Messung der Resolverlage mit Genesis HighSpeed Datenrekordern

Autoren

E. Armando, R. Bojoi Power Electronics Innovation Center Dipartimento Energia, Politecnico di Torino

HBM Test and Measurement

Messung der Resolverlage mit Genesis HighSpeed Datenrekordern

Zusammenfassung

Der Resolver ist eine elektrische Maschine, die sehr häufig in den Antrieben von Synchronmotoren zum Einsatz kommt, um die für den Motorsteuerungsalgorithmus benötigte Läuferlage zu messen. Aufgrund seiner Robustheit wird er gerne in rauesten Umgebungen verwendet, in denen der Elektromotor starken mechanischen Belastungen und Schwingungen ausgesetzt ist, beispielsweise in Kraftfahrzeug- oder in Luft- und Raumfahrtanwendungen. Die gemessene Lage wird üblicherweise mithilfe eines Resolver-Digital-Wandlers ermittelt, in dem in einem einzigen Chip mehrere Verarbeitungsschritte implementiert sind, beispielsweise die Signalmodulation, ein spannungsgeregelter Oszillator und eine Tracking-Schleife. In dieser Arbeit wird ein Verfahren beschrieben, wie die von einem Resolver gemessenen Lage nur mit den Hochgeschwindigkeits-Eingangskanälen von HBM Genesis HighSpeed Datenrekordern und ohne zusätzliche weitere Hardware ermittelt werden kann.

1. Einleitung

Der Resolver ist eine kleine elektrische Maschine, die als Absolut-Lagesensor verwendet wird. Der Ständer enthält zwei verteilte Wicklungen mit senkrecht zueinander stehenden Magnetachsen, während der Läufer eine verteilte Wicklung enthält. In den meisten Fällen ist die Polpaarzahl der Ständer- und Läuferwicklungen gleich Eins (p=1). Deshalb wird in dieser Arbeit die mechanische Läuferlage als gleich der elektrischen Läuferlage angesehen.

Der Läufer wird mit einer Sinusspannung mit einer (als Speisefrequenz f_{ecc} bezeichneten) Frequenz im Bereich von [2, 10] kHz gespeist. Ein bürstenloser Resolver verwendet für die Läuferspeisung einen Drehtransformator, wie in Abb. 1 und Abb. 2 gezeigt.

Abb. 1: Schaltskizze eines bürstenlosen Resolvers mit Drehtransformator für die Läuferspeisung

Abb. 2: Ansicht von Läufer (links) und Ständer (rechts) eines bürstenlosen Resolvers

Die Primärseite des Drehtransformators wird mit einer Speisespannung gespeist, die mit einer Amplitude V_{ecc} und Frequenz f_{ecc} gegeben ist als

$$v_{ecc}(t) = V_{ecc} \cdot \sin(\omega_{ecc} \cdot t) \tag{1}$$

Darin ist $\omega_{ecc} = 2 \cdot \pi \cdot f_{ecc}$ die Winkelgeschwindigkeit der Speisespannung. Sowohl V_{ecc} (V) als auch f_{ecc} (Hz) sind durch das Datenblatt des Resolvers definiert. Um zufriedenstellende Ergebnisse zu erhalten, muss die Speisefrequenz f_{ecc} deutlich höher sein als die mechanische Frequenz f_m , d. h. $f_{ecc} > f_{mec h}$.

Die magnetische Kopplung zwischen der Läuferwicklung und den Ständerwicklungen hängt von der Läuferlage 9 ab. Infolgedessen sind die in den Ständerwicklungen induzierten Spannungen

$$v_{\alpha}(t) = K \cdot \cos \vartheta \cdot \sin(\omega_{ecc} \cdot t)$$
⁽²⁾

$$v_{\beta}(t) = K \cdot \sin \vartheta \cdot \sin(\omega_{ecc} \cdot t) \tag{3}$$

Darin hängt K vom Kopplungsfaktor zwischen Ständer und Läufer und vom Windungszahlverhältnis des Drehtransformators ab.

Aus (2) und (3) ergibt sich, dass die Spannungen am Ausgang der Ständerwicklungen Informationen über die Läuferlage enthalten. Ein Beispiel der Ständerausgangsspannungen (pu) ist in Abb. 3 für eine konstante mechanische Drehgeschwindigkeit $\omega_m = 2 \cdot \pi \cdot 50$ (rad/s) dargestellt, wenn der Resolver mit 1 kHz gespeist wird, d. h. $\omega_{exc} = 2 \cdot \pi \cdot 1000$ (rad/s).

Abb. 3: Betrieb im eingeschwungenen Zustand mit einer mechanischen Drehgeschwindigkeit $\omega_m = 2 \cdot \pi \cdot 50$ (rad/s) bei Speisung des Resolvers mit 1 kHz

Es kann festgestellt werden, dass die Spannungen (α,β) dem Kosinus und Sinus der Läuferlage entsprechen, die mit der Speisefrequenz des Resolvers moduliert werden. Deshalb ist zum Entfernen der Speisefrequenz eine Demodulation erforderlich, wie im nächsten Abschnitt ausführlicher erklärt.

2. Resolversimulation und Signalverarbeitung

Um (1)-(3) zu implementieren, wurde der Resolver in der Software Perception mit den im Anhang dargestellten Formeln simuliert. Die Speisefrequenz des Resolvers wurde auf 10 kHz eingestellt. Die Speisespannung v_{ecc} des Resolvers und die Ausgangssignale $v_{\alpha\beta}$ des Resolvers werden in Abb. 4 und Abb. 5 für eine mechanische Drehzahl von 3000 min⁻¹ dargestellt.

