

# **Dynamic Power Measurement and Accelerated Efficiency Mapping**

Dr.-Ing. Alexander Stock



www.hbkworld.com | © HBK - Hottinger, Brüel & Kjær | All rights reserved

UNRESTRICTED

#### HBK – Who we are



#### Combined covering the complete measurement chain

Sensors | Data acquisition | Data preparation | Data evaluation | Engineering



#### As the product physics experts

We deliver valuable insights through three physical domains

space



ability and ultimate load



## Agenda

- 1. Electric power train
- 2. Conventional electric power calculation
- 3. Dynamic electric power approximation
- 4. Comparative measurements
- 5. Accelerated efficiency mapping
- 6. Conclusion



#### **Electric Power Train**





#### How to Measure Voltages and Currents

Recommendation for Power analysis [5,6]

- Voltages may be measured
  - against any arbitrary common reference potential r
  - Phase to phase with different reference phases
- Calculate phase to natural zero voltages  $u_{v0}(t)$ before analyzing power quantities
- Measure the line currents
- ✓ Zero-sum quantities for power analysis  $\sum_{v=1}^{n} i_v(t) = 0$   $\sum_{v=1}^{n} u_{v0}(t) = 0$



#### **How to Measure Voltages and Currents**

Phase to ground /

Phase to common arbitrary reference potential



| nverter.out.u_1 | ((2*RTFormulas.Inverter.out.u_1G)-RTFormulas.Inverter.out.u_2G-RTFormulas.Inverter.out.u_3G)/3 |
|-----------------|------------------------------------------------------------------------------------------------|
| nverter.out.u_2 | ((2*RTFormulas.Inverter.out.u_2G)-RTFormulas.Inverter.out.u_3G-RTFormulas.Inverter.out.u_1G)/3 |
| nverter.out.u_3 | ((2*RTFormulas.Inverter.out.u_3G)-RTFormulas.Inverter.out.u_1G-RTFormulas.Inverter.out.u_2G)/3 |

#### Phase to phase



| Inverter.out.u_1 | (RTFormulas.Inverter.out.u_12 - RTFormulas.Inverter.out.u_31)/3 |
|------------------|-----------------------------------------------------------------|
| Inverter.out.u_2 | (RTFormulas.Inverter.out.u_23 - RTFormulas.Inverter.out.u_12)/3 |
| Inverter.out.u_3 | (RTFormulas.Inverter.out.u_31 - RTFormulas.Inverter.out.u_23)/3 |



## **Conventional Electric Power Calculation**

Input power of the machine

9

- Measurement of the line currents and voltages
- Detection of the fundamental cycle (based on smooth current waveform)





#### **Conventional Electric Power Calculation**

Calculation of the instantaneous power [1-6]

$$p(t) = u_{10}(t) \cdot i_1(t) + u_{20}(t) \cdot i_2(t) + \dots + u_{n0}(t) \cdot i_n(t)$$

✓ Calculation of the active power as the average of the instantaneous power related to the fundamental period T [1-6] → fundamental period is defined by the previously determined



 Further cycle-based parameters, such as power quantities, RMS values, fundamentals, etc., may be implemented analogously



#### **Configuration of the ePower Suite**



HOTTINGER BRÜEL & KJÆR

#### **Automatically Created ePower Suite Formulas**

| Σ <b>44</b> |                  | START of Variable allocation | Θ |
|-------------|------------------|------------------------------|---|
| Σ <b>45</b> | Inverter.out.i_1 | Recorder_A.Inverter.out.i_1  | А |
| Σ <b>46</b> | Inverter.out.i_2 | Recorder_A.Inverter.out.i_2  | А |
| Σ <b>47</b> | Inverter.out.i_3 | Recorder_A.Inverter.out.i_3  | А |
| Σ <b>48</b> | Inverter.out.u_1 | Recorder_A.Inverter.out.u_1  | V |
| Σ <b>49</b> | Inverter.out.u_2 | Recorder_A.Inverter.out.u_2  | V |
| Σ 50        | Inverter.out.u_3 | Recorder_A.Inverter.out.u_3  | V |
|             |                  |                              | - |

