Montageanleitung

Deutsch

T10FS

Hottinger Baldwin Messtechnik GmbH Im Tiefen See 45 D-64239 Darmstadt Tel. +49 6151 803-0 Fax +49 6151 803-9100 info@hbm.com www.hbm.com

Mat.: 7-2001.1315

DVS: A0784-15.0 HBM: public

05.2015

Änderungen vorbehalten. Alle Angaben beschreiben unsere Produkte in allgemeiner Form. Sie stellen keine Beschaffenheits- oder Haltbarkeitsgarantie dar.

[©] Hottinger Baldwin Messtechnik GmbH.

1 1.1 1.2	Sicherheitshinweise In dieser Anleitung verwendete Kennzeichnungen Auf dem Produkt angebrachte Symbole	11 12
2	Ausführungen der Drehmoment-Messflansche	13
3	Anwendung	15
4	Aufbau und Wirkungsweise	16
5	Mechanischer Einbau	18
5.1	Bedingungen am Einbauort	19
5.2	Einbaulage	20
5.3	Einbaumöglichkeiten	20
5.3.1	Einbau mit nicht demontiertem Antennenring (ohne	
	Drehzahl-Messsystem)	21
5.3.2	Einbau mit nachträglicher Montage des Stators (ohne	
	Drehzahl-Messsystem)	22
5.3.3	Einbaubeispiel mit Kupplungen	23
5.3.4	Einbaubeispiel mit Gelenkwelle	23
5.4	Montage des Rotors	24
5.5	Montage des Stators	27
5.6	Montage des Klemmstücks	30
5.7	Montage der Schlitzscheibe (optisches Drehzahl-Messsystem)	32
5.8	Montage der Fixierelemente (Drehzahl-Messsystem)	34
5.8.1	Fixierelemente montieren	35
5.8.2	Drehmoment-Messflansch mit Drehzahl-Messsystem montieren	36
5.9	Ausrichtung des Stators (Drehzahl-Messsystem)	38
5.9.1	Magnetisches Drehzahl-Messsystem	38
5.9.2	Optisches Drehzahl-Messsystem	42

6	Elektrischer Anschluss	44
6.1	Allgemeine Hinweise	44
6.1.1	FCC- und IC-konforme Montage (betrifft nur die Montage in den US	Α
	und Kanada)	45
6.2	Schirmungskonzept	47
6.3	Option 2, Code KF1	48
6.3.1	Anpassung an die Kabellänge	48
6.4	Option 2, Code SF1/SU2	50
6.5	Versorgungsspannung	55
7	Kalibrieren	57
7.1	Kalibrieren Option 2, Code KF1	57
7.2	Kalibrieren Option 2, Code SF1/SU2	58
8	Einstellungen	59
8.1	Drehmoment-Ausgangssignal, Code KF1	61
8.2	Drehmoment-Ausgangssignal, Code SF1/SU2	61
8.3	Nullpunkt einstellen	62
8.4	Funktionsprüfung	63
8.4.1	Energieübertragung	63
8.4.2	Optisches Drehzahlmodul prüfen	63
8.5	Einstellung der Impulsanzahl	65
8.5.1	Magnetisches Drehzahl-Messsystem	65
8.5.2	Optisches Drehzahl-Messsystem	69
8.6	Schwingungsunterdrückung (Hysterese)	71
8.7	Form des Drehzahl-Ausgangssignals	72
8.8	Art des Drehzahl-Ausgangssignals	73
8.9	Optisches Drehzahlmesssystem mit Referenzimpuls	74
9	Belastbarkeit	76
9.1	Messen dynamischer Drehmomente	76

10	Wartung	78
10.1	Wartung Drehmoment-Messflansch	78
10.2	Wartung Drehzahlmodul	78
10.2.1	Magnetisches Drehzahl-Messsystem	78
10.2.2	Optisches Drehzahl-Messsystem	78
11	Abmessungen	80
11.1	Abmessungen Rotor	80
11.2	Abmessungen Rotor mit magnetischem Drehzahl-Messsystem	82
11.3	Abmessungen Stator	84
11.4	Abmessungen Stator mit magnetischem Drehzahl-Messsystem	86
11.5	Montagemaße	88
12	Bestellnummern, Zubehör	90
13	Technische Daten	92
14	Ergänzende technische Informationen	108
14.1	Ausgangssignale	108
14.1.1	Ausgang MD Drehmoment (Stecker 1)	108
14.1.2	Ausgang N: Drehzahl und Drehzahl	
	mit Referenzimpuls (Stecker 2)	109
14.1.3	Stecker 2, doppelte Frequenz, stat. Drehrichtungs-Signal	110
14.2	Plan- und Rundlauftoleranzen	111

1 Sicherheitshinweise

Einhaltung der FCC-Vorschriften und Warnhinweis

Wichtig

Jede Änderung oder Modifizierung, die nicht ausdrücklich durch den für die Einhaltung der Vorschriften Verantwortlichen genehmigt wird, könnte dazu führen, dass die Betriebszulassung des Anwenders für das Gerät ungültig wird. Wenn an anderer Stelle Zusatzkomponenten oder Zubehör zur Verwendung bei der Montage des Produkts definiert sind, müssen diese Zusatzkomponenten bzw. das Zubehör benutzt werden, um die Einhaltung der FCC-Vorschriften sicherzustellen.

Dieses Gerät erfüllt Teil 15 der FCC-Bestimmungen. Der Betrieb unterliegt den beiden nachstehenden Bedingungen: (1) Dieses Gerät darf keine schädlichen Störungen verursachen; und (2) dieses Gerät muss jedes empfangene Störsignal tolerieren, einschließlich Störungen, die zu einem nicht erwünschten Betrieb führen können.

Die FCC-Identifikationsnummer oder die eindeutige Identifikationsnummer, wie jeweils zutreffend, muss gut sichtbar auf dem Gerät angebracht sein.

Modell	Messbereich	FCC-ID	IC
T10S2	100 Nm, 200 Nm		
T10S3	500 Nm, 1 kNm		
T10S4	2 kNm, 3 kNm	2ADAT-T10S2TOS6	12438A-T10S2TOS6
T10S5	5 kNm		
T10S6	10 kNm		

Abb. 1.1 Position des Etiketts auf dem Stator des Gerätes

Die bevorzugte Position für das FCC-Etikett ist auf dem Typenschild. Wenn dies aus Platzgründen nicht möglich ist, kann sich das Etikett auch auf der Rückseite des Statorgehäuses befinden.

Model: T10S2

FCC ID: 2ADAT-T10S2TOS6 IC: 12438A-T10S2TOS6

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Beispieletikett mit FCC-ID- und IC-Nummer

Zulassung durch Industry Canada (IC)

Dieses Gerät erfüllt die Norm Industry Canada RSS210.

Dieses Gerät erfüllt die RSS-Anforderung(en) von Industry Canada für die Befreiung von Zulassungsbestimmungen. Der Betrieb unterliegt den beiden nachstehenden Bedingungen: (1) Dieses Gerät darf keine schädlichen Störungen verursachen; und (2) dieses Gerät muss jedes Störsignal tolerieren, einschließlich Stö-

rungen, die zu einem nicht erwünschten Betrieb des Gerätes führen können.

Cet appareil est conforme aux normes d'exemption de licence RSS d'Industry Canada. Son fonctionnement est soumis aux deux conditions suivantes : (1) cet appareil ne doit pas causer d'interférence et (2) cet appareil doit accepter toute interférence, notamment les interférences qui peuvent affecter son fonctionnement.

Wichtig

Für Gebrauch/Installation in den USA und Kanada wird ein EMI-Entstörfilter benötigt. Siehe Kapitel 6.1.1, Seite 45.

Bestimmungsgemäßer Gebrauch

Der Drehmoment-Messflansch T10FS ist ausschließlich für Drehmoment- und Drehzahl-Messaufgaben und direkt damit verbundene Steuerungs- und Regelungsaufgaben zu verwenden. Jeder darüber hinausgehende Gebrauch gilt als *nicht* bestimmungsgemäß.

Zur Gewährleistung eines sicheren Betriebes darf der Aufnehmer nur nach den Angaben in der Bedienungs-anleitung verwendet werden. Bei der Verwendung sind zusätzlich die für den jeweiligen Anwendungsfall erforderlichen Rechts- und Sicherheitsvorschriften zu beachten. Sinngemäß gilt dies auch bei Verwendung von Zubehör.

Der Aufnehmer ist kein Sicherheitselement im Sinne des bestimmungsgemäßen Gebrauchs. Der einwandfreie und sichere Betrieb dieses Aufnehmers setzt sachgemäßen Transport, fachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung voraus.

Allgemeine Gefahren bei Nichtbeachten der Sicherheitshinweise

Der Aufnehmer entspricht dem Stand der Technik und ist betriebssicher. Von dem Aufnehmer können Restgefahren ausgehen, wenn er von ungeschultem Personal unsachgemäß eingesetzt und bedient wird.

Jede Person, die mit Aufstellung, Inbetriebnahme, Wartung oder Reparatur des Aufnehmers beauftragt ist, muss die Bedienungsanleitung und insbesondere die sicherheitstechnischen Hinweise gelesen und verstanden haben.

Restgefahren

Der Leistungs- und Lieferumfang des Aufnehmers deckt nur einen Teilbereich der Drehmoment-Messtechnik ab. Sicherheitstechnische Belange der Drehmoment-Messtechnik sind zusätzlich vom Anlagenplaner, Ausrüster oder Betreiber so zu planen, zu realisieren und zu verantworten, dass Restgefahren minimiert werden. Jeweils existierende Vorschriften sind zu beachten. Auf Restgefahren im Zusammenhang mit der Drehmoment-Messtechnik ist hinzuweisen.

Umbauten und Veränderungen

Der Aufnehmer darf ohne unsere ausdrückliche Zustimmung weder konstruktiv noch sicherheitstechnisch verändert werden. Jede Veränderung schließt eine Haftung unsererseits für daraus resultierende Schäden aus.

Qualifiziertes Personal

Der Aufnehmer ist nur von qualifiziertem Personal ausschließlich entsprechend der technischen Daten in Zusammenhang mit den ausgeführten Sicherheitsbestimmungen und Vorschriften einzusetzen bzw. zu

verwenden. Bei der Verwendung sind zusätzlich die für den jeweiligen Anwendungsfall erforderlichen Rechtsund Sicherheitsvorschriften zu beachten. Sinngemäß gilt dies auch bei Verwendung von Zubehör.

Qualifiziertes Personal sind Personen, die mit Aufstellung, Montage, Inbetriebsetzung und Betrieb des Produktes vertraut sind und über die ihrer Tätigkeit entsprechende Qualifikationen verfügen.

Unfallverhütung

Entsprechend den einschlägigen Unfallverhütungsvorschriften der Berufsgenossenschaften ist nach der Montage der Drehmoment-Messflansche vom Betreiber eine Abdeckung oder Verkleidung wie folgt anzubringen:

- Abdeckung oder Verkleidung dürfen nicht mitrotieren.
- Abdeckung oder Verkleidung sollen sowohl Quetschund Scherstellen vermeiden als auch vor evtl. sich lösenden Teilen schützen.
- Abdeckungen und Verkleidungen müssen weit genug von den bewegten Teilen entfernt oder so beschaffen sein, dass man nicht hindurchgreifen kann.
- Abdeckungen und Verkleidungen müssen auch angebracht sein, wenn die bewegten Teile des Drehmoment-Messflansches außerhalb des Verkehrs- und Arbeitsbereiches von Personen installiert sind.

Von den vorstehenden Forderungen darf nur abgewichen werden, wenn die Maschinenteile und -stellen schon durch den Bau der Maschine oder bereits vorhandene Schutzvorkehrungen ausreichend gesichert sind.

Gewährleistung

Bei Reklamationen kann eine Gewährleistung nur dann übernommen werden, wenn der Drehmoment-Messflansch in der Originalverpackung zurückgesendet wird.

1.1 In dieser Anleitung verwendete Kennzeichnungen

Wichtige Sicherheitshinweise sind besonders gekennzeichnet. Beachten Sie diese Hinweise unbedingt, um Unfälle und Sachschäden zu vermeiden.

Symbol	Bedeutung	
• WARNUNG	Weist auf eine <i>mögliche</i> gefährliche Situation hin, die — wenn die Sicherheitsbestimmungen nicht beachtet	
	werden – Tod oder schwere Körperverletzung zur Folge haben kann.	
№ VORSICHT	Weist auf eine <i>mögliche</i> gefährliche Situation hin, die — wenn die Sicherheitsbestimmungen nicht beachtet werden — leichte oder mittlere Körperverletzung zur Folge <i>haben könnte</i> .	
Hinweis	Weist auf eine Situation hin, die – wenn die Sicherheitsbestimmungen nicht beachtet werden – Sachschäden zur Folge haben kann.	
i Wichtig	Weist darauf hin, dass <i>wichtige</i> Informationen über das Produkt oder über die Handhabung des Produktes gegeben werden.	
i Information	Weist auf Informationen zum Produkt oder zur Handhabung des Produktes hin.	
Hervorhebung Siehe	Wichtige Textstellen sowie Verweise auf andere Kapitel und externe Dokumente sind durch Kursivschrift hervorgehoben.	

1.2 Auf dem Produkt angebrachte **Symbole**

CE-Kennzeichnung

Mit der CE-Kennzeichnung garantiert der Hersteller, dass sein Produkt den Anforderungen der relevanten EG-Richtlinien entspricht (die Konformitätserklärung finden Sie unter http://www.hbm.com/HBMdoc).

Model: T1082
FCC ID: 2ADAT-T1082TOS6
IC: 12438A-T1082TOS6
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any other cause content of the foreign content of interference received, including interference that may cause undesired operation.

Beispieletikett

Beispieletikett mit Modellnummer, FCC-ID und IC-Nummer. Das Etikett ist auf dem Stator des Gerätes angebracht.

Gesetzlich vorgeschriebene Kennzeichnung zur Entsorgung

Nicht mehr gebrauchsfähige Altgeräte sind gemäß den nationalen und örtlichen Vorschriften für Umweltschutz und Rohstoffrückgewinnung getrennt von regulärem Hausmüll zu entsorgen.

Falls Sie weitere Informationen zur Entsorgung benötigen, wenden Sie sich bitte an die örtlichen Behörden oder an den Händler, bei dem Sie das Produkt erworben haben.