Abb. 4: Simulierter Betrieb im eingeschwungenen Zustand mit 3000 min⁻¹. Von oben nach unten: Sinus und Kosinus der Läuferlage, Läuferlage, Speisespannung und Ausgangsspannungen (α , β)

Abb. 5: Simulierter Betrieb im eingeschwungenen Zustand mit 3000 min⁻¹ (vergrößerter Ausschnitt). Von oben nach unten: Sinus und Kosinus der Läuferlage, Läuferlage, Speisespannung und Ausgangsspannungen (α , β)

Wie weiter oben erwähnt, kann die Läuferlage durch eine geeignete Demodulationsstrategie extrahiert werden. Hierzu werden in (4, 5) die Ausgangsspannungen (α , β) mit der Speisespannung multipliziert:

$$v_{\alpha,\text{demod}}(t) = V_{ecc} \cdot K \cdot \cos \vartheta \cdot [\sin(\omega_{ecc} \cdot t)]^2$$
(4)

$$v_{\beta,\text{demod}}(t) = V_{ecc} \cdot K \cdot \sin \vartheta \cdot [\sin(\omega_{ecc} \cdot t)]^2$$
(5)

Wie aus (4), (5) zu sehen ist, entsprechen die Vorzeichen von $v_{\alpha,demod}$ und $v_{\beta,demod}$ den Vorzeichen von $\cos \vartheta$ bzw. sin ϑ . Zur Durchführung der Demodulation werden die gleitenden Mittelwerte von $v_{\alpha,demod}$ und $v_{\beta,demod}$ über die halbe Speiseperiode $0.5T_{ecc} = 0.5/f_{ecc}$ berechnet. Dafür wird die leistungsfähige Funktion "Cycle Detect" des Genesis HighSpeed Datenrekorders verwendet:

$$\cos_{\text{demod}}(t) = cycle \, mean \left[v_{\alpha, \text{demod}}(t) \right] \Big|_{0.5 cycle_ecc} = K' \cdot \cos \vartheta \tag{6}$$

$$sin_{demod} (t) = cycle \ mean[v_{\beta, demod} (t)]|_{0.5 cycle \ ecc} = K' \cdot \sin \vartheta$$
(7)

Es ist darauf hinzuweisen, dass die Amplituden von cos_{demod} (t) and sin_{demod} (t) nicht Eins sind, sie sollten jedoch das gleiche (K') aufweisen. Die Läuferlage kann daher ohne weiteres mit der Perception Funktion *SpaceVectorInverseTransformation* bestimmt werden, die das Ergebnis direkt in elektrischen Grad liefert. Die mit Perception nach dem oben beschriebenen Verfahren simulierten Ergebnisse sind in Abb. 6 bis 9 dargestellt.

Abb. 6: Simulierter Betrieb im eingeschwungenen Zustand mit 3000 min⁻¹. Von oben nach unten: Ausgangsspannungen v_{α} , v_{β} , $v_{\alpha,demod}$, $v_{\beta,demod}$, v_{β,de

Abb. 7: Simulierter Betrieb im eingeschwungenen Zustand mit 3000 min⁻¹ (vergrößerter Ausschnitt). Von oben nach unten: Ausgangsspannungen v_{α} , v_{β} , $v_{\alpha,demod}$, $v_{\beta,demod}$, \cos_{demod} , \sin_{demod} , tatsächliche Lage und rekonstruierte Lage

Abb. 8: Simulierter Betrieb im eingeschwungenen Zustand mit 3000 min⁻¹ (vergrößerter Ausschnitt). Von oben nach unten: cos_{demod}, sin_{demod}, tatsächliche Lage und rekonstruierte Lage, Fehler zwischen tatsächlicher Lage und rekonstruierte Lage

Der Fehler zwischen der tatsächlichen Lage und der rekonstruierten Lage ist in Abb. 8 dargestellt. Dieser Fehler weist eine Sägezahn-Kurvenform mit einem sehr kleinen Amplitudenwert (unter einem elektrischen Grad) auf.

Die Simulationsergebnisse für eine Drehzahl von 18000 min⁻¹ sind in Abb. 9 bis 11 dargestellt. Wie in Abb. 11 zu sehen ist, nimmt der Fehler der Lagerekonstruktion mit steigender Drehzahl zu, da die Lage mit einer festen Messrate rekonstruiert wird, die von der Speisefrequenz abhängt (Abtastung auf Zeitbasis).

Abb. 9: Simulierter Betrieb im eingeschwungenen Zustand mit 18000 min¹. Von oben nach unten: Sinus und Kosinus der Läuferlage, Läuferlage, Speisespannung und Ausgangsspannungen (α , β)

Abb. 10: Simulierter Betrieb im eingeschwungenen Zustand mit 18000 min⁻¹. Von oben nach unten: Ausgangsspannungen v_{α} , v_{β} , $v_{\alpha,demod}$, $v_{\beta,demod}$, cos_{demod} , sin_{demod} , tatsächliche Lage und rekonstruierte Lage

Abb. 11: Simulierter Betrieb im eingeschwungenen Zustand mit 18000 min⁻¹. Von oben nach unten: cos_{demod}, sin_{demod}, tatsächliche Lage und rekonstruierte Lage, Fehler zwischen tatsächlicher Lage und rekonstruierter Lage

Die Auswirkungen der Erfassungs-Offsets auf die Resolver-Ausgangsspannungen (α,β) wurden in zwei verschiedenen Szenarios simuliert:

(1) Offset von +2 % im α-Kanal und Offset von -2 % im β-Kanal; die Ergebnisse sind in Abb. 12 dargestellt.

(2) Offset von +7% im α -Kanal und Offset von +7% im β -Kanal; die Ergebnisse sind in Abb. 13 dargestellt.

Abb. 12: Simulierter Betrieb im eingeschwungenen Zustand mit 18000 min⁻¹ mit Offset von Szenario 1. Von oben nach unten: cos_{demod}, sin_{demod}, tatsächliche Lage und rekonstruierte Lage, Fehler zwischen tatsächlicher Lage und rekonstruierter Lage

Abb. 13: Simulierter Betrieb im eingeschwungenen Zustand mit 18000 min⁻¹ mit Offset von Szenario 2. Von oben nach unten: cos_{demod}, sin_{demod}, tatsächliche Lage und rekonstruierte Lage, Fehler zwischen tatsächlicher Lage und rekonstruierter Lage

Die Auswirkungen der Offsets sind insofern von Bedeutung, als sie die korrekte Rekonstruktion der Größen (d,q), die vom Datenrekorder berechnet werden, negativ beeinflussen können. Eine mögliche Lösung besteht darin, ein

Tiefpassfilter (TPF) auf die demodulierte Sinus- und Kosinusfunktion (6) und (7) anzuwenden. In dieser Arbeit wurde ein Bessel-TPF zweiter Ordnung mit einer Grenzfrequenz von 1 kHz verwendet:

$$\cos_{\text{demod2}}(t) = LPF[\cos_{\text{demod}}(t)]|_{Bessel,1kHz}$$
(8)

$$sin_{demod2} (t) = LPF[sin_{demod} (t)]|_{Bessel,1kHz}$$
(9)

Offensichtlich führt das angewandte TPF eine Phasenlaufzeit ein, wie in Abb. 14 zu sehen ist.