Allocation of measured phase quantities

| Σ                     | 55 |                                     | Defining cycle parameters                                                                                                        |  |
|-----------------------|----|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| <mark>FOR</mark><br>Σ | 56 | Inverter.out.Cycle_source           | Recorder_A.Inverter.out.i_1                                                                                                      |  |
| <mark>FOR</mark><br>Σ | 57 | Inverter.out.Cycle_count            | 1                                                                                                                                |  |
| <mark>FOR</mark><br>Σ | 58 | Inverter.out.Cycle_level            | 0                                                                                                                                |  |
| Σ                     | 59 | Inverter.out.Cycle_hyst_mode        | 1                                                                                                                                |  |
| <mark>FOR</mark><br>Σ | 60 | Inverter.out.Cycle_hyst             | 5                                                                                                                                |  |
| <mark>FOR</mark><br>Σ | 61 | Inverter.out.Cycle_holdoff          | 0.001                                                                                                                            |  |
| <mark>FOR</mark><br>Σ | 62 | Inverter.out.Cycle_filter_type      | 1                                                                                                                                |  |
| <mark>FOR</mark><br>Σ | 63 | Inverter.out.Cycle_cutoff_frequency | 1000                                                                                                                             |  |
| <mark>FOR</mark><br>Σ | 64 | Inverter.out.Cycle_direction        | 0                                                                                                                                |  |
| <mark>FOR</mark><br>Σ | 65 | Inverter.out.Cycle_timeout          | 1                                                                                                                                |  |
| Σ                     | 66 | Inverter.out.Cycle_source_filt      | @HWFilter ( RTFormulas.Inverter.out.Cycle_source ; RTFormulas.Inverter.out.Cycle_filter_type ; RTFormulas.Inverter.out.Cycle_cul |  |
| Σ                     | 67 |                                     | End of cycle parameters                                                                                                          |  |
| <mark>FOR</mark><br>Σ | 68 |                                     | #endregion Cycle Parameters                                                                                                      |  |
| <mark>FOR</mark><br>Σ | 69 |                                     |                                                                                                                                  |  |
| <mark>FOR</mark><br>Σ | 70 |                                     | #region Cycle computation and Cycle check                                                                                        |  |
| Σ                     | 71 |                                     | START of Computing the CYCLE MASTER                                                                                              |  |
| Σ                     | 72 | Inverter.out.Cycle_Master           | @CycleDetect ( RTFormulas.Inverter.out.Cycle_source_filt ; RTFormulas.Inverter.out.Cycle_count ; RTFormulas.Inverter.out.Cycle_  |  |
|                       |    |                                     |                                                                                                                                  |  |

Cycle detection



#### **Automatically Created ePower Suite Formulas**

| Σ 101 |                  | As a first intermediate step the instantaneous power per phase is computed below        | Θ |                   |
|-------|------------------|-----------------------------------------------------------------------------------------|---|-------------------|
| Σ 102 | Inverter.out.p_1 | RTFormulas.Inverter.out.u_1 * RTFormulas.Inverter.out.i_1                               | W |                   |
| Σ 103 | Inverter.out.p_2 | RTFormulas.Inverter.out.u_2 * RTFormulas.Inverter.out.i_2                               | W |                   |
| Σ 104 | Inverter.out.p_3 | RTFormulas.Inverter.out.u_3 RTFormulas.Inverter.out.i_3                                 | W |                   |
| Σ 105 |                  | Then the total instantaneous power is the sum of the phase inst power // in [W]         | Θ |                   |
| Σ 106 | Inverter.out.p   | RTFormulas.Inverter.out.p_1 + RTFormulas.Inverter.out.p_2 + RTFormulas.Inverter.out.p_3 | W | Power Calculation |
| Σ 107 |                  | Then then mean over a cycle of each instantaneous power gives the active power below    | Θ |                   |
| Σ 108 | Inverter.out.P_1 | @CycleMean(RTFormulas.Inverter.out.p_1;RTFormulas.Inverter.out.Cycle_Master)            | W |                   |
| Σ 109 | Inverter.out.P_2 | @CycleMean (RTFormulas.Inverter.out.p_2; RTFormulas.Inverter.out.Cycle_Master)          | W |                   |
| Σ 110 | Inverter.out.P_3 | @CycleMean (RTFormulas.Inverter.out.p_3; RTFormulas.Inverter.out.Cycle_Master)          | W |                   |
| Σ 111 |                  | The sum of the active power per phase gives the total active power                      | Θ |                   |
| Σ 112 | Inverter.out.P   | RTFormulas.Inverter.out.P_1 + RTFormulas.Inverter.out.P_2 + RTFormulas.Inverter.out.P_3 | W |                   |
|       |                  | 1                                                                                       |   |                   |