2 Ausführungen der Drehmoment-Messflansche

Die Drehmoment-Messflansche T10FS gibt es bei Option 2 "Elektrische Konfiguration" in den Ausführungen KF1, SF1 und SU2. Diese Ausführungen unterscheiden sich durch ihre elektrischen Ein- und Ausgänge am Stator, die Rotoren sind für alle Ausführungen eines Messbereiches gleich. Die Ausführungen SF1 und SU2 können optional mit einem magnetischen oder optischen Drehzahl-Messsystem (Messsystem optisch mit oder ohne Referenzimpuls) ausgerüstet werden.

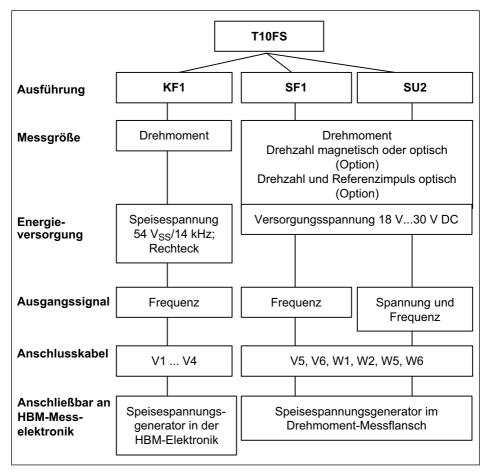


Abb. 2.1 T10FS-Ausführungen

Welche Ausführung Sie haben, können Sie dem Typenschild des Stators entnehmen. Dort ist die Ausführung in der "T10FS-…"-Nummer angegeben.

Beispiel: T10FS-001R-SU2-S-0-V1-Y (siehe auch Seite 90).

3 Anwendung

Die Drehmoment-Messflansche T10FS erfassen statische und dynamische Drehmomente an ruhenden oder rotierenden Wellen und liefern zusätzlich RS-422-Signale mit einer Drehrichtungsinformation zum Ermitteln der Drehzahl. Zu den Drehzahlimpulsen kann beim optischen Drehzahl-Messsystem auch ein Referenzimpuls ausgegeben werden. Die Messflansche erlauben durch ihre kurze Bauweise äußerst kompakte Prüfaufbauten. Daraus ergeben sich vielfältige Anwendungen.

Neben der klassischen Prüfstandstechnik (Motor-, Rollen- und Getriebeprüfstände) werden neue Lösungen für teilweise in die Maschinen integrierte Drehmomentmessungen möglich. Hier kommen die Vorteile der Drehmoment-Messflansche T10FS voll zur Geltung:

- Geringe Rotorgewichte
- Geringe Massenträgheitsmomente
- Kleine Außendurchmesser
- Lager- und schleifringlos

Durch den lagerlosen Aufbau und die berührungslose Speisespannungs- und Messwertübertragung können Reibungs- oder Lagererwärmungseffekte nicht auftreten.

Die Drehmoment-Messflansche werden für Nenndrehmomente von 100 N·m bis 10 kN·m geliefert. Als maximale Drehzahlen sind je nach Nennmoment bis zu 24 000 min⁻¹ zugelassen.

Gegen elektromagnetische Störungen sind die Drehmoment-Messflansche T10FS zuverlässig geschützt. Sie sind nach den einschlägigen europäischen Normen auf EMV-Verhalten geprüft und mit der CE-Kennzeichnung versehen

4 Aufbau und Wirkungsweise

Die Drehmoment-Messflansche bestehen aus zwei getrennten Teilen, dem Rotor und dem Stator. Der Rotor setzt sich zusammen aus dem Messkörper und den Signal-Übertragungselementen.

Auf dem Messkörper sind Dehnungsmessstreifen (DMS) appliziert. Die Rotorelektronik für die Brückenspeisespannungs- und Messsignalübertragung ist zentrisch im Flansch angeordnet. Der Messkörper trägt am äußeren Umfang die Übertragerspulen für die berührungslose Übertragung von Speisespannung und Messsignal. Die Signale werden von einem teilbaren Antennenring gesendet bzw. empfangen. Der Antennenring ist auf einem Gehäuse befestigt, in dem die Elektronik für die Spannungsanpassung sowie die Signalaufbereitung untergebracht sind.

Am Stator befinden sich Anschlussstecker für das Drehmomentsignal, die Spannungsversorgung und das Drehzahlsignal (Option). Der Antennenring soll ungefähr konzentrisch um den Rotor montiert werden (siehe Kapitel 5).

Die Drehzahlmessung erfolgt mit einem magnetischen oder optischen Sensor. Beim magnetischen Messsystem wird mit einem Magneto-Resistive-Sensor (MR) ein magnetisiertes Polrad abgetastet.

Der optische Sensor arbeitet nach dem Prinzip der Infrarot-Durchlichtschranken. Der Referenzimpuls wird durch
einen Magneten in der Schlitzscheibe und einen Feldplattensensor erzeugt. Bei Option 2 (Drehzahlmesssystem), Code L ist auf dem Stator der Drehzahlsensor
montiert, die zugehörige Schlitzscheibe wird vom Kunden
auf dem Rotor befestigt. Beim Code H ist die Schlitzscheibe bereits auf dem Rotor montiert.

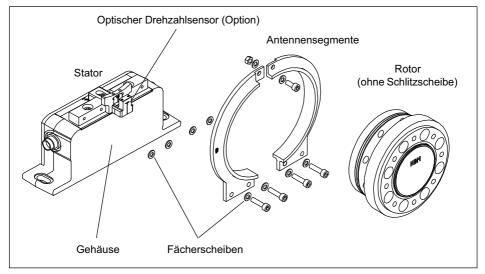


Abb. 4.1 Mechanischer Aufbau, Explosionsdarstellung

5 Mechanischer Einbau

WARNUNG

Gehen Sie mit dem Drehmoment-Messflansch schonend um! Der Aufnehmer kann durch mechanische Einwirkung (Fallenlassen), chemische Einflüsse (z. B. Säuren, Lösungsmittel) oder Temperatureinfluss (Heißluft, Dampf) bleibend geschädigt werden.

Bei Wechsellasten sollten Sie die Verbindungsschrauben des Rotors mit einer Schraubensicherung (mittelfest) in das Gegengewinde einkleben, um einen Vorspannverlust durch Lockern auszuschließen.

Die Drehmoment-Messflansche T10FS können über einen entsprechenden Wellenflansch direkt montiert werden. Am Rotor ist auch die direkte Montage einer Gelenkwelle oder entsprechender Ausgleichselemente (bei Bedarf über Zwischenflansch) möglich. Die zulässigen Grenzen für Biegemomente, Quer- und Längskräfte dürfen jedoch in keinem Fall überschritten werden. Durch die hohe Drehsteifigkeit der Messflansche T10FS werden dynamische Veränderungen des Wellenstranges gering gehalten.

Wichtig

Der Einfluss auf biegekritische Drehzahlen und Torsionseigenschwingungen ist zu überprüfen, um eine Überlastung der Messflansche durch Resonanzüberhöhungen zu vermeiden

Hinweis

Auch bei korrektem Einbau kann sich der im Werk abgeglichene Nullpunkt bis ca. ±150 Hz verschieben. Wird dieser Wert überschritten, empfehlen wir, die Einbausituation zu prüfen. Ist der bleibende Nullpunktversatz im ausgebauten Zustand größer als ±50 Hz, senden Sie den Aufnehmer bitte zur Prüfung ins Werk Darmstadt. Für den einwandfreien Betrieb sind die Montagemaße (siehe Seite 86) einzuhalten.

5.1 Bedingungen am Einbauort

Die Drehmoment-Messflansche T10FS sind in der Schutzart IP54 nach EN 60529 ausgeführt. Sie sind vor grobem Schmutz, Staub, Öl, Lösungsmitteln und Feuchtigkeit zu schützen. Im Betrieb sind die einschlägigen Sicherheitsbestimmungen der entsprechenden Berufsgenossenschaften zum Schutz von Personen zu beachten (siehe "Sicherheitshinweise").

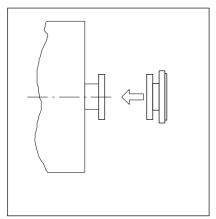
Der Drehmoment-Messflansch T10FS ist in weiten Grenzen gegen Temperatureinflüsse auf das Ausgangs- und Nullsignal kompensiert (siehe technische Daten auf Seite 92). Diese Kompensation erfolgt in aufwendigen Ofenprozessen bei stationären Temperaturen. Hiermit ist gewährleistet, dass reproduzierbare Verhältnisse vorliegen und die Eigenschaften der Aufnehmer jederzeit nachvollziehbar sind.

Liegen keine stationären Temperaturverhältnisse vor, z. B. durch Temperaturunterschiede zwischen Messkörper und Flansch, können die in den technischen Daten spezifizierten Werte überschritten werden. Hier müssen dann für genaue Messungen je nach Anwendungsfall

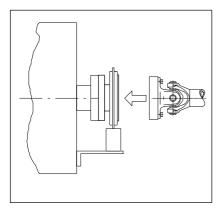
durch Kühlung oder Heizung stationäre Temperaturverhältnisse geschaffen werden. Alternativ ist eine Temperaturentkopplung, z. B. durch wärmeabstrahlende Elemente wie Lamellenkupplungen, zu prüfen.

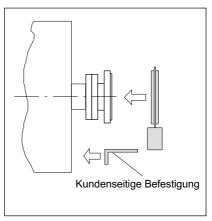
5.2 Einbaulage

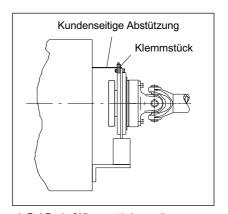
Die Einbaulage des Messflansches ist beliebig. Bei Rechtsdrehmoment (im Uhrzeigersinn) beträgt die Ausgangsfrequenz 10 kHz ...15 kHz. In Verbindung mit Messverstärkern von HBM oder bei der Option "Spannungsausgang" steht ein positives Ausgangssignal (0 V ... +10 V) an.


Beim Drehzahl-Messsystem ist zum eindeutigen Bestimmen der Drehrichtung auf dem Sensorkopf ein Pfeil angebracht. Dreht der Messflansch in Pfeilrichtung, geben angeschlossene HBM-Messverstärker ein positives Ausgangssignal (0 V ... +10 V) ab.

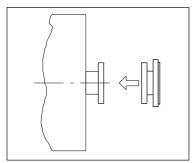
5.3 Einbaumöglichkeiten

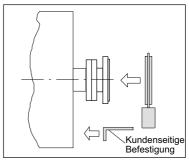

Prinzipiell haben Sie zwei Möglichkeiten, den Drehmoment-Messflansch zu montieren, mit oder ohne Zerlegen des Antennenringes. Wir empfehlen die Montage nach *Kapitel 5.3.1*. Ist eine Montage nach *Kapitel 5.3.1* nicht möglich (z. B. bei nachträglichem Wechsel des Stators oder Montage mit Drehzahl-Messsystem), müssen Sie den Antennenring zerlegen. Beachten Sie hierbei unbedingt die Hinweise zum Zusammenbau der Antennensegmente (siehe "Montage des Stators" und "Montage der Schlitzscheibe").

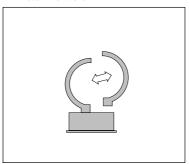

5.3.1 Einbau mit nicht demontiertem Antennenring (ohne Drehzahl-Messsystem)


1. Rotor montieren

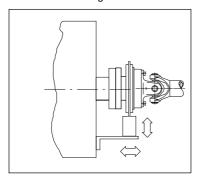
3. Wellenstrang fertigmontieren

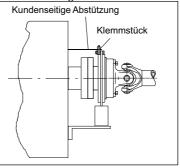

2. Stator montieren


4. Bei Bedarf Klemmstück montieren


5.3.2 Einbau mit nachträglicher Montage des Stators (ohne Drehzahl-Messsystem)

1. Rotor montieren


2. Wellenstrang montieren


3. Ein Antennensegment demontieren

4. Antennensegment um den Wellenstrang montieren

5. Stator ausrichten und fertigmontieren

6. Bei Bedarf Klemmstück montieren

5.3.3 Einbaubeispiel mit Kupplungen

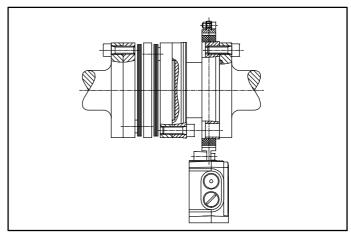


Abb. 5.1 Einbaubeispiel mit Kupplung

5.3.4 Einbaubeispiel mit Gelenkwelle

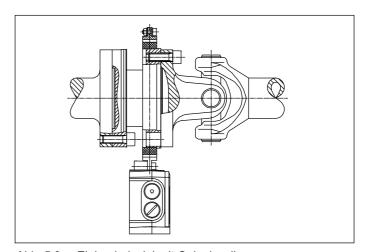


Abb. 5.2 Einbaubeispiel mit Gelenkwelle

5.4 Montage des Rotors

Zusätzliche Montagehinweise zum Drehzahl-Messsystem finden Sie in *Kapitel 5.7*, *Seite 32*.

Hinweis

Nach der Montage ist in der Regel das Rotor-Typenschild verdeckt. Deshalb liegen dem Rotor zusätzliche Klebeschilder mit den wichtigen Kenndaten bei, die Sie auf den Stator oder andere relevante Prüfstandskomponenten aufkleben können. Sie können dann jederzeit die für Sie interessanten Daten, wie z. B. das Kalibriersignal, ablesen. Für die eindeutige Zuordnung der Daten sind am Rotorflansch von außen sichtbar die Identifikationsnummer und der Messbereich eingraviert (siehe Abb. 5.3).

 Reinigen Sie vor dem Einbau die Flanschplanflächen des Messflansches und der Gegenflansche. Die Flächen müssen für eine sichere Drehmomentübertragung sauber und fettfrei sein. Benutzen Sie mit Lösungsmittel angefeuchtete Lappen oder Papier. Achten Sie beim Reinigen darauf, dass die Übertragerspulen nicht beschädigt werden.

