

eDrive NVH HBM eDrive Testing

Oct 2019

Agenda

- 1. eDrive overview
- 2. Challenges in electric propeller testing
- 3. Measuring high fundamental frequencies
- 4. System level electric aircraft tests
- 5. Electro-mechanical aircraft tests
- 6. High voltage testing

HBK – merger of two great companies into one test and measurement powerhouse

Introduction to Vibration In Electric Machines

Simple Measurement Chain - Electric & Mechanical Measurements

HOTTINGER BRÜEL &

Motor construction – Sources of vibration

- Torque follows the envelope of AC excitation
 - Slow speed ripple proportional to electrical frequency
 - Function of winding distribution
- Permanent magnets interact with slot teeth
 - Magnets want to stick to iron
 - Function of magnets
 - Function of slots
- Forces not in the direction of torque can excite housing

Single motor pole for a PM machine highlighting iron slots and widnings

Inverter operation

- Inverter often creates AC with a Pulse
 Width Modulated voltage
 - Pulses of different length create a sine wave
 - Unequally timed pulses result in multiple frequencies of NV

^{new} 50.0 V

u 1 27.24 V 12.38 V

i 1 421.2 A 695.4 A

20.40 N

- PWM voltage → PWM current → PWM Magnet → PWM torque → PWM NV
 - Noise and vibration at switching rate
- Many more controls than PWM

Three Phase Machine Electrical Harmonics

Third harmonics for phases 1, 2, 3 all coincide when superimposed on the fundamental three-phase waveforms.

HOTTINGER BRÜEL

Fundamental	A 0°	B 120°	C 240°	A-B-C
3rd harmonic	A' 3 x 0° (0°)	B' 3 x 120° (360° = 0°)	C' 3 x 240° (720° = 0°)	no rotation
5th harmonic	A " 5 x 0° (0°)	B " 5 x 120° (600° - 720° - 120°) (-120°)	C " 5 x 240° (1200° - 1440° - 240°) (-240°)	C-B-A
7th harmonic	A "" 7 x 0° (0°)	B "" 7 x 120° (840° - 720° + 120°) (120°)	C "' 7 x 240° (1680° - 1440° + 240°) (240°)	A-B-C
9th harmonic	A'''' 9 x 0° (0°)	B "" 9 x 120° (1080° = 0°)	C'''' 9 x 240° (2160° = 0°)	no rotation
Direction of rotation for 3 phase motor				

harmonics

- Sinusoids eliminate 2n harmonics
- 3 phases eliminates 3n harmonics for balanced load
- Positive harmonics (ABC) are in the direction of rotation
- Negative harmonics (CBA) are in the negative direction
 - Cause reverse torque

eDrive testing

Characterizing NVH for Electric Machines

eDrive Value

- The HBK **eDrive solution** streamlines and simplifies data collection of electro-mechanical signals
- High accuracy power measurements
- Future proof your testing capabilities
- Auditable Tests
- Full data streaming / raw data collection Know where your results came from
- Simplifies measurement chain
 - Sensors \rightarrow Aquisition \rightarrow Software

Inverter Voltage Influence on Mechanical Torque

- Torque has frequency component
 - AC excitation
 - Slotting effects
- Control type effects torque
 - PWM excitation on the left
 - 6 step excitation on the right
- These effects will result in NV at the machine and down stream

Voltage, current, and torque for a control change in a 3 phase machine highlighting the dependence of torque on excitation

•

Current Causes Vibration

Or is it?!?!?!?

- Some machine vibrations are • caused by the current
- Rotational frequency shows ۲ vibration from the harmonics of the fundamental
- High frequency vibration from ۲ switching
- Very similar to the torque ۰ signature
- Torque sensors limited to 6kHz ٠ bandwidth

12k

Frequency spectrum comparing current and vibration for a steady state machine operation

malilarrad

Torque Loading Influences Frequency Spectra

- Fundamental shows a torque dependence
- Inverter signature shows strong torque dependence
- Gear mesh orders also enhanced under high torque
- Switching is always there but has stronger presence with loading

Frequency spectrum comparing current and vibration for a steady state machine operation at 3 loading points

Ramps & Spectrum Plots

- Ramp up and down of speed at a given torque/ control
- Plot of amplitude (z), vs frequency (x), vs speed (y)
- Easy way to graphically see the influence of speed on current/vibration
- Follow fundamental & harmonics

Current

Spectrum graph showing vibration bands and current bands for the rotational frequency of a ramp test

Why Measure Both?

