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1. Introduction 

 

Due to the extremely high purity of nowadays available optical fibers [1], there is increasing 

interest in fiber-based sensing instrumentations. Minimal signal loss over long distances 

(<0.2dB/km) in combination with state-of-the-art precision optics make them attractive for 

sophisticated sensing applications. 

 

Apart from more traditional optical surface strain detection methods, such as Moiré pattern 

analysis [2] or contact-free laser-speckle interferometry [3], fiber-based strain sensing 

methods based on fiber Fabry-Perot sensors [4], on biconically narrowed fibers [5] and on 

Bragg fibers basically resemble their electrical counterparts in their functionality, but are 

superior with respect to several metrological properties and performances: 

 

First, they are completely immune against electromagnetic interferences and run without 

electric power at the measurement site, thus being applicable even in high voltage areas and 

explosive atmospheres. Second, they exhibit high corrosion and humidity resistance and are 

therefore usable in wet and harsh environments. From the metrological viewpoint, especially 

Fiber Bragg Sensors (FBS) show good long-term signal stability, have fastest response times 

and are suitable for high strain detection ( ≥ 10,000µm/m). The multi-sensing and 

multiplexing capability of the fiber-optical technology prevents strong cabling efforts at the 

measurement location: within a single fiber, several optical sensors can be implemented for 

measurement of strain as well as of other physical quantities like temperature, pressure, force, 

weight, displacement, acceleration and torque. They further match quite well with composite 

materials like carbon faser composites, concrete and laminate which are widely used in 

modern constructions and architectures, e.g. in aerospace, in wind energy harvesting or in 

large buildings.  

 

This justifies the increased usage of Fiber Bragg Sensors for strain detection despite some 

apparent disadvantages compared to electrical strain gages, such as usually higher costs, 
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stronger temperature susceptibility and lower strain sensitivity. A portrayal of this emerging 

technology is given e.g. in Ref. [6]. 

 

In this contribution, a new class of flexible fiber-Bragg strain sensors is presented together 

with related fiber-Bragg temperature compensation gages and an optical interrogation 

technique. The properties and merits of this strain sensing instrumentation are documented 

and its practicability is outlined.     

 

2. Fiber Bragg Gratings and Bragg Fiber  

 

The Fiber Bragg Grating (FBG) was first demonstrated by Hill et al. in 1978 [7] and 

meanwhile belongs to the most well-known and most widespread photonic structures in use. 

In its conception, it is both simple and effective which makes it attractive for lots of 

applications.  

 
Fig. 1. Principle of a Fiber Bragg Grating (FBG). A Bragg grating is formed by a periodic modulation 

of the effective refraction index neff of the optical fiber core. Light around the Bragg wavelength λB is 

reflected back from the grating and therefore misses in the transmission spectrum. Both reflection and 

transmission signals are amenable to sensing.  

 

The principle of a Fiber Bragg Grating is illustrated in Fig. 1. Light conducted by the fiber 

core is selectively reflected from the Bragg grating and coherently superposed, thus leading to 

an interference pattern (see also Appendix A3). In general, both the reflection and the 

transmission spectrum of the Bragg fiber can be exploited for measurements. However, the 

transmission spectrum suffers from a much larger signal background. Therefore, reflection 

analysis is standard for the HBM optical equipment. 

 

The basic optical quantities which influence the measured Bragg wavelength λB are the 

grating period Λ and the effective refractive index neff of the fiber core (see Fig. 1), as it is 

expressed by the fundamental relation of the uniform Fiber Bragg Grating: 

 

(1) Λ= effB n2λ  

 

The Fiber Bragg Grating originates from a small periodic modulation of the core refractive 

index ncore, such that the effective refractive index neff is given by the average of an elevated 

core refractive index n1 and of the unperturbed core refractive index n2,  
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There are different accesses to realize a periodic modulation of the core refractive index by 

pulsed laser irradiation, mainly either by fiber illumination through a periodic phase mask or 

by a so-called Talbot interferometer where two laser pulses produce a periodic interference 

pattern at the fiber position [8,9]. The pulsed laser irradiation induces a permanent periodic 

change in the refractive index of the fiber core either by activating dopants or by introducing 

morphologic defects into the fiber core at high laser fluences. Depending on the laser fluence 

used for inscription, weak and strong gratings are distinguished, with Bragg peak reflectivity 

below ~30% and above ~90%, respectively. 

In the case of weak gratings, the dominant Bragg peak at λB is typically accompagnied by a 

number of sidebands. The entire reflection spectrum R(λ) including all sidebands is described 

by: 

 

(3) ( ) ( )( ) ( )λλλ xxR sin∝  

 

with ( ) ( ) BBNx λλλπλ −= [11]. Here, N is the number of grating periods Λ per entire 

grating length L. Fig. 2 displays both the measured and the calculated reflection spectrum of a 

weak Bragg grating; the reflectivity at the Bragg peak is around ~15% (absolute). Sidebands 

are usually more than one order of magnitude (>3dB) more damped than the main peak which 

is used as signal. 

