrêt. Signaux triggers Signal trigger Ce signal met fin à l'enregistrement de données pré-trigger et démarre l'enregistrement de données posttriager. Voir la partie "Le post-trigger commence" dans le tableau pour plus de détails. Il est possible de configurer un signal trigger sur un trigger d'entrée externe, des voies analogiques et numériques, ainsi que d'utiliser des formules RT-FDB simples à complexes. Au signal trigger d'arrêt Ce signal démarre l'enregistrement de données post-trigger lorsque le mode "Le post-trigger commence au trigger d'arrêt" est sélectionné. Voir la partie "Le post-trigger commence" dans le tableau pour plus de détails. Il est possible de configurer un signal trigger d'arrêt sur un trigger d'entrée externe et sur des formules RT-FDB simples à complexes. Le post-trigger commence Au premier trigger Trigger Pré-trigger: 10,00 ms Post-trigger: 20,00 ms Le premier signal trigger met fin à l'enregistrement des données pré-trigger et démarre l'enregistrement des données post-trigger. Tout trigger reçu durant l'enregistrement des données post-trigger est ignoré. Les données entre triggers n'existent pas dans ce mode. Le sweep qui en résulte contient les données pré-trigger et les données post-trigger. À chaque trigger Trigger Trigger Pré-trigger: 10,00 ms Post-trigger: 20,00 ms Le premier trigger met fin à l'enregistrement des données pré-trigger et démarre l'enregistrement des données post-trigger. Tout trigger reçu durant l'enregistrement des données post-trigger redémarre l'enregistrement des données post-trigger. Toutes les données post-trigger enregistrées à l'instant du trigger sont ajoutées aux données entre triagers. Le sweep qui en résulte contient les données pré-trigger, les données entre triggers et les données posttrigger.

Définitions relatives aux enregistrements déclenchés par trigger


Les détails fournis dans ce tableau concernent les modes suivants :

Définitions relatives aux enregistrements déclenchés par trigger

Les détails fournis dans ce tableau concernent les modes suivants :

- Attente du trigger
- Attente du trigger, d'abord vers mémoire triggers
- Au démarrage de la mesure, vitesse réduite et attente du trigger, d'abord vers mémoire triggers

Au trigger d'arrêt

Le signal trigger met fin à l'enregistrement des données pré-trigger et démarre l'enregistrement des données entre triggers. Le trigger d'arrêt met ensuite fin à l'enregistrement des données entre triggers et démarre l'enregistrement de données post-trigger.

Tout **trigger** reçu durant l'enregistrement des données entre triggers et l'enregistrement des données post-trigger est ignoré.

Tout **trigger** reçu durant l'enregistrement des données pré-trigger et l'enregistrement des données post-trigger est ignoré.

Le sweep qui en résulte contient les données pré-trigger, les données entre triggers et les données post-trigger.

Mémoire triggers pleine lors de l'enregistrement							
La mémoire triggers a une taille limitée. Elle devient vite pleine lorsque des vitesses d'échantillonnage élevées sont combinées à des taux de déclenchement élevés. Cette section explique comment les triggers sont gérés lorsque la mémoire triggers est pleine.							
Le post-trigger commence	Sélection de l'enregistrement des sweeps						
Au premier trigger	Un nouveau sweep n'est enregistré que si l'espace libre dans la mémoire triggers est suffisant pour accueillir à la fois les données pré-trigger et post-trigger lorsqu'un signal trigger est reçu. Si l'espace libre est insuffisant, seules l'heure et la source du trigger sont enregistrées (pas les données pré-trigger et post-trigger).						
À chaque trigger	Un nouveau sweep est démarré en suivant les mêmes règles que pour le mode d'enregistrement au premier trigger. Si un nouveau trigger est reçu durant l'enregistrement des données post-trigger, le sweep est uniquement étendu avec les nouvelles données post-trigger, dans la mesure où l'espace libre dans la mémoire triggers est suffisant pour les données post-trigger supplémentaires. Si l'espace libre est insuffisant, le système enregistre les données pré-trigger, les données entre triggers et les données post-trigger déjà enregistrées pour le ou les trigger(s) reçu(s) précédemment.						
Au signal trigger d'arrêt	Un nouveau sweep n'est enregistré que si l'espace libre dans la mémoire triggers est suffisant pour les données pré-trigger, celles sur 2,5 ms entre triggers et les données post-trigger lorsqu'un signal trigger est reçu. Si aucun signal trigger d'arrêt n'est reçu avant que la mémoire triggers ne soit pleine, l'enregistrement des sweeps est automatiquement arrêté dès que la mémoire triggers est pleine.						

