
Welcome to the webinar 'Simplifying Large Channel Count DAQ Systems'

The webinar starts at 10 a.m. CET

Speaker

- Rolf Mendel
 Senior Project Manager
 Measurement systems with high channel counts
- Graduate Telecommunications Engineer
- 36 years experience in Test & Measurement

Rolf Mendel

V-SK Key Applications HBM Test & Measurement

Phone: +49 6151 803 332 Email: rolf.mendel@hbm.com

Overview

- 1. Configuration process for structural tests with large channel numbers
- 2. Data sources for configuration data
- 3. Building blocks and workflow options for configuration:
 - TEDS configuration for transducers
 - Manual input of configuration data
 - Test point plans and merge procedure
 - Import of configuration data from database or Excel sources
- 4. Configuration Examples for the different workflows
- 5. Verification of configuration
 - Minimizing human error
 - Features supporting automated check procedures

1) Configuration process for structural tests

Planning/Design of Test

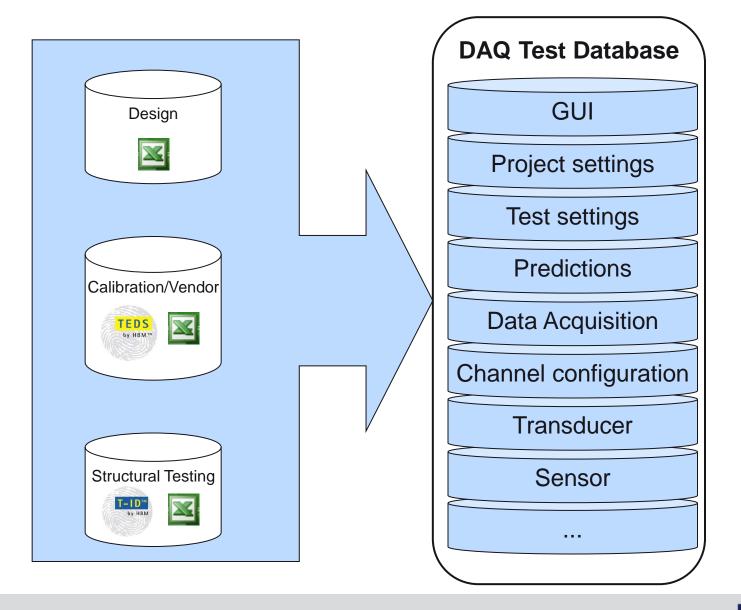
- Static, Durability, component
- Definition of load spectrum
- Calculation of expected parameters like strain...
- **...**

Definition of test components

- Definition of sensors e.g strain, displacement, load...
- Location of sensors
- Sensor wiring
- Network and Power infrastructure
- **...**

Definition of Configuration Parameter

- Expected values of parameters during test
- Calibration data for transducers
- Parameter data from test department (gage factor, location, ...)
- •
- Configuration of Test
- Verification of Test



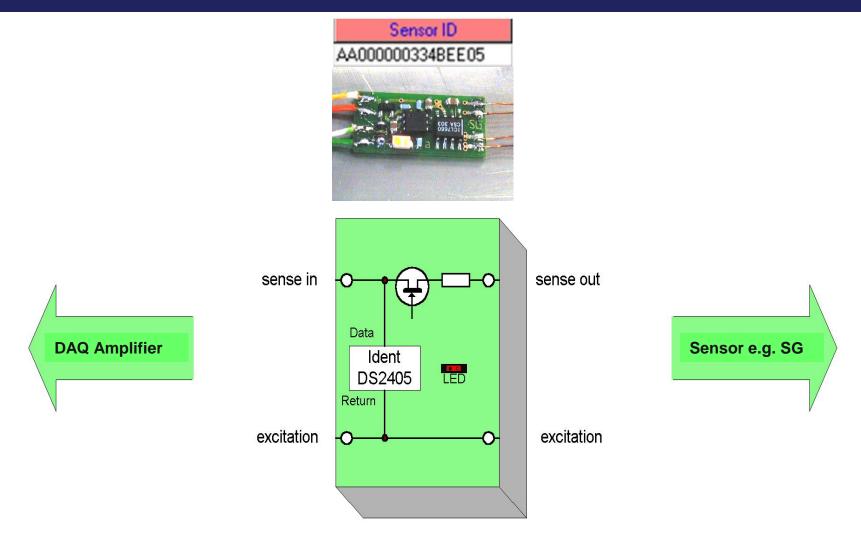
2) Data sources for configuration data

- Design department:
 - Identification of sensors
 - Expected values of sensors during test operation (e.g. strain at 100% load)
 - Required calculated values as rosette calculations
- 2. Calibration department or data from vendor
 - Calibration data for transducers (Serial number, Scaling etc.)
- 3. Test department
 - Names/ID's of sensors
 - Sensor data: Gage factor, Scaling information, Filters, Pictures, ...
 - Comments