Benefits of combined testing

- Single test to do both
 - Reduction costs
- Communication between groups
 - Faster development
 - Easier communication to vehicle simulation
- Sound design
- Fatigue characterization
- Failure testing
- Resonance tracking
- End of line characterization

Propeller motor startup with load and vibration measurements

eDrive testing

Case Study

Characterization of a Traction Motor

Test Machine

- Three phase traction motor
- PM & wound field excitation
- Eight poles

Tests Run

- Point by point efficiency map
- Ramps at different loadings

Measured Quantities

- Inverter voltage & current
- Torque and Speed
- Vibration
- Noise

Acoustic Camera picture for the DUT at IIT

eDrive testing

Efficiency Mapping With Vibration

Efficiency Mapping

- Series of static torque and speed points where efficiency is measured
- Record many signals
 - torque & speed
 - Voltage & current
 - Control
 - Vibration
- Can monitor how control effects vibration
 - Avoid certain states
 - Faster communication with other teams

Efficiency & Vibration Mapping

- From these acquired points a "Efficiency Map" is often generated
 - X Speed (RPM)
 - Y Torque (Nm)
 - Contour Efficiency %
- Gives an idea of where the optimal operation is
- Can also be plotted for RMS vibration
 - Shows general trend of the vibration
 - Identifies hot spots
- Allows for analysis of system level interactions

eDrive testing

Ramps With Efficiency

Speed Ramp Testing

- A ramp test involves setting a fixed torque and ramping speed
- Record:
 - Accelerometers
 - Microphones
 - Torque & Speed
 - Voltage, Current, Efficiency
- Understand how speed and loading effects vibration
- Electrical allows us to also include control, efficiency, and state into these tests

Speed Ramp of DUT recording V, I, M, n, and accelerometers

Frequency spectrum from Ramps Test

- A ramp test is often portrayed with a spectrogram showing:
 - X Frequency (Hz)
 - Y Speed (RPM)
 - Contour Amplitude
- 3 ramps are plotted. 0, 13, 26 Nm from 0 to 3k RPM
- Acceleration and current are shown
- We can see fundamental, switching frequency, and field frequency shown in both

Full spectrum plots of acceleration and current for 3 loading points during ramp tests from 0-3000RPM

²⁵ spectra

Fundamental Frequency Current and Vibration Spectrum

- Zoom on the fundamental spectra for vibration and current
- The fundamental of current has a majority of the amplitude
- Fan blades show the correlation between current and vibration
- Interesting fan around 500 in the current → Possibly causes vibration resonance

Fundamental spectrum plots of acceleration and current for 3 loading points during ramp tests from 0-3000RPM

Noise Analysis of the Machine

- Test took place in acoustically noisy environment
- Accel has superior signal to noise
- Some orders show
- Clear traces of switching noise
- For this environment, inferring noise level based on prior acceleration/mic correlation would be best

Spectrum plots of acceleration, microphone, and current for full loading ramp tests from 0-3000RPM

Electrical Analysis of Motors and Drives During Sweeps

- Representative of real-world situations to understand transient behavior
- Efficiency can be measured with a dynamic measurement technique
 - Cycle Detect
 - Available for live traces
 - Available for real time feedback to automation system
- Opportunity to understand how calibration influences:
 - Efficiency
 - Noise

Ramp test showing state, efficiency, noise, vibration, and control variables during a ramp test.

Efficiency from ramps

- Ramps efficiency can be used to plot efficiency
 - Requires dynamic power measurement
 - Requires high bandwidth torque
- Results can be used by NVH to gauge how their changes effect efficiency
- Close correlation to point by point map

eDrive Solution

Simple Measurement Chain - Electric & Mechanical Measurements

Measurements taken with one system

- Voltages
- Currents
- Accelerometers
- Microphones
- Torque
- Speed
- Temperatures
- CAN
- Pressure
- Flow
- Force
- Calculations for
- 31 **Power & Efficiency**

eDrive: The HBM components for advanced power analysis

- GEN DAQ configurable, expandable mainframes
 - Up to 51 channels for power measurements (102 U&I)
 - Continuous streaming or **storage per set point in real time**
 - Support for up to 6 torque transducers (12 as special)
- 6 channel input card (= 3 power channels)
 - Voltage up to +/- 1000 V, current via CT's or clamps
 - Sample rate 2 MS/s @ 18 bit, typ. power accuracy 0.02%
 - Option: 5 kV_{rms} differential probe, 0.1% accurate
 - Plug-in artificial star adapter, cascadable
 - Burden resistors for CT usage
 - On board DSP with user programmable math
- High accuracy HBM torque transducer (with speed)
 - Accuracy 0.02%
- Options
 - EtherCAT interface for **real time data transfer** to automation
 - **Temperature** satellite, 1 kV isolated, 8 channels
 - CAN input
 - Various inputs for strain, vibration, temp.....
 ...and also "scope cards" up to 250 MS/s

eDrive testing – Mission statement

Like other power analyzers, the HBM eDrive computes power values and efficiency and displays these in real time.

Unlike other power analyzers, the HBM eDrive can store a variety of signals & raw data - like a high end DAQ - for review, verification and advanced analysis such as efficiency mapping or dq0 transformation.

Thus it does not only give you "efficiency", but it also <u>helps you to improve the efficiency</u>.

It also offers a complete solution acquiring more than 3 phases, complex setups, temperatures, CAN and vibration as well.

For system integration, it offers modern integration tools including real time result transfer and accelerated motor mapping capabilities to save test time.

Questions?

Mitch Marks Business Development at HBK -Hottinger, Brüel & Kjær

eDrive Information