Limites de l'enregistrement déclenché par trigger

Les détails fournis dans ce tableau concernent les modes suivants :

- Attente du trigger Attente du trigger, d'abord vers mémoire triggers
- Au démarrage de la mesure, vitesse réduite et attente du trigger, d'abord vers mémoire triggers

	Attente du tri	gger, d'abord vers mémoire triggers				
		ge de la mesure, vitesse réduite et gger, d'abord vers mémoire triggers	Attente du trigger			
Enregistrement de données déclenché par trigger	Durée d'enreg	istrement limitée	Utiliser la taille d	u disque disponible		
Vitesse d'échantillonnage	Vitesse d'écha	antillonnage illimitée	Vitesses d'échar (en fonction du s	ntillonnage faibles à moyennes système utilisé)		
Nombre de voies	Nombre de vo	ies illimité	Nombres de voie (en fonction du s	es faibles à moyens système utilisé)		
Nombre maximum de sweeps						
Dans la mémoire triggers	2000		Non applicable			
Dans le fichier d'enregistrement PNRF	200 000		1			
Paramètres des sweeps	Minimum	Maximum	Minimum	Maximum		
Longueur pré-trigger	0	Mémoire triggers de la carte d'acquisition de données	0	Espace libre sur le disque		
Longueur post-trigger	0	Mémoire triggers de la carte d'acquisition de données		0		
Longueur des sweeps	10 échantillons	Mémoire triggers de la carte d'acquisition de données	1 minute Espace libre sur le disc			
Taux de sweeps maximum	400/s		Non applicable			
Temps minimum entre triggers	2,5 ms		Non applicable			
Temps mort entre sweeps	0 ms		Non applicable			

Détails	sur l'e	nregi	stren	nent d	les do	nnée	s de i	mesu	re						
Attente du t	rigger, d	l'abord v	ers mér	noire tri	ggers				1	1			1	1	
Attente du trigger, vi- tesse d'échantil- lonnage élevée vers mé- moire trig- gers	1 voie	2 voies	3 voies	4 voies	5 voies	6 voies	7 voies	8 voies	9 voies	10 voies	11 voies	12 voies	12 voies 1 Timer/Compteur	12 voies 2 Timer/Compteur	12 voies 2 Timer/Compteur Événements numériques
Mémoire sweeps max.	1000 Méch.	1000 Méch.	1000 Méch.	950 Méch.	750 Méch.	620 Méch.	525 Méch.	450 Méch.	395 Méch.	350 Méch.	310 Méch.	280 Méch.	235 Méch.	205 Méch.	190 Méch.
Vit. d'échantil- lonnage max.							1	00 Méch	n/s						
Au démarra	ge de la	mesure	et atten	te du tri	gger				1						
Au démarrage de la mesure, vitesse réduite et vitesse d'échantillonnage élevée vers mémoire triggers FIFO max.	3800 4 Voie	2 voies	sojox e 1200	006 4 voies	20 voies	00 o voies	Z voies	sojo o o o o o o o o o o o o o o o o o o	sejove 400	360 10 voies	320 1 Voies	12 voies	2 12 voies 1 Timer/Compteur	12 voies 2 Timer/Compteur	12 voies 2 Timer/Compteur Événements numériques
	Méch.	Méch.	Méch.	Méch.	Méch.	Méch.	Méch.	Méch.	Méch.	Méch.	Méch.	Méch.	Méch.	Méch.	Méch.
Vit. d'échantil- lonnage max.						25 Mé	ech/s						ı	20 Méch tion Time teur)	n/s er/Comp-
Vit. de transmis- sion globa- le max.	25 Méch/s	50 Méch/s	75 Méch/s	100 Méch/s	125 Méch/s	150 Méch/s	175 Méch/s	200 Méch/s	225 Méch/s	250 Méch/s	275 Méch/s	300 Méch/s	280 Méch/s	320 Méch/s	340 Méch/s
Au démarra	ge de la	mesure	, vitesse	réduite	et atten	te du tri	gger, d'a	bord ve	rs mém	oire trig	gers				
Double	1 voie	2 voies	3 voies	4 voies	5 voies	6 voies	7 voies	8 voies	9 voies	10 voies	11 voies	12 voies	12 voies 1 Timer/Compteur	12 voies 2 Timer/Compteur	12 voies 2 Timer/Compteur Événements numériques
Mémoire sweeps max.	1000 Méch.	1000 Méch.	1000 Méch.	760 Méch.	595 Méch.	490 Méch.	410 Méch.	355 Méch.	310 Méch.	275 Méch.	245 Méch.	220 Méch.	185 Méch.	160 Méch.	148 Méch.
Vit. d'échantil- lonnage sweeps max.	- 100 Méch/s														