 

 

 

 

 

 

 

 
Fig. 2. (a) Measured reflection spectrum of a 

Fiber Bragg Grating.  

(b) Calculated reflection spectrum with Bragg 

peak and symmetric sidebands around the 

Bragg wavelength λB~1570nm.  

This type of weak Bragg grating fiber is used as the basis of the HBM fiber-optical sensors, 

with a grating length of L~6mm and neff~1.46. Germanium is used as a dopant inside the fiber 

core [10] necessary for inscribing Bragg gratings by two interfering ultraviolet laser pulses. 

The Bragg wavelengths λB are chosen in the range of telecommunication wavelengths 

between 1500nm and 1600nm where optical losses are at a minimum. Correspondingly, the 

inscribed grating period Λ, which is the spatial distance between two neighboring index 

modulations, ranges between Λ∼510nm and Λ∼550nm. At a given grating length of ~6mm, a 

Bragg grating therefore consists of more than 10000 grating periods. 
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The core diameter of the Bragg fiber is 5µm, in contrast to 9µm core diameter of conventional 

telecommunication fibers. This has the advantage that stronger bending is possible due to 

better compliance with total reflection angles (see Appendix A1). In addition, the Bragg 

gratings are directly inscribed during the fiber drawing process, followed by a fiber coating 

process. This Bragg fiber is therefore highly robust and capable of measuring strains above 

1%. 

 

3. Bragg Fiber Interrogation and Multiplexing 

 

For telecommunication wavelengths around 1550nm, tuneable laser sources represent a good 

basis for the interrogation of Fiber Bragg Gratings and Fiber Bragg Sensors. In the HBM 

interrogators (“optical recorders”), a semiconductor optical amplifier (SOA) is combined with 

a high-performance fiber Fabry Perot tuneable filter (FFP-TF, a technology from Micron 

Optics Inc.) to perform a unidirectional ring laser with a maximum tuning range between 

~1450nm and ~1650nm. This combination unifies the advantages of high optical gain and 

broad bandwidth of the SOA with the wide tuning range and the high spectral selectivity of 

the FFP-TF (free spectral range >200nm).  

 
Fig. 3. (a) Scheme of an optical interrogator (4-channel model). Light from a tunable light source is 

split over 4 channels which couple light to up to 4 fibers with several Fiber Bragg Grating sensors 

(FBGs 1.1-4.k). The reflection spectrum of the FBGs is recorded by photodiodes (S1-S4). Dotted 

squares: Fiber couplers for back-reflected light from FBGs. (b) Symbolic scheme of an optical 

multiplexer (“MUX”) channel with 1x4 multiplexing capability, connected with one interrogator 

output channel.  

 

The principal setup of the interrogator is illustrated in Fig. 3a. The output of the tuned light 

source is split over (optionally up to) four optical fiber channels which are connected by one 

Bragg sensor fiber each. In every chain, light reflected from the Bragg sensors is recorded by 
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a photodiode which is connected via a fiber coupler. Here, the optical signal is converted into 

an electrical signal for further data processing. For dynamic interrogation, the FFP-TF is 

driven with scanning frequencies of up to 1 kHz (e.g. HBM dynamic interrogator DI 410). 

Static interrogators can achieve 1pm (~1ppm) absolute accuracy by implementation of a NIST 

certified acetylene gas reference cell (e.g. HBM static interrogator SI 401). All optical 

interrogators are equipped with either one (series DI/SI 1XX) or four (series DI/SI 4XX) fiber 

channels. 

 

The number of sensors per chain is typically limited by both the total interrogating range 

(1510 nm – 1590 nm) and by a reasonable minimum spectral distance of ∆λB~5nm necessary 

to prevent mutual signal interference of two neighboring sensor wavelengths after strain and 

temperature shifts. Hence, a chain with up to 15 Bragg sensors can be connected to each 

interrogator channel in principle. The standard HBM program is by convention limited to 13 

Bragg gratings per chain. For a 4-channel interrogator, the maximum number of sensors 

therefore amounts to 4x13=52.  

 

The total number of measuring channels can be increased by means of optical multiplexers, as 

it is sketched in Fig. 3b. The 4x8 and 4x16 multiplexers (HBM M408 and M416) for 4 optical 

input channels and 8 resp. 16 output channels each use a network of 1x2 solid state all-crystal 

switches which allow fast non-mechanical electro-optical switching with a response time 

below 0.05 ms. Hence, the maximum number of Bragg sensors of the entire instrumentation is 

increased to 52x2=104, resp. to 52x4=208. 

 

For dynamic interrogation, the usage of multiplexers however decreases the interrogation rate 

by a factor equalling the degree of multiplexing, i.e. from 1 kHz to 500Hz for 4x8 

multiplexers and from 1 kHz to 250 Hz for 4x16 multiplexers. Furthermore, signal loss 

reduces the dynamic range to ~40dB for 4x8 multiplexing, resp. to ~30dB for 4x16 

multiplexing.  