Abb. 14: Simulierter Betrieb im eingeschwungenen Zustand mit 18000 min⁻¹ mit Offset von Szenario 2. Von oben nach unten: cos_{demod}, sin_{demod}, gefilterter cos_{demod2}, sin_{demod2}, tatsächliche Läuferlage (rot) und aus dem gefilterten Sinus und Kosinus ermittelte neue Lage (blau)

Die Phasenlaufzeit kann mit einer Näherungsformel ausgeglichen werden:

$$\vartheta_{delay} = \left(\frac{1}{\omega_{LPF}} + 0.5 \frac{1}{f_{ecc}} + \tau\right) \cdot \omega_{mec}$$
(10)

Darin ist ω_{TPF} (rad/s) die Grenzfrequenz des TPF, ω_{mec} (rad/s) ist die mechanische Drehgeschwindigkeit, die als Mittelwert über einen durch den rekonstruierten Winkel definierten Zyklus berechnet wird, und τ ist eine zusätzliche Korrekturzeit von 6 μ s.

Wie in Abb. 15 gezeigt, ist die von (10) vorgeschlagene Korrektur wirksam; der Fehler zwischen der tatsächlichen Lage und der rekonstruierten Lage weist Schwingungen mit einer sehr kleinen Amplitude (0,2 Grad) auf.

Abb. 15: Simulierter Betrieb im eingeschwungenen Zustand mit 18000 min⁻¹ mit Offset von Szenario 2. Von oben nach unten: tatsächliche Läuferlage (rot), rekonstruierte Läuferlage ohne Phasenkorrektur (blau), neue Lage (grün) mit Phasenkorrektur, gemessene Drehgeschwindigkeit und Drehzahl (rad/s und rpm) und Winkelverzögerung (grün), Fehler zwischen tatsächlicher Lage und mit Phasenkorrektur ermittelter neuer Lage

3. Experimentelle Ergebnisse

Das oben beschriebene Verfahren wurde für einen Resolver von LTN mit dem Datenrekorder GEN7t geprüft, wie in Abb. 16 gezeigt.

Abb. 16: Resolver-Prüfanordnung mit dem Datenrekorder GEN7t

Die Speisespannung v_{ecc} und die Resolverausgänge $v_{\alpha\beta}$ werden vom Datenrekorder mit den drei Spannungskanälen einer schnellen Eingangskarte GN610B erfasst (Messrate 2 MS/s mit 18 Bit pro Kanal, Messgenauigkeit besser als 0,1 %). Die von der Perception Workbench verwendeten Formeln sind im Anhang beigefügt. Die Resolversignale wurden an eine Karte mit einem Resolver-Geber-Wandler angelegt, der drei Gebersignale (A, B und Z) erzeugt, die vom Datenrekorder über eine digitale Schnittstelle erfasst wurden. Anhand der Gebersignale wurde dann eine Lage ermittelt, die als Vergleichswert für die Bewertung des Winkelrekonstruktionsverfahrens verwendet wurde. Anschließend wurde das Experiment bei niedrigen Drehzahlen durchgeführt, die Ergebnisse sind in Abb. 17 bis 19 dargestellt

Abb. 17: Experimentelles Ergebnis. Von oben nach unten: Speisespannung (rot), v_{α} (rot), v_{β} (blau), aus Gebersignalen gemessene Lage, Gebersignale A, B und Z

Abb. 18: Experimentelles Ergebnis. Von oben nach unten: v_{α} (rot), $v_{\alpha,demod}$ (blau), v_{β} (rot), $v_{\beta,demod}$ (blau), demodulierter Sinus und Kosinus cos_{demod}, sin_{demod}, Lage gemäß Geber (rot) und rekonstruierte Lage (blau)

Abb. 19: Experimentelles Ergebnis von oben nach unten: Kosinus der Lage gemäß Geber (rot), demodulierter Kosinus cos_{demod} (blau), Sinus der Lage gemäß Geber (rot), demodulierter Sinus sin_{demod} (blau), Lage gemäß Geber (rot) und rekonstruierte Lage (blau), Fehler zwischen Lage gemäß Geber und rekonstruierter Lage

Ein vergrößerter Ausschnitt von Abb. 19 ist in Abb. 20 dargestellt. Darin ist der Fehler zwischen der Lage gemäß Geber und der rekonstruierten Lage gut zu erkennen. Dieser Fehler hat einen Mittelwert ungleich null, der wahrscheinlich durch die von der Karte eingeführte Verzögerung entsteht (siehe Abb. 16). Diese Karte verarbeitet die Gebersignale von den Resolverausgängen.

Abb. 20: Experimentelle Ergebnisse. Vergrößerter Ausschnitt aus Abb. 19 von oben nach unten: Kosinus der Lage gemäß Geber (rot), demodulierter Kosinus cos_{demod} (blau), Sinus der Lage gemäß Geber (rot), demodulierter Sinus sin_{demod} (blau), Lage gemäß Geber (rot) und rekonstruierte Lage (blau), Fehler zwischen Lage gemäß Geber und rekonstruierter Lage

Zum Ausgleich von Offsets und hochfrequenten Schwingungen können Tiefpassfilter auf den demodulierten Sinus und Kosinus cos_{demod}, sin_{demod} angewendet werden. Abb. 21 stellt die mit Filter und Phasenkorrektur erhaltenen experimentellen Ergebnisse dar.