HBK: UNRESTRICTED 32 B05282_03_F00_00

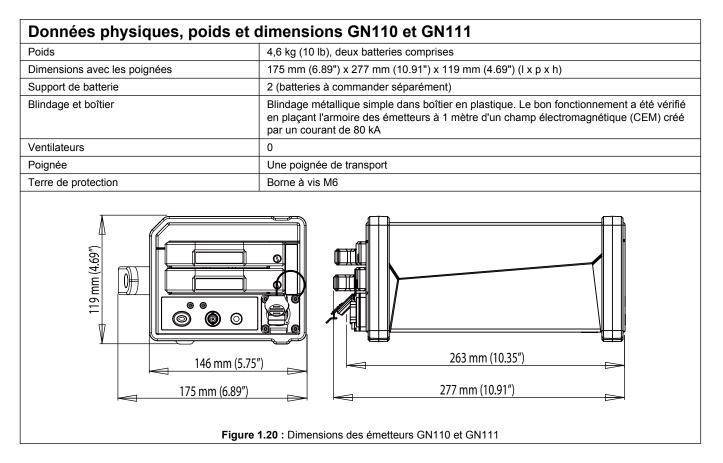
Détails	Détails sur l'enregistrement des données de mesure														
Au démarra	Au démarrage de la mesure, vitesse réduite et attente du trigger, d'abord vers mémoire triggers														
Double	1 voie	2 voies	3 voies	4 voies	5 voies	6 voies	7 voies	8 voies	9voies	10 voies	11 voies	12 voies	12 voies 1 Timer/Compteur	12 voies 2 Timer/Compteur	12 voies 2 Timer/Compteur Événements numériques
FIFO max.	800 Méch.	400 Méch.	260 Méch.	180 Méch.	144 Méch.	120 Méch.	103 Méch.	89 Méch.	75 Méch.	68 Méch.	61 Méch.	55 Méch.	46 Méch.	40 Méch.	37 Méch.
Vit. d'échantil- lonnage max. en continu	20 Méch/s 25 Méch/s (limitation Timer/Compteur)														
Vit. de transmis- sion direc- te globale max.	25 Méch/s	50 Méch/s	75 Méch/s	100 Méch/s	125 Méch/s	150 Méch/s	175 Méch/s	200 Méch/s	225 Méch/s	250 Méch/s	275 Méch/s	300 Méch/s	280 Méch/s	320 Méch/s	340 Méch/s

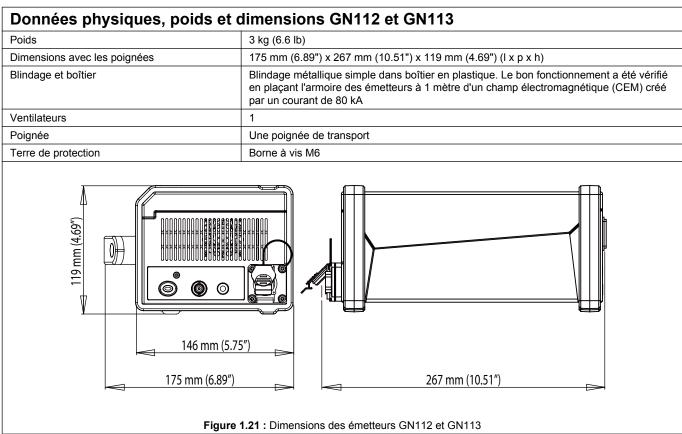
G091 : module SFP optique 2 Gbit 850 nm multimode (option, à commander séparément)

- Émetteur-récepteur optique enfichable à faible encombrement (SFP) utilisé pour : Prise en charge du réseau optique 1 Gbit 850 nm multimode
- Connexion optique frontale du GN1202B
- Connexions optiques Maître/Sync GEN DAQ

AVERTISSEMENT

Utiliser uniquement des émetteurs-récepteurs approuvés par HBM.


•	
Taux de transmission de données	2,125 Gbps
Longueur d'ondes	850 nm
Connecteur d'entrée	LC
Encombrement	SFP
Classe laser	1
Référence du fabricant d'origine	Finisar FTLF8519P3BNL
Plage de température	
Pour fonctionnement	-20 °C à +60 °C (-4 °F à +140 °F)
Hors fonctionnement (stockage)	-40 °C à +85 °C (-40 °F à +158 °F)


Liaison par fibre optique		
Source lumineuse	Produit laser de Classe 1	
Taux de transfert	2,125 Gbit/s	
Longueur d'ondes	850 nm	
Connecteur	LC duplex sur GN1202B SCRJ/IP67 duplex sur GN110, GN111, GN112 et GN113	
Câble		
Isolation	10 ¹⁵ Ω/m	
Туре	Multimode duplex, 50/125 μm, ISO/CEI 11801 type OM2, OM3 ou OM4	
Connecteur femelle	LC duplex ou SCRJ/IP67 duplex	
Longueur de câble maximale Pour chaque connecteur femelle supplémentaire utilisé, ôter 200 m (656 ft). Se reporter au manuel du numériseur isolé de la série GEN pour obtenir les détails du calcul de la longueur maximale.		
ISO/CEI 11801 type OM2	500 m (1640 ft), aucun connecteur femelle supplémentaire utilisé 300 m (984 ft), 1 connecteur femelle supplémentaire utilisé	
ISO/CEI 11801 type OM3	1000 m (3280 ft), aucun connecteur femelle supplémentaire utilisé 800 m (2624 ft), 1 connecteur femelle supplémentaire utilisé	

