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An important part of experimental stress analysis is the measurement of strain with single 
strain gages and the type of circuitry employed influences the linearity and sensitivity of the 
measurements. This article describes the basic principles of strain measurement by means 
of strain gages, from the strain itself via the variation in resistance to the eventual electrical 
signal, and compares the magnitude of error of the voltage-fed bridge circuit and the 
current-fed circuit. The conclusion reached is that, for single strain gages, voltage-fed 
bridge circuits give better linearity by several powers of ten and, when there is initial 
detuning, a similarly more stable sensitivity than current-fed circuits. 

1. Introduction 

Current-fed circuits possess a very linear characteristic 
for the measurement of resistance and changes in 
resistance. However, this does not apply to the 
measurement of strain by means of single strain gages. 
In such applications the current-fed circuit exhibits a 
much greater linearity and sensitivity error than the 
voltage-fed Wheatstone bridge circuit. Fig. 1 shows the 
circuit diagrams of the voltage-fed and current-fed circuits 
for single strain gages. The cause of the different linearity 
and sensitivity characteristics is the not precisely linear 
relationship between the strain and the relative change in 
resistance of the strain gage. In the case of the voltage-
fed Wheatstone bridge circuit this non-linearity is 
opposite to the non-linearity of the circuit, with the result 
that the two tend to cancel each other out. 

 

In order to explain this self-compensation process in 
more detail, it is necessary to examine the relationship 
between the strain and the electrical signal produced. 
Fig. 2 shows the various stages of the process from 
measurement of the actual strain to the eventual 
production of an electrical signal. The strain in the 
specimen causes a relative change in length of the strain 
gage which, in turn, causes a relative change in 
resistance which is converted into an electrical signal in 
the relevant circuit. The relationships between the 
various parameters in the individual steps of the process 
will be described individually later and then the relation-
ships between the strain and the electrical signals from 
the voltage-fed quarter bridge circuit and current-fed 
circuit derived. 
In the following section it will be explained why the 
actual, i.e. effective, strain εe is only approximately equal 
to the relative change in length ∆I/Io. 

 
 
 
 
 

Fig. 1: Circuit diagrams for single strain gages 
a) voltage-fed bridge circuit 
b) current-fed circuit 

Fig. 2: The steps from measurement of 
 the strain to the eventual 
 electrical signal 



2. The definition of strain 

According to VDI/VDE 2635 [1], technical strain e is the ratio 
of elongation or contraction Al to the original length Io 

 

 
∆This definition leads to difficulties in the addition and sub-
traction of large values of strain, and this will be demonstrated 
by means of an example: When a wire 1000 mm long is 
stretched by 10,000 µm/m it means that its length increases 
by 10 mm to 1010 mm. If the same wire is stretched by 
10,000 (µm/m again in a second, unconnected measurement, 
this time its length increases by 10.1 mm because the original 
length for the second measurement was 1010 mm. Therefore, 
the total elongation is 20.1 mm. If the original wire had been 
stretched by 20,000 µm/m for the first measurement it would 
only have increased in length by 20 mm according to the 
definition given in equation (1). 
Consequently, the two independent stretchings of 10,000 
µm/m each do not correspond to a single stretching of 20,000 
µm/m but to one of 20,100 µm/m, with the first accounting for 
10,000 µm/m and the second for 10,100 µm/m. Naturally, this 
is a totally unsatisfactory situation because it means that each 
measurement is dependent on the prior measurement taken 
with the device. It is essential, of course, for the same values 
of strain to give rise to the same readings and this can only 
be assured by restricting the definition of strain e in equation 
(1) to very small values of e and, therefore, ∆l. 
Equation (1) becomes totally correct if ∆l is made infinitely 
small in relation to dl and divided by the total length I: 

 

The precise equation for de is 

 

 
Every value of effective strain ee can be regarded as the sum 
of an infinite number of infinitely small values of strain: 

 
 
Together with equation (2) this gives 

 
 
Equation (5) describes the "logarithmic" or effective strain 
which has been known in this form since 1909 [2]. 
When a wire, e.g. a strain gage, of length I0 is stretched to 
length I0 + ∆l, the effective strain εe becomes 
 

 

Equation (6) represents an exact definition for strains of any 
magnitude. According to this equation, measurements of 
strain are independent of the prior history and part-strains can 
be added or subtracted without incurring the discrepancies 
described in the previous example. 
 
Comparing the effective strain εe with the strain ε defined in 
equation (1) gives the following relationships: 

 
 
For small values of strain ε ≈ εe as a first approximation, which 
is apparent if equation (8) is written as a series: 

 
 
Therefore, for small values of strain both definitions give the 
same results. The relation between εe and (ε - εe ) is shown in 
Fig. 3. 