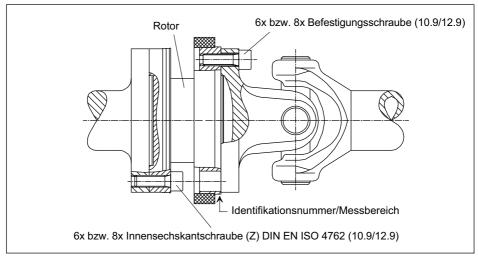


Abb. 5.3 Verschraubung des Rotors

 Verwenden Sie für die Verschraubung des Rotors acht Innensechskantschrauben DIN EN ISO 4762 der Festigkeitsklasse 10.9 (Messbereiche ≥ 3 kN·m: 12.9) in geeigneter Länge (abhängig von der Anschlussgeometrie).

Wir empfehlen Zylinderschrauben DIN EN ISO 4762, geschwärzt, glatter Kopf, zulässige Maß- und Formabweichung nach DIN ISO 4759, Teil 1, Produktklasse A.

WARNUNG

Bei Wechsellast: Kleben Sie die Schrauben mit einer Schraubensicherung (z. B. LOCTITE Schraubensicherung Nr. 242) in das Gegengewinde, damit kein Vorspannverlust durch Lockern auftreten kann.

- 3. Ziehen Sie alle Schrauben mit dem vorgeschriebenen Anziehdrehmoment (*Tab. 5.1*) an.
- Am Rotor befinden sich zur weiteren Montage des Wellenstranges acht Gewindebohrungen. Verwenden Sie ebenfalls Schrauben der Festigkeitsklasse 10.9 (bzw. 12.9) und ziehen Sie diese mit dem vorgeschriebenen Anziehdrehmoment nach *Tab. 5.1* an.

Wichtig

Bei Wechsellasten die Verbindungsschrauben mit Schraubensicherung einkleben! Achten Sie darauf, dass keine Verunreinigungen durch austretenden Lack entstehen.

Nenndreh- moment (N·m)	Befestigungs- schrauben (Z) ¹	Befestigungs- schrauben Festigkeitsklasse	Vorgeschriebenes Anziehdrehmoment (N·m)
100	M8	10.0	24
200		10.9	34
500	M10	10.9	67
1k	M10		67
2k	M12		115
3k	M12	12.9	135
5k	M14		220
10k	M16		340

Tab. 5.1 Befestigungsschrauben

¹⁾ DIN EN ISO 4762912; schwarz/geölt/ μ_{ges} = 0,125

5.5 Montage des Stators

Im Anlieferungszustand ist der Stator betriebsfertig montiert. Sie können die Antennensegmente vom Stator trennen, zum Beispiel bei Wartungsarbeiten, oder um eine leichtere Montage des Stators zu ermöglichen. Um die mittige Ausrichtung der Segmentringe gegenüber dem Statorfuß nicht zu verändern, empfehlen wir, nur ein Antennensegment vom Stator zu trennen.

Ist in Ihrem Fall ein Zerlegen des Stators nicht nötig, verfahren Sie nach den Punkten 2., 6., 7. und 8.

Ausführung mit Drehzahl-Messsystem

Da der Drehzahlsensor die Schlitzscheibe umfasst, ist es nicht möglich, den Stator axial über den fertigmontierten Rotor zu schieben. Beachten Sie hierzu auch *Kapitel 5.7*.

Hinweis

Prüfen Sie die Schraubverbindungen der Antennensegmente (siehe Abb. 5.4) sowohl nach der ersten Installation als auch danach in regelmäßigen Abständen auf richtigen Sitz und ziehen Sie sie gegebenenfalls nach.

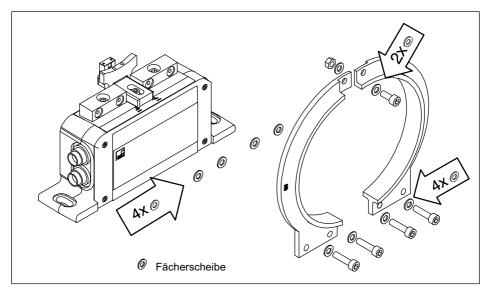
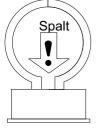



Abb. 5.4 Verschraubungen der Antennensegmente

- 1. Lösen und entfernen Sie die Verschraubungen (M5) an einem Antennensegment. Achten Sie darauf, dass die Fächerscheiben nicht verloren gehen!
- Montieren Sie das Statorgehäuse auf einer geeigneten Grundplatte im Wellenstrang, so dass ausreichende Einstellmöglichkeiten in horizontaler und vertikaler Richtung vorhanden sind. Ziehen Sie die Schrauben noch nicht fest.
- 3. Montieren Sie nun das unter Punkt 1. entfernte Antennensegment mit zwei Innensechskantschrauben und den Fächerscheiben wieder an den Stator. Achten Sie darauf, dass alle Fächerscheiben vorhanden sind (siehe Abb. 5.4), die für einen definierten Übergangswiderstand sorgen! Ziehen Sie die Schrauben noch nicht fest an.

- Montieren Sie jetzt die obere Verbindungsschraube der beiden Antennensegmente, so dass sich ein geschlossener Antennenring ergibt. Achten Sie auch hier auf die Fächerscheiben.
- 5. Ziehen Sie nun alle Verschraubungen der Antennensegmente mit einem Anziehdrehmoment von 5 N·m an.
- Richten Sie dann die Antenne zum Rotor so aus, dass die Antenne den Rotor etwa koaxial umschließt. Beachten Sie bitte die in den technischen Daten angegebenen zulässigen Ausrichtungstoleranzen.
- Ziehen Sie jetzt die Verschraubung des Statorgehäuses fest an.
- 8. Stellen Sie sicher, dass der Spalt im unteren Bereich der Antennensegmente frei von elektrisch leitenden Fremdkörpern ist.

VORSICHT

Um eine einwandfreie Funktion zu gewährleisten, müssen die Fächerscheiben (A5, 3-FST DIN 6798 ZN/verzinkt) nach dreimaligem Lösen der Antennenverschraubung erneuert werden.

5.6 Montage des Klemmstücks

Je nach Betriebsbedingungen kann es vorkommen, dass der Antennenring zum Schwingen angeregt wird. Dieser Effekt ist abhängig von

- der Drehzahl
- dem Antennendurchmesser (abhängig vom Messbereich)
- der Konstruktion des Maschinenbetts

Um das Schwingen zu vermeiden, ist dem Drehmoment-Messflansch ein Klemmstück beigelegt, mit dem der Antennenring abgestützt werden kann.

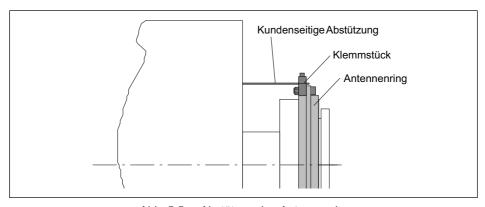


Abb. 5.5 Abstützen des Antennenrings

Montagefolge

- Lösen und entfernen Sie die obere Antennensegment-Verschraubung.
- Befestigen Sie das Klemmstück mit der beigelegten Verschraubung nach Abb. 5.6. Verwenden Sie unbedingt die neuen Fächerscheiben!

 Klemmen Sie ein geeignetes Abstützelement (wir empfehlen einen Gewindestab Ø 3...6 mm) zwischen Ober- und Unterteil des Klemmstücks und ziehen Sie die Klemmschrauben an.

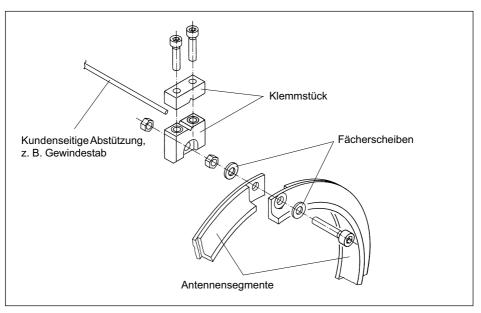


Abb. 5.6 Montage des Klemmstücks

Hinweis

Verwenden Sie z. B. Kunststoff als Material. Verwenden Sie kein metallisches Material, da hierdurch die Funktion der Antenne (Signalübertragung) beeinträchtigt werden kann.

5.7 Montage der Schlitzscheibe (optisches Drehzahl-Messsystem)

Damit die Schlitzscheibe des optischen Drehzahl-Messsystems auf dem Transport nicht beschädigt werden kann, ist sie bei Messflanschen mit der Option 2, Code L (Nenndrehzahl 8000 min⁻¹ bis 15000 min⁻¹) nicht am Rotor montiert. Sie muss vor der Montage des Rotors im Wellenstrang befestigt werden. Der zugehörige Drehzahlsensor ist bereits am Stator montiert.

Die benötigten Schrauben, der passende Schraubendreher und die Schraubensicherung sind im Lieferumfang enthalten.

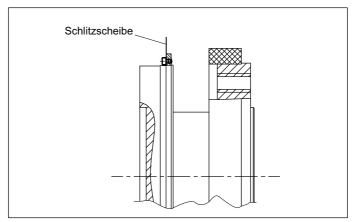


Abb. 5.7 Montage der Schlitzscheibe am Rotor

Wichtig

Achten Sie bei allen Montagearbeiten darauf, dass die Schlitzscheibe nicht beschädigt wird!

Montagefolge

- Schieben Sie die Schlitzscheibe auf den Rotor und richten Sie die Schraubenbohrungen aus.
- ► Tragen Sie etwas Schraubensicherung auf die Schraubengewinde und drehen Sie die Schrauben ein (Anziehdrehmoment <15 N·cm).

5.8 Montage der Fixierelemente (Drehzahl-Messsystem)

Zum Schutz vor Beschädigungen der Drehzahlgeber bei der Montage sind dem Drehmoment-Messflansch drei Fixierelemente mit Schrauben beigelegt. Die Fixierelemente halten den Rotor im Antennenring zentrisch fest und ermöglichen so einen einfacheren und sicheren Einbau.

Wichtig

Die Fixierelemente sind nur eine Montagehilfe und müssen vor Inbetriebnahme des Drehmoment-Messflansches entfernt werden!

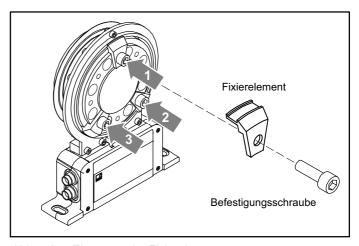


Abb. 5.8 Einsetzen der Fixierelemente

5.8.1 Fixierelemente montieren

1. Legen Sie den Rotor mit dem Typenschild nach oben zeigend auf eine ebene Unterlage.

Nur beim optischen Drehzahl-Messsystem:

Halten Sie den Stator leicht schräg und schieben Sie ihn soweit über den Rotor, bis sich die Schlitzscheibe in der Sensorgabel befindet (*Schritt A, Abb. 5.9*).

Kippen Sie den Stator soweit über den Rotor, bis der Antennenring den Übertrager vollständig überdeckt (*Schritt B, Abb. 5.9*).

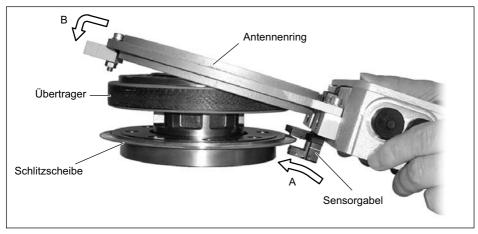


Abb. 5.9 Finbauen der Fixierelemente

 Halten Sie den Stator zentrisch über dem Rotor und schieben Sie nacheinander die drei Fixierelemente zwischen Übertrager und Antennenring. Die Fixierelemente sollen gleichmäßig am Umfang verteilt sein (ca. alle 120°).

 Schrauben Sie die Befestigungsschrauben der Fixierelemente in die Flansch-Gewindebohrungen ein und ziehen Sie diese mit der Hand leicht fest.

5.8.2 Drehmoment-Messflansch mit Drehzahl-Messsystem montieren

- Montieren Sie den Drehmoment-Messflansch so in den Wellenstrang, dass die Auflagefläche des Statorsockels spiel- und spannungsfrei auf der vorbereiteten Montagefläche aufliegt.
- 2. Befestigen Sie den Rotor mit 8 Schrauben im Wellenstrang (Festigkeitsklasse *siehe Tab. 5.1, Seite 26*). Ziehen Sie die Schrauben zunächst nur handfest an.
- Gleichen Sie einen möglichen Höhenversatz des Stators durch Unterlegen von Passscheiben oder durch Ausrichten des Sockels aus.
- Drehen Sie die Halteschrauben des Sockels ein; ziehen Sie diese zuerst nur leicht an, damit die Fixierelemente nicht verklemmen.
- Entfernen Sie die Fixierelemente (sollte ein Fixierelement verklemmt sein, versuchen Sie, es nach links oder rechts zu verschieben).

Hinweis

Fixierelemente und Befestigungsschrauben für eventuelle Umbauten unbedingt aufbewahren!

 Ziehen Sie die Halteschrauben des Stators fest. Der Stator muss an den Markierungen oder Anschlägen stehen bleiben. Der Rotor muss frei umlaufen.

- 7. Überprüfen Sie, ob axiale und radiale Toleranzen eingehalten werden.
- 8. Ziehen Sie die Befestigungsschrauben des Rotors mit einem Drehmomentschlüssel über Kreuz endgültig fest (Anziehdrehmomente siehe Tab. 5.1, Seite 26).
- 9. Prüfen Sie mit einem Probelauf (beginnend bei niedrigen Drehzahlen) den korrekten Rundlauf des Rotors.

Bei elastisch aufgehängten Maschinen können größere Radial- und Längsbewegungen auftreten. Überschreiten die auftretenden Bewegungen die zulässigen Grenzen (siehe technische Daten, Seite 92ff), ist dafür zu sorgen, dass der Stator dem Bewegungsablauf des Rotors folgt.

Bei eingesetzten Kupplungen ist ebenfalls ein mögliches Längs- und Radialspiel zu berücksichtigen.

5.9 Ausrichtung des Stators (Drehzahl-Messsystem)

Die Einbaulage des Stators ist beliebig (z. B. Einbau "über Kopf" möglich).

Für den einwandfreien Messbetrieb müssen die Drehzahlgeber (Polring/Schlitzscheibe) des Drehzahl-Messsystems an einer definierten Stelle zum Sensor positioniert werden.