Alimentation requise pour GN110 et GN111 (émetteurs)	
Alimenté par batterie	Maximum 2 batteries amovibles possibles Note Utiliser uniquement des batteries approuvées par HBM. Voir l'option G034 pour plus de détails sur les batteries autorisées.
Puissance absorbée	Typiquement 6 VA, 8 VA maximum
Durée de fonctionnement (avec des batteries G034)	30 heures avec 2 batteries installées (15 heures avec 1 batterie installée) Le logiciel Perception peut activer un mode veille à basse consommation d'énergie pour prolonger la durée de fonctionnement

HBK: UNRESTRICTED 34 B05282_03_F00_00

Alimentation requise pour GN112 et GN113 (émetteurs)	
Alimentation électrique	115/230 V AC à 47 - 63 Hz (sélecteur manuel de la tension)
Puissance absorbée	12 VA maximum
Isolation de l'alimentation électrique	
Terre de protection raccordée	0 V, les deux côtés sont mis à la terre
Terre de protection non raccordée	1,8 kV RMS (CEI 61010-1:2010) Nécessite un environnement LAB protégé et des procédures de travail conformes à la norme EN 50191:2000
Fusible(s)	2 x 250 mA; à action retardée
Batterie	12 V à 300 mAh ; interne, rechargeable, NiMH
Autonomie de la batterie	5 minutes (avec une batterie neuve et entièrement chargée)

Conditions ambiantes	
Plage de température	
Pour fonctionnement	GN110 et GN111 : -15 °C à +50 °C (+5 °F à +122 °F) GN112 et GN113 : 0 °C à +40 °C (+32 °F à +104 °F) GN1202B : 0 °C à +40 °C (+32 °F à +104 °F)
Hors fonctionnement (stockage)	-25 °C à +70 °C (-13 °F à +158 °F)
Protection thermique	Arrêt thermique automatique en cas de température interne de 85 °C (+185 °F) Notifications d'avertissement à l'utilisateur à 75 °C (+167 °F)
Humidité relative de l'air	0 % à 80 % ; sans condensation ; pour fonctionnement
Classe de protection	IP20
Altitude	2000 m (6562 ft) maximum au-dessus du niveau de la mer ; pour fonctionnement
Chocs : CEI 60068-2-27	
Pour fonctionnement	10 g/11 ms demi-sinusoïdal ; 3 axes, 1000 chocs en direction positive et négative
Hors fonctionnement	25 g/6 ms demi-sinusoïdal ; 3 axes, 3 chocs en direction positive et négative
Vibrations : CEI 60068-2-64	
Pour fonctionnement	1 g (valeur RMS), ½ h ; 3 axes, 5 aléatoires jusqu'à 500 Hz
Hors fonctionnement	2 g (valeur RMS), 1 h ; 3 axes, 5 aléatoires jusqu'à 500 Hz
Essais d'environnement en fonctionnement	
Test à froid CEI 60068-2-1 Test Ad	-5 °C (+23 °F) pendant 2 heures
Test à sec CEI 60068-2-2 Test Bd	+40 °C (+104 °F) pendant 2 heures
Test en chaleur humide CEI 60068-2-3 Test Ca	+40 °C (+104 °F), humidité > 93 % Hr pendant 4 jours
Essais d'environnement hors fonctionnement (sto	ckage)
Test à froid CEI 60068-2-1 Test Ab	-25 °C (-13 °F) pendant 72 heures
Test à sec CEI 60068-2-2 Test Bb	+70 °C (+158 °F), humidité < 50 % Hr pendant 96 heures
Essai de variation de température CEI 60068-2-14 Test Na	-25 °C à +70 °C (-13 °F à +158 °F) 5 cycles, taux de 2 à 3 minutes, durée de séjour 3 heures
Essai cyclique de chaleur humide CEI 60068-2-30 Test Db variante 1	+25 °C/+40 °C (+77 °F/+104 °F), humidité > 95/90 % Hr 6 cycles, durée du cycle 24 heures

Normes harmoi	nisées pour conformité CE, en fonction des directives suivantes
Directive basse tension : Directive sur la compatib	2014/35/UE ilité électromagnétique (CEM) : 2014/30/UE
Sécurité électrique	
EN 61010-1 (2011)	Règles de sécurité pour appareils électriques de mesurage, de régulation et de laboratoire - Règles générales
EN 61010-2-030 (2011)	Règles particulières pour les circuits de test et de mesure
Compatibilité électroma	agnétique (CEM)
EN 61326-1 (2013)	Appareils électriques de mesurage, de régulation et de laboratoire - Exigences relatives à la CEM - Partie 1 : exigences générales
Émissions	
EN 55011	Appareils industriels, scientifiques et médicaux - Caractéristiques des perturbations radioélectriques. Perturbation conduite : classe B ; perturbation rayonnée : classe A
EN 61000-3-2	Limites pour les émissions de courant harmonique : classe D
EN 61000-3-3	Limitation des variations de tension, des fluctuations de tension et du papillotement dans les réseaux publics d'alimentation basse tension
Immunité	
EN 61000-4-2	Essai d'immunité aux décharges électrostatiques (ESD) ; décharge de contact ± 4 kV / décharge dans l'air ± 8 kV : critère de performance B
EN 61000-4-3	Essai d'immunité aux champs électromagnétiques rayonnés aux fréquences radioélectriques ; 80 MHz à 2,7 GHz avec AM 10 V/m, 1000 Hz : critère de performance A
EN 61000-4-4	Essai d'immunité aux transitoires électriques rapides en salves Secteur ± 2 kV avec réseau de couplage. Voie ± 2 kV avec pince capacitive : critère de performance B
EN 61000-4-5	Essai d'immunité aux ondes de choc Secteur ± 0,5 kV/± 1 kV phase-phase et ± 0,5 kV/± 1 kV/± 2 kV phase-terre

