

Welcome to the webinar 'Residual stress measurements by hole drilling: Calculation in accordance with ASTM E837-2013 standard'

The webinar starts at 10 a.m.

Speaker

- Alessio Benincasa
 Sales & Product Manager
 SINT Technology srl
- Degree in mechanical engineering
- 10 years experience in SINT Technology
- 9 years experience in the residual stress field
- 5 years experience as Product Manager of the MTS3000
- Certified at 3rd level as strain gage expert

Ing. Alessio Benincasa Sales & Product Manager SINT Technology srl

Tel. +39 055 8826 302 E-Mail: alessio.benincasa@sintechnology.com

Summary

- Who is SINT Technology
- What are residual stresses
- The hole-drilling strain-gage method
- The MTS3000 system
- The ASTM E837 standard
- The new EVAL 7 software
- Typical measurement results
- Live test elaboration

SINT Technology is located in Calenzano, near **Florence**. The company was founded in 1990.

SINT Technology has 50 employees.Most of them are engineers with average age of about 30 years.The company turnover is about 4 M€

Certified company and Accredited Test Lab

LAB N° 0910

Measurement Services:

- Sound Intensity, Vibrations
- Experimental and residual stress analysis
- Power plant performance tests

Production of measuring equipments:

- Restan-MTS3000
- DRMS Cordless
- Custom products

Design engineering

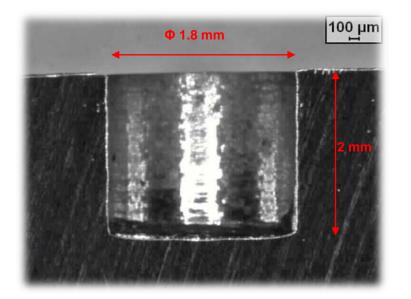
Software solutions

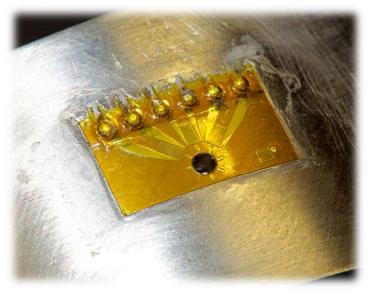
All stresses that occur in the materials, also without the application of any external load, are termed residual stresses.

Residual stresses influence a mechanical component's behaviour as they:

- Affect structural and dimensional stability
- Reduce fatigue strength and crack resistance
- Encourage surface crack growth

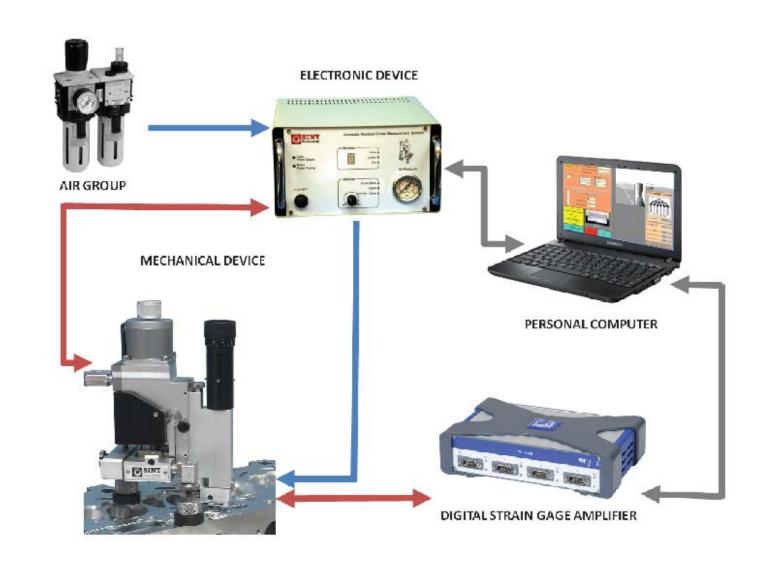
Residual stresses therefore limit load capacity and safety of mechanical components during operation.





The hole drilling method consists in drilling a small hole (**approx. 1.8 mm x 2.0 mm**) into the center of a special 3-element strain rosette.

The hole changes the initial strain allowing redistribution of the residual stresses originally existing in the material.


The **MTS3000 system** is the only fully **AUTOMATIC** and portable instrument in the world for determining residual stress by the hole-drilling strain-gage method.