2) Data sources for configuration data

3) Building blocks and workflow options for configuration

Manual input of configuration data


 Create test point plans and later merge with hardware databases

 Import of configuration data from database or Excel sources (e.g. using T-ID)

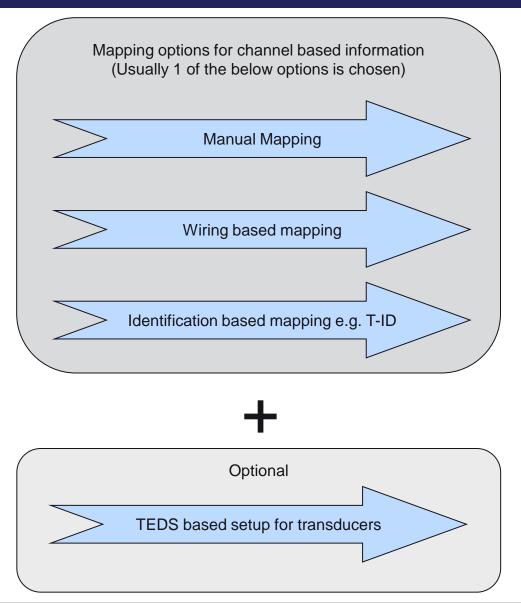
TEDS configuration for transducers

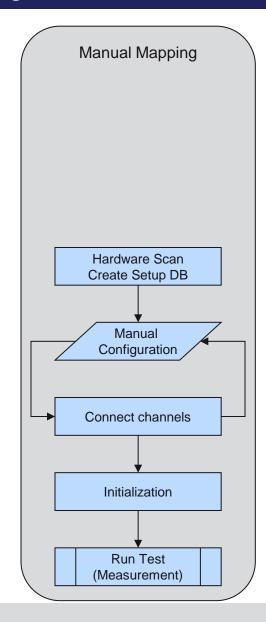
T-ID – HBM Identification module

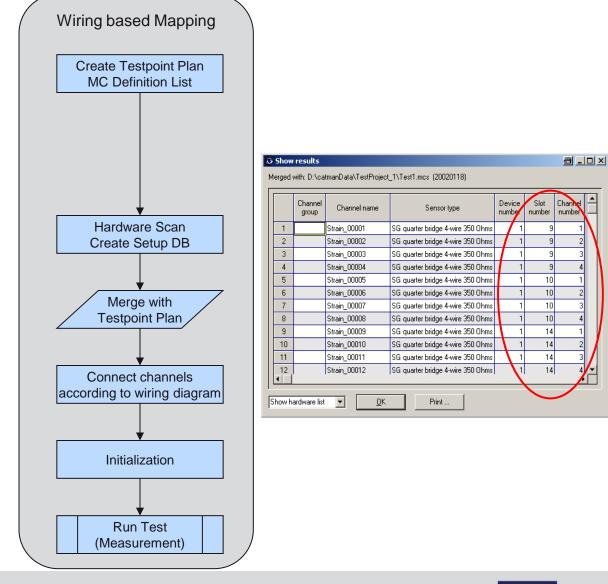
TEDS – Transcducer Electronic Datasheet

• What is TEDS?

- ▶ an IEEE standard to make sensors smarter (IEEE1451)
- ▶ a self describing sensor data sheet stored on a EEPROM chip
- ▶ a 1-wire protocol to communicate between data acquisition and TEDS chip
- ▶ a standard of different templates and the language to describe this information


TEDS Properties	Values
Manufacturer ID	30
Model Number	4
Version Number	2
Version Letter	В
Serial Number	246
Sensitivity @ reference condition	5.000000E-7 V/N
High pass cut-off frequency (F hp)	5.000000E-3 Hz
Stiffness of transducer	1.000000E+6 N/m
Mass below gage	1.000000E-1 g
Sensitivity direction (x,y,z)	x
Transducer weight	1.000000E-1 g
Transducer Electrical Signal Type	Voltage Sensor
Mapping Method	Linear
AC or DC Coupling	AC
Polarity (Sign)	Positive
Reference frequency (F ref)	3.500000E-1 Hz
Reference temperature (T ref)	1.500000E+1 °C
Calibration Date	1/1/2004
Calibration Initials	SAA
Calibration Period (Days)	0 days
Measurement location ID	0
User Data	This i3