Normes harmon	nisées pour conformité CE, en fonction des directives suivantes
Directive basse tension : Directive sur la compatib	2014/35/UE ilité électromagnétique (CEM) : 2014/30/UE
EN 61000-4-6	Immunité aux perturbations conduites, induites par les champs radioélectriques 150 kHz à 80 MHz, AM de 1000 Hz; 10 V RMS au niveau du secteur, 10 V RMS au niveau de la voie, les deux avec une pince : critère de performance A
EN 61000-4-11	Essais d'immunité aux creux de tension, coupures brèves et variations de tension Creux : critère de performance A ; coupures : critère de performance C

HBK: UNRESTRICTED 38 B05282_03_F00_00

G034 : batterie rechargeable Li-ion SM202 (option, à commander séparément)

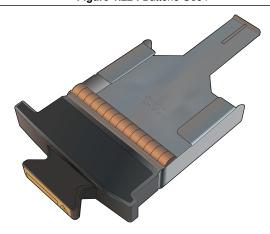
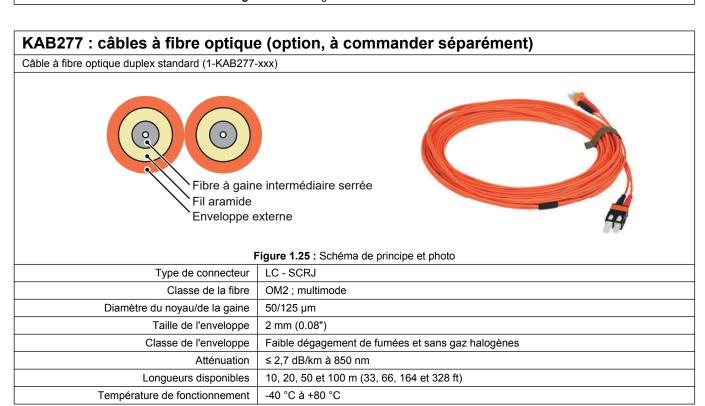
Note Certaines réglementations locales ne permettent pas à HBM d'importer des batteries dans plusieurs pays. Ces réglementations changent régulièrement et deviennent de plus en plus strictes. Vérifier auprès du représentant HBM local avant de commander la batterie chez HBM. Utiliser uniquement des batteries approuvées par HBM afin d'éviter les pannes inattendues et/ou les écarts par rapport aux caractéristiques techniques.

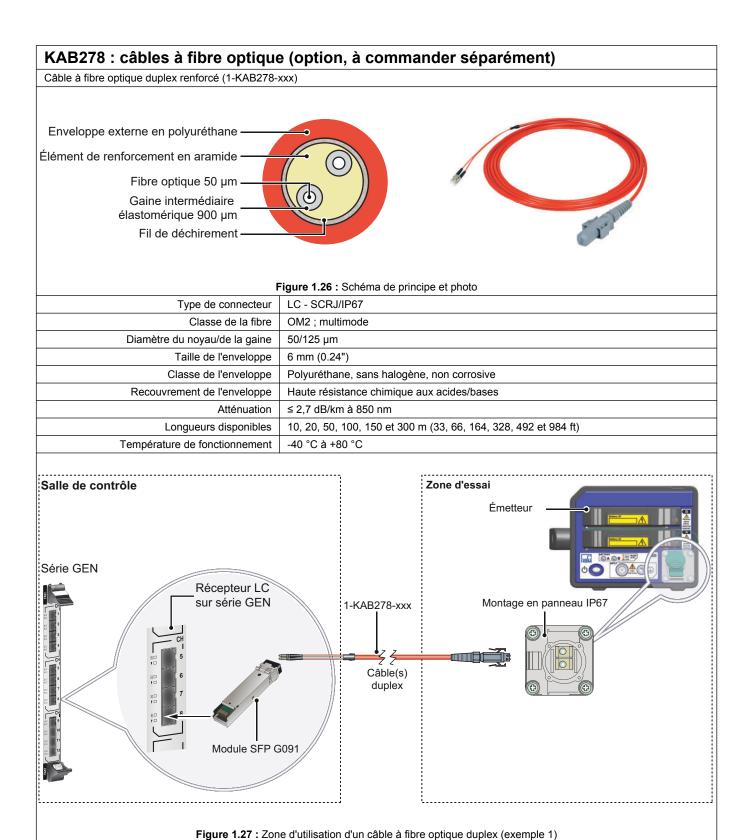
Les batteries G034 sont autorisées quasiment partout et sont disponibles à la vente localement dans de nombreux pays.

