

Welcome to the webinar "Efficiency Testing on Electrical Drive Trains"

LIVE power calculations

....and....

continuous and **synchronous** acquisition of electrical and mechanical signals for verification and analysis

The webinar starts at 10 a.m.

Organizational information

? Q&A

- Please do not forget to activate your PC speakers to enable audio or connect headphones to your PC.
- Please use the '**Questions and answers**' window, if you have any questions. We will answer questions at the end of the presentation.

×

• We will email the presentation to you after the webinar.

• The webinar is recorded and will soon be made available on our website.

Speaker

- Klaus Lang, Focus Sales Manager T&M HBM Test and Measurement
- Degree in electrical engineering
- 30 years experience in fast electrical data acquisition
- 10 years product manager for GOULD digital storage oscilloscopes
- 10 years marketing manager for NICOLET transient recorders

Dipl.-Ing. Klaus Lang Focus Sales Manager T&M HBM Test and Measurement

Tel. +49 6151 803 8382 E-Mail: klaus.lang@hbm.com

 Since the acquisition of NICOLET by HBM in 2009, responsible as Focus Sales Manager for "eDrive", which is defined as "testing of inverters and inverter driven electrical machines"

Electrical drives: Various application examples

Industrial VF inverter

Wind energy generator

Electrical or hybrid car

High Speed train

eDrive: DAQ requirements on electrical (hybrid) drive train

eDrive: Measuring efficiency - the typical method

- 1. Difficult time synchronization between different systems
- Data storage in different systems & different formats 2.
- 3. No continuous raw data available for verification or analysis
- 4. Slow calculation cycles of power meters and questionable results in dynamic load changes
- 5. No documentated algorithms for power analysis, no verification possible

User comment: "Sometimes we measure efficiency larger 1. We can't believe that, but we can't analyse further as we have no raw data.

eDrive: Measuring efficiency - the typical method

eDrive: Enhanced requirements on data acquisition

НВМ

- Simple system configuration
 - One system for all different signals
 - Voltage, current, torque, speed
 - Position, temperatures, vibration....
 - Easy setup
- Reliable acquisition
 - Simultaneous sampling of electrical and mechanical power
 - No phase shift caused by different data acquisition systems
 - Continuous storage to hard disc
 - One data format for all acquired data
- Faster, better results
 - Analysis per half cycle with documented, traceable algorithms
 - Verification of results
 - Advanced analysis based on raw data
- Easier system integration
 - Open data format
 - Modern software interfaces

eDrive: HBM's testing concept

eDrive: Voltage measurement at e-motor input with GEN DAQ

- GEN3i mainframe (or GEN3t)
 - 3 slots for acquisition modules
 - 200 MB/s streaming to 500 GB SSD
 - Build in Win7 64 bit PC (GEN3i only)
- Isolated 1 kV input card
 - 6 isolated channels, ±20 mV to ±1000 V
 - Direct connection to HV signals witout probes
 - Sample rate 2 MS/s @ 18 bit per channel
 - Isolation voltage 1,000 Vrms
 - Accuracy 0.1%
 - One torque & speed channel per board
- Plug-on artificial star module
 - Creates artificial star point for 3 phase measurements
 - Plugs directly into the card to minimize cabling
- Optional, remote temperature satellite
 - 16 channels type K or T
 - Keeps TC cables short for signal fidelity

eDrive: HBM's testing concept

eDrive: HBM's complete system for efficiency testing

eDrive SETUP: Setting up the test in one single, simple menu

eDrive LIVE: Numerical results and scope and FFT

eDrive REVIEW: Typical signals, continuously acquired for 1 minute

Input signals (to be measured)

- Voltage = u
- Current = i
- Torque = M۲
- Speed • = n
- Power calculations (simplified)
 - True power = MEAN_{cycle} (uxi) Ρ ۲
 - Apparent power S =
 - Mechanical power \bullet
- P_{mech}
- (RMS_{cycle} u) x (RMS_{cycle} i)
- $MEAN_{cycle}$ (2 x π x n x M) =

- Efficiency calculation
 - Efficiency electrical motor η (Eta) = P_{mech} / P

- To compute the TrueRMS the real "cycles" of the signals are needed
- Detecting the zero crossing is difficult due to noise
- Perception detects the zero crossings using advanced algorithms
 - Result can be shown for verification

Verification of detected cycles

- The "cycle detect" integrity can be checked by computing the cycle frequency to compare it with the rpm trace
 - Must be the same "waveshape"
 - Cycle Frequency must not have peaks or drops (= double / missing cycles)

НВМ

- RMS per phase and cycle
 - Cycle detection in current i_1
 - RMS value of current per phase and per "cycle"
 - RMS value of voltage per phase and per "cycle" of the current
- True power
 - Multiplication of u and i gives the instantaneous power per phase
 - Doing a MEAN over a cycle gives true power per phase
 - Summing up phases gives total P
- Mechanical power
 - Multiplication of torque and speed
- Motor efficiency
 - Ratio of mechanical to real power

