

Welcome to the webinar on "How to get the most out of TEDS (Transducer Electronic Data Sheets)"

The

Bild 1.14: Foto und Zeichnung des Meßkörpers des ersten in Deutschland industriell hergestellten Kraftaufnehmers [1.31] (Nemtraft 24.1, Genauiskeitsklosse 0.2 %, Herstellungsjahr 1936)

Organisational Information

- To enable **audio**, activate your PC **speakers** or connect **headphones** to your PC.
- All participants' **microphones** are **muted** during the webinar.
- If you have any questions, please use the '**Questions and answers**' window.

- Questions will be answered **at the end** of the presentation.
- We will **email the presentation** to you after the webinar.
- Moreover, the webinar is being **recorded** and will soon be made available on our website.

Presenter

- Thomas Kleckers
- Joined HBM in 1992 (Strain Gauge Development)
- 2008 Product Manager Force Sensors
- Education: Study of Phyiscis at University of Applied Sciences Duisburg

Thomas Kleckers Product Manager Force Sensors

E-Mail: thomas.kleckers@hbm.com

Agenda

- 1. TEDS Basics
- 2. Sensor characteristics and TEDS
- 3. Different classes of TEDS
- 4. Plug and play solutions

TEDS Basics

Fundamental procedure of a measurement:

- 1. Mounting of the measurement devices
- 2. Set up of the instrument
- 3. Measure
- 4. Post process jobs
- 1. Set up of the instrument.....

in case of strain gauge based sensors you need to type into your software:

- Rated output
- Supply voltage
- Serial number
- Capacity
- Correct filter
- Shunts....

- Professional personal required
- Mistakes may occur in any case
- Time consuming

TEDS Basics

TEDS means "Transducer Electronic Data Sheet"

- A very small printed circuit board is integrated in the sensor.
- The sensor characteristics are stored on a chip on this PCB.
- If the sensor is connected to a DAQ system with TEDS functionality, the setup of the instrument is done automatically.

- **NO** professional personal required
- **NO** Mistakes may occur in any case
- **NOT** Time consuming

TEDS Basics

Production lines:

- Replacement of a sensor is easy
- No special sensor knowledge required

Testing:

- No typing errors
- Time Saving process
- Sensors used under conditions
 of calibration

IEEE 1451.4 – The Standard defines the way that the information is stored in the memory chip

History

- ➔ HBM joined the working group from the start (together with other leading manufacturers)
- ➔ Officially valid since May 2004

Content of the IEEE 1451.4

How to connect a TEDS Data structure of a TEDS

All relevant data are organized in so called templates.

The first bits are the "Basic TEDS"

- Manufactor ID
- Sensor Series
- Version Letter
- Version Number
- Seriennummer des Sensors

IEEE1451dot4 Manufacturer List Fi TDL_Version_Number 2						
Version 2						
0x0001, Unknown manufacturer						
0x0011, Bruel & Kjaer						
0x0012, The Modal Shop, Inc.						
0x0013, Kistler Instrument Corpora						
0x0014. Macro Sensors						
0x0015, Wilcoxon Research						
0x0016, Endevco Corporation						
0x0017, PCB Piezotronics, Inc.						
0x0018, G.R.A.S. Sound &: vibra						
0x0019, Larson Davis						
0x001A, Key Transducers, Inc.						
0x001B, Oceana Sensor Technologies						
0x001C, Entek TRD						
0x001D, Scitefair International, 1						
0x001E, National Instruments						
0x001E, HBM						
0×0020 TEAC						
0x0021 RTON CO						
VAUVEL, KIUN CU.						

The first bits are the "Basic TEDS"

Template ID	Name		
25	Accelerometer & Force		
26	Charge Amplifier (Acceleration)		
27	Microphones		
28	Microphones with amplifiers		
29	Capacitive Microphones		
30	High Level output Sensors		
31	Current Loop Sensor		
32	Resistance Sensors		
33	Bridge Sensors		
34	LVDT / RVDT		
35	Strain Gauges		
36	Thermocouple		
37	Resistance Temperature Detectors		
38	Thermistor		
39	Potentiometer		
43	Charge Amplifier (Force)		
41	Calibration Curve (Polynominal)		

0 kN = 0 mV/V 5 kN = 2.01221 mV/V

<u>Content of a TEDS</u> (in Case of a load cell)

- Input range of the load cell
- Electrical output
- Supply voltage
- Calibration date
- Calibration Initials

Hardware: Wiring of the TEDS chip

The two ways of TEDS connection given in the IEEE1451.4:

Class 1 Sensors:

The sensor lines are used for both: Data Transfer and measurement

The two ways of TEDS connection given in the IEEE1451.4:

Class 2 Sensors:

Reading of TEDS data and measurement modes are independent from each other

Reading Data & Measurement at the same time!

Class 2 Bridge Sensors need **eight** wires

- Infrastructure of production lines and test rigs is normally **six** wire for load cells.
- Requirement for cables to be used for bridge sensors are pretty challenging. Very good solutions are available for six wire connection.

Solution in the upcoming Standard: Class "3" Bridge Sensors

Full bridge

wires

Voltage Supply (+)

Zero – Wire TEDS module: HBM Draft

Solution 1: Integration in a sensor

> The TEDS has to be mechanically connected to the Sensor!

PCB for TEDS integration into a sensor.

Very best solution, as plugs at the sensor can be used.

20 | C O N F I D E N T I A L

Solution 2: Integration in the plug

> The TEDS has to be mechanically connected to the Sensor!