 

4.  Fiber Bragg Sensors – Theoretical Background 

 

Fiber Bragg Gratings are inherently appropriate for sensing strain because the grating period 

Λ itself serves as a flexible length scale. Any elongation or compression of the Bragg grating 

translates directly into the strain signal ε when the measured Bragg wavelength shift Bλ∆ is 

related to the reference Bragg wavelength λB: 

 

(4) ελλ ⋅=∆ kBB  

 

The strain LL∆=ε  is thereby given by the relative change in the grating length L. Here, the 

reference Bragg wavelength λB is referred to the initial measurement situation, i.e. with 

typically zero strain and an initial temperature T0 which remains constant during the strain 

measurement in the simplest case. The strain sensitivity k translates the relative wavelength 

shift into strain.  

 

In general, both the refractive index neff and the grating period Λ, and hence also the Bragg 

wavelength λB are affected by strain and temperature: 

 

(5) ( ) ( ) ( )TTnT effB ,,2, εεελ Λ=  

 

Therefore, the absolute Bragg wavelength shift upon thermal and mechanical excitation reads: 
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Here, ε∆  compares initial and final strain. The corresponding relative Bragg wavelength shift 

yields: 
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This is the complete expression for first-order strain and temperature influences on the 

relative Bragg wavelength shift. It comprises a set of four optical coefficients (8-11): 
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The photoelastic coefficient εα n  expresses the change of the refractive index upon strain, the 

coefficient εα Λ  describes the relative change of the Bragg grating length with elastic strain, 

the thermo-optical coefficient nTα   expresses the thermal change of the refractive index of the 

fiber core [12], and the (longitudinal) thermal expansion coefficient TΛα  expresses the 

relative length change of the fiber core with temperature. 

It is emphasized that these coefficients ...α  may have physical units different from that of the 

thermal expansion coefficient α  of any materials. 

 

Using available experimental data and theoretical values for the coefficients [12] yields: 

 

(12) 79.021.01: =−=+= Λ εε αα nk  

(13) KnTTT

6104.6: −
Λ ×≈+= ααα  

 

In comparison to electrical strain gages, where k~2, the strain sensitivity of the optical Bragg 

fiber k~0.79 is significantly lower.  

The quantity KT

6104.6~ −×α  is a relative wavelength change per Kelvin, but it is not a 

thermal expansion coefficient itself. It can however be formally related to a thermal expansion 
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coefficient of kTα ~8.1 µm/m/K. The contribution TΛα in Tα  is physically related to the 

thermal expansion coefficient of the pure silica fiber, ≈= Λ kTsilica αα 0.55 µm/m/K 

(resp. ≈ΛTα K61043.0 −× ). Correspondingly, the change of the refractive index with 

temperature is KTTnT

6100.6 −
Λ ×≈−= ααα  (resp. ≈knTα 7.6 µm/m/K). 

 

It is interesting to note that the main thermal influence to the wavelength shift originates from 

the thermal refractive index change and not from the thermal fiber expansion (ratio ~1/14).  

 

In total, the temperature-dependent strain signal of the Bragg grating is given by: 

 

(14) 
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The sketched case only treats the bare silica fiber which is neither bonded to a surface nor 

embedded in a sensor. However, the entire argumentation also holds for the HBM sensors, as 

it is expounded in the next chapter. 

 

5. HBM Fiber Bragg Sensors  

 

a. Fiber-optical Strain Gages- Strain Measurement and Stress Analysis 

 

In order to realize a fiber Bragg strain sensor, strain from the substrate needs to be fully 

transferred to the Fiber Bragg Grating. Therefore, the sensor needs to be tightly bonded onto 

the surface and the substrate strain has to be completely guided to the fiber. Fig. 4a shows the 

HBM strain sensor which is designed to enable ideal strain transfer into the glass fiber (HBM 

K-OL). This sensor allows to measure tension and compression without prestrain. The 

flexible material combination is chosen for sensing of high strain and to enable strain 

measurements even on bended surfaces, as it is demonstrated in the application example in 

Fig. 4b.  

 

 

 

 

 

 

 

 

 

 

Fig. 4. (a) Optical linear strain gage (HBM K-

OL), with two additional fiber connectors. (b) 

Optical linear strain gage installed onto a ring 

surface; inner radius = 35mm. 

Some basic specifications of this K-OL optical strain gage (“OL”) are shown in Fig. 5. It 

exhibits perfect linearity of the Bragg wavelength signal BB λλ∆  upon external strain (Fig. 
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5a). Here, the measured value of the k factor is close to the expected value (measured: k=0.78; 

theoretical: k=0.79; compare eqn. (12)). A continuous-operation test at ±5000µm/m 

alternating-load on a fiber reinforced plastic (GRP) spring demonstrates the capability of high 

strain measurement (Fig. 5b). The oscillation cycles were repeated 10
7
 times, whereupon the 

full strain was also detected at the end of the cycle. The optical strain gage was also shown to 

record >±10.000µm/m in single bending tests.  