Abb. 21: Experimentelles Ergebnis. Von oben nach unten: Lage gemäß Geber (rot), rekonstruierte Läuferlage ohne Phasenkorrektur (blau), neue Lage mit Phasenkorrektur (grün), gemessene Drehgeschwindigkeit und Drehzahl (rad/s und rpm) und Winkelverzögerung (grün), Fehler zwischen Lage gemäß Geber und mit Phasenkorrektur ermittelter neuer Lage

Ein vergrößerter Ausschnitt des Lagefehlers ist in Abb. 22 dargestellt. Dieses Ergebnis ist äußerst interessant, da die Filterung die Sprünge, die durch die Erkennung des Nulldurchgangs (Funktion "Cycle Detect") in der Speisespannung v_{ecc} erzeugt werden, in dem als Ergebnis erhaltenen Fehler vollständig eliminiert. Die Sägezahn-Kurvenform des nach der Filterung erhaltenen Fehlers wird ausschließlich durch die Effekte der Geberquantisierung erzeugt.

Abb. 22: Experimentelles Ergebnis. Von oben nach unten: Fehler zwischen Lage gemäß Geber und rekonstruierter Lage, Fehler zwischen Lage gemäß Geber und neuer Lage ohne Phasenkorrektur, Fehler zwischen Lage gemäß Geber und neuer Lage mit Phasenkorrektur, Erkennung des Nulldurchgangs des Speisesignals mit der Funktion "Cycle Detect" und die Geberkanäle A, B

4. Fazit

In dieser Arbeit wurde ein Verfahren zur Messung der von einem Resolver gelieferten Läuferlage mittels eines geeigneten Demodulationsverfahrens beschrieben. Die Ausgangssignale des Resolvers werden mit einer Hochgeschwindigkeits-Eingangskarte erfasst. Offset-Effekte lassen sich mit Tiefpassfiltern eliminieren, die auf die demodulierten Sinus- und Kosinussignale angewendet werden, und die Phasenlaufzeit kann mit einer geeigneten, von der Betriebsdrehzahl abhängigen Phasenkorrektur ausgeglichen werden.

Danksagung

Die Autoren danken HBM Italia Srl und HBM Deutschland für ihre Unterstützung bei der Realisierung des Datenerfassungssystems.

Anhang

Die nachfolgenden Formeln sind in Formeln für Resolversimulation und Signalverarbeitung und Formeln für die Verarbeitung der erfassten Resolversignale unterteilt.

1		Resolversimulation	
2		#region	
3		Simulationsparameter	
4		Simulierte Zeit, Startzeit, Stoppzeit	
5	param_time_start	0	S
6	param_time_end	0,1	S
7		Messrate und Anzahl der Messwerte	
8	param_f_sample	2000000	S/s
q	naram Nsample	(Formula.param_time_end-Formula.param_time_start)*	
5	param_nsample	Formula.param_f_sample	
10		*****	
11		Simulierter Resolverparameter	
12		Speisefrequenz für den Resolver	
13	param_f_ecc	10000	Hz
14		Kopplungsfaktor der Ausgangsspule	
15	param_k_alpha	1	
16	param_k_beta	1	
17		Abtastung des DC-Offsets am Ausgangssignal des Resolvers	
18	param_offset_alpha	0	
19	param_offset_beta	0	
20		Mechanische Drehzahl und mechanische Frequenz	
21	param_speed	3000	min ⁻¹
22	param_Freq_mec	Formula.param_speed/60	Hz

(A) Formeln für die Resolversimulation

24 param_Filter_frequency 1000	
	HZ
25 param_Filter_order 2	
26 param_Filter_phaseless 0	
27 Konstanten	
28 const_Deg2Rad System.Constants.Pi/180	
29 const_Rad2Deg 180/System.Constants.Pi	
30 const_RPM2Hz 1/60	
31 const_Hz2Rad_s 2*System.Constants.Pi	
32 const_RPM2rad System.Constants.Pi/30	
33 Anzahl der Zyklen für die Demodulation	
34 param_Cycle_Exct 0,5	
35 Anzahl der Zyklen für Berechnung von Drehze Drehgeschwindigkeit	hl bzw.
36 param_Cycle_speed 1	
37 #endregion	
38 ************************************	******
39 Erzeugung von mechanischen Eingangsgröße Resolversimulation	n und
40 #region	
41 Sin_Mech @SineWave(Formula.param_f_sample; Formula.param_Freq_mec; 0)	ula.param_Nsample;
42 Cos_Mech @SineWave(Formula.param_f_sample; Formula.param_Freq_mec; 90)	ula.param_Nsample;
43 Theta_mec @SpaceVectorInverseTransformation(Formula Formula.Sin_Mech; 0; 4; 0)	a.Cos_Mech;
44 Normalisierter Winkel	
45 Theta_mec_N @Modulo((Formula.Theta_mec+2*System.Co .Constants.Pi)	nstants.Pi);2*System rad
46 Theta_mec_N_deg Formula.Theta_mec_N*Formula.const_Rad20	Deg Grad
47 ************************************	******
48 Resolversimulation	
49 Speisespannung des Resolvers	
50 v_ecc @SineWave(Formula.param_f_sample; Formula.param_f_ecc; 0)	ula.param_Nsample;
51 Ausgang des simulierten Resolvers	
52 v. alpha Formula.Cos_Mech*Formula.v_ecc*Formula.p	param_k_alpha+
Formula.param_offset_alpha	
53 v_beta Formula.Sin_Mech*Formula.v_ecc*Formula.p	aram_k_beta+