C10 versions and order numbers

Preferred version, available at short notice

The order numbers for preferred types are 1_C10/..., the order numbers for customer specific versions are K-U10M....

Code	Measuring range	Order No.
2k50	2.5 kN	1-C10/2.5kN
5k00	5 kN	1-C10/5kN
10k0	10 kN	1-C10/10kN
25k0	25 kN	1-C10/25kN
50k0	50 kN	1-C10/50kN
100k	100 kN	1-C10/100kN
250k	250 kN	1-C10/250kN
500k	500 kN	1-C10/500kN
1M00	1 MN	1-C10/1MN

Number of	Characteristic	Calibration Transduce	Transducer	Mechanical design	Plug protection	Electrical connection	
measuring bridges	value		Identification			Bridge A	Bridge B
Single bridge	Not adjusted	100 %	Without TEDS	With adapter	Without	Bayonet conn	ector
SB	D	1	S	w	U	В	
Double bridge	Adjusted	50%	With TEDS	Without adapter	With	Threaded con	nector
DB	J	5	т	D	P	G	
						Fixed cable, 6	6 m
к							
Fixed c						Fixed cable, 1	5 m
						v	

Versions and ordering numbers

K-U2B-

Code	Measuring range	Ordering number	The ordering numbers shown in gray are preferred typ				
500N	500 N	1-U2B/500N	with free ends and without TEDS transducer identificat				
001K	1 kN	1-U2B/1KN	The example below describes a U2B with a capacity of kN, 12 m connection cable, fitted SUB-HD plug for con-				
002K	2 kN	1-U2B/2KN	nection to the QuantumX amplifier and TEDS transduc identification chip.				
005K	5 kN	1-U2B/5KN					
010K	10 kN	1-U2B/10KN					
020K	20 kN	1-U2B/20KN					
050K	50 kN	1-U2B/50KN					
100K	100 kN	1-U2B/100KN					
200K	200 kN	1-U2B/200KN					

Γ	Cable length	Plug version	Transducer identification
	3 m 03M0	Free ends Y	With TEDS T
	6 m 06M0	15-pin Sub-D plug F	Without TEDS S
	12 m 12M0	Plug MS3106PEMV N	
	20 m 20M0	Plug 15-pin Sub-D Q	
	30 m 30M0	RJ45 plug, 8-pin, EMC shielded E	
050K-	12M0	F	т

Versions and ordering numbers

Code	Measuring range	Ordering number
0050	50 N	1-U9C/50N
0100	100 N	1-U9C/100N
0200	200 N	1-U9C/200N
00K5	0.5 kN	1-U9C/0.5KN
01k0	1 kN	1-U9C/1KN
02k0	2 kN	1-U9C/2kN
05k0	5 kN	1-U9C/5kN
10k0	10 kN	1-U9C/10kN
20k0	20 kN	1-U9C/20KN
50k0	50 kN	1-U9C/50KN

The ordering numbers shown in gray are preferred types, they can be delivered rapidly. All force transducers with 1.5 m cable, open ends and without TEDS.

The order no. for the preferred types is 1-U9C ...

The order no. for customer-specific designs is K-U9C-...

The ordering number example K-U9C-05k0-12m0-F-T shown further below refers t	0
a: U9C, 5 kN nominal (rated) force with 12 m cable, 15-pin Sub-D connector and TED	S

	Cable length	Plug version	Transducer identification
	1.5 m 01m5	Free ends Y	With TEDS T
	3 m 03m0	15-pin Sub-D connector F	Without TEDS S
	5 m 05m0	MS3106PEMV connector N	
	6 m 06m0	15-pin Sub-HD connector Q	
	7 m 07m0		
	12 m 12m0		
	1	1	
K-U9C- 05k0-	12m0-	F-	Т

All cable lengths can be combined with all plugs.

TEDS can only be ordered in conjunction with a plug option. It is not possible to combine TEDS and free cable ends.

Additional information

More information on Force Measurement can be found on our website:

www.hbm.com/force

Force Sensors, Transducers, & Load Cells [N]

HBM Force Sensors and Force Transducers with strain gauge or piezo technology measure static and dynamic tensile and compressive loads - with virtually no displacement.

Force Sensors & Load Cells [N]

Additional information

Find all upcoming webinar dates here:

www.hbm.com/webinar

Upcoming Webinars

HBM offers free live and recorded webinars presented by our industry experts, covering a wide range of topics. Our webinars are available at different times around the world - register now for these webinars during a time that best fits your schedule. We look forward to seeing you online.

North America - Eastern Time (ET)

Introduction to Strain Gauges

Tuesday, April 7, 2020 🕒 2:00 PM ET

This webinar will provide an introduction to the theory and

practical installation and use of strain gauges.

15-Minute Lunch & Learn: Electric Power Testing

Europe - Central European Time (CET)

Back EMF Measurements for End of Line Motor Validation

- Tuesday, April 21, 2020 🕒 2:00 PM ET
 - Tuesday, April 21, 2020 🕒 3:00 PM CET

This webinar will discuss using back emf measurements to characterize and validate motors at the end of an assembly line.

Any questions?

Any questions?

- If you have any questions, please do not hesitate to contact us: webinar@hbm.com
- Or email the presenter directly: <u>thomas.kleckers@hbm.com</u>

Thank You

CONFIDENTIAL

www.hbkworld.com | © HBK - Hottinger, Brüel & Kjær | All rights reserved