 

 

 

 

 

 

 

 
Fig. 5. (a) Linear strain response of optical 

strain gages (“OL”) adhesively bonded on top 

of a calibrated stainless steel spring.  (b) Strain 

response at ±5000µm/m strain level. Two 

optical strain gages are therefore bonded on 

both sides of an oscillating GRP spring. 

Since the fiber is guided within the optical strain sensor in a well defined way and tightly 

bonded onto the specimen surface, the expansion coefficient TΛα  of the free Bragg fiber has 

to be omitted for the bonded sensor. Instead, the thermal expansion coefficient of the 

specimen sα  has to be taken into account for the total signal of the bonded strain sensor: 

 

(15) 
( )

( ) Tkkk
T

snT

B

B ∆⋅⋅++∆⋅=
∆

ααε
λ

ελ ,
, 

 

where ε∆  is the mechanical strain applied to the specimen (compare with eqn. 14). The term 

knTα  equals the temperature coefficient of the optical strain sensor (given in the data tables). 

 

 

 

 

Fig. 6. Dynamic interrogation example of a 

damped mechanical oscillation recorded by an 

optical strain gage bonded on top of an 

aluminium spring. Signal readout is performed 

by a dynamic interrogator (HBM DI410). The 

Fourier transform of the oscillation is given as 

inset. 
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An example for dynamic interrogation is given in Fig. 6 where the damped oscillation of an 

aluminium spring was measured by an optical strain gage using a dynamic 1 kHz-interrogator 

(HBM DI 410). Here, the Fourier spectrum displays a center frequency around 50Hz and 

frequency contributions up to ~100Hz.  

For two-dimensional strain measurements and subsequent stress analysis, a “rosette-type” 

optical strain gage (“OR” sensor) is available. Here, three Bragg gratings are inscribed within 

a sequence. The Bragg fiber is twice bend by 60° and embedded analogue to the linear optical 

strain sensor, as shown in Fig. 7 (HBM K-OR). 

 

 

 

 

 

 
Fig. 7. Optical Rosette sensor with cover and 

label indicating Bragg wavelengths and 

clockwise grating arrangements (HBM K-OR). 

From the measurement of the strain set {εa, εb, εc}, the two main normal stress components σ1 

and σ2 are determined with this 0°/60°/120°- optical rosette sensor by [13]: 
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Here, E is the elastic modulus of the measurement body (e.g. E~66kN/mm
2
 for Al and 

E~200kN/mm
2
 for most steels) and ν is the inverse Poission ratio between transverse and 

longitudinal strain upon force in longitudinal direction (e.g., ν~0.33 for Al and ν~0.27 for 

most steels). The angle ϕ (Fig. 8b) encloses the measuring grating a and the stress component 

σ1 (see Ref. [13] for details).  

 

 

 

 

 

 

 

Fig. 8. (a) Measurement configuration to 

compare optical with electrical rosette strain 

gage. (b) Comparative stress analysis with 

optical rosette (“OR”) and electrical rosette 

(“ER”), both mounted on an aluminium tensile 

bar. The measurement gratings are denoted by 

“a,b,c”. The diagram shows resulting main 

normal stress components σ1 and σ2, and the 

angle ϕ between σ1 and grating a.  
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Fig. 8a shows a measurement configuration used to compare the optical rosette strain sensor 

with an electrical 0°/60°/120°-rosette strain sensor (“ER” sensor, type HBM RY73-6/120) 

which are together bonded to an aluminium tensile bar. The two-dimensional strain 

measurements by both sensors are converted into the stress components σ1, σ2 and the angle ϕ 

as shown in Fig. 8b. Although the optical rosette sensor is larger than the electrical rosette 

sensor, both stress analyses yield well comparable results.  

 

b. Temperature Compensation Gage 

 

An important prerequisite for precise strain measurements using Fiber Bragg Sensors is an 

accurate compensation of any thermal influences. This is necessary since the influence of 

temperature amounts to a Bragg wavelength shift of KppmT 6≈α  which compares to a 

significant temperature-strain signal of 7-8 µm/m/K.  

Therefore, a temperature compensation element needs to be placed nearby the strain sensor.  

In our approach, temperature compensation can be realized in two ways: 

 

In case of a known uniaxial strain direction, a second optical strain gage is used for 

temperature compensation which is bonded onto the specimen perpendicular to the strain axis 

(Fig. 9a, left). Due to the low transverse strain sensitivity kt of the optical strain gage 

compared to the longitudinal strain sensitivity kl in fiber direction (kt/kl <10
-3

), this gage 

almost exclusively measures the signal from temperature T and from the transverse 

contraction of the substrate material which amounts to εν ⋅⋅ lk . In particular, it exhibits the 

same temperature characteristics as the optical strain gage bonded in strain direction, i.e. it 

implies the same temporal temperature response as the optical strain sensor itself. 

 

 

 

 

 

 

 

 

 

Fig. 9. (a) Temperature compensation with 

optical strain gage perpendicular to the known 

uniaxial strain direction (left), and with the 

OTC sensor in the presence of arbitrary non-

uniform strain (right). (b) Optical temperature 

compensation sensor (HBM K-OTC). 