 
Fig. 3:  Deviation of strain e from the effective strainge in 

relation to the effective strain 

3. Theoretical relationship between 
the relative change in length and 
the relative change in resistance of 
strain gages 

The following observations are only valid for strain gages 
having metal grids and a k factor of approximately 2. How-
ever, since these are the most popular types of strain gage 
the restriction is of no importance in the majority of practical 
applications. The definition of k factor is 

 
 
Therefore, k = 2 means that the relative change in resistance 
is twice the strain e. The reason for specifying strain gages 
with a k factor of 2 is because the k factor is always 2 in the 
plastic range of every material [3]. 
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For metal strain gages with a k factor of 2, change 
in form accounts for approximately 80% of the k 
factor in the elastic range and a change in specific 
resistance for only about 20%. 
 
In the plastic range of a material the relative change 
in resistance is caused exclusively by the change in 
form with simultaneous constancy of volume and 
specific resistance. Therefore, strain gages with a k 
factor of 2 possess constant sensitivity in both the 
elastic and plastic ranges, which is a very important 
requirement when measuring large values of strain, 
in order to obtain reliable readings. Another 
advantage is that the readings are therefore also 
almost entirely independent of the prior treatment 
and use of the strain gage. 
The resistance of a conductor is calculated with the 
formula 
 
 
 
 
where I is the length, A the cross section and ϱ the 
specific resistance of the conductor. If the volume V 
and specific resistance ϱ are assumed to remain 
constant (plastic strain), the following relationship 
between the resistance and the length can be 
derived: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This gives the relative change in resistance 
 
 
 
 
With equation (1) this becomes 
 
 
 
and, as a first approximation, 
 
 
 
Therefore, the derivation gives a k factor of 2 as a 
first approximation. When considering the linearity, 
however, the term ε2 in equation (19) must not be 
neglected. 

4. Relationship between measured 
voltage and change in resistance 

When a strain gage is connected as shown in Fig. 1 
a with three equal resistors R0 in a Wheatstone 
bridge, and the resistance of the strain gage 
changes from R0 to R0 + ∆R due to the strain e, the 
measured voltage Um can be calculated from 

 

 
 
The voltage US/2 is that across the resistors R0 and, 
therefore, also across the strain gage when it is 
unstrained; for the purposes of this description it will 
be denoted by U0: 
 
 
 
 
It is normally necessary to know the magnitude of 
the measured voltage Um (change in voltage) in 
relation to the voltage U0 across the strain gage 
when it is unstressed. Dividing the two voltages 
gives 

 
the formula for the voltage-fed bridge circuit. The 
relationship between measured signal and change 
in resistance is non-linear. 
In the case of the constant-current circuit as in Fig. 
1b is 
 
 
 
Which gives the formula for the constant-current 
circuit 
 
 
 
Therefore, the measured signal varies proportionally 
with ∆R. 
 

5. Relationship between the effec- 
   tive strain and the electrical signal 
The next step is to determine the overall 
transmissibility of the measured value "effective 
strain εe " to the electrical measured signal "Um/U0" 
for voltage-fed bridge circuits and current-fed 
circuits. Substituting equation (8) in equation (19) 
gives 
 
 
 



For metal strain gages with a k factor of 2, equation (26) re-
presents the theoretical relationship between the effective strain 
εe and the relative change in resistance R/R0. The series 
expansion of equation (26) gives 

 
which is a good approximate solution. Practical measurements 
have given the same result in the past [4]. 
In order to obtain the relationship between the effective strain ee 
and the electrical signal Um/U0 for voltage-fed bridge circuits, 
equation (26) is substituted in equation (23), giving 

 

 
Fig. 4: Small linearity error of the voltage-fed bridge 
 circuit in relation to the effective strain 

Multiplying the numerator and denominator of equation (28) by 
exp (- εe) gives 

 
Therefore, the theoretical relationship between the electrical 
signal Um/U0 and the effective strain εe for an ideal metal strain 
gage with a k factor of 2 is determined by the hyperbolic 
tangent. 

The third approximation of equation (29) is given by 

  
Fig. 5:  Large linearity error of the current-fed bridge circuit 
 in relation to the effective strain 

The error of this approximation compared to the exact solution is 
extremely slight; even with a very large strain of 100,000 µm/m it 
is only - 0.0013% of the actual value. 
From equation (30) it can be seen that the measured signal 
increases linearly with the strain at small values of strain. Only 
with very large values of strain does the term ε3

e/3 produce a 
measurable linearity error. Even then, it is only 0.3 µm/m for a 
strain of 10,000 µm/m. Fig. 4 shows the linearity error as a 
function of the effective strain ee for the voltage-fed bridge 
circuit. 

In the case of current-fed circuits the electrical signal is equal to 
the relative change in resistance of the strain gage so that, by 
substituting equation (26) in equation (25), the relationship 
between the effective strain and the electrical signal is obtained 
directly: 

 
Expanding the series to the third term gives the third ap-
proximation of equation (31): 

 
For an effective strain of 10,000 µm/m the current-fed circuit has 
a linearity error of 100.7 µm/m. Fig. 5 shows the linearity error in 
relation to the effective strain for the current-fed circuit. 