		Formula.param_offset_beta	
54		#endregion	
55		***************************************	
56		Demodulationsformeln	
57		#region	
58		Resolverausgang, demodulierte Spannung	
59	v_alpha_demod	Formula.v_alpha*Formula.v_ecc	
60	v_beta_demod	Formula.v_beta*Formula.v_ecc	
61		Zyklusdefinition von der Speisung	
62	Cycle_ecc	@CycleDetect(Formula.v_ecc; 0; 0.1)	
63		Ausgabe des mechanischen Sinus und Kosinus	
64	Cos_demod	<pre>@CycleMean(Formula.v_alpha_demod; Formula.param_Cycle_number; Formula.Cycle_ecc)</pre>	
65	Sin_demod	<pre>@CycleMean(Formula.v_beta_demod; Formula.param_Cycle_number; Formula.Cycle_ecc)</pre>	
66		Demodulierter mechanischer Winkel	
67	Theta_demod	<pre>@SpaceVectorInverseTransformation(Formula.Cos_demod; Formula.Sin_demod; 0; 4; 0)</pre>	
68	Theta_demod_N	<pre>@Modulo((Formula.Theta_demod+2*System.Constants.Pi);2*Syst em.Constants.Pi)</pre>	
69	Theta_demod_N_deg	Formula.Theta_demod_N*Formula.const_Rad2Deg	
70		Fehler	
71	Delta_Theta_deg	Formula.Theta_demod_N_deg-Formula.Theta_mec_N_deg	Grad
72		#endregion	
73		*	
74		Vom Filter bewirkte Offset-Dämpfung	
75		#region	
76		Filter	
77	Cos_demod_2	<pre>@FilterBesselLP(Formula.Cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless)</pre>	
78	Sin_demod_2	<pre>@FilterBesselLP(Formula.Sin_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless)</pre>	
79		Demodulierter Winkel	
80	Theta_demod_2	<pre>@SpaceVectorInverseTransformation(Formula.Cos_demod_2; Formula.Sin_demod_2; 0; 4; 0)</pre>	
81	Theta_demod_2_N	<pre>@Modulo((Formula.Theta_demod_2+2*System.Constants.Pi); 2*System.Constants.Pi)</pre>	rad
	1		1

82	Theta_demod_2_N_deg	Formula.Theta_demod_2_N*Formula.const_Rad2Deg	Grad
83		Fehler	
84	Delta_Theta_deg_2	Formula.Theta_demod_2_N_deg-Formula.Theta_mec_N_deg	Grad
85		#endregion	
86		**************************************	
87		Kompensation der Filterverzögerung	
88		#region	
89		Drehzahl- bzw. Drehwinkelberechnung	
90	Speed_2	<pre>@CycleRPM(Formula.Theta_demod_2_N_deg; Formula.param_Cycle_speed; Formula.Cycle_ecc)</pre>	min-1
91	Speed_2_rad	Formula.Speed_2*Formula.const_RPM2rad	rad/s
92		Verzögerungsbewertung	
93	Ecc_frequncy	<pre>@CycleFrequency(Formula.v_ecc; 1; Formula.Cycle_ecc)</pre>	Hz
94	delay_eq	1/(Formula.param_Filter_frequency*Formula.const_Hz2Rad_s)+ Formula.param_Cycle_number/Formula.Ecc_frequncy+0.000006	S
95	angle_delay	Formula.delay_eq*Formula.Speed_2_rad	rad
96		Winkelkorrektur	
97	Theta_demod_3_N	<pre>@Modulo((Formula.Theta_demod_2_N+Formula.angle_delay); 2*System.Constants.Pi)</pre>	rad
98	Theta_demod_3_N_deg	Formula.Theta_demod_3_N*Formula.const_Rad2Deg	Grad
99		Fehler	
100	Delta_Theta_deg_3	Formula.Theta_demod_3_N_deg-Formula.Theta_mec_N_deg	Grad
101		#endregion	
102			

(B) Formeln für die Resolververarbeitung der experimentellen Ergebnisse

Die Formeln sind wie folgt in 5 Regionen unterteilt:

- Die Parameter und Konstanten werden von Zeile 2 bis Zeile 20 definiert.
- Die Zuordnung der erfassten Variablen erfolgt von Zeile 23 bis Zeile 32.
- Die Formeln für Demodulation und Winkelrekonstruktion sind von Zeile 35 bis Zeile 53 implementiert.
- Die Filter sind von Zeile 57 bis Zeile 66 implementiert.
- Die Phasenkorrektur ist von Zeile 69 bis Zeile 82 implementiert.

1	Erstellungsparameter und Konstante	
2	#region	
3	Zeitbegrenzung	

4	Time_Start	0	S
5	Time_Stop	0,4	S
6		Filterparameter	
7	param_Filter_frequency	1000	Hz
8	param_Filter_order	2	
9	param_Filter_phaseless	0	
10		Konstanten	
11	const_Deg2Rad	System.Constants.Pi/180	
12	const_Rad2Deg	180/System.Constants.Pi	
13	const_RPM2Hz	1/60	
14	const_Hz2Rad_s	2*System.Constants.Pi	
15	const_RPM2rad	System.Constants.Pi/30	
16		Demodulationsperiode	
17	param_Cycle_number	0,5	
18		Anzahl der Zyklen für Berechnung von Drehzahl bzw. Drehgeschwindigkeit	
19	param_Cycle_speed	1	
20		#endregion	
21		***************************************	
22		Eingangsbelegung	
23		#region	
24	v_alpha	<pre>@Cut(Active.Group1.Recorder_A.Cos; Formula.Time_Start; Formula.Time_Stop)</pre>	
25	v_beta	<pre>@Cut(Active.Group1.Recorder_A.Sin; Formula.Time_Start; Formula.Time_Stop)</pre>	
26	v_ecc	<pre>@Cut(Active.Group1.Recorder_A.V_ref; Formula.Time_Start; Formula.Time_Stop)</pre>	
27	Theta_mec_N_deg	<pre>@Cut(Active.Group1.Recorder_B.Angle_mec; Formula.Time_Start; Formula.Time_Stop)</pre>	
28	Encoder_A	<pre>@Cut(Active.Group1.Recorder_B.Ev_B7_02; Formula.Time_Start; Formula.Time_Stop)</pre>	
29	Encoder_B	<pre>@Cut(Active.Group1.Recorder_B.Ev_B7_03; Formula.Time_Start; Formula.Time_Stop)</pre>	
30	Encoder_Z	<pre>@Cut(Active.Group1.Recorder_B.Ev_B7_01; Formula.Time_Start; Formula.Time_Stop)</pre>	
31	Theta_mec_N	Formula.Theta_mec_N_deg*Formula.const_Deg2Rad	
32		#endregion	
33		***************************************	
34		Demodulationsformeln	