The MTS3000 system consists of:

- A mechanical setup housing the optical system and drilling system
- > An electronic control unit
- A digital strain gage amplifier
- Control and back-calculation software

The hole-drilling strain-gage method is the only method for calculating residual stress that is **STANDARDIZED** at world level (**ASTM E837**).

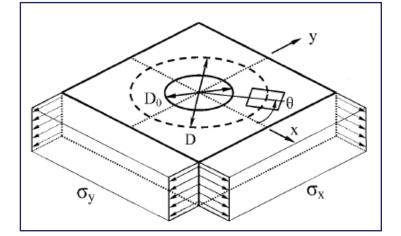
The first version of this standard dates back to 1995, the latest upgrade is available since the end of 2013.

Designation: E837 – 13a

Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method¹

Standard ASTM E837 specifies:

- The number of drilling increments required
- The numerical coefficients for determining the value of residual stresses
- The data processing method
- The measurement-related uncertainty


Different types of holes, based on the workpiece thickness:

THROUGH HOLE - THIN WORKPIECE

Workpiece thickness $< 0.2 \cdot D_{GAGE}$ (std. 1mm)

stresses are considered uniform over the drilling depth

- Drilling depth: entire thickness
- Stresses are assumed to be uniform
- Acquisition of a set of 3 strain values once the through hole is completed

INTERMEDIATE HOLE

Workpiece thickness between $0.2 \cdot D_{GAGE}$ e D_{GAGE} (std. between 1mm and 5mm)

- Approximate results
- The elaboration of the test result is outside the scope of the ASTM E837-13 standard

BLIND HOLE (Typical) – THICK WORKPIECE

Workpiece thickness > D_{GAGE} (std. 5mm)

UNIFORM STRESSES

- Drilling depth: 0.2 · D_{GAGE} (std 1mm)
- Stress value over the drilling depth
- 10 drilling steps of 0.02 · D_{GAGE} (std 0.1 mm)

NOT UNIFORM STRESSES

- Drilling depth: 0.2 · D_{GAGE} (std 1mm)
- Residual stress pattern over the drilling depth
- 20 drilling steps of 0.01 · D_{GAGE} (std 0.05 mm)
- Evolution of the "old" Integral Method

A "uniform stress" calculation is appropriate when **prior information** is available, for example, based on workpiece geometry or processing procedure.

Another purpose of doing a uniform stress calculation is to determine a **representative size** of the residual stresses that are present.

Test elaboration: the new EVAL 7 software

Enterprise

Premium

- Flexible design of the software versions
- Users can buy only the function they need, depending on the types of the measurement
- Possibility to upgrade your software version
- Easy functions for the users that move the first steps into the hole drilling measurements
- Complete and further analysis of residual stress for the more skilled users
- Possibility to customize the software versions

Software Features	Base	Professional
Automatic input of .txt/.dat file		
Edit Input Windows		
Strains interpolation		
Calculation as per ASTM E837-13 for uniform stress		
Calculation as per ASTM E837-13 for non-uniform stress		
Calculation by the Integral method	$\overline{\bigcirc}$	
Calculation by the Schwartz-Kockelmann method	$\overline{\bigcirc}$	
Export by .txt format	$\overline{\bigcirc}$	
Strain gage rosette / calculation coefficients database	8	
Extended version of ASTM E837-13 for uniform stress		
Extended version of ASTM E837-13 for non-uniform stress		
Viewer (Stress Graph, Direction Graph, Mohr Graph)		
Load / Save calculation config		
Automatic report of the measurement		
HDM calculation algorithms		8
Eccentricity correction algorithms		8
Plasticity correction algorithms		
Measurement uncertainty for uniform stress calculation		8
Measurement uncertainty for non-uniform stress calculation		

НВМ

The main key features of the EVAL7 software are:

- Fully compliant to the MTS3000 RESTAN system
- Implementation of the HDM method
- Implementation of eccentricity correction
- Implementation of **local plasticity** correction
- Upgraded strain gage rosette database
- New graphical layout

- **Better** algorithms for the interpolation of acquired strains
- Graphical comparison between different calculation methods
- Plot of residual stress Mohr circles
- Calculation of residual stress in any direction (grids and custom direction)
- Automatic measurement report