 

6. The effect of extreme initial detuning 
on measuring sensitivity 

So far, this article has dealt mainly with the linearity error of 
voltage-fed bridge circuits and current-fed circuits at very large 
values of strain. However, for most strain measurements, errors 
in linearity are not of overwhelming interest because the strains 
to be measured are often relatively small and the linearity error 
can be neglected within the range of accuracy required. 
Nevertheless, the relationships which have been derived are of 
considerable significance when considering the effect on 
measuring sensitivity of prestrain and the resistance tolerances 
of the strain gages, i.e. initial detuning in general. 
The measuring sensitivity E for very small strains is given by the 
slope of the transmission curve at the particular working point, 
i.e. at the particular value of effective strain εe: 

 
The values of valid, effective strain ee are obtained by con-
verting the resistance errors ∆R/R0 due to the resistance 
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tolerances and prestrain of the strain gages according to 
equation (34); 

 
The sensitivity EB of the voltage-fed bridge circuit is then 

 
and therefore 

 
Equation (36) can be written in the following approximate 
form: 

 
The sensitivity ES of current-fed circuit can be calculated 
similarly: 

 
and written in the approximate form: 

 
A point of interest is how the measuring sensitivity E 
varies in relation to the effective strain εe. If the sensitivity 
for εe =0 is denoted E0 and the sensitivity at the 
appropriate working point on the curve E, the relative 
change in sensitivity ∆E/E0 can be written: 

 
Substituting the values from equation (36) for the 
voltage-fed bridge circuit in equation (40) gives the 
relative change in sensitivity: 

 
which can be written approximately: 

 
Treating equation (40) for the current-fed circuit similarly 
with equation (38) gives the relative change in sensitivity 
of the current-fed circuit: 

 
which can be written approximately: 

 
Fig. 6 shows the relative variation in sensitivity with effec-
tive strain for the voltage-fed bridge circuit and Fig. 7 the 
same for the current-fed circuit. The relative variation in 
sensitivity of voltage-fed bridge circuits in the range from 

- 20,000 (µm/m ≦ εe ≦ 20.000 µm is less than 0.04% 
whereas that of the current-fed circuit in the same range 
is approximately ±4%. 

 
Fig. 6: Small variation in sensitivity in relation to 
effective strain for the voltage-fed bridge circuit 

 
Fig. 7:  Large variation in sensitivity in relation to 
effective strain for the current-fed bridge circuit 

Substituting equation (34) in equations (41) and (43) 
gives the relative change in sensitivity in relation to the 
relative change in resistance ∆R/R0 of the active strain 
gage. 
For voltage-fed circuits the following equation can be 
written: 

 
and in the approximate form: 

 
For current-fed circuits the equation is: 

 
Figs. 8 and 9 show the relative variation in sensitivity in 
relation to the relative change in resistance ∆R/R0 of the 
active strain gage. It can be seen that, with voltage-fed 
bridge circuits, relative changes in resistance of ± 6% 
cause changes in measuring sensitivity of less than 
0.1%. 



In the case of the current-fed circuit the variation in measuring 
sensitivity is proportional to the variation in resistance and is 6% 
for a resistance of 6%. This disadvantage of the current-fed 
circuit has already been referred to in [5]. 

their effect cannot be calculated either for the voltage-fed circuit 
or the current-fed circuit and this is the reason for comparing the 
linearity and sensitivity error of the two types of circuit on the 
basis of systematic, calculable relationships. 

 
 
As a result of this fact it is necessary to match the constant 
current for the strain gage to the actual value of strain gage 
resistance if the sensitivity error of the current-fed circuit is to be 
eliminated. It means that zero balancing of the hardware must 
be employed, which involves a considerable amount of 
additional circuitry in the case of multiple-gage systems. 
With voltage-fed bridge circuits, on the other hand, a simple 
computing zero balance is sufficient up to very large values of 
initial detuning. 

 
Fig. 9:  Large variation in sensitivity in relation to change in 

resistance of the strain gage for a current-fed 
bridge circuit 

The general conclusion can be drawn that, for the use of strain 
gages in quarter bridge connection, the voltage-fed bridge 
circuit is superior to the current-fed circuit in many ways, 
primarily because of better linearity by several powers of ten 
and similarly better sensitivity stability under conditions of initial 
detuning. 

7. Summary 

The purpose of this article is to draw attention to the fact 
that the linearity and sensitivity of strain gage measure-
ments cannot be assessed solely from the relation 
between change in resistance and change in electrical 
signal; the transmissibility between strain and change in 
resistance must also be taken into account. However, 
one important proviso to the relationships developed in 
the article is that they are only precisely valid for ideal 
strain gages applied ideally. In reality the transmissibility 
of "strain/change in resistance" is adversely affected by 
many factors such as less-than-ideal backing materials 
and adhesives and multiple-axial stress fields in the grid 
of the strain gages. Such factors are usually 
unsystematic and, therefore, cannot be dealt with in a 
universally-applicable form. Moreover, 
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