In the presence of an unknown strain profile, this procedure is however not applicable. Here, 

the temperature measurement needs to be completely decoupled from any mechanical 

specimen strain. In our approach, a special optical temperature compensation (“OTC”) gage is 

therefore designed: The Bragg fiber is mounted on top of an aluminium body which spatially 

decouples specimen strain from the Bragg grating. The apparent advantage of this sensor is 

the applicability for any strain profile, but the temperature signal is slightly retarded because 
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of the finite heat capacity of the sensor body. For the compensation sensor, a time constant of 

τ~10s for the temperature response upon sudden temperature change at the specimen has to be 

considered. For comparable temperature conditions, the OTC sensor normally needs to be 

installed next to the Bragg grating of the optical strain gage, but its alignment angle relative to 

it is arbitrary (Fig. 9a, right).  

Both accesses for temperature compensation are demonstrated in Fig. 9a; an enlarged view of 

the optical temperature compensation (“OTC”) gage is shown in Fig. 9b. 

 

Two central specifications of the OTC gage are obtained from Fig. 10. Fig. 10a shows a 

repeated temperature cycle in the operation range between -10°C and 80°C, which is 

measured as thermal strain by an optical strain gage. The corresponding OTC signal is used 

for temperature compensation. The temperature compensated strain signal 'ε  of the optical 

strain gage (K-OL resp. K-OR) is therefore given by: 

 

(17)  
( ) ( ) ( )
( ) ( ) ( )OTCOTCOR

OTCOTCOL

S

S

ααεεε
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Here, ( ) =OTCα 30.6µm/m/K is the temperature coefficient of the OTC sensor. αS [µm/m/K] 

is the thermal expansion coefficient of the specimen on which the OTC is bonded. In the test 

measurement of Fig. 10a, no mechanical strain is applied such that the pure temperature 

effect is filtered out. Even at the edge values of the temperature range, the compensation error 

is below 1%. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. (a) Temperature-strain signal of an 

optical linear strain gage (OL), bonded on an 

aluminium body and exposed to several 

temperature cycles, and corresponding strain 

signal after temperature compensation with an 

OTC gage. (b) Enlarged view: Temperature 

compensated OL signal. (c) Response of two 

OTC sensors upon a mechanical strain cycle 

applied to the specimen. 
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The absolute temperature compensation error in the complete temperature cycle is below 

10µm/m (Fig. 10b). In addition, the OTC sensor design effectively decouples mechanical 

strain from the substrate as shown in Fig. 10c. Stretching of the substrate by 1000µm/m 

evidently effects no change of the OTC signal. 
. 

Fig. 11 illustrates a combined temperature and strain test where one optical strain gage is 

bonded on a steel body (αs=10.8µm/m/K) and temperature compensation is realized with an 

OTC sensor. Temperature varies irregularly between ~20°C and ~80°C, and two individual 

mechanical strain events are carried out. The temperature compensated signal basically shows 

the two mechanical strain signals and a low background from temperature influences 

(<40µm/m). In this practical test, the time constants for temperature changes occasionally 

went significantly below τ=10s and therefore lead to a partly enhanced compensation error. 

 

 

 

 

 
Fig. 11. Temperature compensation test in the 

presence of mechanical strain. The OL strain 

sensor was bonded on a steel body and 

temperature compensation was performed with 

an OTC gage. 

 

6. Measurement Chain 

 

Fig. 12. shows the Bragg spectrum of a measurement chain example containing a maximum 

number of 13 Bragg sensors, each adjacent sensor pair separated by a spectral distance of ~ 

±5nm. With this spectral distance, strain up to ± kBB λλ∆ ~±5nm/1550nm/0.78~±4000µm/m 

can be measured provided that the neighboring sensors are unstrained. For measurement of 

higher strain, the Bragg wavelength differences have to chosen to ±10nm or ±15nm. 

 

 

 

 

 

Fig. 12. Optical measurement chain with 13 

Bragg gratings separated by a Bragg 

wavelength difference of ≈∆ Bλ 5nm each. 

The spatial distance between each pair of 

Bragg gratings is ~50cm. 

Measurement chains are connected to the interrogator by means of standard FC/APC-fiber 

connectors with ends cut in a 8° angle. This prevents backreflection of signal background into 

the incoming interrogator fiber by exceeding the total reflection angle (see Appendix A1). 

 

In practice, Bragg sensors are often separated by different fiber lengths connecting various 

installation spots. Thereby, the sensor fiber has to be elongated by insertion of fiber parts 
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using optical splices. However, optical losses should be kept below 4dB within the sensor 

chain in order to avoid ambiguity in Bragg peak detection. This occurs especially when 

certain sidebands, which lie occasionally up to 4dB below the corresponding Bragg peak level, 

reach similar intensities as other Bragg peaks in the same chain.  