3) Overview: Building blocks and workflow options for configuration


3) 1. Manual input of configuration data

	Name	Sensor type	•	Excݜ	Filter 🕶	Gage
1-1-1	SR01	SG quarter bridge 3-wire	350 Ohms	1 V	Be 5 Hz	2
1-1-2	SR02	SG quarter bridge 3-wire	350 Ohms	1 V	Be 5 Hz	2
1-1-3	SR03	SG quarter bridge 3-wire	350 Ohms	1 V	Be 5 Hz	2
1-1-4	RR01A	SG quarter bridge 3-wire	350 Ohms	1 V	Be 5 Hz	2
1-1-5	RR01B	SG quarter bridge 3-wire	350 Ohms	1 V	Be 5 Hz	2
1-1-6	RR01C	SG quarter bridge 3-wire	350 Ohms	1 V	Be 5 Hz	2
1-1-7	nc_01	SG quarter bridge 3-wire	350 Ohms	1 V	Be 5 Hz	2
1-1-8	nc_02	SG quarter bridge 3-wire	350 Ohms	1 V	Be 5 Hz	2

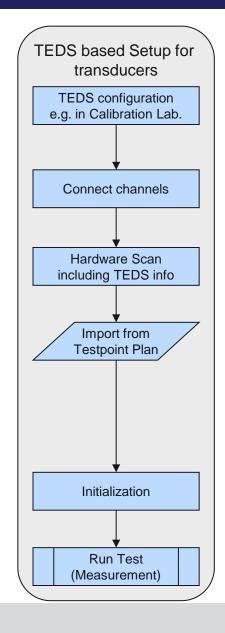
3) 2. Test point plans and merge procedure



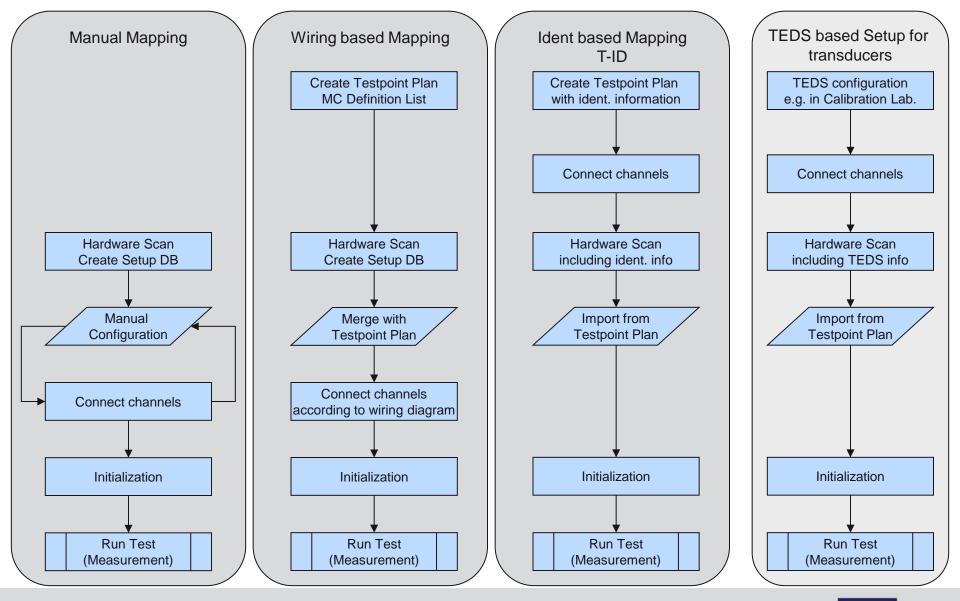

3) 3. Import of configuration data from database or Excel sources

Sensor ID

AA000000334BEE05
4200000033494F05
5F0000000336B0105
C10000003319E205



3) 4. TEDS configuration for transducers



3) Overview: Building blocks and workflow for configuration

3) Overview: Pros and Cons

Increased confidence and certainty

Manual Mapping

Pros

- Simple workflow process
- No specific format of customer data needed

Cons

- High probability of transcription errors
- Mapping of sensors and amplifier channels difficult
- Transcription of configuration data from customer files to DAQ database very time consuming
- Frequently changing setups difficult to handle