36 Resolverausgang, demodulierte Spannung Image: Spannung 37 v_alpha_demod Formula v_alpha*Formula v_ecc Image: Spannung 38 v_beta_demod Formula v_beta*Formula v_ecc Image: Spannung 39 Zyklusdefinition von der Speisung Image: Spannung Image: Spannung 40 Cycle_ecc @CycleMean(Formula v_ecc; 0: 0.1) Image: Spannung Image: Spannung 41 Ausgang, mechanischer Sinus und Kosinus Image: Spannung Image: Spannung Image: Spannung 42 Cos_demod @CycleMean(Formula v_alpha_demod; Formula param_Cycle_number; Formula.Cycle_ecc) Image: Spannung Image: Spannung 43 Sin_demod @SpaceVectorInverseTransformation(Formula.Cos_demod; Formula.Sin_demod; 0; 4: 0) Image: Spannung Image: Spannung Image: Spannung 44 Demodulierter mechanischer Winkel Image: Spannung Image: Sp	35		#region	
37 v_alpha_demod Formula.v_alpha*Formula.v_ecc 38 v_beta_demod Formula.v_beta*Formula.v_ecc 39 Zyklusdefinition von der Speisung	36		Resolverausgang, demodulierte Spannung	
38 v_beta_demod Formula.v_beta*Formula.v_ecc	37	v_alpha_demod	Formula.v_alpha*Formula.v_ecc	
39 Zyklusdefinition von der Speisung	38	v_beta_demod	Formula.v_beta*Formula.v_ecc	
40 Cycle_ecc @CycleDetect(Formula v_ecc; 0; 0, 1) 41 Ausgang, mechanischer Sinus und Kosinus 42 Cos_demod @CycleMean(Formula v_alpha_demod; Formula.param_Cycle_number; Formula.Cycle_ecc) 43 Sin_demod @CycleMean(Formula v_beta_demod; Formula.param_Cycle_number; Formula.Cycle_ecc) 44 Demodulierter mechanischer Winkel	39		Zyklusdefinition von der Speisung	
41 Ausgang, mechanischer Sinus und Kosinus 42 Cos_demod @CycleMean(Formula v_alpha_demod; Formula.param_Cycle_number; Formula.Cycle_acc) 43 Sin_demod @CycleMean(Formula v_beta_demod; Formula.param_Cycle_number; Formula.Cycle_acc) 44 Demodulierter mechanischer Winkel	40	Cycle_ecc	@CycleDetect(Formula.v_ecc; 0; 0.1)	
42 Cos_demod @CycleMean(Formula, y_alpha_demod; Formula.param_Cycle_number; Formula_Cycle_ecc) 43 Sin_demod @CycleMean(Formula, y_bata_demod; Formula.param_Cycle_number; Formula.Cos_demod; Formula.param_Cycle_number; Formula.Cos_demod; 44 Demodulierter mechanischer Winkel	41		Ausgang, mechanischer Sinus und Kosinus	
43 Sin_demod @CycleMean(Formula. y_beta_demod; Formula.Cycle_number; Formula.Cycle_ecc) 44 Demodulieter mechanischer Winkel	42	Cos_demod	<pre>@CycleMean(Formula.v_alpha_demod; Formula.param_Cycle_number; Formula.Cycle_ecc)</pre>	
44 Demodulierter mechanischer Winkel 45 Theta_demod @SpaceVectorInverseTransformation(Formula.Cos_demod; Formula.Sin_demod; 0; 4; 0) 46 Theta_demod_N @Modulo((Formula.Theta_demod+2*System.Constants.Pi);2*Sy stem.Constants.Pi) 47 Theta_demod_N_deg Formula.Theta_demod_N*Formula.const_Rad2Deg Grad 48 Simulierter Sinus und Kosinus des Gebers 9 49 Cos_enc @Cosine(Formula.Theta_mec_N) 1 50 Sin_enc @Sine(Formula.Theta_mec_N) 1 51 Fehler 1 1 52 Delta_Theta_deg Formula.Theta_demod_N_deg-Formula.Theta_mec_N_deg 1 53 #endregion 1 1 54	43	Sin_demod	<pre>@CycleMean(Formula.v_beta_demod; Formula.param_Cycle_number; Formula.Cycle_ecc)</pre>	
45 Theta_demod @SpaceVectorInverseTransformation(Formula.Cos_demod; Formula.Sin_demod; 0; 4; 0) 46 Theta_demod_N @Modulo((Formula.Theta_demod+2*System.Constants.Pi);2*Sy stem.Constants.Pi) 47 Theta_demod_N_deg Formula.Theta_demod_N*Formula.const_Rad2Deg Grad 48 Simulierter Sinus und Kosinus des Gebers 9 Cos_enc @Cosine(Formula.Theta_mec_N) 1 50 Sin_enc @Sine(Formula.Theta_demod_N_deg-Formula.Theta_mec_N_deg 1 1 52 Delta_Theta_deg Formula.Theta_demod_N_deg-Formula.Theta_mec_N_deg 1 1 53 #endregion 1 1 1 1 54 1 1 1 55 Vom Filter bewirkte Offset-Dämpfung 1 1 1 56 #endregion 1 1 1 1 57 Filter 1 1 1 1 1 58 Cos_demod_2 @FilterBesselLP(Formula.Cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless) 1 1 1 1 1 1 1 1 1 1	44		Demodulierter mechanischer Winkel	
46 Theta_demod_N @Modulo((Formula.Theta_demod+2*System.Constants.Pi);2*Sy stem.Constants.Pi) 47 Theta_demod_N_deg Formula.Theta_demod_N*Formula.const_Rad2Deg Grad 48 Simulierter Sinus und Kosinus des Gebers Image: Sinulierter Sinus und Kosinus des Gebers Image: Sinulierter Sinus und Kosinus des Gebers 49 Cos_enc @Cosine(Formula.Theta_mec_N) Image: Sinulierter Sinus und Kosinus des Gebers 50 Sin_enc @Sine(Formula.Theta_mec_N) Image: Sinulierter Sinus und Kosinus des Gebers 51 Fehler Image: Sinulierter Sinus und Kosinus des Gebers Image: Sinulierter Sinus und Kosinus des Gebers 52 Delta_Theta_deg Formula.Theta_mec_N) Image: Sinulierter Sinus und Kosinus des Gebers Image: Sinulierter Sinus und Kosinus des Gebers 53 Sin_enc @Sine(Formula.Theta_mec_N) Image: Sinulierter Sinus und Kosinus des Gebers Image: Sinulierter Sinus und Kosinus des Gebers 54 Delta_Theta_deg Formula.Theta_demod_N_deg-Formula.Theta_mec_N_Meg Image: Sinulierter Sinus und Kosinus des Gebers Image: Sinulierter Sinu	45	Theta_demod	<pre>@SpaceVectorInverseTransformation(Formula.Cos_demod; Formula.Sin_demod; 0; 4; 0)</pre>	
47 Theta_demod_N_deg Formula. Theta_demod_N*Formula.const_Rad2Deg Grad 48 Simulierter Sinus und Kosinus des Gebers 9 49 Cos_enc @Cosine(Formula.Theta_mec_N) 9 50 Sin_enc @Sine(Formula.Theta_mec_N) 9 51 Fehler 9 9 52 Delta_Theta_deg Formula.Theta_demod_N_deg-Formula.Theta_mec_N_deg 9 53 #endregion 9 9 9 54 **** 9 <t< td=""><td>46</td><td>Theta_demod_N</td><td><pre>@Modulo((Formula.Theta_demod+2*System.Constants.Pi);2*Sy stem.Constants.Pi)</pre></td><td></td></t<>	46	Theta_demod_N	<pre>@Modulo((Formula.Theta_demod+2*System.Constants.Pi);2*Sy stem.Constants.Pi)</pre>	
48 Simulierter Sinus und Kosinus des Gebers 49 Cos_enc @Cosine(Formula.Theta_mec_N) 50 Sin_enc @Sine(Formula.Theta_mec_N) 51 Fehler 52 Delta_Theta_deg Formula.Theta_demod_N_deg-Formula.Theta_mec_N_deg 53 #endregion 54 #endregion 55 Vom Filter bewirkte Offset-Dämpfung 56 #region 57 Filter 58 Cos_demod_2 @FilterBesselLP(Formula.Cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless) 59 Sin_demod_2 @FilterBesselLP(Formula.Sin_demod; Formula.param_Filter_phaseless) 60 Demodulierter Winkel 61 Theta_demod_2 @SpaceVectorInverseTransformation(Formula.Cos_demod_2; Formula.Sin_demod_2; 0; 4; 0) 62 Theta_demod_2_N_deg Formula.Theta_demod_2_N* 0; System.Constants.Pi) 63 Theta_demod_2_N_deg Formula.Theta_demod_2_N* 0; System.Constants.Pi)	47	Theta_demod_N_deg	Formula.Theta_demod_N*Formula.const_Rad2Deg	Grad