 

Optical losses appear at different levels, as it is summarized in Fig. 13: Whereas the specific 

loss of the connection fiber (telecommunication fiber) used to connect the interrogator with 

the sensor chain is as low as 0.2dB/km (one way), the specific loss of the sensor fiber is 

9dB/km (one way). Therefore, the total length of the sensor fiber should not exceed ~200m. 

However, the length of the connection fiber is not critical because it introduces an overall 

signal damping of all Bragg sensors.  

 
Fig. 13. Recommended fiber length limits and signal losses in a fiber Bragg sensor chain. 

 

Due to optical mode field adaption from the sensor fiber (core diameter ~5µm) to the low-loss 

telecommunication fiber (core diameter ~9µm), bidirectional optical losses amount to ~3dB 

for each splice between both fiber types. Therefore, the complete chain should not contain 

more than one interconnection splice, i.e. fiber types should not be changed more than once 

per chain. The process of fiber splicing is briefly illustrated in Fig. 14. Thereby, both fiber 

ends are cut in a 0° angle, are then precisely aligned and finally fused by an electrical arc 

discharge. Splices between the same fiber types only introduce losses typically below ~0.2dB 

(one way).  

 

 

 

 

 

Fig. 14. Process of fiber splicing by an 

electrical arc discharge optical splicer. 

Another source of optical losses is related to critical fiber bending. In this case, the total 

reflection angle is under-run and light escapes from the fiber core. The critical bending radius 

is as low as 2 mm for the sensor fiber, but ~20 mm for the telecommunication fiber. 

 

For accurate detection of the Bragg wavelengths, fiber bending and fiber positioning should 

not be changed too much during the measurement process: The interrogators of the HBM 

SI/DI series utilize linearly polarized light which may change orientation during fiber bending. 

Since the Bragg gratings commonly show some rotational anisotropy, changing the 
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polarization state of light used for interrogation leads to a small polarization shift of the Bragg 

wavelength up to ~20pm. It is therefore recommended to fix the complete chain at selected 

locations once all sensors are readily installed. 

 

Finally, a time-of-flight (TOF) correction for the light travelling time can be implemented for 

long connection fibers in order to obtain absolute strain values: since the DI/SI interrogators 

rely on a scanning technique, the wavelength scanning time is directly translated into a 

proportional scanning wavelength at the data acquisition side. Therefore, any additional 

propagation time of the Bragg signal from the grating to the photodiode due to optical 

pathways leads to an artificial shift in the detection wavelength. For example, with a speed of 

light of c0/n~2*10
8
 m/s (c0=3*10

8
 m/s is the speed of light in air, n~1.5 is the fiber refractive 

index), light needs ~5ns to pass 1m fiber. The TOF shift becomes especially critical for 

dynamic interrogation. In case of 1 kHz interrogators, the scanning time for the wavelength 

range of 80nm amounts to ~0.4ms. For kilometer long connection fibers, the TOF shift can 

easily reach values in the nm-regime which have to be considered for absolute measurements.  

 

7.  Calibration of Optical Interrogators 

 

For calibration of optical interrogators, athermal fiber Fabry Perot etalons are used as an 

absolute wavelength scale. 

 

The etalon basically consists of two fixed plane-parallel dielectric surfaces which are inserted 

into the fiber path. They act as a precision wavelength filter through multiple reflections and 

interference of light rays from the partially reflecting dielectric surfaces. Etalon reflection 

peaks are described by the Airy function  

 

(18) ( ) ( )( ) 12 2sin1
−

+∝ δλ FR  

 

where the optical phase acquired by the light wave on one round trip through the etalon is 

given by λπδ ln4= . Here, n is the index of refraction and l is the distance between both 

etalon interfaces. The finesse ( )2
14 RRF −= with the dielectric surface reflectivity R is used 

to quantify the shape of the etalon reflection peaks. The Free Spectral Range (FSR) λ∆  

displays the peak-to-peak distance. 

 

 

 

 

 

 

Fig. 15. Section of the fiber etalon reflection 

spectrum used for interrogator calibration.

Fig. 15 shows a small section of the fiber etalon reflection spectrum recorded by a HBM 

SI401 interrogator. The etalon peaks are remarkably sharp and therefore precisely define a 

broad spectrum of calibration wavelengths. They do not change their position with 



 15 

temperature and they cover the complete interrogation range between 1510 and 1590nm. In 

the zoomed etalon spectrum of Fig. 15 the FSR is ~0.8nm around λ0~1535nm. 

 

By peak wavelengths determination using HBM interrogators which are actively calibrated 

using an implemented gas cell standard (e.g. the HBM SI401), an absolute calibration of the 

etalon is performed. This procedure allows to establish a calibration protocol by listing the 

etalon peak wavelengths measured with a certified gas cell interrogator together with the 

etalon peaks measured with the interrogator in quest.  

 

For both static and dynamic interrogators, the absolute calibration error is below 10pm 

(typically ±1-2pm). 

 

8.  Anomalies in the Bragg Spectrum 

 

a. Birefringence and Inhomogeneous Strain 

 

In this chapter, some basic effects are described which might lead to failure in Bragg peak 

recognition or even falsify the Bragg signal.  

