


ClipX

TECH NOTE - Calculating resulting force

Version: 2018-03-28 Author: Michael Guckes, Silvan Ettle Status: HBM: Public

Brief description

This application is about localizing a force and calculating its result value on a plane surface. Therefor three force sensors are mounted on the bottom of a circular plate. The raw signals from the sensors are further processed by three ClipX measurement amplifiers. Those communicate with each other through the ClipX bus technology. The devices are set up with the ClipX Web-GUI. The basic setup is shown in the figure below.

Sensor scaling

First go to the amplifier section on the left side and select the correct sensor type and physical unit.

Full bridge 5mV/V (DC) 🔍	
Physical Unit	
N	

Then give the signal a reasonable name.

Sensor1 Field value	-0.024 mV/V	F1 Gross - Zero Value:	0 N · Zero Target Value: 0 N -24.438 N
Name	Decimal Places	Name	Decimal Places
Sensor1	.000 👻	F1	.000 👻
	7 / 22		2/22

Next step is to scale the sensor according to its sensitivity. Look it up on the sensor itself or in its datasheet.

Scaling Type		
Two-point Scaling	Ŧ	
1. Point Electrical		
0	mV/V	MEASURE
1. Point Physical		
0	Ν	
	14	
2. Point Electrical		
		MEACUDE
1	mV/V	MEASURE
2. Point Physical		
1000	N	

Last step is to set the current value to zero. Repeat for all three amplifiers.

Zero Value			
-24.4681	N	CLEAR	ZERO

Transmit measurement values via ClipX bus

Go to the ClipX bus section. Give the devices an address (1 to 3). Enter 3 as highest address for all devices. Select the signal that should be sent on the bus as source.

Settings	
)wn Address	Highest Address
	3
Source	
F1 (Gross)	

After giving all signals on the bus a name the result looks like this. Repeat for all three amplifiers.

F1 ClipX bus #1		- 0.024 N	F2 ClipX bus #2		0.048 N
Name			Name		
FI			F2		
		2/22			2/22
Decimal Places	Physical Unit		Decimal Places	Physical Unit	
.000 -	N		.000 -	N	
					1710
			-		
F3 ClipX bus #3		-0.007 N	ClipX bus value 4 ClipX bus #4 DISABLED		N/#
		-0.007 N	ClipX bus #4		N/A
ClipX bus #3		-0.007 N	ClipX bus #4 DISABLED		N//
ClipX bus #3 Name		-0.007 N 2/22	ClipX bus #4 DISABLED Name		-
ClipX bus #3 Name	Physical Unit		ClipX bus #4 DISABLED Name	Physical Unit	N// 17/22
ClipX bus #3 Name F3	Physical Unit N		ClipX bus #4 DISABLED Name ClipX bus value 4	Physical Unit	-

Calculate the result signal and its coordinates

The equations below are needed to calculate the force and its coordinates.

The resulting force value F:	$F = F_1 + F_2 + F_3$	eq.1
The x-coordinate of F:	$\chi = \frac{F_1 \cdot x_1 + F_2 \cdot x_2 + F_3 \cdot x_3}{F}$	eq.2
The y-coordinate of F:	$y = \frac{F_1 \cdot y_1 + F_2 \cdot y_2 + F_3 \cdot y_3}{F}$	eq.3
The x-coordinate of each sensor:	$x_n = r \cdot \cos\left(\frac{360^\circ}{n_{max}} \cdot n\right)$	eq.4
The y-coordinate of each sensor:	$y_n = r \cdot \sin\left(\frac{360^\circ}{n_{max}} \cdot n\right)$	eq.5

The goal is to locate and define the result force signal. First step is to calculate the summed force by using an Adder / Multiplier in the ClipX calculated channels. Simply enter equation eq.1.

		$y = x_1 x_2 x_3 x_4 + x_5$; X ₆ +)	(₇ X ₈ + X ₉ X ₁₀	
X1	F1 (ClipX bus #1)	•	x ₂	1	~
X3	1	•	x ₄	1	~
X5	F2 (ClipX bus #2)	-	x ₆	1	~
x ₇	F3 (ClipX bus #3)	•	x8	1	~
Хg	0	•	x ₁₀	0	V
y	Calculated Channel 1				

Then finally we want to know where exactly the result force F is coming from. To get the x-coordinate of F equation eq.2 can be entered in a Divider. To get the multiplier constants equation eq.4 has to be calculated before with a pocket calculator. Alternatively, the distances can be measured. **The constants have to be entered on the bottom of the calculated channel page before they can be used.**

#1	Divider				2 -0.283
	y = (x ₁ x ₂ + x ₃ x ₄ + x ₅	₅ x ₆)	/ (x ₇ + x ₈ + x ₉)	
x 1	9.8 (User defined 1)	-	x ₂	F1 (ClipX bus #1)	-
x ₃	-4.9 (User defined 2)	-	x ₄	F2 (ClipX bus #2)	-
x ₅	-4.9 (User defined 2)	-	x ₆	F3 (ClipX bus #3)	
x7	F1 (ClipX bus #1)	-	x ₈	F2 (ClipX bus #2)	-
Xg	F3 (ClipX bus #3)				-
у	Calculated Channel 2				~
\downarrow	DOWN				DELETE

Analog to the x-coordinate the y-coordinate is calculated by using equation eq.3 and eq.5.

	у =	$(x_1 x_2 + x_3 x_4 + x_5)$	₅ x ₆)	$/(x_7 + x_8 + x_9)$	
xı	0	•	x ₂	F1 (ClipX bus #1)	
x ₃	-8.487 (User defined 3)	-	x ₄	F2 (ClipX bus #2)	
X5	8.487 (User defined 4)	-	x ₆	F3 (ClipX bus #3)	
x ₇	F1 (ClipX bus #1)	-	x ₈	F2 (ClipX bus #2)	
Xg	F3 (ClipX bus #3)				7
y	Calculated Channel 3				

The result looks like this.

F result Calculated Channel Flag 1			x coordinate Calculated Channel Fla	ag 2	
		5.431			0.010
Name F result			Name x coordinate		
Decimal Places .000 ~	Physical Unit	8 / 22	Decimal Places	Physical Unit	12/22
		0/10			0/10
y coordinate			Calculated va	alue 4	
Calculated Channel Flag 3		-0.191	Calculated Channel Fla		0.000
Calculated Channel Flag 3 Name y coordinate		-0.191	Calculated Channel Fla		0.000

Note: When not applying a force, the values are full of noise. See equation eq.2 and eq.3.

Disclaimer

These examples are for illustrative purposes only. They cannot be used as the basis for any warranty or liability claims.