Wiring based Mapping

Pros

- Preliminary setup possible lowering possibility of transcription errors
- Quick configuration of frequent changing setups
- Working with different DAQ system configurations possible with minimal effort
- Increased utilization of DAQ
 System (net operating hours)

Cons

- Manual Mapping of sensors and amplifier channels can still cause errors
- Data to be input using predefined vendor format

Ident based Mapping

Pros

- Preliminary setup possible lowering possibility of transcription errors
- Quick configuration of frequent changing setups
- Working with different DAQ system configurations possible with minimal effort
- Automated procedure minimizing probability for mapping errors
- Maximum utilization of DAQ System (net operating hours)

Cons

 Additional HW necessary (e.g.T-ID board)

TEDS Setup for transducers

Pros

- Setup data tightly assigned to transducer
- Quick configuration of frequent changing setups
- Automated setup and e.g. check for calibration validity possible.
- Maximum utilization of DAQ System (net operating hours)

Cons

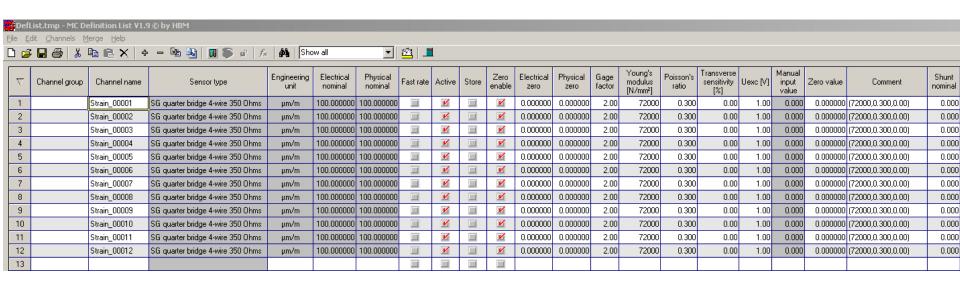
 Additional HW necessary (TEDS transducers and DAQ system supporting TEDS)

4) Configuration Examples:

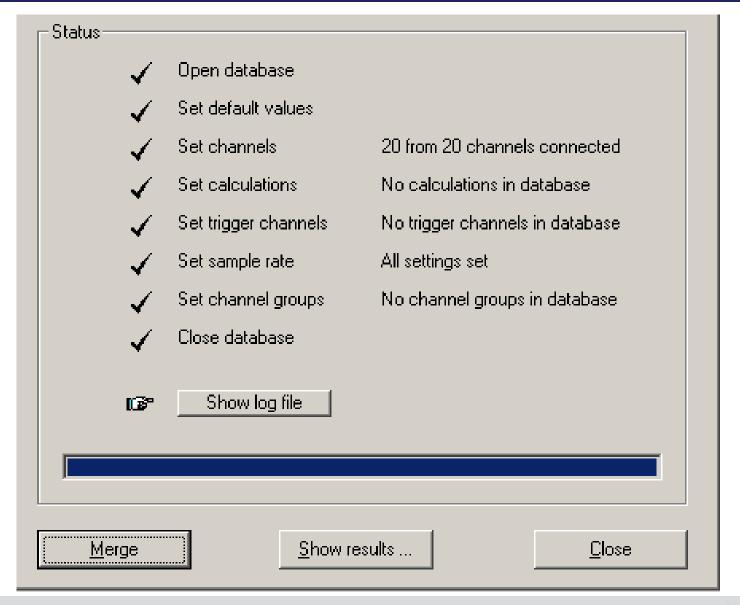
- 1. Example: Manual mapping
- 2. Example: Wiring based mapping
- 3. Example: Ident based mapping e.g. T-ID
- 4. Example: TEDS based setup for transducers