Pour plus d'informations, voir le site Web suivant : <u>www.rrc-ps.com</u>

Référence pièce du fabricant d'origine	RRC2020
Composition chimique	Lithium-Ion (Li-ion)
Tension nominale	11,25 V
Poids typique	490 g (1.1 lb)
Capacité nominale	8850 mAh
Durée de vie attendue à 25 °C Charge 4,40 A / Décharge 4,40 A	> 300 cycles avec au minimum 80 % de la capacité initiale
Encombrement	SM202
Dimensions	149 mm (5.86") x 89 mm (3.50") x 19,7 mm (0.77") (l x p x h)
Batterie intelligente	Compatible avec SMBus et conforme à SBDS révision 1.1
Tension de charge maximale	13,0 V
Courant de charge maximum recommandé	4,0 A
Durée de charge typique	3 heures avec un courant de charge de 4 A
Température de décharge	-20 °C à +55 °C (-4 °F à +131 °F)
Température de charge	+0 °C à +40 °C (+32 °F à +104 °F)
Température de stockage	-20 °C à +60 °C (-4 °F à +140 °F). Recommandation : -20 °C à +20 °C (-4 °F à +68 °F)
Référence pièce du fabricant d'origine	RRC2020 de RRC power solutions
Conformité avec les normes suivantes	CE / UL2054 / FCC / PSE / KC / Gost / EAC / CQC / RCM / CEI 62133 / UN38.3 / RoHS / REACH / BIS
Disponibilité	Disponible dans quasiment tous les pays du monde
Recyclage	Inscrit à de nombreux systèmes de recyclage dans le monde

Figure 1.22 : Batterie G034


Figure 1.23 : Support de batterie G301

G109 : chargeur de batteries Li	G109 : chargeur de batteries Li-ion (option, à commander séparément)	
Chargeur de batteries Li-ion à 2 baies		
Support de batterie intelligente	SMBus niveau 3	
Courant de charge maximum	3 A, ou limité par la batterie intelligente	
Recalibrage de la batterie	SMBus 1,2 A à 12 V	
Stratégie de charge	Simultanée pour deux batteries.	

Figure 1.24 : Chargeur de batteries Li-ion à 2 baies

B05282_03_F00_00 41 HBK: UNRESTRICTED

KAB279 : câbles à fibre optique (option, à commander séparément) Câble de connexion à fibre optique duplex renforcé (1-KAB279-xxx)

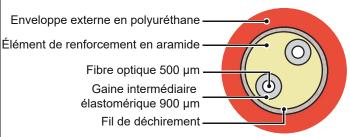
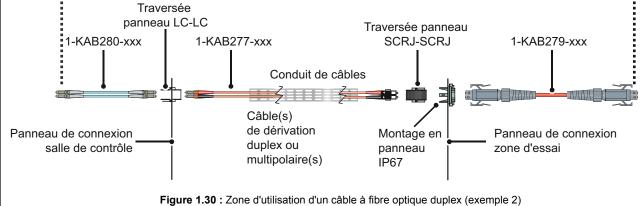



Figure 1.28 : Schéma de principe et photo

Type de connecteur	SCRJ/IP67 - SCRJ/IP67
Classe de la fibre	OM2; multimode
Diamètre du noyau/de la gaine	50/125 μm
Taille de l'enveloppe	6 mm (0.24")
Classe de l'enveloppe	Polyuréthane, sans halogène, non corrosive
Recouvrement de l'enveloppe	Haute résistance chimique aux acides/bases
Atténuation	≤ 2,7 dB/km à 850 nm
Longueurs disponibles	20 et 50 m (66 et 164 ft)
Température de fonctionnement	-40 °C à +80 °C

KAB280 : câble à fibre optique MM LC-LC 50/125 µm (option, à commander séparément) Câble de connexion à fibre optique multimode duplex standard et séparable Fibre à gaine intermédiaire serrée Fil aramide Enveloppe externe Figure 1.29 : Schéma de principe et photo Type de connecteur LC - LC OM3; multimode Classe de la fibre 50/125 µm Diamètre du noyau/de la gaine Taille/diamètre de l'enveloppe Généralement noyau unique 2 mm (0.08") Classe de l'enveloppe Faible dégagement de fumées et sans gaz halogènes ≤ 2,7 dB/km à 850 nm Atténuation 3, 10, 20 et 50 m (10, 33, 66 et 164 ft) Longueurs disponibles 30 mm (1.2") Rayon de courbure Généralement 14 kg/km (9 lb/1000 ft) Poids -40 °C à +80 °C Température de fonctionnement Zone d'essai Salle de contrôle Émetteur Série GEN Récepteur LC sur série GEN Montage en panneau IP67 -Module SFP G097