49 Cos_enc @Cosine(Formula.Theta_mec_N) 50 Sin_enc @Sine(Formula.Theta_mec_N) 51 Fehler	48		Simulierter Sinus und Kosinus des Gebers	
50Sin_enc@Sine(Formula.Theta_mec_N)51Fehler52Delta_Theta_degFormula.Theta_demod_N_deg-Formula.Theta_mec_N_deg53#endregion54#endregion55Vom Filter bewirkte Offset-Dämpfung56#region57Filter58Cos_demod_260@FilterBesselLP(Formula.Cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.cos_demod_2; Formula.param_Filter_order; Formula.cos_demod_2; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency; Formula.param_Filter_frequency;	49	Cos_enc	@Cosine(Formula.Theta_mec_N)	
51Fehler52Delta_Theta_degFormula.Theta_demod_N_deg-Formula.Theta_mec_N_deg53#endregion54****55Vom Filter bewirkte Offset-Dämpfung56#region57Gender58Cos_demod_260@FilterBesselLP(Formula.Cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless)60Demodulierter Winkel61Theta_demod_262Theta_demod_2_N63Theta_demod_2_N_deg64Formula.Theta_demod_2_N*Formula.const_Rad2Deg64Fehler	50	Sin_enc	@Sine(Formula.Theta_mec_N)	
52 Delta_Theta_deg Formula.Theta_demod_N_deg-Formula.Theta_mec_N_deg 53 #endregion 54 **** 55 Vom Filter bewirkte Offset-Dämpfung 56 #region 57 Filter 58 Cos_demod_2 69 Sin_demod_2 60 ØrilterBesselLP(Formula.Cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.cos_demod_2; Formula.param_Filter_phaseless) 60 Demodulierter Winkel 61 Theta_demod_2 62 Theta_demod_2_N @Modulo((Formula.Theta_demod_2+2*System.Constants.Pi); 2*System.Constants.Pi) 63 Theta_demod_2_N_deg 64 Fehler	51		Fehler	
53 #endregion 54 **** 55 Vom Filter bewirkte Offset-Dämpfung 56 #region 57 Filter 58 Cos_demod_2 [®] FilterBesselLP(Formula.Cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless) 59 Sin_demod_2 60 Demodulierter Winkel 61 Theta_demod_2 62 Theta_demod_2_N 63 Theta_demod_2_N_deg 64 Fehler	52	Delta_Theta_deg	Formula.Theta_demod_N_deg-Formula.Theta_mec_N_deg	
54 **** 55 Vom Filter bewirkte Offset-Dämpfung 56 #region 57 Filter 58 Cos_demod_2 59 Sin_demod_2 60 Demodulierter Winkel 61 Theta_demod_2 62 Theta_demod_2_N 63 Theta_demod_2_N_deg 64 Formula.Theta_demod_2_N*Formula.Theta_demod_2_N*Formula.const_Rad2Deg	53		#endregion	
55 Vom Filter bewirkte Offset-Dämpfung 56 #region 57 Filter 58 Cos_demod_2 69 Sin_demod_2 60 Demodulierter Winkel 61 Theta_demod_2 62 Theta_demod_2_N 63 Theta_demod_2_N_demod_2_N_demod_2_N*Formula.Theta_demod_2_N*Formula.Const_Rad2Deg	54		***************************************	
56#region57Filter58Cos_demod_2@FilterBesselLP(Formula.Cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless)59Sin_demod_2@FilterBesselLP(Formula.Sin_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless)60Demodulierter Winkel61Theta_demod_2@SpaceVectorInverseTransformation(Formula.Cos_demod_2; Formula.Sin_demod_2; 0; 4; 0)62Theta_demod_2_N@Modulo((Formula.Theta_demod_2+2*System.Constants.Pi); 2*System.Constants.Pi)63Theta_demod_2_N_degFormula.Theta_demod_2_N*Formula.const_Rad2Deg64Fehler	55		Vom Filter bewirkte Offset-Dämpfung	
57Filter58Cos_demod_2@FilterBesselLP(Formula.Cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless)59Sin_demod_2@FilterBesselLP(Formula.Sin_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless)60Demodulierter Winkel61Theta_demod_2@SpaceVectorInverseTransformation(Formula.Cos_demod_2; Formula.Sin_demod_2; 0; 4; 0)62Theta_demod_2_N@Modulo((Formula.Theta_demod_2+2*System.Constants.Pi); 2*System.Constants.Pi)63Theta_demod_2_N_degFormula.Theta_demod_2_N*Formula.const_Rad2Deg64Fehler	56		#region	
58Cos_demod_2@FilterBesselLP(Formula.Cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless)59Sin_demod_2@FilterBesselLP(Formula.Sin_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless)60Demodulierter Winkel61Theta_demod_2@SpaceVectorInverseTransformation(Formula.Cos_demod_2; Formula.Sin_demod_2; 0; 4; 0)62Theta_demod_2_N@Modulo((Formula.Theta_demod_2+2*System.Constants.Pi); 2*System.Constants.Pi)63Theta_demod_2_N_degFormula.Theta_demod_2_N*Formula.const_Rad2Deg64Fehler	57		Filter	
59Sin_demod_2@FilterBesselLP(Formula.Sin_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless)60Demodulierter Winkel61Theta_demod_2@SpaceVectorInverseTransformation(Formula.Cos_demod_2; Formula.Sin_demod_2; 0; 4; 0)62Theta_demod_2_N@Modulo((Formula.Theta_demod_2+2*System.Constants.Pi); 2*System.Constants.Pi)63Theta_demod_2_N_degFormula.Theta_demod_2_N*Formula.const_Rad2Deg64FehlerFehler	58	Cos_demod_2	<pre>@FilterBesselLP(Formula.Cos_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless)</pre>	
60Demodulierter Winkel61Theta_demod_2@SpaceVectorInverseTransformation(Formula.Cos_demod_2; Formula.Sin_demod_2; 0; 4; 0)62Theta_demod_2_N@Modulo((Formula.Theta_demod_2+2*System.Constants.Pi); 2*System.Constants.Pi)63Theta_demod_2_N_degFormula.Theta_demod_2_N*Formula.const_Rad2DegGrad64Fehler	59	Sin_demod_2	<pre>@FilterBesselLP(Formula.Sin_demod; Formula.param_Filter_order; Formula.param_Filter_frequency; Formula.param_Filter_phaseless)</pre>	
61Theta_demod_2@SpaceVectorInverseTransformation(Formula.Cos_demod_2; Formula.Sin_demod_2; 0; 4; 0)62Theta_demod_2_N@Modulo((Formula.Theta_demod_2+2*System.Constants.Pi); 2*System.Constants.Pi)63Theta_demod_2_N_degFormula.Theta_demod_2_N*Formula.const_Rad2DegGrad64Fehler	60		Demodulierter Winkel	
62Theta_demod_2_N@Modulo((Formula.Theta_demod_2+2*System.Constants.Pi); 2*System.Constants.Pi)63Theta_demod_2_N_degFormula.Theta_demod_2_N*Formula.const_Rad2DegGrad64Fehler	61	Theta_demod_2	<pre>@SpaceVectorInverseTransformation(Formula.Cos_demod_2; Formula.Sin_demod_2; 0; 4; 0)</pre>	
63 Theta_demod_2_N_deg Formula.Theta_demod_2_N*Formula.const_Rad2Deg Grad 64 Fehler	62	Theta_demod_2_N	<pre>@Modulo((Formula.Theta_demod_2+2*System.Constants.Pi); 2*System.Constants.Pi)</pre>	
64 Fehler	63	Theta_demod_2_N_deg	Formula.Theta_demod_2_N*Formula.const_Rad2Deg	Grad
	64		Fehler	