4) Example: Manual input of configuration data

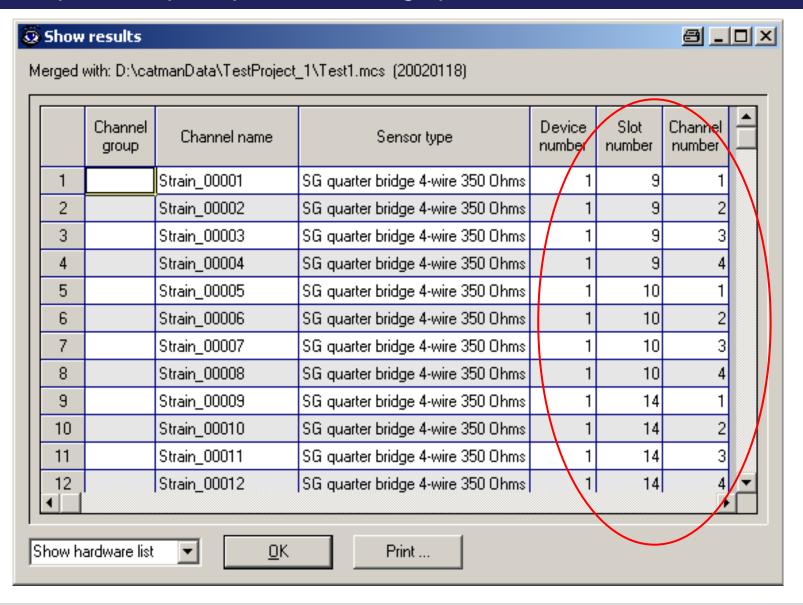
	Name	Sensor type ■	Exc	Filter 🛒	Gage	Bridge	Wiring comp.	Electrical zero	Physical zero	Electrical nom	Physical nom	Engineering
1-1-1	SR01	SG quarter bridge 3-wire 350 Ohms	1 V	Be 5 Hz	: 2	1	NA	. 0	0	4000	4000	μm/m
1-1-2	SR02	SG quarter bridge 3-wire 350 Ohms	1 V	Be 5 Hz	: 2	1	NA	. 0		4000	4000	µm/m
1-1-3		SG quarter bridge 3-wire 350 Ohms				1	NA	0		4000		µm/m
1-1-4	RR01A	SG quarter bridge 3-wire 350 Ohms	1 V	Be 5 Hz	: 2	1	NA	0		4000		µm/m
1-1-5	RR01B	SG quarter bridge 3-wire 350 Ohms	1 V	Be 5 Hz	: 2	1	NA	. 0		4000	4000	µm/m
1-1-6	RR01C	SG quarter bridge 3-wire 350 Ohms	1 V	Be 5 Hz	: 2	1	NA	0		4000	4000	µm/m
1-1-7	nc_01	SG quarter bridge 3-wire 350 Ohms	1 V	Be 5 Hz	: 2	1	NA	0		4000		µm/m
1-1-8	nc_02	SG quarter bridge 3-wire 350 Ohms	1 V	Be 5 Hz	: 2	1	NA	. 0		4000		µm/m


	Name	Max. prediction	Upper trigger	Lower trigger	Tolerance %	Software scaling	Zero enable	Zero value	Auto CAL	Ref. x channel	Sensor ID
1-1-1	SR01	4000	0	0	0		ON	798.271	OFF		AA000000334BEE05
1-1-2	SR02	4000	0	0	0		ON	789.625	OFF		4200000033494F05
1-1-3	SR03	4000	0	0	0		ON	379.792	OFF		5F000000336B0105
1-1-4	RR01A	4000	0	0	0		ON	671.271	OFF		C10000003319E205
1-1-5	RR01B	4000	0	0	0		ON	1343.44	OFF		7B00000033572005
1-1-6	RR01C	4000	0	0	0		ON	899.2291	OFF		2300000033663D05
1-1-7	nc_01	4000	0	0	0		ON	0	OFF		8E00000052EDEA72
1-1-8	nc_02	4000	0	0	0		ON	0	OFF		8E00000052EDEA82

	Name	Ref. x channel	Sensor ID	Sensor description	Descriptor file	Comment	Slot≖	Amplifier	Connector	Serial number	
1-1-1	SR01		AA000000334BEE05				1	ML 801	AP 814	099474020112;097	176007
1-1-2	SR02		4200000033494F05				1	ML 801	AP 814	099474020112;097	176007
1-1-3	SR03		5F000000336B0105				1	ML 801	AP 814	099474020112;097	176007
1-1-4	RR01A		C10000003319E205				1	ML 801	AP 814	099474020112;097	176007
1-1-5	RR01B		7B00000033572005				1	ML 801	AP 814	099474020112;097	176007
1-1-6	RR01C		2300000033663D05				1	ML 801	AP 814	099474020112;097	176007
1-1-7	nc_01		8E00000052EDEA72				1	ML 801	AP 814	099474020112;097	176007
1-1-8	nc_02		8E00000052EDEA82				1	ML 801	AP 814	099474020112;097	176007