56	CycleMaster	@CycleDetect (Formula.i_1;0;1)				
57						
58	L1	@CycleRMS (Formula.i_1; 1; Formula.CycleMaster)				
59	I_2	@CydeRMS (Formula.i_2; 1; Formula.CydeMaster)				
60	I_3	@CycleRMS (Formula.i_3; 1; Formula.CycleMaster)				
61						
62	U_1	@CycleRMS (Formula.u_12; 1; Formula.CycleMaster)				
63	U_2	@CycleRMS (Formula.u_23; 1; Formula.CycleMaster)				
64	U_3	@CycleRMS (Formula.u_31; 1; Formula.CycleMaster)				

73	p_1	Formula.u_1 * Formula.i_1
74	p_2	Formula.u_2 * Formula.i_2
75	p_3	Formula.u_3 * Formula.i_3
76		
77	P_1	@CycleMean (Formula.p_1; 1;Formula.CycleMaster)
78	P_2	@CycleMean (Formula.p_2; 1;Formula.CycleMaster)
79	P_3	@CycleMean (Formula.p_3; 1;Formula.CycleMaster)
80		
81	P	Formula.P_1 + Formula.P_2 + Formula.P_3

119 P_mech 2 * System.Constants.Pi * Formula.n / 60 * Formula.M Nm/s

131	η_mot	(Formula.P_mech / Formula.P)* 100	%

Some computed results as shown in Perception software

Top to bottom: Mechanical power, electrical power (P, S), motor efficiency

eDrive example: Power values and motor efficiency

Torque, mechanical power and true power on top, motor efficiency underneath

eDrive: Other analysis possibilities

- As all RAW data is stored, advanced analysis of motor and inverter data is possible using Perceptions formula database
- Potential Motor analysis
 - Equivalent circuit diagram
 - Iron losses
 - Main inductance
 - Starting currents
 - Armature currents
 - Airgap torque
 - Torque ripple
 - Cogging torque
 - Saturation effects
- Potential Inverter analysis
 - Space vector / DQ0 transformation
 - Inverter control behaviour
 - Modulation method
 - Frequency & amplitude of fundamental
 - THD of voltage and current
 - Switching frequency

eDrive: Fundamental of current, ripple current, THD computation

Current (lower yellow), fundamental of current (lower red sinewave), ripple current (mid yellow), THD (green)

eDrive: Space vector transformation

From the known signals u_1 , u_2 , u_3 and i_1 , i_2 , i_3 the space vectors u_{α} , u_{β} and i_{α} , i_{β} are calculated

Hybrid motor test cell equipped with T10 and GEN7t from HBM

Darmstadt Technical University, Institute for Combustion Engines and Vehicle Drive Systems

- HBM GEN DAQ is able to <u>connect to all signals</u> being high voltage, currents, torque, speed, temperatures, vibration.....
- All signals are sampled **simultaneously** and displayed live
- Sampling is done with <u>high sample rate</u> and high resolution
- **Continuous raw data storage** allows verification and analysis
- Setting up the measurement is done in **one simple menu**
- Power calculations are done **<u>LIVE and per half cycle</u>**
- Perception's formula database offers all tools for further, detailed <u>motor and inverter analysis</u>
- So we offer an integrated tool not only to measure efficiency, but also to understand how to improve efficiency

More detailed information

More detailed information

• www.hbm.com/webinars

Products Services Sol	lutions Support Tips & Tricks	Training & Events	About Us		Google [™] Site Search Q
Training Calendar	HBM > Training & Events > Webinars				🚔 Print 🔂 PDF
 Webinars HBM On Tour UK 2014 HBM On Tour Sweden 2014 UK Weighing Technology 	HBM Webinars Please see a list of all HBM webinars below. Upcoming HBM webinars				Click here to see the list of trainings Contact the HBM Academy Team
Workshop	<u>Title</u>	Date	<u>Time</u>	Vacancies	
 HBM On Tour USA On-site & Individual Training Trade Shows 	Efficiency Testing on Electrical Drive Trains	Jun 05, 2014	10:00 AM CET (Amsterdam, Paris, Berlin)	-	Email: seminars@hbm.com
F Hade Shows	Efficiency Testing on Electric Drivetrains	Jun 10, 2014	2:00 PM ET	•	
	More efficient ordering, easier configuration: Tips and tricks for using the HBM online shop	Jun 24, 2014	10:00 AM CET	•	
	What's new in QuantumX and catman Data Acquisition Software?	Jun 25, 2014	10:00 AM CET		
	Good Data Gone Bad	Jun 26, 2014	10:00 AM CET	•	
	Residual stress analysis using the hole drilling method	Jun 27, 2014	10:00 AM CET	•	
	An Introduction to Split-Hopkinson Bar Testing and Dynamic Strain	Aug 05, 2014	2:00 PM ET	•	

Any questions?

- Please contact our Support Team for further questions.
 We look forward to your email: <u>info@de.hbm.com</u>
- Or email the speaker directly: <u>klaus.lang@hbm.com</u>

www.hbm.com

Klaus Lang

Focus Sales Manager T&M

HBM GmbH

klaus.lang@hbm.com

File: HBM Webinar Efficiency Testing on Electrical Drive Trains 2014 06 en