Hinweis

Wir empfehlen zum Befestigen des Stators Schrauben M6 mit Unterlegscheiben (Langlochbreite 9 mm). Mit dieser Schraubengröße ist die nötige Verschiebbarkeit zum Ausrichten gewährleistet.

5.9.1 Magnetisches Drehzahl-Messsystem

Hinweis

Beim magnetischen Drehzahl-Messsystem sind der Polring des Rotors und der Sensorkopf des Stators aufeinander abgestimmt. Damit die angegebene Impulsqualität eingehalten wird, dürfen bei Mehrfachlieferungen die Messwellenkomponenten untereinander nicht vertauscht werden. Vergleichen Sie deshalb vor dem Einbau die Identifikationsnummer von Rotor und Stator (siehe auch Hinweis auf Seite 24)!

Axiale Ausrichtung

Zur axialen Ausrichtung befinden sich auf dem Sensorkopf Markierungen (Ausrichtlinien). Der Polring soll im eingebauten Zustand mit seiner axialen Innenfläche genau über der axialen Ausrichtlinie stehen. Abweichungen bis zu ±1,5 mm sind im Messbetrieb zulässig (Summe aus statischer und dynamischer Verschiebung).

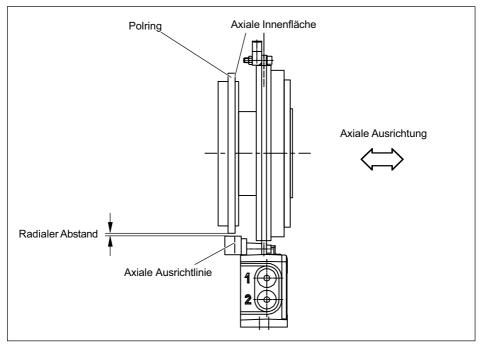


Abb. 5.10 Position des Polrings zum Sensorkopf

Radiale Ausrichtung

Rotorachse und die Achse des Drehzahlsensors müssen in einer Linie rechtwinklig zur Statorplattform stehen. Für die radiale Ausrichtung ist der radiale Abstand maßgebend (siehe Abb. 5.10). Als Ausrichthilfe für die

tangentiale Ausrichtung dient ein senkrechter Markierungsstrich am Sensorkopf (siehe Abb. 5.11).

Hinweis

Die Impulstoleranz hängt entscheidend von der Einbausituation ab. Versuchen Sie möglichst, den in Abb. 5.12 angegebenen Nennabstand einzuhalten oder zu unterschreiten. Wird der Nennabstand überschritten oder der Rotor nicht optimal zum Stator ausgerichtet, vergrößert sich die Impulstoleranz.

Die Impulsgenauigkeit kann durch das Einstellen des Minimalabstandes (0,3 mm) optimiert werden.

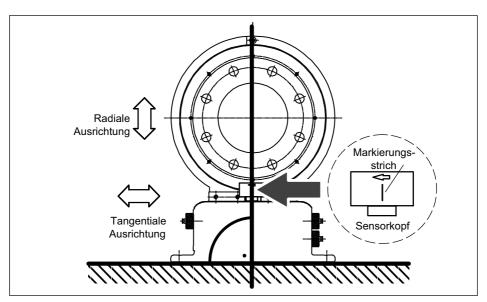


Abb. 5.11 Ausrichtmarkierung am Sensor

Prüfen Sie den radialen Abstand mit einer Abstandslehre und gleichen Sie einen eventuellen radialen Versatz des Stators durch Unterlegen von Passscheiben oder Ausrichten des Statorsockels aus. Zur Feinjustierung können Sie auch die zentrale Befestigungsschraube am Sensorkopf benutzen (Einstellbereich ±1,5 mm).

Messbereich	100 N·m 3 kN·m	5 kN·m/10 kN·m
Radialer Nennabstand in mm	1,0	1,2
Arbeitsabstandsbereich in mm	0,3 1,8	0,3 2,2

Abb. 5.12 Radialer Nennabstand beim magnetischen Drehzahl-Messsystem

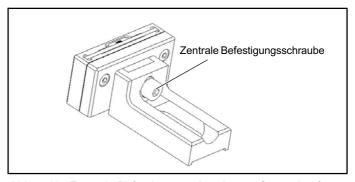


Abb. 5.13 Zentrale Befestigungsschraube am Sensorkopf

- 1. Lösen Sie die Befestigungsschraube (nicht herausdrehen!).
- 2. Stellen Sie den Nennabstand a ein.
- 3. Ziehen Sie die Schraube mit ca. 3 N·m an.
- Prüfen Sie den radialen Abstand nochmal mit einer Abstandslehre.

5.9.2 Optisches Drehzahl-Messsystem

Axiale Ausrichtung

Zur axialen Ausrichtung befinden sich in der Sensorgabel Markierungen (Ausrichtlinien). Die Schlitzscheibe soll im eingebauten Zustand genau über diesen Ausrichtlinien stehen. Abweichungen bis zu ±2 mm sind im Messbetrieb zulässig (Summe aus statischer und dynamischer Verschiebung).

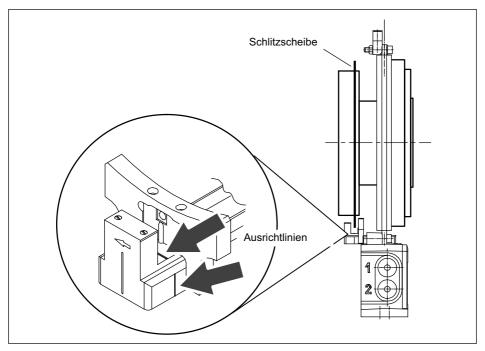


Abb. 5.14 Position der Schlitzscheibe im Drehzahlsensor

Radiale Ausrichtung

Rotorachse und optische Achse des Drehzahlsensors müssen in einer Linie rechtwinklig zur Statorplattform stehen. Als Ausrichthilfe dient ein senkrechter Markierungsstrich am Sensorkopf.

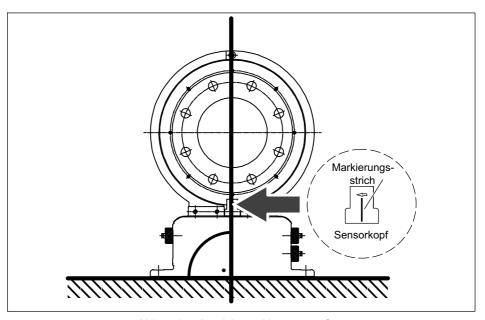


Abb. 5.15 Ausrichtmarkierung am Sensor

6 Elektrischer Anschluss

6.1 Allgemeine Hinweise

Für die elektrische Verbindung zwischen Drehmomentaufnehmer und Verstärker empfehlen wir, die geschirmten und kapazitätsarmen Messkabel von HBM zu verwenden.

Achten Sie bei Kabelverlängerungen auf eine einwandfreie Verbindung mit geringstem Übergangswiderstand und guter Isolation. Alle Steckverbindungen oder Überwurfmuttern müssen fest angezogen werden.

Verlegen Sie Messkabel nicht parallel zu Starkstrom- und Steuerleitungen. Ist dies nicht vermeidbar (etwa in Kabelschächten), halten Sie einen Mindestabstand von 50 cm ein und ziehen Sie das Messkabel zusätzlich in ein Stahlrohr ein.

Meiden Sie Trafos, Motoren, Schütze, Thyristorsteuerungen und ähnliche Streufeldquellen.

Wichtia

Aufnehmer-Anschlusskabel von HBM mit montierten Steckern sind ihrem Verwendungszweck entsprechend gekennzeichnet (Md oder n). Beim Kürzen der Kabel, Einziehen in Kabelkanälen oder Verlegen in Schaltschränken kann diese Kennzeichnung verloren gehen oder verdeckt sein. Ist dies der Fall, sind die Kabel unbedingt neu zu kennzeichnen!

6.1.1 FCC- und IC-konforme Montage (betrifft nur die Montage in den USA und Kanada)

Verwendung eines EMI-Entstörfilters

Zur Unterdrückung hoher Frequenzen muss ein Netzkabel mit EMI-Entstörfilter verwendet werden. Arbeiten Sie mit mindestens 3 Kabelwindungen.

Die Befestigung muss mit für die spezifische Anwendung geeigneten Kabelbindern ausgeführt werden. Für die Befestigung ist ein Bereich zu wählen, der keinen mechanischen Belastungen ausgesetzt ist (d. h. keinen unerwünschten Vibrationen usw.).

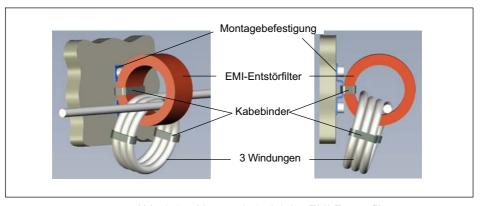


Abb. 6.1 Montagebeispiel des EMI-Entstörfilters

Information

Für die Montage des EMI-Entstörfilters ca. 40 cm zusätzliche Kabellänge berücksichtigen.

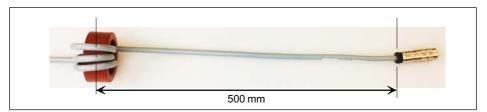


Abb. 6.2 Max. Abstand des EMI-Entstörfilters zum Steckverbinder

Falls das EMI-Störfilter aus irgendeinem Grund entfernt werden muss (z. B. für Wartungsarbeiten), muss es danach wieder am Kabel angebracht werden. Verwenden Sie ausschließlich ein EMI-Entstörfilter des korrekten Typs.

Typ: Vitroperm R

Modell-Nr.: T60006-22063W517

Größe: Außendurchmesser x Innendurchmesser x

Höhe = 63 x 50 x 25

Für die Montage wird zusätzlich zum Kabel ein EMI-Entstörfilter benötigt. Zur Vermeidung von Belastungen am Steckverbinder durch das zusätzliche Gewicht des Kabels sollten zusätzliche Befestigungen verwendet werden.

Wichtig

Die Verwendung eines EMI-Entstörfilters am Netzkabel (Stecker 1 oder Stecker 3) ist zwingend vorgeschrieben, um die Erfüllung der FCC-Vorschriften sicherzustellen.

6.2 Schirmungskonzept

Der Kabelschirm ist nach dem Greenline-Konzept angeschlossen. Dadurch wird das Messsystem (ohne Rotor) von einem Faradayschen Käfig umschlossen. Dabei ist wichtig, dass der Schirm an beiden Kabelenden flächig auf die Gehäusemasse aufgelegt wird. Hier wirkende elektromagnetische Störungen beeinflussen das Messsignal nicht. Die Übertragerstrecke und der Rotor sind durch spezielle elektronische Kodierungsverfahren gegen elektromagnetische Beeinflussungen geschützt.

Bei Störungen durch Potentialunterschiede (Ausgleichsströme) sind am Messverstärker die Verbindungen zwischen Betriebsspannungsnull und Gehäusemasse zu trennen und eine Potentialausgleichsleitung zwischen Statorgehäuse und Messverstärkergehäuse zu legen (Kupferleitung, 10 mm² Leitungsquerschnitt).

Sollten Potentialunterschiede zwischen Rotor und Stator der Maschine z. B. durch unkontrolliertes Ableiten Störungen verursachen, hilft meist das eindeutige Erden des Rotors z. B. mittels Schleifer. Der Stator ist ebenfalls eindeutig zu erden.

6.3 Option 2, Code KF1

Am Statorgehäuse befindet sich ein 7-poliger Gerätestecker (Binder 723), an dem Sie das Anschlusskabel für die Spannungsversorgung und das Drehmomentsignal anschließen.

	Stecker Binder Pin	Belegung	Aderfarbe	Stecker MS3106 Pin
Binder 723	1	Betriebsspannungsnull	ws	Α
	2	Nicht belegt	sw	В
6° •1	3	Versorgungsspannung Vorverstärker (+15 V)	bl	С
(\(\begin{pmatrix} 5 & 7 & \cdot 2 \end{pmatrix} \)	4	Messsignal Drehmoment (12 V _{SS} ; 515 kHz)	rt	D
4 3///	5	Nicht belegt		
Draufsicht	6	Speisespannung Rotor (54 V/80 V _{SS} ; ca.15 kHz)	gn	F
	7	Speisespannung Rotor (0 V)	gr	G
		Schirm an Gehäusemasse		

6.3.1 Anpassung an die Kabellänge

Bedingt durch die Übertragungsmethode zwischen Rotor und Stator ist die Funktion des Drehmoment-Messflansches abhängig von:

- Einbausituation (z. B. Abdeckung, metallfreier Raum)
- Kabellänge
- Toleranzen der Speisespannungsversorgung

Zum Anpassen an unterschiedliche Verhältnisse befinden sich im Statorgehäuse drei Schalter, die nach Ent-

fernen des Statordeckels zugänglich sind (siehe Abb. 6.3).

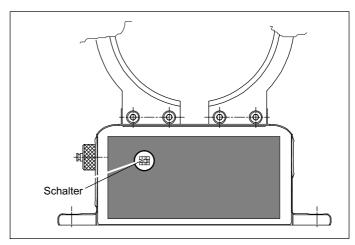


Abb. 6.3 Schalter im Statorgehäuse

Schalter- stellung		Anwendungsbeispiele
1		a) Ältere Messverstärker
•	•	b) Falls bei sehr kurzen Kabeln das Kalibriersignal unbeabsichtigt schon ausgelöst ist
2)(•	Normalstellung (Werkseinstellung)
3	•	Bei Kabellängen größer ca. 20 m

Bitte achten Sie darauf, dass nach dem Umschalten auf Schalterstellung 3 das Kalibriersignal nicht ausgelöst ist.

Mögliche Störungen und ihre Beseitigung:

Störung:

Kein Signal am Ausgang, Messverstärker zeigt Übersteuerung an.

Ursache: Zu wenig Energie, T10FS schaltet ab.

Abhilfe: Schalterstellung 3.

Störung: Das Kalibriersignal wurde unbeabsichtigt ausgelöst.

Abhilfe: Schalterstellung 1.

6.4 Option 2, Code SF1/SU2

Am Statorgehäuse befinden sich zwei 7-polige Gerätestecker (Binder 723) und bei der Option Drehzahlmodul zusätzlich ein 8-poliger Gerätestecker, die je nach gewählter Option belegt sind.

Die Versorgungsspannung und das Kalibriersignal der Stecker 1 und 3 sind galvanisch über automatisch rückstellende Sicherungen (Multifuses) verbunden.