4) Example: Test point plans and merge procedure

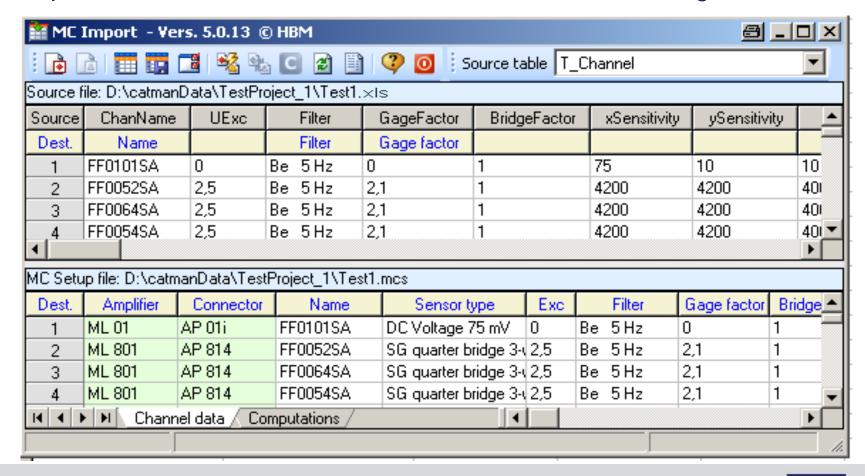
- Input of all test specific transducer and S/G parameters
- Meaningful definable default values
- Includes channel grouping
- Definition of look-up tables for Sensor Type



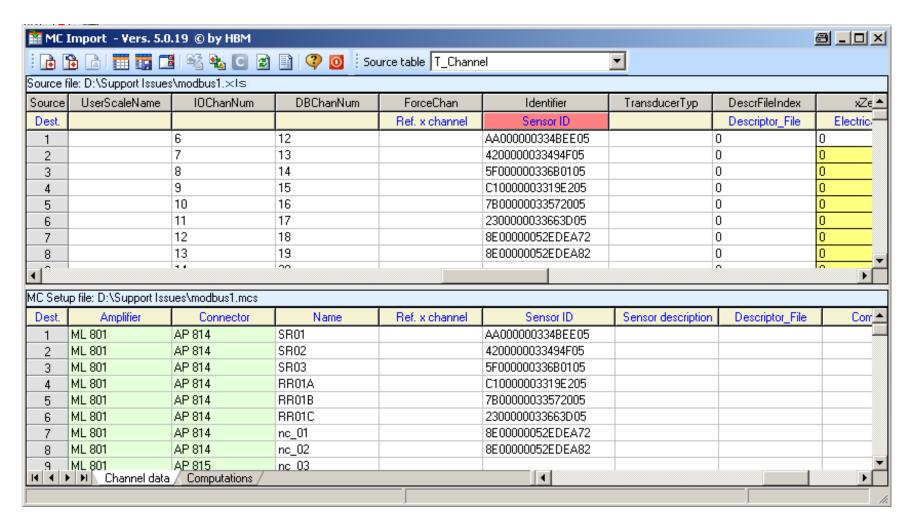
4) Example: Test point plans and merge procedure

4) Example: Test point plans and merge procedure

4) Example: Import of configuration data from database or Excel sources


- TID (Transducer Identification) can be read out and put into an MS-Excel directly with a USB-to-1-wire adapter
- TID code becomes part of the test database
- TID is part of the setup file
- Import can be done according to the TID codes

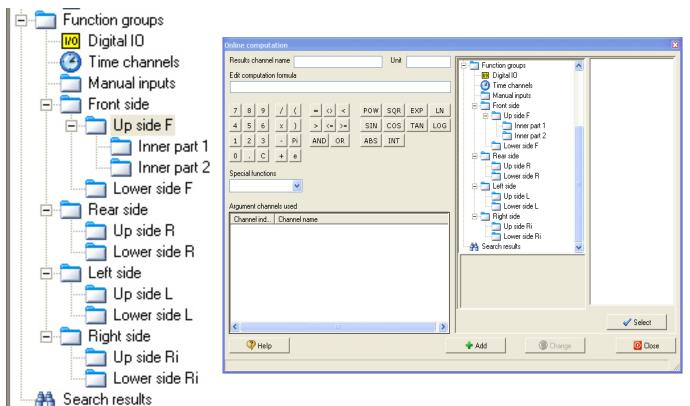
4) Example: Import of configuration data from database or Excel sources

