TECH NOTE :: Calculating the force introduction point with PMX

Version: 2018-04-13
Author: Michael Guckes
Status: HBM: Public

Short description

Determining the force introduction point on a plate with three force transducers.

Introduction

The coordinates of a force F to be measured can easily be determined with three force transducers F1, F2 and F3.

A plate is supported by three transducers and force F is applied against them orthogonally. The point at which the force is introduced is derived from the equilibrium of moments relative to origin

$$
\begin{aligned}
& x=\frac{F 1 * x 1+F 2 * x 2+F 3 * x 3}{F} \\
& y=\frac{F 1 * y 1+F 2 * y 2+F 3 * y 3}{F}
\end{aligned}
$$

Procedure

Force F is the sum of the three individual forces:

The counters for the x and y calculation are determined in an interim step. Coordinates $\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \ldots$. are in the factors of the summands.
For x :

For y :

Finally x and y are calculated with two divisions. The calculation for x is shown here (y is similar):

Implausible values in unloaded state

Noise predominates when F is close to zero. Implausible values are returned for x and y :

Remedy: Output for x and y is not regular until F is greater than 1 N , for example. Otherwise zero will be returned each time.

A trigger block sets Flag_01 if F is greater than the minimum value:

The two limit values for the trigger. Only the lower switching threshold is required for 1 N . A value is selected for the upper threshold that is far above the measuring range:

		Constant signal	F-thresh		$(\leftrightarrow \rightarrow 72\}$	-		Θ
		Constant signal	F_dummy		$(\leftrightarrow \rightarrow 73$)	-		-
1	F1, F2, F3, 0	Adder	sum		$(\leftrightarrow 67)$	1	-0.0N	-
2	F1, F2, F3, 0	Adder	nom x		($\leftrightarrow 68$ \}	-		-
3	F1, F2, F3, 0	Adder	nom_y		($\leftrightarrow 69$ \}	-		-
4	($\leftrightarrow 68$), F	Divider	x_raw		$\{\leftrightarrow 70\}$	-		-
5	$\{\leftrightarrow 69), \mathrm{F}$	Divider	y_raw		$\{\leftrightarrow 71\}$	-		-
6	$\mathrm{F},\{\leftrightarrow 72\},\{\leftrightarrow 73\}$	Trigger	trigger		\{Flag 01\}	-		-
$\triangle \nabla$			(1-8 9-16					\pm
Parameters of Constant signal								
INPUT(S)			Name	F_thresh			OUTPUT	
				1		Internal ID	$\{\leftrightarrow 72\}$	
			Value			Result Channel	---	\square

Two multiplexer blocks switch between zero and the calculated values. Shown here for x:

Appendix

Tips

1. In case of division by zero, a divisor block returns Not-a-Number (NaN).
2. Polar coordinates can also be returned if necessary:

1 F	5.0 n
2 x	57 mm
3 y	61 mm
4 r	83.1 mm
5 angle	$47 \cdot$

The settings for radius....:

...and angle:

Representation of a moving force with catman in polar and Cartesian coordinates:

Disclaimer

These examples are simply for the purpose of illustration. They cannot be used as the basis for any warranty or liability claims.