Belegung Stecker 1:

Spannungsversorgung und Frequenz-Ausgangssignal.

	Stecker Binder Pin	Belegung	Aderfarbe	Sub-D Stecker Pin
Binder 723	1	Messsignal Drehmoment (Frequenzausgang; 5 V¹; 0 V) <u>M</u>	ws	13
	2	Versorgungsspannung 0 V _国	sw	5
6.01	3	Versorgungsspannung 18 V 30 V	bl	6
5 7 2	4	Messsignal Drehmoment (Frequenzausgang; 5 V ¹ /12) V)	rt	12
Draufsicht	5	Messsignal 0 V; symmetrisch	gr	8
	6	Kalibriersignal-Auslösung 5 V30 V	gn	14
	7	Kalibriersignal 0 V;	gr	8
		Schirm an Gehäusemasse		

¹⁾ Werkseinstellung; komplementäre Signale RS-422

Wichtig

Die Drehmoment-Messflansche der Option 3, Code SF1/SU2, sind nur für den Betrieb mit DC-Versorgungsspannung vorgesehen. Sie dürfen nicht an ältere HBM-Messverstärker mit Rechteck-Speisung angeschlossen werden. Hier könnte es zur Zerstörung von Widerständen der Anschlussplatte bzw. anderen Fehlern in den Messverstärkern kommen (der Drehmoment-Messflansch dagegen ist abgesichert und nach Wiederherstellung der richtigen Anschlüsse wieder betriebsbereit).

Belegung 1 Stecker 2

Drehzahl-Messsystem

	Stecker Binder Pin	Belegung	Aderfarbe	Sub-D Stecker Pin
	1	Messsignal Drehzahl (Impulsreihe, 5 V¹; 0°)	rt	12
Binder 723	2	Nicht belegt	_	-
50 04	3	Messsignal Drehzahl (Impulsreihe, 5 V¹; um 90° phasenverschoben)²	gr	15
8 1	4	Nicht belegt	_	-
7 6	5	Nicht belegt	_	_
Draufsicht	6	Messsignal Drehzahl (Impulsreihe, 5 V¹; 0°)	ws	13
Diadisiciii	7	Messsignal Drehzahl (Impulsreihe, 5 V¹; um 90° phasenverschoben)²	gn	14
	8	Betriebsspannungsnull M	sw	8
		Schirm an Gehäusemasse		

¹⁾ Komplementäre Signale RS-422

²⁾ Beim Umschalten auf doppelte Frequenz statisches Drehrichtungssignal

Belegung 2 Stecker 2

Drehzahl-Messsystem mit Referenzimpuls

	Stecker Binder Pin	Belegung	Aderfarbe
Binder 723	1	Messsignal Drehzahl (Impulsreihe, 5 V ¹⁾ ; 0°)	rt
	2	Referenzsignal (1 Impuls/Umdr., 5 V ¹)	bl
5• • 4	3	Messsignal Drehzahl (Impulsreihe, 5 V ¹ ; um 90° phasenverschoben) ²⁾	gr
	4	Referenzsignal (1Impuls/Umdr., 5 V1))	sw
7 6	5	Nicht belegt	
	6	Messsignal Drehzahl (Impulsreihe, 5 V ¹ ; 0°)	ws
Draufsicht	7	Messsignal Drehzahl (Impulsreihe, 5 V ¹ ; um 90° phasenverschoben) ²	gn
	8	Betriebsspannungsnull	ge
		Schirm an Gehäusemasse	

¹⁾ Komplementäre Signale RS-422

²⁾ Beim Umschalten auf doppelte Frequenz statisches Drehrichtungssignal.

Belegung Stecker 3:

Spannungsversorgung und Spannungs-Ausgangssignal

D. 1 700	Stecker Binder Pin	Belegung
Binder 723	1	Messsignal Drehmoment (Spannungsausgang; 0 V 🔟)
6.0	2	Versorgungsspannung 0 V;
	3	Versorgungsspannung 18 V30 V DC
4 3	4	Messsignal Drehmoment (Spannungsausgang; ±10 V)
	5	Nicht belegt
Draufsicht	6	Kalibriersignal-Auslösung 5 V30 V
	7	Kalibriersignal 0 V;
		Schirm an Gehäusemasse

6.5 Versorgungsspannung

Der Aufnehmer ist mit einer Schutzkleinspannung (Versorgungsspannung 18...30 V DC) zu betreiben, die üblicherweise einen oder mehrere Verbraucher innerhalb eines Prüfstandes versorgt.

Soll die Anlage an einem Gleichspannungsnetz¹) betrieben werden, so sind zusätzliche Vorkehrungen für die Ableitung von Überspannungen zu treffen.

Die Hinweise dieses Kapitels beziehen sich auf den autarken Betrieb der T10FS ohne HBM-Systemlösungen.

¹⁾ Verteilsystem für elektrische Energie mit einer größeren räumlichen Ausdehnung (z. B. über mehrere Prüfstände), das eventuell auch Verbraucher mit großen Nennströmen versorgt.

Die Versorgungsspannung ist von den Signalausgängen und den Kalibriersignaleingängen galvanisch getrennt. Schließen Sie eine Schutzkleinspannung von 18 V ... 30 V an Pin 3 (+) und Pin 2 () der Stecker 1 oder 3 an. Wir empfehlen, das HBM-Kabel KAB 8/00-2/2/2 mit entsprechenden Binder-Buchsen zu verwenden, das bei Nennspannung (24 V) bis zu 50 m und im Nennspannungsbereich 20 m lang sein darf (siehe Zubehör, Seite 90).

Wird die zulässige Kabellänge überschritten, können Sie die Versorgungsspannung über zwei Anschlusskabel (Stecker 1 und 3) parallel zuführen. Damit erreichen Sie eine Verdoppelung der zulässigen Länge. Alternativ ist ein Netzteil vor Ort zu installieren.

Wenn Sie die Versorgungsspannung über ein nicht abgeschirmtes Kabel zuführen, müssen die Kabel verdrillt sein (Funkschutz). Zusätzlich empfehlen wir, ein Ferritelement in der Nähe des Anschlusssteckers am Kabel anzubringen und den Stator zu erden.

Wichtig

Im Einschaltmoment kann ein Strom von bis zu 2 A fließen und damit Netzteile mit elektronischer Strombegrenzung ausschalten.

7 Kalibrieren

Die Drehmoment-Messflansche T10FS liefern ein elektrisches Kalibriersignal, das bei Messketten mit HBM-Komponenten verstärkerseitig abgerufen werden kann. Der Messflansch erzeugt ein Kalibriersignal von ca. 50 % des Nenndrehmomentes. Der genaue Wert ist auf dem Typenschild vermerkt. Stellt man nun das Verstärkerausgangssignal auf das Kalibriersignal des angeschlossenen Messflansches ein, ist der Messverstärker an den Messflansch angepasst. Um stabile Bedingungen zu erreichen, sollte das Kalibriersignal erst nach einer Aufwärmphase des Aufnehmers von 15 Minuten aktiviert werden.

Hinweis

Beim Messen des Kalibriersignales sollte der Messflansch unbelastet sein, da das Kalibriersignal additiv aufgeschaltet wird.

Wichtig

Damit die Messgenauigkeit eingehalten wird, sollte das Kalibriersignal maximal 5 Minuten anliegen. Danach ist eine ebensolange Abkühlphase erforderlich, bevor das Kalibriersignal erneut ausgelöst wird.

7.1 Kalibrieren Option 2, Code KF1

Durch Erhöhen der Speisespannung von 54 V_{SS} auf 80 V_{SS} (Pin 6 und 7, Stecker 1) wird das Kalibriersignal ausgelöst.

7.2 Kalibrieren Option 2, Code SF1/SU2

Durch Anlegen einer Schutzkleinspannung von 5 V an Pin 6 (+) und 7 (am Stecker 1 oder 3 wird das Kalibriersignal ausgelöst.

Die Nennspannung für das Auslösen des Kalibriersignals beträgt 5 V (Auslösen bei U>2,7 V), sie ist galvanisch von der Versorgungs- und der Messspannung getrennt. Die maximal zulässige Spannung beträgt 30 V. Bei Spannungen kleiner 0,7 V ist der Messflansch im Messbetrieb. Bei Nennspannung beträgt die Stromaufnahme ca. 2 mA, bei Maximalspannung ca. 22 mA.

Hinweis

Bei HBM-Systemlösungen wird das Kalibriersignal vom Messverstärker ausgelöst.

8 Einstellungen

Hinweis

Auf der Rückseite des Statordeckels finden Sie eine Tabelle mit allen relevanten Schalterstellungen. Änderungen der Werkseinstellungen sollten Sie hier mit einem wasserfesten Filzstift markieren bzw. eintragen.

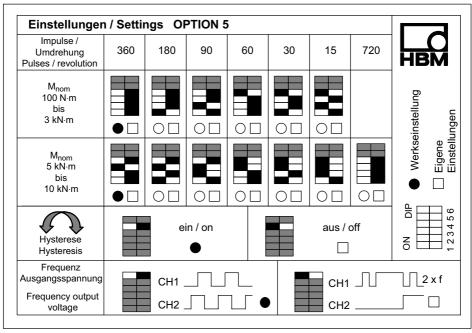


Abb. 8.1 Klebeschild mit Schalterstellungen; optisches Drehzahl-Messsystem

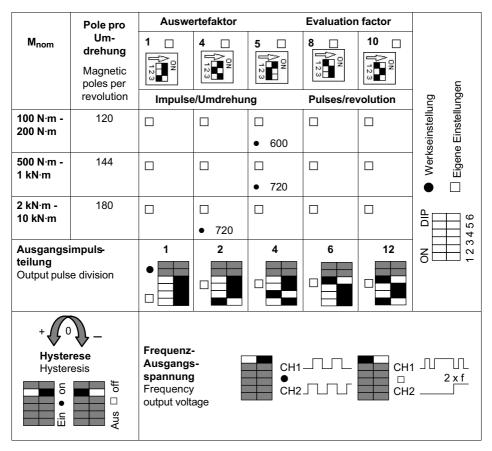


Abb. 8.2 Klebeschild mit Schalterstellungen; magnetisches Drehzahl-Messsystem

Alle einstellbaren Impulsanzahlen des magnetischen Drehzahl-Messsystems finden Sie in *Abb. 8.8 (Seite 68*). Bitte notieren Sie alle Änderungen der Werkseinstellungen auf dem Klebeschild.

8.1 Drehmoment-Ausgangssignal, Code KF1

Werkseitig ist die Frequenz-Ausgangsspannung auf 12 V (asymmetrisch) eingestellt. Das Frequenzsignal liegt auf Pin 4 gegenüber Pin 1. Ein Umschalten ist nicht möglich.

8.2 Drehmoment-Ausgangssignal, Code SF1/SU2

Werkseitig ist die Frequenz-Ausgangsspannung auf 5 V (symmetrisch, komplementäre Signale RS-422) eingestellt. Das Frequenzsignal liegt auf Pin 4 gegenüber Pin 1. Sie können die Ausgangsspannung auf 12 V (asymmetrisch) umstellen. Dazu müssen Sie die Schalter S1 und S2 in Position1 schalten (dabei Pin $1 \rightarrow \underline{\square}$).

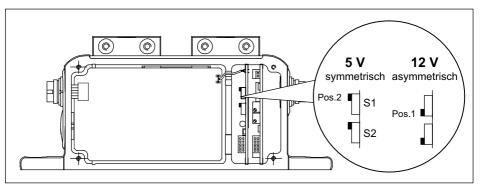


Abb. 8.3 Schalter zum Umstellen der Frequenz-Ausgangsspannung

8.3 Nullpunkt einstellen

Beim Drehmoment-Messflansch mit der Option Spannungsausgang (SU2) sind nach Entfernen des Statordeckels zwei Potentiometer zugänglich. Mit dem Nullpunkt-Potentiometer können Sie durch den Einbau bedingte Nullpunkt-Abweichungen korrigieren. Der Abgleichbereich beträgt mindestens ±400 mV bei Nennverstärkung. Das Endpunkt-Potentiometer dient dem werksinternen Abgleich und ist gegen unbeabsichtigtes Verdrehen mit einer Lackhaube gesichert.

Wichtig

Beim Verdrehen des Endpunkt-Potentiometers wird die werksinterne Kalibrierung des Spannungsausgangs verändert.

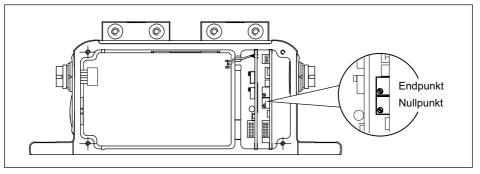


Abb. 8.4 Einstellen des Nullpunkts des Spannungsausgangs

8.4 Funktionsprüfung

8.4.1 Energieübertragung

Besteht der Verdacht, dass das Übertragungssystem nicht richtig arbeitet, kann nach Entfernen des Statordeckels die Funktion überprüft werden. Wenn die LED leuchtet, sind Rotor und Stator richtig ausgerichtet und es liegt keine Störung der Messsignalübertragung vor. Beim Auslösen des Kalibriersignals leuchtet die LED heller.

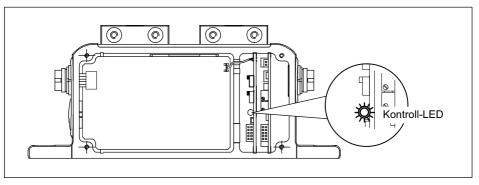


Abb. 8.5 Funktionsprüfung der Energieübertragung

8.4.2 Optisches Drehzahlmodul prüfen

Bei Bedarf können Sie die korrekte Funktion des Drehzahl-Messsystems prüfen.

- Entfernen Sie den Gehäusedeckel des Stators.
- Drehen Sie den Rotor mit mindestens 2 min⁻¹.

Wenn während der Drehung beide Kontroll-LEDs leuchten, ist das Drehzahl-Messsystem korrekt ausgerichtet und voll funktionsfähig.