Article		Description	N° de commande
Émetteur 1 voie alimenté par batterie		Émetteur optique isolé HT GN110, 100 Méch/s, 14 bits, bande passante de 25 MHz, deux supports de batteries Li-ion, connecteur SCRJ/IP67. Note Les batteries doivent être commandées séparément. Vérifier les restrictions d'importation avant de commander les batteries chez HBM. Utiliser uniquement des batteries approuvées par HBM afin d'éviter les pannes inattendues et/ou les écarts par rapport aux caractéristiques techniques.	1-GN110
		Émetteur optique isolé HT GN111, 25 Méch/s, 15 bits, bande passante de 10 MHz, deux supports de batteries Li-ion, connecteur SCRJ/IP67. Note Les batteries doivent être commandées séparément. Vérifier les restrictions d'importation avant de commander les batteries chez HBM. Utiliser uniquement des batteries approuvées par HBM afin d'éviter les pannes inattendues et/ou les écarts par rapport aux caractéristiques techniques.	1-GN111
Émetteur 1 voie alimenté par patterie	Carrette	Émetteur optique isolé MT GN112, 100 Méch/s, 14 bits, 25 MHz, alimentation intégrée avec isolation à 1,8 kV RMS, connecteur SCRJ/IP67.	1-GN112
		Émetteur optique isolé MT GN113, 25 Méch/s, 15 bits, 10 MHz, alimentation intégrée avec isolation à 1,8 kV RMS, connecteur SCRJ/IP67.	1-GN113
GN1202B Récepteur 12 voies		Récepteur optique isolé GN1202B, 12 voies, 12 x LC in, mémoire 2 Go Note En cas de combinaison d'émetteurs de 100 Méch/s avec des émetteurs de 25 Méch/s , la vitesse d'échantillonnage maximum du récepteur sera limitée à 25 Méch/s pour les 12 voies.	1-GN1202B
Module SFP optique 2 Gbits MM 850 nm		Module Ethernet SFP GEN DAQ 2 Gbits, 850 nm multimode. Jusqu'à 600 m de câble à fibre optique pris en charge, support de connecteur LC. Le SFP 2 Gbits ne peut pas être utilisé pour des exigences SFP 1 ou 10 Gbits.	1-G091

HBK: UNRESTRICTED 44 B05282_03_F00_00

Option, à coi	Option, à commander séparément		
Article		Description	N° de commande
Calculateurs GEN temps réel reposant sur la base de données de formules	Source I Tropper Celebrate L1 Tropper Celebrate L2 Tropper Celebrate L3 Tropper Celebrate L4 Tropper Celebrate L5	Option pour activer des calculateurs temps réel avancés. La configuration utilise une base de données de formules configurable semblable à celle de Perception. Tous les calculs sont réalisés par le DSP de la carte d'acquisition. Déclenchement possible sur de nombreux résultats de calcul. Les résultats de calcul basés sur le cycle peuvent être transférés en temps réel vers l'interface d'acquisition GEN, l'option USB vers CAN FD ou EtherCAT®. La sortie EtherCAT® prend en charge le vrai temps réel avec une latence de 1 ms.	1-GEN-OP-RT- FDB