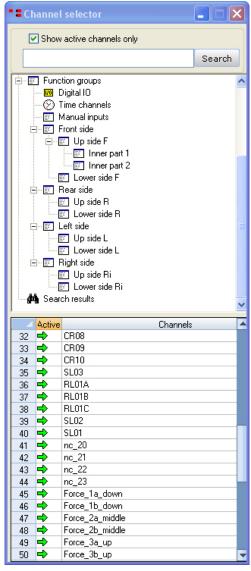

- Assignment of source to destination columns
- Import data using drag & drop
- Update function available if source data have been changed

4) Example: Import of configuration data from database or Excel sources

Import with T-ID mapping

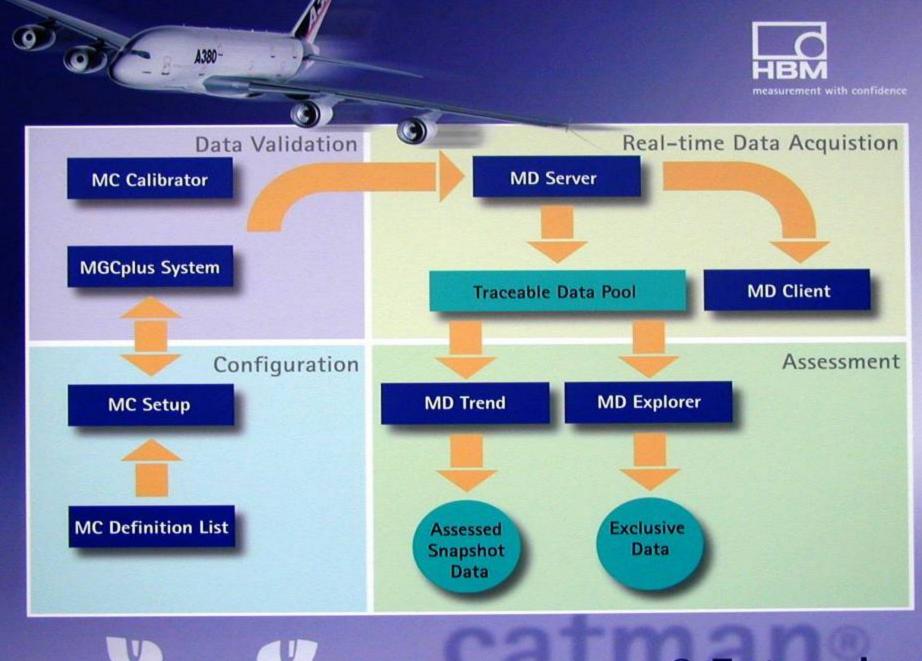
4) Example: TEDS configuration for transducers

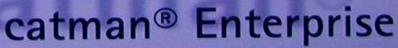




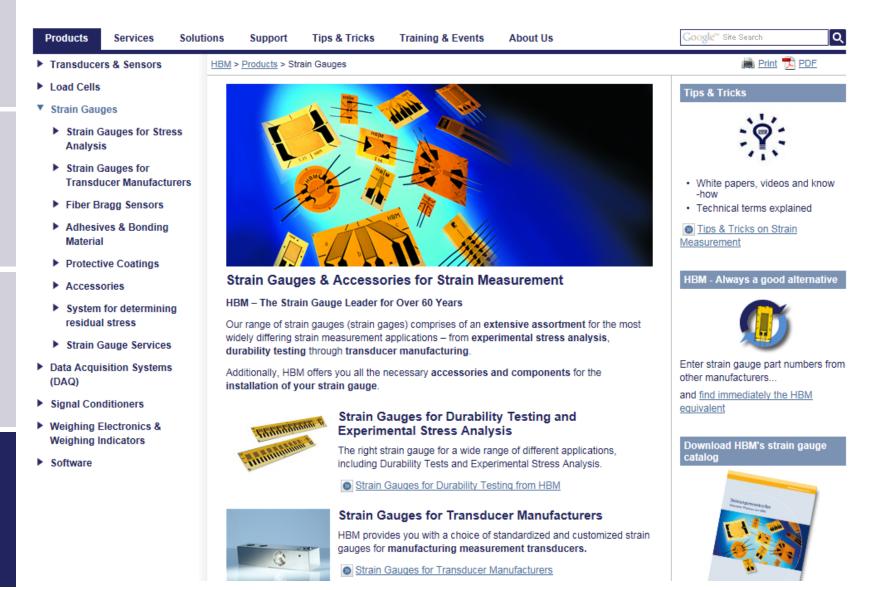
5) Verification of configuration

Clearly arranged channel configuration

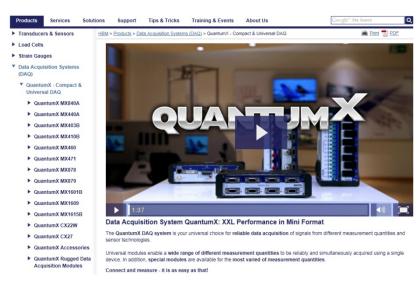



5) Verification of configuration

- Wiring check function
- Hardware internal shunt resistors
- Checking the whole system with one mouse click