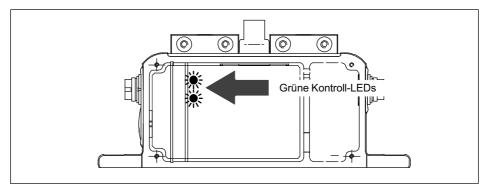


Abb. 8.6 Kontroll-LEDs des Drehzahl-Messsystems

Wichtig

Achten Sie beim Schließen des Stator-Gehäusedeckels darauf, dass die internen Verbindungskabel in den vorgesehenen Stegnuten liegen und nicht eingeklemmt werden.

8.5 Einstellung der Impulsanzahl

8.5.1 Magnetisches Drehzahl-Messsystem

Beim magnetischen Drehzahl-Messsystem wird ein magnetisiertes Polrad des Rotors durch einen MR-Sensor (Magneto-Resistive-Sensor) abgetastet. Der Sensor liefert zwei um 90° versetzte sinusförmige Signale, aus denen bis zu 10 Auswertepunkte pro Pol erzeugt werden können (Einstellmöglichkeit mit den Schaltern F1 ... F3). Mit der nachgeschalteten Elektronik ist wiederum eine Teilung der Ausgangsimpulse möglich (Schalter S1 ... S4), wodurch eine große Auswahl an Ausgangsimpulszahlen pro Umdrehung verfügbar ist (siehe Abb. 8.8).

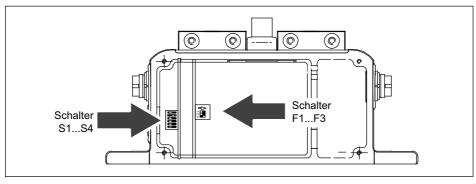


Abb. 8.7 Einstellen der Impulsanzahl; magnetisches Drehzahl-Messsystem

M _{nom}	Pole pro	Auswertefaktor				
	Um- drehung	1 123	4 12 0 12 3	5 123	8 ON 123	10 ON 123
			lmpi	ulse/Umdr	ehung	
100 N·m -	120					
200 N·m				• 600		
500 N·m - 1 kN·m	144					
				• 720		
2 kN·m - 10 kN·m	180					
			• 720			

Tab. 8.1 Auswertepunkte je Pol (• = Werkseinstellung)

Ausgangsimpuls-	1	2	4	6	12
Teilung (6-fach DIP-Schalter)	o	0 0	0 0	0 0	0 0

Tab. 8.2 Schalterstellungen Ausgangsimpuls-Teilung (• = Werkseinstellung)

Ausgai	Ausgangsimpulse/Umdrehung			stellung
100 N·m / 200 N·m	500 N·m / 1 kN·m	2 kN·m 10 kN·m	S1 S4	F1 F3
10	12	15	1	1 3
20	24	30		
30	36	45		
40	48	60		
50	60	75		
60	72	90		
80	96	120		
100	120	150		
120	144	180		
150	180	225		
160	192	240		

Ausga	ngsimpulse/Umd	rehung	Schalter	stellung
100 N·m / 200 N·m	500 N·m / 1 kN·m	2 kN·m 10 kN·m	S1 S4	F1 F3
200	240	300		
240	288	360		
300	360	450		
480	576	720 ^{*)}		
600 ¹⁾	720 ¹⁾	900		
960	1152	1440		
1200	1440	1800		

Abb. 8.8 Schalterstellungen für Impulszahl/Umdrehung

(♣ Schalterhebel)

1) Werkseinstellung

Die Ausgangsimpulsanzahl berechnet sich nach folgender Formel:

 $Ausgangsimpulszahl = \frac{Magnetische Pole \cdot Auswertepunkte je Pol}{Ausgangsimpulsteilung}$

Hinweis

Beachten Sie bitte, dass sich mit einer Änderung der Impulsanzahl auch die Impulsdauer ändert! Wir empfehlen, die mit Schalter F1...F3 wählbaren Ausgangsimpulszahlen zu bevorzugen. Bei Benutzung der Impulsteilung (Schalter S1...S4) kann sich die in den technischen Daten angegebene Impulstoleranz vergrößern.

Einfluss auf die Impulstoleranz haben auch weitere Größen, wie z. B. Exzentrizität und Relativbewegung zwischen Rotor und Stator.

8.5.2 Optisches Drehzahl-Messsystem

Hinweis

Werkseitig sind 360 Impulse/Umdrehung eingestellt. Beachten Sie bitte, dass sich mit einer Änderung der Impulsanzahl auch die Impulsdauer ändert!

$$Impulsdauer = \frac{1}{2 \cdot Impulsanzahl \cdot Drehzahl}$$

Die Anzahl der Impulse pro Umdrehung des Rotors ist über die DIP-Schalter S1 ... S4 einstellbar.

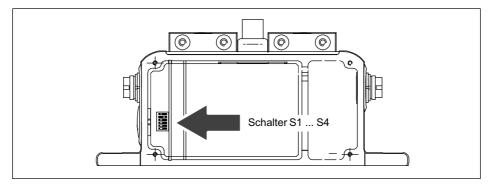


Abb. 8.9 Schalter zum Einstellen der Impulsanzahl

Impulsanzahl einstellen

- ► Entfernen Sie den Statordeckel.
- Stellen Sie mit den Schaltern S1 ... S4 nach *Tab. 8.3* die gewünschte Impulsanzahl ein.

Impulse/Um- drehung	360 ¹⁾	180	90	60	30	15	720
Nenndrehmoment 100 N·m 3 kN·m	\$4 \$1						
Nenndrehmoment 5 kN·m 10 kN·m	\$4 \$1						S4

1) Werkseinstellung

8.6 Schwingungsunterdrückung (Hysterese)

Niedrige Drehzahlen und größere Relativschwingungen zwischen Rotor und Stator können störende Drehrichtungsumkehr-Signale verursachen. Werkseitig ist eine elektronische Unterdrückung (Hysterese) zugeschaltet, die diese Störungen beseitigt. Damit werden Störungen durch radiale Schwingwege des Stators sowie Drehschwingungen des Rotors unterdrückt.

		Drehzahl-Messsystem	
		magnetisch	optisch
Radialschwingwege des Stators, ca.	mm	1	2
Drehschwingungen des Rotors, ca.	Grad	1	2

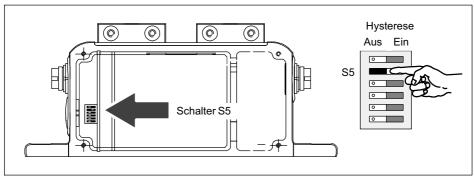


Abb. 8.10 Schalter zum Ausschalten der Hysterese

8.7 Form des Drehzahl-Ausgangssignals

In der Werkseinstellung stehen am Drehzahlausgang (Stecker 2) zwei um 90° phasenversetzte Drehzahlsignale (5 V symmetrisch, komplementäre Signale RS-422) an. Die jeweils eingestellte Impulsanzahl können Sie verdoppeln, indem Sie Schalter S6 in Stellung "Ein" bringen. Pin 3 gibt dann die Drehrichtung als statisches Drehrichtungssignal aus (Pin 3 = +5 V, Pin 7 = 0 V gegenüber Pin 8), wenn die Welle in Pfeilrichtung dreht). Bei Drehzahl 0 min⁻¹ hat das Drehrichtungssignal den zuletzt gemessenen Wert.

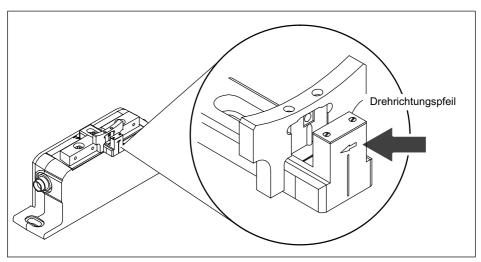


Abb. 8.11 Drehrichtungspfeil am Sensorkopf

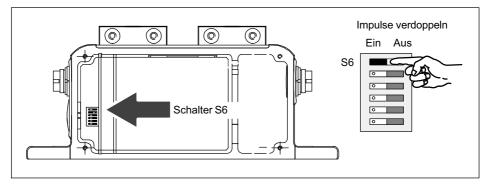


Abb. 8.12 Schalter zur Impulsverdopplung

8.8 Art des Drehzahl-Ausgangssignals

Sie können mit dem Schalter S7 das symmetrische Ausgangssignal 5 V (Werkseinstellung) auf ein asymmetrisches Signal 0 V \dots 5 V umschalten.

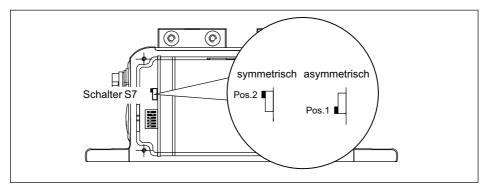


Abb. 8.13 Schalter S7; symmetrisches/asymmetrisches Ausgangssignal

8.9 Optisches Drehzahlmesssystem mit Referenzimpuls

Bei der Option Referenzimpuls ist in der Schlitzscheibe des optischen Drehzahl-Messsystems ein Magnet integriert, der bei jeder vollen Umdrehung des Rotors einen Impuls erzeugt. Der Impuls kann am Stecker 2 (siehe Seite 53) abgegriffen werden.

Der Referenzimpuls ist mit dem Drehzahl-Ausgangssignal (5 V¹), 0°) synchronisiert und wird ausgegeben, wenn die Referenzmarke durchfahren wird und beim Drehzahlsignal eine steigende Flanke auftritt.

Die Impulslänge entspricht der Länge eines Drehzahlinkrementes, die von der gewählten Impulsanzahl und der Drehzahl abhängt (Berechnung siehe Seite 65).

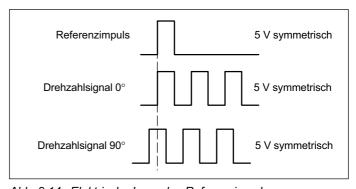


Abb. 8.14 Elektrische Lage des Referenzimpulses

Wenn das Drehzahl-Messsystem und der Referenzimpuls richtig synchronisiert sind, blinkt die Leuchtdiode L4 (Mindestdrehzahl 2 min⁻¹) und leuchtet ab ca. 1000 min⁻¹ dauerhaft. Leuchtet die LED *nicht*, stellen Sie bitte Schalter S8 um (*siehe Abb. 8.15*).

¹⁾ Komplementäre Signale RS-422

Wichtig

Schalter S8 liegt bei Draufsicht auf das geöffnete Statorgehäuse hinter Schalter S7.

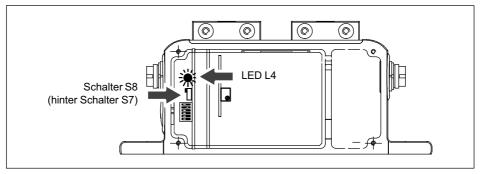


Abb. 8.15 Schalter S8; Optimieren des Referenzimpulses

9 Belastbarkeit

Das Nenndrehmoment darf statisch bis zum Grenzdrehmoment überschritten werden. Wird das Nenndrehmoment überschritten, sind weitere irreguläre Belastungen nicht zulässig. Hierzu zählen Längskräfte, Querkräfte und Biegemomente. Die Grenzwerte finden Sie im Kapitel "Technische Daten" auf Seite 92.

9.1 Messen dynamischer Drehmomente

Der Drehmoment-Messflansch eignet sich zum Messen statischer und dynamischer Drehmomente. Beim Messen dynamischer Drehmomente ist zu beachten:

- Die für statische Messungen durchgeführte Kalibrierung der T10FS gilt auch für dynamische Drehmomentmessungen.
- Die Eigenfrequenz f₀ der mechanischen Messanordnung hängt von den Trägheitsmomenten J₁ und J₂ der angeschlossenen Drehmassen sowie der Drehsteifigkeit der T10FS ab.

Die Eigenfrequenz f₀ der mechanischen Messanordnung lässt sich aus folgender Gleichung überschlägig bestimmen:

$$f_0 = \frac{1}{2\pi} \cdot \sqrt{c_T \cdot \left(\frac{1}{J_1} + \frac{1}{J_2}\right)} \\ \qquad \qquad \begin{cases} f_0 & = & \text{Eigenfrequenz in Hz} \\ J_1, J_2 & = & \text{Massenträgheitsmoment in kg} \cdot m^2 \\ c_T & = & \text{Drehsteifigkeit in N·m/rad} \end{cases}$$

 Die mechanische Schwingbreite (Spitze/Spitze) darf max. 200 % (Messbereich 100 Nm, 400 %; Messbereich 3 ... 10 kN·m 160 %) des für die T10FS kennzeichnenden Nenndrehmoments sein. Dabei muss die

Schwingbreite innerhalb des durch - M_{nom} und + M_{nom} (bei 100 N·m: -2 M_{nom} und +2 M_{nom} ¹⁾ festgelegten Belastungsbereiches liegen. Das gilt auch für das Durchfahren von Resonanzstellen.

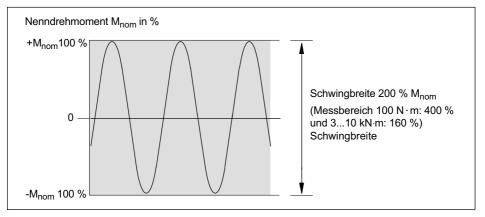


Abb. 9.1 Zulässige dynamische Belastung

T10FS

¹⁾ Die Aufnehmer können messtechnisch jedoch nur bis zum Aussteuerbereich betrieben werden.

10 Wartung

10.1 Wartung Drehmoment-Messflansch

Das Drehmoment-Messsystem ist wartungsfrei.

10.2 Wartung Drehzahlmodul

10.2.1 Magnetisches Drehzahl-Messsystem

Der Sensorkopf und der Polring beinhalten Kunststoffteile. Diese können Sie mit einem trockenen oder mit Spiritus getränkten Wattestäbchen oder Tuch reinigen. Verwenden Sie keine anderen Lösungsmittel!

10.2.2 Optisches Drehzahl-Messsystem

Im Laufe des Betriebes kann sich je nach Umgebungsbedingungen die Schlitzscheibe des Rotors und die zugehörige Sensoroptik des Stators mit Staub zusetzen. Dies macht sich durch einen Polaritätswechsel der Anzeige bemerkbar. Sollte dies eintreten, müssen Sensor und Schlitzscheibe gereinigt werden.

Reinigen Sie die Schlitzscheibe mit Pressluft (bis 6 bar).

Reinigen Sie die Optik des Sensors vorsichtig mit einem trockenen oder mit Spiritus getränkten Wattestäbchen. Verwenden Sie keine anderen Lösungsmittel!