 

 

 

 

 

 

 

 

 

Fig. 16. Bragg spectrum (a) without and (b) in 

the presence of birefringence. The insets 

illustrate the change in the core refractive 

index (a) without and (b) with a transverse 

force applied to the fiber. 

A major source for deficient signal detection is birefringence [14]:  

Radial forces F per fiber length L ( )LF  lead to anisotropic refractive indices x

effn  and y

effn  in 

the fiber core (Fig. 16). This effects a splitting of the Bragg peak into two separate peaks: 

 

(19) ( ) ( )yxiLFn
i

eff

i

B ,2 =Λ=λ  

 

The difference between both refractive indices defines the birefringence β  

 

(20) y

eff

x

eff nn −=:β  

 

which directly measures the magnitude of Bragg peak splitting: 
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(21) ( ) ( )LFLFB βλ Λ=∆ 2  

 

For the Bragg fiber used in all above sensors, we find experimentally  

 

(22) ( ) ( )mmLNF71015.3 −∗≈β . 

 

Fig. 16 shows an unperturbed Bragg peak as well as a double peak due to birefringence. 

Obviously, birefringence causes an ambiguity in the peak identification process in which the 

wavelength at peak maximum is depicted. In practice, birefringence may be caused e.g. either 

by change of the glue properties or by direct application of radial forces.  

Strongly inhomogeneous strain profiles may cause a broadening or splitting of the Bragg peak 

as well: in contrast to electric strain gages, strain affects the Bragg grating locally and does 

not necessarily sum up to a uniform signal peak. This means that a strongly inhomogeneous 

strain profile, such as e.g. due to microcracks directly underneath the bonded Bragg grating, 

results in a series of adjacent Bragg peaks.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 17. Bragg signal deformation in the 

presence of (a) birefringence and (b) 

inhomogeneous strain profile.  

To distinguish both cases, the Bragg signal was 

measured with linear and random light 

polarization. Whereas birefringence only 

shows peak splitting by using linearly 

polarized light for interrogation, 

inhomogeneous strain interrogation is not 

affected by light polarization. 

 

In this case, the Bragg spectrum is obtained from the Bragg signal average over the spatial 

strain profile ( )zε  within the grating length L: 

 

(23) ( ) ( ) dzzRR
L

∫∝ ,λλ  

 

Here, ( )zR ,λ  is derived from eqn. (3) by introducing a spatial strain dependence of the 

grating period Λ , 

 

(24)  ( ) ( ) 00 Λ+Λ=Λ≡Λ zz ε .  
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Here, 0Λ  is the period of the unstrained grating. In this sense, the variable ( )λx  in eqn. (3) 

becomes ( ) ( )( ) ( )( )znznNzx effeff ΛΛ−= 22, λπλ , yielding ( ) ( )( ) ( )zxzxzR ,,sin, λλλ ≡ .  

 

To distinguish birefringence from inhomogeneous strain experimentally, an optical scrambler 

(General Photonics PCD-104) was used to generate random light polarization from the linear 

light polarization of the interrogator: Since the Bragg wavelength is only sensitive to different 

anisotropic refractive indices x

effn  and y

effn  in the presence of linearly polarized light, 

randomization of polarization states leads to the detection of a uniform Bragg peak (Fig. 17a). 

In contrast, Bragg signals from inhomogeneous strain profiles do not depend on the 

polarization state of light (Fig. 17b).  

 

Strongly inhomogeneous strain profiles underneath the Bragg grating resp. lateral fiber 

forces can significantly distort the Bragg peak shape and lead to peak detection problems. 

b. Background Modulations from Fiber Ends 

 

 

 

 

 

 

 

Fig. 18. Backgrounds modulations of the 

Bragg spectrum. Three types (I-III) are 

distinguished depending on the morphology of 

the fiber end. Insets: SEM micrographs of fiber 

ends attributed to aberrant background 

modulation of types I and II, as detailed in the 

text. 

Further, the shape of the Bragg fiber end influences the signal-to-background ratio because it 

determines the degree of unselective back-reflection. Fig. 18. shows background levels 

relative to the Bragg peak for different fiber end configurations.  

 

Type I represents an irregular fiber cut with diffuse light reflection at the end for which the 

lowest background level is obtained. In contrast, type II represents a 0° cut end. Here, ~4% of 

laser light is reflected back into the fiber at any wavelength and superimposes the Bragg 

spectrum. In the case of type III, the formation of at least one mirror facet in a small angle to 

the fiber core likely leads to an interferometric arrangement of the ends of both measurement 

fiber and coupler fiber (see Fig. 18, dotted frames). The period of the resulting background 

oscillation appears therefore characteristic for the fiber cutting angles. 
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Since background modulations stem from regular fiber end cuts, they can be avoided in 

practise by irregular cuts and subsequent sealing of the fiber ends. 

9.  Applications 

 

 
Fig. 19. Possible applications for optical strain gage technology as discussed in the text. 