Save costs and time with high channel count test systems with:


- Flexible data exchange with customer test setup files
- Import and export functionality with automatic channel assignment
- Use of TEDS and TIDs to increase safety in setup and configuration
- Avoid manual input of data as far as possible
- Use of automated channel and wiring check functions

→ <u>www.hbm.com/strain</u>

→ www.hbm.com/quantumx

→ www.hbm.com/mgcplus

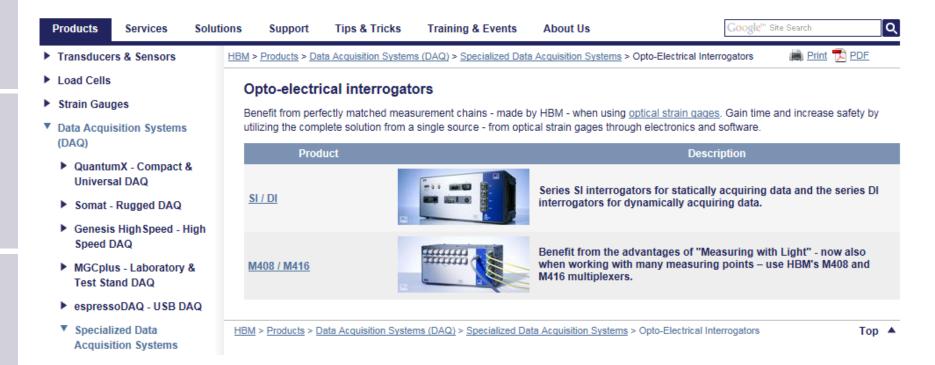
Fatigue And Durability

Production Software

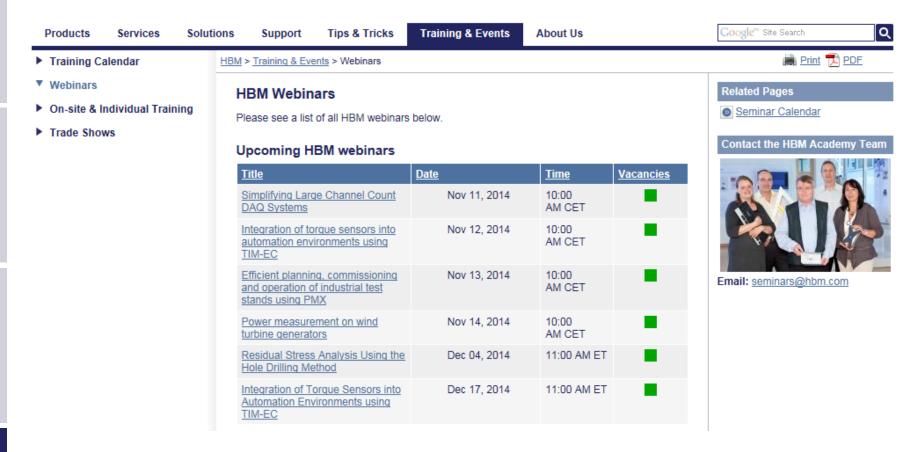
Weighing Software

Software

www.hbm.com/catman


Connect, Measure, Visualize, and Analyze with Ease

- · Instant and automatic sensor identification via TEDS and sensor database
- . Ease of use: press "START" and get your results
- · Many visualization tools for your reports
- Purpose-built support of HBM measuring amplifiers
- · Easy integration with video files
- · Many built-in mathematical and analysis functions
- · Scripts and auto sequences for automated analysis and test execition
- · Fast export into commonly used data formats for post-processing and analysis



- · Enhanced post process functionality
- · TEDS Editor integrated in sensor database
- QuantumX firmware version 4.0 supported
- · Allied Vision GigE cameras supported
- · New waterfall diagram to visualize FFT series over time

→ www.hbm.com/interrogators

→ www.hbm.com/webinars

Any questions?

Please contact us for further questions.
 We look forward to your email: emarketing@hbm.com

Or email the speaker directly: <u>rolf.mendel@hbm.com</u>