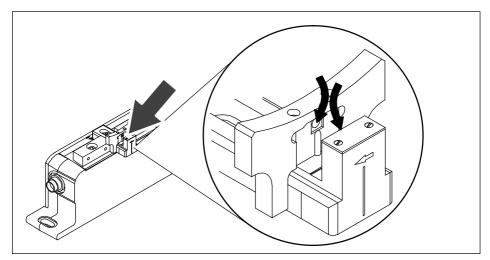
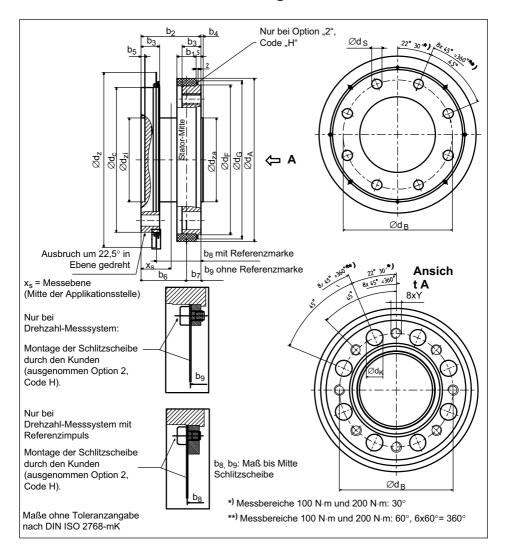
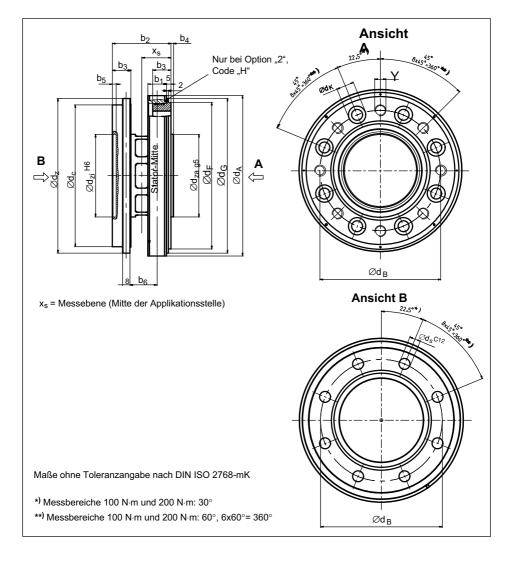



Abb. 10.1 Reinigungsstellen am optischen Drehzahlsensor

11 Abmessungen

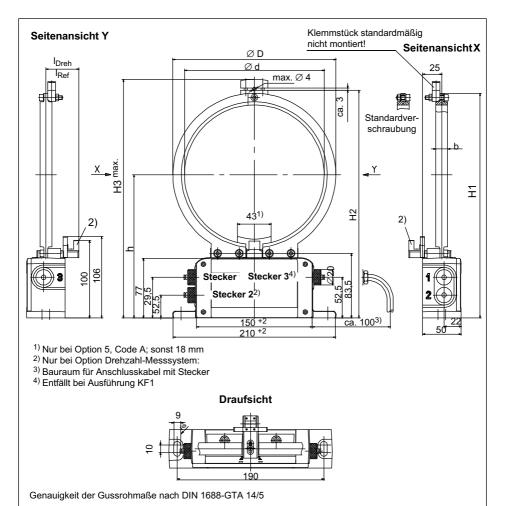
11.1 Abmessungen Rotor



Mess-		Abmessungen in mm													
bereich	b ₁	b ₂	b ₃	b _{4+0,4}	b ₅	b ₆	b ₇	b ₈	b ₉	xs	Υ				
100 N·m / 200 N·m	17,5	60	18	2	4	46,3	13,7	47,2	47,2	30	M8				
500 N·m / 1 kN·m	17,5	60	18	2	4	46,3	13,7	45,5	45	30	M10				
2 kN·m / 3 kN·m	20,5	64	20	2,5	4	48,8	15,2	47,5	47	32	M12				
5 kN·m	22,5	84	26	2,8	3	67,8	16,2	62,7	62,7	42	M14				
10 kN⋅m	28,5	92	30	3,5	4	72,8	19,2	66,7	66,7	46	M16				

Mess-		Abmessungen in mm												
bereich	$\emptyset d_A$	$\emptyset d_B$	$\emptyset d_{\mathbb{C}}$	$\emptyset d_{F}$	$\emptyset d_G$	$\emptyset d_{K}$	Ød _S ^{C12}	$\varnothing d_Z$	Ød _{za g5}	Ød _{zi} ^{H6}				
100 N·m / 200 N·m	119	84	99	101	110	14	8,2	131	57	57				
500 N·m / 1 kN·m	139	101,5	120	124	133	17	10,5	151	75	75				
2 kN·m / 3 kN·m	175	130	155	160	169	19	12,5	187	90	90				
5 kN⋅m	209	155,5	180	188	_	22	14,5	221	110	110				
10 kN⋅m	256	196	222	230	_	26	17	269	140	140				

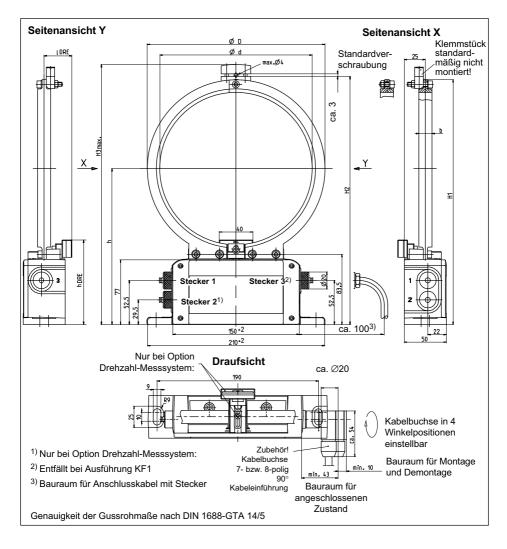
11.2 Abmessungen Rotor mit magnetischem Drehzahl-Messsystem



Mess-	Abmessungen in mm												
bereich	$\varnothing d_A$	$\emptyset d_{B}$	$\varnothing d_{\mathbb{C}}$	$\emptyset d_{F}$	$\varnothing d_G$	$\emptyset d_{K}$	Ød _S C12	$\varnothing d_Z$					
100 N⋅m 200 N⋅m	119	84	99	101	110	14	8,2	112,9					
500 N·m 1 kN·m	139	101,5	120	124	133	17	10,5	132,9					
2 kN·m 3 kN·m	175	130	155	160	169	19	12,5	168,9					
5 kN⋅m	209	155,5	180	188	_	22	14,5	192,5					
10 kN·m	256	196	222	230	_	26	17	239,7					

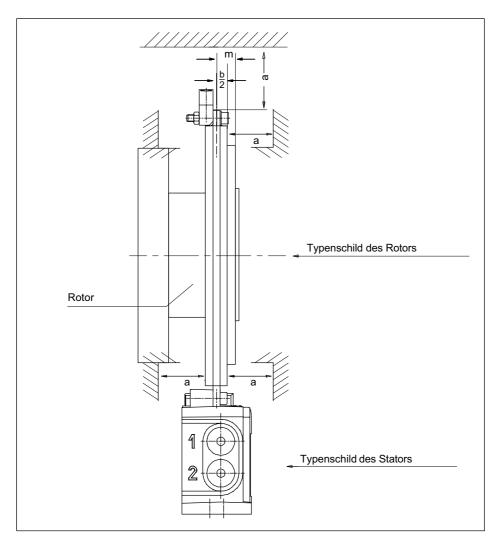
Mess-	Abmessungen in mm												
bereich	Ød _{za}	$\emptyset d_{zi}$	b ₁	b ₂	b ₃	b _{4+0,4}	b ₅	b ₆	xs	Y			
100 N⋅m 200 N⋅m	57	57	17,5	60	18	2	4	31	30	6xM8			
500 N⋅m 1 kN⋅m	75	75	17,5	60	18	2	4	29	30	8xM10			
2 kN·m 3 kN·m	90	90	20,5	64	20	2,5	4	30	32	8xM12			
5 kN⋅m	110	110	22,5	84	26	2,8	3	44	42	8xM14			
10 kN⋅m	140	140	28,5	92	30	3,5	4	45	46	8xM16			

11.3 Abmessungen Stator



Messbereich				Abm	nessunge	n in mm			
	b	Ød	ØD	H1	H2	H3	h	I _{Dreh}	I _{Ref}
100 N·m	17.5	125	155	235	239	253	157,5	42,5	42 E
200 N⋅m	17,5	123	100	233	239	200	137,3	42,5	42,5
500 N⋅m	47.5	445	475	255	050	070	107.5	40	40 F
1 kN⋅m	17,5	145	175	255	259	273	167,5	42	42,5
2 kN⋅m	20.5	101	244	204	205	200	105.5	40.5	40
3 kN⋅m	20,5	181	211	291	295	309	185,5	42,5	43
5 kN⋅m	22,5	215	245	324	329	343	202,5	57	57
10 kN·m	28,5	263	293	373	377	391	226,5	58	58

11.4 Abmessungen Stator mit magnetischem Drehzahl-Messsystem



Mess-	Abmessungen in mm												
bereich	b	Ød	ØD	H1	H2	НЗ	h	I _{DRE}	h _{DRE} 1)				
100 N⋅m	47.5	405	455	005	000	050	457.5	00	400				
200 N⋅m	17,5	125	155	235	239	253	157,5	38	100				
500 N⋅m	47.5	4.45	475	055	050	070	407.5	00	400				
1 kN⋅m	17,5	145	175	255	259	273	167,5	36	100				
2 kN·m	00.5	404	044	004	005	200	405.5	0.7	400				
3 kN⋅m	20,5	181	211	291	295	309	185,5	37	100				
5 kN⋅m	22,5	215	245	325	329	343	202,5	51	105,5				
10 kN⋅m	28,5	263	293	373	377	391	226,5	52	105,5				

¹⁾ Um ±1,5 mm am Sensorkopf verstellbar

11.5 Montagemaße

Montagemaße											
Messbereich	Maß "m"	Metallfreier Raum (mm)									
Wiessbereich	(mm)	а	x								
100 N⋅m	40.0		20								
200 N⋅m	13,8		30								
500 N⋅m	12.0		20 E								
1 kN⋅m	13,8	20	28,5								
2 kN⋅m	45.0	20	00.5								
3 kN⋅m	15,3		28,5								
5 kN⋅m	16,3		31,5								
10 kN⋅m	19,3		34,5								

12 Bestellnummern, Zubehör

Cod	de	Op	tion 1:	Messbereich	(Code	0	ption 5: Drehzahl-Messsystem ²⁾
100	Q	100) N⋅m			0	0	hne Drehzahl-Messsystem
200	Q	200) N⋅m			1	М	lit Drehzahl-Messsystem
500	Q	500) N⋅m			Α		lit Drehzahl-Messsystem und
001	• •		N⋅m		Ц		R	eferenzimpuls
002			N⋅m			_		T
003	_		N⋅m			Co		Option 6: Anschlusskabel
005	_		N⋅m			V	_	Ohne Anschlusskabel
010		_	kN⋅m			V	1	Anschlusskabel Drehmoment für KF1, 423-freie Enden, 6 m
C	ode	_	<u>. </u>	: Nenndrehzahl		V2	*)	Anschlusskabel Drehmoment für KF1,
	L	N	lenndre 000 mir	hzahl messbereichsabhängig r ¹ bis 12000 min ⁻¹		V3		423-freie Enden, max. 80 m Anschlusskabel Drehmoment für KF1,
	Н	N	lenndre	hzahl messbereichsabhängig		"	J	423-MS3106PEMV, 6 m
				in-1 bis 22000 min-1	_	V4	.*)	Anschlusskabel Drehmoment für KF1, 423 MS3106PEMV, max. 80 m
	Со			n 3: Elektrische Konfiguration		V	5	Anschlusskabel Drehmoment für
	KF	1		angssignal 10 kHz ±5 kHz, espannung 14 kHz/54 V; Rechteck		Ve	*)	SF1/SU2, 423 D-Sub 15P, 6 m Anschlusskabel Drehmoment für
	SF	1		angssignal 10 kHz ±5 kHz,		"	,	SF1/SU2, 423 D-Sub 15P, max. 50 m
				rgungsspannung 18 30 V DC		W	1	Je ein Kabel Drehmoment und
	SL	J2		angssignal 10 kHz ±5 kHz und ±10 V, rgungsspannung 18 30 V DC			4.	Drehzahl, 423 D-Sub 15P, 6 m
	Н		verso	rgungsspannung 16 30 V DC	_	W2	<u>2</u> ^)	Je ein Kabel Drehmoment und Drehzahl, 423 D-Sub 15P, max. 50 m
		Г	Code	Option 4: Genauigkeit	٦ ا	W	5	Je ein Kabel Drehmoment und
		\vdash	S	Standard	- 1			Drehzahl mit Referenzimpuls, 423-freie Enden, 6 m
			G	Höhere Genauigkeit ^{1);} Lin. <±0,03	7	W	5*)	Je ein Kabel Drehmoment und
		L		% und TK ₀ <±0,03 %				Drehzahl mit Referenzimpuls,
								423-freie Enden, max. 50 m
								Co Option 7: Zubehör
								N Ohne Zubehör
	L			4) =		J		
								ysausgang: Lin. <±0,05 %; TK ₀ <±0,13 %
Bes	telln	um	mer:	2) N	lur	bei Op	otior	n 3, Code SF1, SU2
			K-	T10FS - [m*)
Bes	stellt	eis	piel: K-	Г10FS - 5 0 0 Q - H -	S	F	1 -	S-0-V5-N - m*)
43								

^{*)} Bei Auswahl V2, V4, V6, W2 und W6 bitte gewünschte Kabellänge angeben.