65	Delta_Theta_deg_2	Formula.Theta_demod_2_N_deg-Formula.Theta_mec_N_deg	
66		#endregion	
67		***************************************	
68		Kompensation der Filterverzögerung	
69		#region	
70		Drehzahl- bzw. Drehwinkelberechnung	
71	Speed_2	<pre>@CycleRPM(Formula.Theta_demod_2_N_deg; Formula.param_Cycle_speed; Formula.Cycle_ecc)</pre>	
72	Speed_2_rad	Formula.Speed_2*Formula.const_RPM2rad	
73		Verzögerungsbewertung	
74	Ecc_frequncy	<pre>@CycleFrequency(Formula.v_ecc; 1; Formula.Cycle_ecc)</pre>	
75	delay_eq	1/(Formula.param_Filter_frequency*Formula.const_Hz2Rad_s)+ Formula.param_Cycle_number/Formula.Ecc_frequncy+0.000007	
76	angle_delay	Formula.delay_eq*Formula.Speed_2_rad	
77		Winkelkorrektur	
78	Theta_demod_3_N	<pre>@Modulo((Formula.Theta_demod_2_N+Formula.angle_delay);2* System.Constants.Pi)</pre>	
79	Theta_demod_3_N_deg	Formula.Theta_demod_3_N*Formula.const_Rad2Deg	
80		Fehler	
81	Delta_Theta_deg_3	Formula.Theta_demod_3_N_deg-Formula.Theta_mec_N_deg	Grad
82		#endregion	