# **Dynamic Electric Power Approximation**

Input power of the machine

14

- Measurement of the line currents and voltages
- Detection of the switching cycle (based on pulsed voltage waveform) [6,9]





UNRESTRICTED

### **Dynamic Method to Estimate Electric Power**

✓ Calculation of the dynamic active power as average of the instantaneous power related to the switching period  $T_s$  [6,9] → switching period is defined by the previously determined switching cycle



- This method is applicable for numerous PWM-methods
  - Provides an approximation of the conventional active power definition during steady state
  - **Combines** the information of the **instantaneous power** p(t) (during transients) and the **active power** P (during steady state) in a new dynamic active power definition  $P_{dyn}$
  - The quality of the approximation becomes better the larger T is compared to  $T_s$ , i.e.,  $f_s > f$ , resp.
  - It can be mathematically proven that the dynamic active power and the conventional definition of active power are analytically identical, see[6],...
    - 1. ... in the theoretical ideal case of infinitely high switching frequency
    - 2. ... certain restrictions are observed when generating the PWM



#### **Comparative measurements – startup of a PMSM**



# → Drastically increased dynamic and update rate of active power information

- No load acceleration from standstill to constant speed
- Due to causality, the first value of *P* can only
  be calculated after the first fundamental
  cycle is completed
  - $\rightarrow$  at this point, the startup is already finished
- *P*<sub>dyn</sub> is delayed only by one inverter switching cycle
  - $\rightarrow$  provides a representative dynamic

average of inst. power



#### Transition between different steady state operating points





- ▲ P and  $P_{dyn}$  are very similar during steady state  $f_s \approx 100 \cdot f$  for this measurement
- $\checkmark$  P<sub>dyn</sub> provides significantly more dynamic information
- $\rightarrow$  Precise active power approximation during steady state



## **Dynamic Fundamental Quantities**



18

Switching cycle-based averaging of the inverter output voltages, with  $v \in \{1,2,3\}$ 

$$u_{\nu r,\text{h1dyn}} = \overline{u_{\nu r}(t)}\Big|_{T_{\text{s}}} = \frac{1}{T_{\text{s}}} \cdot \int_{T_{\text{s}}} u_{\nu r}(\tau) \,\mathrm{d}\tau$$

Subtraction of the zero-sequence voltage

$$u_{\nu,\text{h1dyn}} = u_{\nu r,\text{h1dyn}} - \sum_{\mu=1}^{3} u_{\nu r,\text{h1dyn}}$$

→ Dynamic approximation of the fundamental waveforms



#### **Fundamental Space Vectors**



- → Dynamic space vectors may be used to verify and assess the quality of the inverter control
- → Fundamental dq0-Transform (Park-Transform) can be calculated

 Applying the space vector transformation (Clark-transformation) [4]

$$\begin{pmatrix} u_{\alpha h1, dyn} \\ u_{\beta h1, dyn} \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{pmatrix} \cdot \begin{pmatrix} u_{1h1, dyn} \\ u_{2h1, dyn} \\ u_{3h1, dyn} \end{pmatrix}$$

Calculate the magnitude or phase angle of the space vector

$$\hat{u}_{h1,dyn} = \sqrt{u_{\alpha h1,dyn}^2 + u_{\beta h1,dyn}^2}$$
$$\varphi_{h1,dyn} = \operatorname{atan2}(u_{\alpha h1,dyn}, u_{\beta h1,dyn})$$



#### **Dynamic RMS Values**



Image ref. [6]

▲ Assuming a balanced 3-phase system
 → RMS values are calculated from the approximated fundamental space vector magnitude

$$U_{\rm h1,dyn} = \frac{\hat{u}_{\rm h1,dyn}}{\sqrt{2}}$$

Same procedure for the current



## **Dynamic RMS Values & Power Quantities**



Dynamic (fundamental) active power

$$P_{\text{dyn}} = \overline{p(t)}\Big|_{T_{\text{S}}} = \frac{1}{T_{\text{S}}} \cdot \int_{T_{\text{S}}} p(\tau) \,\mathrm{d}\tau$$