Edit

Report

Save

Txt

📎 Print

2

Save

Html

e

More detailed information

• www.hbm.com/sint

Case Studies	HBM > Solutions > Experimental Stress Analysis	🛤 Print 🔁 PDF
Customer References	Residual Stress Measurement by the Hole-Drilling Method	+++++
Measurement Trends Industry Solutions Virtual Fatigue and Load Tests	SINT Technology is an Italian firm located in Florence, Italy. The company, in partnership with HBM, produces and develops the MT\$3000, an automatic system for measuring residual stresses by the hole-drilling method.	4.0 of 5 stars — 5 votes Click the rating bar to rate this artic
EST & MEASUREMENT DLUTIONS	Residual stresses can be present in any mechanical structure because of many causes. They may be due to the technological process, such as plastic deformation or welding, non-uniform cooling of cast components, forging process or surface treatments like shot peening or surface hardening.	Contact HBM
Test Cell Measurements eDrive Testing	Residual stresses have the same role in a structure's strength as common mechanical stresses. However, while stress due to external loads can be calculated with a degree of accuracy, residual stresses are difficult to foresee. It is, therefore, very important to have a reliable	The Customer
Mobile Field Testing Experimental Stress Analysis	method able to measure them directly with minimum damage to the surface. This is why the hole-drilling method has been developed. Basically, the method consists in drilling a small hole in the component at the centre of a strain gauge rosette. The residual	
Optical SensingReference Book	stresses, in way of the removed material, are released enabling the surface strains to be measured by the strain gauges. A suitable mathematical model is then used to evaluate the reduced residual stress from the deformation measurements.	
Torque Measurement		
PCB Testing		
Split Hopkinson Bar Material Tests		
Switchgear Testing		
HV Impulse Testing		
Current Zero Testing		

More detailed information

www.sintechnology.com/

On evidence

March 7,2014 New ASTM E837 standard – Version 2013

October 10, 2013 Seminar on Experimental Modal Analysis and Correlation FEM - at SINT Technology, Calenzano (FI)

October 7-10, 2013 Participation of SINT Tecnhology in the Residual Stress Summit 2013

October 28-31, 2013 Participation of SINT Technology in the 17th Chinese National Residual Stress Conference

Products

Restan MTS3000

The automatic system for measurement of residual stresses, RESTAN (Residual Stress Analyzer)-MTS3000, patented, produced and developed...

go to the page

DRMS Cordless

The DRMS (Drilling Resistance Measurement System), patented, produced and developed by SINT d to measure the drilling...

go to the page

SINT Technology is able to offer a wide range of products and services in the gage industry. The range of use of stress measures is extended to the most different applications, where a special sensitivity and accuracy is required.

More detailed information

• www.hbm.com/webinars

Training Calendar	HBM > Training & Events > Webinars				🚔 Print 🔂 PDF
 Webinars On-site & Individual Training Trade Shows 	HBM Webinars Please see a list of all HBM webinars	below.			Related Pages Seminar Calendar Contact the HBM Academy To
	Upcoming HBM webinars				
	Title Residual stress measurements by hole drilling: Calculation in accordance with ASTM E837-2013 standard	Date Oct 28, 2014	<u>Time</u> 10:00 AM CET	Vacancies	
	High-speed Data Acquisition in Strain Measurement and Dynamic Material Testing Applications	Oct 30, 2014	10:00 AM CET (Amsterdam, Berlin, Paris)		Email: seminars@hbm.com
	How Mechanical Stress Testing of Materials Validates Finite Element Analysis (FEA)	Nov 04, 2014	2:00 PM ET		
	Strain gauge measurements on PCBs	Nov 10, 2014	10:00 AM CET		
	Simplifying Large Channel Count DAQ Systems	Nov 11, 2014	10:00 AM CET		
	Integration of torque sensors into automation environments using TIM-EC	Nov 12, 2014	10:00 AM CET		
	Efficient planning, commissioning and operation of industrial test stands using PMX	Nov 13, 2014	10:00 AM CET		
	Power measurement on wind turbine generators	Nov 14, 2014	10:00 AM CET		

Any questions?

- Please contact our Support Team for further questions.
 We look forward to your email: <u>info@de.hbm.com</u>
- Or email the speaker directly: <u>alessio.benincasa@sintechnology.com</u>

www.hbm.com

Alessio Benincasa

Sales & Product Manager

SINT Technology srl

alessio.benincasa@sintechnology.com

Residual stress analysis using the hole drilling method

measure and predict with confidence