Accessoires	, à commander séparément		
Article		Description	N° de commande
Batterie Li-ion SM202	CERCINI, MILE	Batterie Li-ion rechargeable pour GN110/ GN111 et ISOBE5600t La batterie est conforme aux normes CE / UL 2054 / UL1642 / FCC / CEI 62133 / EN 60950 / RoHS / UN 38.3 / PSE / RCM / CQC / BIS IS 160346 Note Vérifier les restrictions d'importation avant de commander les batteries chez HBM.	1-G034
Support de batterie		Support de batterie Li-ion pour GN110/GN111 et ISOBE5600t. Batterie (1-G034) non incluse.	1-G301
Chargeur de batteries Li-ion à 2 baies	Many.	Chargeur de batteries Li-ion à 2 baies pour GN110/GN111 et ISOBE5600t. Accepte deux batteries sans avoir à retirer le support.	1-G109
Câble à fibre optique standard MM LC-SCRJ		Câble à fibre optique 50/125 µm multimode duplex standard GEN DAQ, perte de 2,7 dB/km (ou 3,5 dB/km pour les caractéristiques générales ISO/CEI 11801), connecteurs LC-SCRJ, orange, type OM2 selon ISO/CEI 11801. Utilisé généralement pour l'acheminement de câbles fixes ou les environnements LAB. Longueurs: 10, 20, 50 et 100 mètres (33, 66, 164 et 328 ft)	1-KAB277-10 1-KAB277-20 1-KAB277-50 1-KAB277-100
Câble à fibre optique renforcé MM LC-SCRJ		Câble à fibre optique 50/125 µm multimode duplex renforcé GEN DAQ, perte de 2,7 dB/km (ou 3,5 dB/km pour les caractéristiques générales ISO/CEI 11801), connecteurs LC-SCRJ/IP67, orange, type OM2 selon ISO/CEI 11801. Utilisé généralement pour des environnements de chambre d'essai. Longueurs: 10, 20, 50, 100, 150 et 300 mètres (33, 66, 164, 328, 492 et 984 ft)	1-KAB278-10 1-KAB278-20 1-KAB278-50 1-KAB278-100 1-KAB278-150 1-KAB278-300
Câble à fibre optique renforcé MM SCRJ-SCRJ		Câble à fibre optique 50/125 µm multimode duplex renforcé GEN DAQ, perte de 2,7 dB/km (ou 3,5 dB/km pour les caractéristiques générales ISO/CEI 11801), connecteurs SCRJSCRJ / IP67, orange, type OM2 selon ISO/CEI 11801. Utilisé généralement pour des environnements de chambre d'essai comme panneau de connexion pour les émetteurs. Longueurs: 20 et 50 mètres (66 et 164 ft)	1-KAB279-20 1-KAB279-50
Câble à fibre MM LC-LC		Câble à fibre optique 50/125 µm multimode duplex standard et séparable GEN DAQ, perte de 3,0 dB/km, connecteurs LC-LC, bleu, type OM3 selon ISO/CEI 11801. Utilisé généralement pour l'acheminement de câbles fixes ou les environnements LAB. Longueurs: 3, 10, 20 et 50 mètres (10, 33, 66 et 164 ft)	1-KAB280-3 1-KAB280-10 1-KAB280-20 1-KAB280-50

Note D'autres longueurs de câble à fibre peuvent être commandées auprès de l'équipe chargée des systèmes personnalisés : customsystems@hbm.com

Sondes de te	Sondes de tension (options, à commander séparément)		
Article	Article Description		N° de commande
Sonde asymétrique passive 10:1, 400 MHz, 10 MΩ, 1,2 m		Sonde de tension asymétrique passive. Présente une plage de compensation capacitive de 10 à 25 pF. Le facteur diviseur est 10:1, la bande passante est -3 dB à 400 MHz, la tension d'entrée maximale est 300 V RMS CAT II, l'inexactitude DC maximale est 2 % et la sonde raccordée à une voie présente une impédance d'entrée de 10 MΩ. La longueur de câble de la sonde est 1,2 m (3,9 ft).	1-G901
Sonde isolée asymétrique passive, 100:1, 400 MHz, 100 MΩ		Sonde de tension isolée asymétrique passive. Présente une plage de compensation capacitive de 10 à 50 pF. Le facteur diviseur est 100:1, la bande passante est -3 dB à 400 MHz, la tension d'entrée maximale est 1000 V RMS CAT II, l'inexactitude DC maximale est 2 % et la sonde raccordée à une voie présente une impédance d'entrée de 50 MΩ. La longueur de câble de la sonde est 2 m (6,5 ft).	1-G903
Sonde DIFF active, 200:1, 25 MHz, 4 MΩ		Sonde de tension différentielle active. Prise en charge par n'importe quelle voie d'entrée grâce à la sortie active. Possibilité de sélectionner manuellement les facteurs diviseurs 20:1 et 200:1. Bande passante prise en charge -3 dB à 25 MHz. La tension d'entrée maximale et la tension de mode commun sont toutes deux égales à 1000 V RMS. L'inexactitude DC maximale est 2 % et la sonde présente une impédance d'entrée de 4 M Ω sur chaque entrée. La longueur du câble coaxial de la sonde est 0,95 m (3.12 ft).	1-G909

Article		Description	N° de commande
Pince de courant AC/DC i30s		Pince de courant AC/DC à effet Hall; 30 mA à 30 A DC; 30 mA à 20 A AC RMS; DC 100 kHz; câble de sortie BNC de 2 m (6.5 ft), avec adaptateur pour fiche banane de sécurité 4 mm, nécessite une pile de 9 V.	1-G912
Pince de courant AC SR661		Pince de courant AC; 100 mA à 1200 A AC RMS; 1 Hz - 100 kHz; câble de sortie de 2 m (6.5 ft) avec BNC de sécurité.	1-G913
Pince de courant AC M1V20-2		Pince de courant AC de haute précision ; 50 mA à 20 A ; 30 Hz - 40 kHz ; câble de sortie de 2 m (6.5 ft) avec BNC métallique.	1-G914

©Hottinger Brüel & Kjaer GmbH. All rights reserved. All details describe our products in general form only. They are not to be understood as express warranty and do not constitute any liability whatsoever.

Hottinger Brüel & Kjaer GmbH

Im Tiefen See $45 \cdot 64293$ Darmstadt \cdot Germany Tel. +49 6151 803-0 \cdot Fax: +49 6151 803-9100 E-mail: info@hbm.com \cdot www.hbm.com