- ✓ Dynamic (fundamental) apparent power  $S_{h1,dyn} = 3 \cdot U_{h1,dyn} \cdot I_{h1,dyn}$
- Dynamic (fundamental) reactive power

$$Q_{\rm h1,dyn} = \sqrt{S_{\rm h1,dyn}^2 - P_{\rm dyn}^2}$$



### **Accelerated Dynamic Efficiency Mapping**





#### Conventional method

- Steady state set-point values of speed and torque are driven sequentially
- Conventional active power and mechanical power are calculated based on the fundamental cycle
- Efficiency is calculated

#### Dynamic method

- Steady state state set-point values of speed are driven sequentially
- For each speed, the torque is ramped up continuously
- Active power and mechanical power are calculated based on the inverter switching cycle

#### Significant time savings!



#### **Accelerated Dynamic Efficiency Diagram**

#### **Conventional Method**

**Dynamic Method** 



#### High level of similarity and enormously reduced measurement time



## **Accelerated Dynamic Efficiency Mapping**

✓ Very small deviation between both methods
 → a small deviation from conventional method is inevitable

→ not suitable for the highest accuracy requirements, but:

Accelerated measurement (time reduced to 10%)

→ Very suitable / cost efficient for end of line tests (pass/fail)

- Could also be evaluated during WLTP measurement
  - → no additional efficiency measurement necessary

#### **Deviation of Conventional and Dynamic Method**





#### Summary

- $\checkmark$  Dynamic active power  $P_{dyn}$  was introduced as an additional new active power definition
- $\checkmark$  P<sub>dyn</sub> combines the advantages of instantaneous power p and active power P in a new quantities
- Jynamic active power calculation method may be transferred to other cycle-based parameters, such as RMS, reactive power etc.
- P<sub>dyn</sub> may be used to accelerated efficiency diagram measurements / save ressources and costs
- Efficiency mapping may be included in test procedures to be done anyhow (e.g., WLTP tests)
- Suitable method for real-time measurements fed back into control algorithms (power control on the inverter system, double-two level inverter [7], doubly-fed PM synchronous machine [8])



## Join us on YouTube and LinkedIn!











# **Bibliography**

27

- 1. DIN 40110–1: Wechselstromgrößen Zweileiter-Stromkreise. 03/1994.
- 2. DIN 40110–2: Wechselstromgrößen Mehrleiter-Stromkreise. 11/2002.
- 3. IEEE Std 1459<sup>™</sup>–2010: IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. 19. 03. 2010.
- 4. Teigelkötter, J.: Energieeffiziente elektrische Antriebe. Grundlagen, Leistungselektronik, Betriebsverhalten und Regelung von Drehstrommotoren. Wiesbaden: Springer-Vieweg, 2013.
- 5. Staudt, V.: "*Fryze Buchholz Depenbrock: A time-domain power theory*". In: International School on Nonsinusoidal Currents and Compensation 2008 (Łagów, Polen). IEEE, 2008, S. 1–12.
- 6. Stock, A.: "Messtechnische Analyse der Energieverluste von stromrichtergespeisten Antriebssystemen im nichtstationären Betrieb". Dissertation (submitted, not yet published). München: University of the German Federal Armed Forces, 2021.
- 7. Kowalski, T.: "Mess- und Betriebsverfahren von stromrichtergespeisten Drehfeldmaschinen mit supraleitende Statorwicklung". Dissertation. Universität der Bundeswehr München, 2019.
- 8. Stock, A.; Teigelkötter, J.; Staudt, S.; Kowalski, T.: *"The Doubly Fed Permanent Magnet Synchronous Machine as a Highly Efficient Drive System for Constant Speed Applications*". In: IEEE 11th International Conference on Power Electronics and Drive Systems (PEDS) (Sydney, Australia). IEEE, 2015.
- 9. Stock, A.; Teigelkötter, J.; Kowlaski, T.; Staudt, S.; Ackermans, P.; Lang K.: "Determination of active power on the basis of the switching frequency (Schaltfrequenzbasierte Wirkleistungsmessung)". Patent WO 2018/228655 A1. HBM Netherlands B.V. 20. 12. 2018.



# **Thank You**

Questions? Please don't hesitate to contact me...

alexander.stock@hbkworld.com



www.hbkworld.com | C HBK - Hottinger, Brüel & Kjær | All rights reserved

HBK

UNRESTRICTED