arrow_back_ios

Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence
arrow_back_ios

Main Menu

See All Analysis & Simulation Software See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Hand-held Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance
arrow_back_ios

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Utilization of weighing modules for load cells to avoid incorrect loading

For the most part incorrect loading can be avoided utilizing adequate mounting parts. The load cell and the mounting part together form a complex functional unit, a weighing module for load cells. HBM weighing modules come pre-assembled. They can instantly be installed and put into service on site without any additional measures being required. Depending on their type and mode of operation, weighing modules may include the following components:
  • Upper and lower mounting plate for fastening onto a foundation or other carrier or superstructure
  • Load application and output to the load cell
  • Return to its original position in the event of side forces with pendulum bearings
  • Damping of vibrations or dynamic loading using elastomer bearings
  • Restraints against side force through horizontal stay rods
  • Anti-liftoff device with simultaneous unloading of the module
Note: Not all weighing modules for load cells include all components specified. In part, they cannot be optionally retrofitted!

Depending on their type, load cells can, to some degree, assume tasks in addition to their actual measuring function; they can, for example, be used as restraints or anchors. This can be implemented by screwing load cells to the superstructure.

Selected features of various HBM weighing modules

HBM weighing modules can be fitted with OIML R60-compliant load cells and are thus also suitable for legal-for-trade applications. Benefits of HBM weighing modules:
  • Maintenance free
  • Space-saving installation through minimal height of construction
  • Easy mounting
  • Galvanized or stainless-steel versions available
  • EEx(i) load cell version available on request
  • Partly fitted with anti-liftoff device
  • Fitted with stay rod
  • Selected modules available with overload stop
Note: Not all weighing modules for load cells include all components specified. In part, they cannot be optionally retrofitted! HBM aims to continuously expand the range of weighing modules. Please refer to the latest product catalog for information on new components.

Configuration of weighing modules according to the application

The stay rods absorb side forces up to the maximum value specified in the weighing module's operating manual. To avoid damage, this maximum value must in no case be exceeded. If this cannot be guaranteed, additional protective measures need to be taken. Furthermore, it is essential to note that the stay rods cannot absorb any lateral forces. The most favorable configuration needs to be identified already before installing the modules on site. It is essential to take into account individual circumstances, for example, wind loads, the tank volume, side forces, dilatation and thermal influences already during the design. On the one hand, the direction of the stay rods needs, without exception, to conduct all occurring loads through the stay rods while maintaining permissible limit values, on the other hand, temperature dilatation which may exert significant force must not be impeded. The mounting directions suggested by HBM can only provide approximate figures. The configuration of the weighing modules needs to be checked and matched to comply with static, dynamic and thermal loads for each project individually. Note: When a tank is supported by four points (four modules), one support should be designed without any restraint by a stay rod (Fig. 5) to avoid restricting compensating movements and to avoid damage to the modules.

Fixed bearing as a cost-effective module substitute

Fixed bearings can be used as both mounting accessory or module substitute. Using only one or two "measuring modules", depending on the form of the tank, enables substantial material and installation cost savings to be achieved. To ensure sufficiently precise measurement results, this is only possible with tanks whose center of gravity in the vertical direction is not affected by the filling process. In most cases, this is, however, only true for liquids and, possibly, pourable bulk material. These cases too require that the optimal alignment of fixed bearing and modules is identified. The fixed bearing features maximum stiffness in the longitudinal direction of the web and maximum flexibility perpendicular to the web. Wind forces and their influences on the weighing result need to be taken into account here.

Effects of mounting

Unevenness of the contact surface

A surface unevenness of less than 0.6 mm is required. Greater unevenness needs to be leveled with sealant, for example AFM-30 (from Reinz).

Angle of inclination of the contact surface

The load cell's sensitivity is reduced by 1-cosα. This deviation is compensated for via the weighing electronics during calibration of the weighing system. However, an angle of inclination of 3° must not be exceeded.

Plane parallelism

If base and top plate are not parallel to each other, this deviation of the force application parts from plane parallelism results in additional lateral force. This lateral force is absorbed in the longitudinal direction by the stay rod. In the transverse direction the pendulum support is deflected to such an extent that the equilibrium of forces is restored. However, to reduce the effect of lateral forces to a minimum, the angle of inclination must not under any circumstances exceed 3°.

Axial offset

An axial offset between cover plate and force application to the structure is acceptable since the plates are screwed together.

Download the article as pdf

Download