 

A major advantage of optical against electrical strain gages is the immunity with respect to 

electrical influences, such as illustrated in Figs. 19a-c, i.e. during discharges (Fig. 19a; optical 

strain gage K-OL installed on an electrode) or in high voltage wiring (Fig. 19b) as well as in 

electrical grounding as present in rails (Fig. 19c, see also e.g. [15]). Fig. 19d shows a typical 

environment in chemical industry where explosion detection might be required. Here, optical 

strain gages are preferable because they need no electric current at the inspection areas. 

Humidity is an important aspect in off-shore applications such as in Fig. 19e. Water 

penetration usually leads to failure (short circuits) in electrical sensors but not in optical gages. 

Also, optical gages are less accessible to corrosion by sea water. High strain levels often occur 

in wind energy rotor blades (Fig. 19f) and in aerospace applications (Fig. 19g) where fiber 

reinforced plastics are in use. In this case the high tensile strength of the Bragg fiber is 

beneficial. For survey of longer distances such as on bridges (Fig. 19h), the optical 

measurement chain avoids strong cabling efforts and cable costs because a single fiber can 

contain multiple sensors.  
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Appendix: Physical Background Information 

 

A1. Light Guidance in Optical Fibers 

 

 

 

 
Fig. A1. Illustration of light guidance in an 

optical fiber. The angle θ needs to be larger 

than the total reflection angle θt.  

The basic principle of optical fibers as light waveguides relies on total reflection in the fiber 

core with an elevated refractive index n1 compared to the ambient medium with index n2. In 

the simplest case, the fiber core is surrounded by air (n2~1), but usually fibers cores are 

embedded into a cladding and further into a protective coating for mechanical and chemical 

protection. Normally, core and cladding have similar refractive indices n1~n2~1.5 for media 

based on silica glasses. Therefore, the total reflection angle  

 

(A1) ( )12arcsin nnt =θ  

 

which is the lower angle limit for light wave guidance within the fiber core takes values near 

90°. This in turn limits light guidance during strong fiber bending. 

 

A2. Bragg Reflection 

 

 

 

 

 
Fig. A2. Bragg reflection of light waves from a 

periodic crystal lattice with lattice spacing d. 

The optical path difference for constructive 

interference, ( )θsin2 d , needs to fulfil the 

Bragg equation (framed; λ=wavelength, 

N=integer).  

The principle of Fiber Bragg Sensors originates from Bragg reflection found by William 

Lawrence Bragg and his father William Henry Bragg in 1912 (both awarded with the Nobel 

Prize in Physics 1915): Short X-ray wavelengths in the order of atomic distances in a crystal 

lattice are scattered in the Bragg angle θ when the constructive interference condition for 

waves is fulfilled (Bragg equation): 

 

(A2) ( )θλ sin2 dN =  

 

Here, N is an integer. In other words, a multiple of the wavelengths λN  needs to equal the 

optical path difference ( )θsin2 d  between both waves in order to add to a reflection signal. 

This principle is also inherent to periodic Bragg gratings inscribed into an optical fiber, 
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however for much longer wavelengths (typically in the near-infrared regime) and only for one 

linear dimension. In this case, the light wave propagates normal to the Fiber Bragg Grating 

(θ=90°, sin(θ)=1), and the “optically effective” grating distance d is influenced by both the 

effective refractive index neff of the fiber core and of the inscribed grating period Λ, Λ≡ effnd , 

as detailed in chapter 2. 

A3. Optical Interference in Fiber Bragg Gratings 

 

 

 

 

 

 

 

 
Fig. A3. Illustration of (a) constructive and (b) 

destructive interference of two waves, and (c) 

destructive interference of multiple waves with 

arbitrary phases. 

A necessary condition to obtain the reflection signal from a Fiber Bragg Grating is 

constructive interference of multiple lightwaves from the grating spots. 

The principle of optical interference is illustrated in Fig. A3. Two lightwaves with identical 

phase and wavelength interfere constructively to a lightwave with twice the amplitude (a). 

Vice versa, two lightwaves with opposites phase interfere destructively; the total signal 

vanishes (b). In an assemblage of wave trains with arbitrarily distributed phases (c), there are 

always pairs of lightwaves which interfere destructively, thus leading to a destructive signal in 

total. 

 

In case of the Fiber Bragg Grating, each grating spot acts as a semi-transparent mirror 

reflecting a partial wave back into the fiber. Constructive interference is fulfilled when half of 

the Bragg wavelength λB fits with the grating period Λ (Fig. A4). Here, λB´ is the wavelength 

in medium which differs from the reference wavelength in vacuum λB by λB´=λB/neff. In this 

case, multiple reflected waves add to a comprehensive interference signal leading to the 

Bragg peak. For wavelengths substantially deviating from the Bragg wavelength, the reflected 

waves interfere destructively and the reflection signal vanishes, alike Fig. A3(c). 

 
Fig. A4. Constructive interference of multiple lightwaves at the Bragg wavelength in a Fiber Bragg 

Grating with the grating period Λ. Dotted line: incoming wave, full line: reflects waves. 


