

2022 eDrive User Group Meeting Digital signal processing techniques to identify faults and maximize efficiency in EVs

Kurt Munson HBK

nCode GlyphWorks for post-processing measured data

Agenda

- 1. Introduction to digital signal processing (DSP)
- 2. Using DSP to calculate EV powertrain efficiency
- 3. Using DSP to identify EV faults
- 4. Questions at any time!

What is Digital Signal Processing?

- The time-varying signal is made up of discrete points through time
- ▲ DSP is the manipulation and transformation of this data through computational processing

Time (s)	9 RF_SHK_LD LB
0.00000	15.91
0.00200	14.52
0.00400	11.14
0.00600	9.348
0.00800	6.613
0.01000	4.177
0.01200	4.177
0.01400	4.724
0.01600	5.768
0.01800	7.409
0.02000	10.14
0.02200	12.08
0.02400	13.28
0.02600	14.67
0.02800	15.22
0.03000	16.46
0.03200	16 56

nCode software for DSP

- Intuitive, graphical interface for standardized analysis of measured data
- Contains wide range of DSP and vibration analysis tools
- A Natively supports 40+ binary files types
- Save and easily distribute and update processes

The frequency domain

▲ What frequencies are present in my signal?

The value of DSP in a nutshell...

Assess performance

Identify faults

nCode GlyphWorks enables EV engineers to:

- **Analyse** the huge quantities of measured electric time series data.
- **Quantify** power, efficiency, and durability.
- **Compare** designs, configurations, control strategies or materials.

Efficiency of an Electric Vehicle

- Battery DC
- Inverter DC-AC
- Motor AC
- Transmission

Efficiency of an Electric Vehicle

EV efficiency and performance analysis

What is the optimum gear ratio for the gearbox?

- ▲ An electric motor test rig made of:
 - motor under test + controller
 - dynamometer
 - sensors and recorder
- Data acquisition
 - Operate the machine through 35 torque and speed combinations
 - Record a 1 sec snapshot of data for each torque/speed condition
- Post-data acquisition analysis
 - Analyze all 35 runs: 10+ million data points in total per channel (35s @ 0.5MHz), 10 channels in total
 - Produce an efficiency map

Software demonstration: nCode GlyphWorks for efficiency analysis

The value of DSP in a nutshell...

Assess performance

Identify faults

nCode GlyphWorks enables EV engineers to:

- **Analyse** the huge quantities of measured electric time series data.
- **Quantify** power, efficiency, and durability.
- **Compare** designs, configurations, control strategies or materials.

Faults in electric motors

IEEE survey on faults in electric motors

Thorsen and Dalva, "A Survey of Faults on Induction Motors" IEEE Transactions on Industry Applications

Fault location	Causes	Consequences
Bearings	 Misalignment, imbalance, etc. Current passing through bearing 	VibrationLoss of efficiency
Windings	 Interturn shorts due to excessive heat and current 	VibrationFire
Rotor	 Demagnetization due to heat 	 Loss of efficiency Torque ripple Vibration

To observe the early signs of premature durability failure, we need to:

- Reduce large data sets to key metrics like statistics, histograms, and spectra
- Use analysis techniques to identify changes from the expected behavior

Identifying electric motor faults

Interturn shorts

Identified by increased harmonic content and vibration

Demagnetization due to heat

Loss of efficiency shown by higher voltage requirement for a given speed and torque

Inverter.out.Frequency (Hz)

Identifying EV motor faults

What's causing loss of performance?

- ▲ An electric motor test rig made of:
 - motor under test + controller
 - dynamometer
 - sensors and recorder
- Data acquisition
 - Operate the machine through 35 torque and speed combinations
 - Record a 1 sec snapshot of data for each torque/speed condition
- Post-Data Acquisition Analysis
 - Analyze all 35 runs: 10+ million data points in total per channel (35s @ 0.5MHz), 10 channels in total
 - Identify faults and their sources

Software demonstration: nCode GlyphWorks for fault detection

The value of DSP in a nutshell...

Assess performance

Identify faults

nCode GlyphWorks enables EV engineers to:

- **Analyse** the huge quantities of measured electric time series data.
- **Quantify** power, efficiency, and durability.
- **Compare** designs, configurations, control strategies or materials.

Thank You

Kurt Munson

kurt.munson@hbkworld.com

www.hbkworld.com | © HBK – Hottinger, Brüel & Kjær | All rights reserved