Zubehör, zusätzlich zu beziehen

423G-7S, Kabeldose 7-polig, gerade Kabeleinführung, für Drehmomentausgang (Stecker 1, 3), Bestell-Nr. 3-3101.0247

423W-7S, Kabeldose 7-polig, 90° Kabeleinführung, für Drehmomentausgang

(Stecker 1, 3), Bestell-Nr.: 3-3312.0281

423G-8S, Kabeldose 8-polig, gerade Kabeleinführung, für Drehzahlausgang

(Stecker 2), Bestell-Nr. 3-3312.0120

423W-8S, Kabeldose 8-polig, 90° Kabeleinführung, für Drehmomentausgang

(Stecker 2), Bestell-Nr.: 3-3312.0282

Meterware Kab8/00-2/2/2, Bestell-Nr. 4-3301.0071

13 Technische Daten

Тур		T10FS								
Genauigkeitsklasse					0,0	5				
Drehmoment-Messsystem										
Nenndrehmoment M _{nom}	N⋅m	100	200	500	1 k	2 k	3 k	5 k	10 k	
Nennkennwert (Spanne zwischen Drehmoment = null und Nenndrehmoment)										
Frequenzausgang	kHz				5					
Spannungsausgang	V				10)				
Kennwerttoleranz (Abweichung der tatsächlichen Ausgangsgröße bei M _{nom} vom Nennkennwert)										
Frequenzausgang	%				±0,	1				
Spannungsausgang	%				±0,	2				
Ausgangssignal bei										
Drehmoment = null										
Frequenzausgang	kHz				10)				
Spannungsausgang	V				0					
Nennausgangssignal										
Frequenzausgang										
bei positivem Nenndreh- moment	kHz	15 (5	5 V syr	mmetr	isch ¹ /	12 V a	asymr	netris	ch ²)	
bei negativem Nenndreh- moment	kHz	5 (5	V syn	nmetri	sch ¹ /1	2 V a	symm	netrisc	:h ²)	
Spannungsausgang										
bei positivem Nenndreh- moment	V				+1	0				
bei negativem Nenndreh- moment	V				-10)				

Nenndrehmoment M _{nom}	N⋅m	100	200	500	1 k	2 k	3 k	5 k	10 k	
Lastwiderstand				ı		ļ.				
Frequenzausgang	kΩ				≥2	2				
Spannungsausgang	kΩ				≥5	j				
Langzeitdrift über 48 h										
Spannungsausgang	mV				<u>≤±</u>	3				
Messfrequenzbereich										
Spannungsausgang	Hz			0	1000	(-3 d	B)			
Gruppenlaufzeit										
Frequenzausgang	ms				0,1	5				
Spannungsausgang	ms				0,9	9				
Restwelligkeit										
Spannungsausgang	mV	/ 40 (Spitze/Spitze)								
Temperatureinfluss pro 10 K im Nenntemperaturbereich										
auf das Ausgangssignal, be- zogen auf den Istwert der Signalspanne										
Frequenzausgang	%				<±0,	05				
Spannungsausgang	%				<±0,	15				
auf das Nullsignal, bezogen auf den Nennkennwert										
Frequenzausgang	%		<	±0,05	(optio	nal <:	±0,03))		
Spannungsausgang	%		<	±0,15	(optio	nal <	±0,13))		
Maximaler Aussteuer- bereich ³	kHz	4 16								
Frequenzausgang	V			10,5			±11\			
Spannungsausgang	V		-	10,5	. +10,	υ (ιγρ	. <u>-</u> 111)			
Energieversorgung (Ausführung KF1)										

Nenndrehmoment M _{nom}	N⋅m	100	200	500	1 k	2 k	3 k	5 k	10 k	
Speisespannung (Rechteck)	V		5	64 ±5 °	% (Sp	itze/S	pitze)			
Auslösen des Kalibrier- signals	V				80 ±	5 %				
Frequenz	kHz				ca.	14				
Maximale Stromaufnahme	Α	1 (Spitze/Spitze)								
Vorverstärkerspeise- spannung	V				0/0/-	+15				
Vorverstärker, max. Strom- aufnahme	mA				0/0/-	-25				
Energieversorgung (Ausführung SF1/SU2)										
Nennversorgungs- spannung (Schutzklein- spannung)	V _{DC}	18 30; asymmetrisch								
Stromaufnahme im Mess- betrieb	Α				< 0	,9				
Stromaufnahme im Anlauf- betrieb	Α				< 1	2				
Nennaufnahmeleistung	W				< 1	2				
Linearitätsabweichung ein- schließlich Hysterese, bezo- gen auf den Nennkennwert										
Frequenzausgang	%		<	±0,05	(optic	nal <	±0,03)			
Spannungsausgang	%		<	±0,07	(optic	nal <	±0,05))		
Rel. Standardabweichung der Wiederholbarkeit										
nach DIN 1319, bezogen auf die Ausgangssignal- änderung										
Frequenzausgang	%	5 < <±0,02 ±0,03								
Spannungsausgang	%	<±0,03								

Nenndrehmoment M _{nom}	N⋅m	100	200	500	1 k	2 k	3 k	5 k	10 k	
Kalibriersignal		ca. 50 % von M _{nom} ; genauer Wert ist auf dem Typenschild angegeben								
Toleranz des Shuntsignals, bezogen auf M _{nom}	%	<±0,05								

¹⁾ Komplementäre Signale RS-422; Werkseinstellung der Ausführung SF1/SU2

²⁾ Werkseinstellung Ausführung KF1 (keine Umschaltung möglich)

³⁾ Ausgangssignalbereich, in dem ein wiederholbarer Zusammenhang zwischen Drehmoment und Ausgangssignal besteht.

Nenndrehmoment M _{nom}	N⋅m	100	200	500	1 k		
Magnetisches Drehzahl-Messsystem							
Drehzahl-Messsystem		resistive) tisiertem ring. Ver)-Sensor ı Kunststot vielfachur	s MR (Ma und magn ffring im E ng durch verfahren	e- delstahl-		
Magnetische Pole	Anz.	12	20	14	14		
Impulstoleranz							
bei Auswertefaktor 1 je Pol	Grad		<0),1			
bei Werkseinstellung des Auswertefaktors	Grad		<0,2 (ty	p. <0,1)			
Impulse pro Umdrehung							
Mögliche Einstellungen ⁴ (Auswertefaktor je Pol)	Anz.	600 (5);	480 (4); 960 (8); (10)	60 (8); 720 (5);			
Werkseinstellung	Anz.	600	(5)	720	$(5)^5$		
Mögliche Einstellungen durch zu- sätzliche Ausgangsimpulsteilung ⁴	Anz.	10	1200	12	1440		
Ausgangssignal	V	2 Recht	ecksignal	metrisch e um ca. 9 schoben	90° pha-		
Maximale Ausgangsfrequenz	kHz		25	50			
Mindestdrehzahl für ausreichende Impulsstabilität	min ⁻¹		()			
Gruppenlaufzeit	μs		<5 (ty	p. 1,3)			
Hysterese der Drehrichtungsumkehr ⁷ bei Relativschwingungen zwischen Rotor und Stator							
Drehschwingungen des Rotors	Grad		<ca< td=""><td>a. 1</td><th></th></ca<>	a. 1			
Radialschwingungen des Stators	mm		<ca< td=""><td>a. 1</td><th></th></ca<>	a. 1			

Nenndrehmoment M _{nom}	N⋅m	100 200 500 1 k					
Lastwiderstand	kΩ	≥2 (Ab		derstände beachten)	gemäß		
Magnetische Belastungsgrenze							
Remanenzflussdichte	mT	>100					
Koerzitivfeldstärke	kA/m	>100					
Zulässige magnetische Feldstärke für Signalabweichungen je Pol von < 0,1 Grad	kA/m		<()),1			
Radialer Nennabstand zwischen Sensorkopf und Magnetring	mm		1	,0			
Arbeitsabstandsbereich	mm	0,3 1,8					
Max. zulässige Radialverschiebung des Rotors zum Stator	mm	am S	Sensorkop	andsberei of um ±1,5 ert werden	mm		

⁴⁾ Bitte beachten Sie beim Umstellen auf größere Ausgangsimpulsfaktoren die maximal mögliche

Ausgangsfrequenz von 250 kHz.

5) Max. zulässige Drehzahl für Drehzahlmessung beträgt 20500 min⁻¹. Bei höheren Drehzahlen müssen geringere Ausgangsimpulse eingestellt werden.

⁶⁾ Komplementäre Signale RS-422

⁷⁾ Ausschaltbar

Nenndrehmoment M _{nom}	N⋅m	2 k	3 k	5 k	10 k		
Magnetisches Drehzahl-Messsystem							
Drehzahl-Messsystem		resistive tisiertem stahlring)-Sensor Kunststo . Vervielf	Is MR (Magr und magr offring im I achung de everfahre	ne- Edel- urch		
Magnetische Pole	che Pole Anz. 180						
Impulstoleranz							
bei Auswertefaktor 1 je Pol	Grad		< (),1			
bei Werkseinstellung des Auswertefaktors	Grad		< 0,2 (ty	p. < 0,1)			
Impulse pro Umdrehung							
Mögliche Einstellungen ⁸ (Auswertefaktor je Pol)	Anz.	180 (1);	440 (8);				
Werkseinstellung	Anz.		720	(4)			
Mögliche Einstellungen durch zusätz- liche Ausgangsimpulsteilung ⁸	Anz.		15	1800			
Ausgangssignal	V			i, 2 Recht 0° phase ben			
Maximale Ausgangsfrequenz	kHz		25	50			
Mindestdrehzahl für ausreichende Impulsstabilität	min ⁻¹		()			
Gruppenlaufzeit	μs		<5 (typ	o. 2,2)			
Hysterese der Drehrichtungsumkehr ¹⁰ bei Relativschwingungen zwischen Rotor und Stator							
Drehschwingungen des Rotors	Grad	d <ca. 1<="" td=""></ca.>					
Radialschwingungen des Stators	mm		<ca< th=""><td>a. 1</td><td></td></ca<>	a. 1			

Nenndrehmoment M _{nom}	N⋅m	2 k	3 k	5 k	10 k	
Lastwiderstand	kΩ	`		widerstän 2 beachte	U	
Magnetische Belastungsgrenze						
Remanenzflussdichte	mT	>100				
Koerzitivfeldstärke	kA/m	>100				
Zulässige magnetische Feldstärke für Signalabweichungen je Pol von < 0,1 Grad	kA/m		<(),1		
Radialer Nennabstand zwischen Sensorkopf und Magnetring	mm		1	,2		
Arbeitsabstandsbereich	mm	0,3 2,2				
Max. zulässige Radialverschiebung des Rotors zum Stator	mm	kann an	n Sensorl	ostandsbe kopf um ± ert werder	1,5 mm	

⁸⁾ Bitte beachten Sie beim Umstellen auf größere Ausgangsimpulsfaktoren die maximal mögliche Ausgangsfrequenz von 250 kHz. ⁹⁾ Komplementäre Signale RS-422

¹⁰⁾ Ausschaltbar

Optisches Drehzahl-Messsys	stem								
Nenndrehmoment M _{nom}	N⋅m	100	200	500	1 k	2 k	3 k	5 k	10 k
Messsystem Drehzahl		Opt	isch, r		Infraro Schlitz:			etallis	cher
Mechanische Inkremente	Anz.			36	60			72	20
Positionstoleranz der Inkremente	mm				±0	,05		I	
Toleranz der Schlitzbreite	mm				±0	,05			
Impulse pro Umdrehung	Anz.	3	60 ¹¹⁾ ;	180;	90; 60	; 30; 1	5		20;
Elektrisch einstellbar								180	; ^{11);} ; 90; 30; 15
Ausgangssignal	V	512	symm				cksigna hoben		ca.
Mindestdrehzahl für aus- reichende Impulsstabilität	min-1				;	2			
Gruppenlaufzeit	μs				<5 (ty	p. 2,2)		
Hysterese der Drehrichtungsumkehr ¹³									
bei Relativschwingungen zwischen Rotor und Stator									
Drehschwingungen des Rotors	Grad				<c:< th=""><th>a. 2</th><th></th><th></th><th></th></c:<>	a. 2			
Radialschwingungen des Stators	mm				<c:< th=""><th>a. 2</th><th></th><th></th><th></th></c:<>	a. 2			
Lastwiderstand	kΩ	≥2 (Abschlusswiderstände gemäß RS-422 beachten)						2	
Schutzart nach EN 60529					ΙP	54			

Nenndrehmoment M _{nom}	N⋅m	100	200	500	1 k	2 k	3 k	5 k	10 k		
Zulässiger Verschmutzungsgrad	%				</th <th>50</th> <th></th> <th></th> <th></th>	50					
im optischen Weg der Sensorgabel (Linsen, Schlitz- scheibe)											
Messsystem Referenzimpuls	i										
Messsystem	Magnetisch, mittels Feldplattensensor und Magnet synchronisiert mit steigender ¹¹⁾ od fallender Flanke des 0°-Ausgangssignals optischen Drehzahl-Messsystems										
Ausgangssignal	V			5	symn	netrisc	h				
Impulsbreite		0,5	Grad		0 Drel (Werk				ndre-		
Anzahl der Impulse pro Umdrehung						1					
Mindestdrehzahl für aus- reichende Impulsstabilität	min ⁻¹				2	2					
Gruppenlaufzeit	μs				<5 (ty	p. 2,2))				
Zusätzlicher Phasenfehler bei											
<20 min ⁻¹	Grad										
>20 min ⁻¹	Grad			typ.	< 0,1	; vorei	lend				
				ve	rnachl	lässigl	oar				
Wiederholbarkeit bei 360 Drehzahlimpulsen/ Umdrehung	Grad	typ. <±0,04 (idealer Einbau, schwingungsfreier Betrieb)									
Allgemeine Angaben											
Schutzart nach EN 60529					ΙP	54					

Nenndrehmoment M _{nom}	N·m	100	200	500	1 k	2 k	3 k	5 k	10 k
EMV			I		I				
Emission (nach FCC 47 Part 15, Sub- part C)									
Emission (nach EN61326-1, Tabelle 4)									
Funkstörfeldstärke	_				Klas	se B			
Störfestigkeit (EN61326-1, Tabelle A.1)									
Elektromagnetisches Feld (AM)	V/m	10							
Magnetisches Feld									
Elektrostatische Ent- ladungen (ESD)	A/m				3	80			
Kontaktentladung	kV					4			
Luftentladung	kV				;	8			
Schnelle Transienten (Burst)	kV					1			
Stoßspannungen (Surge)	kV					1			
Leitungsgebundene Störungen (AM)	V				;	3			
Schutzart nach EN 60529					ΙP	54			
Gewicht, ca. Rotor	kg	1,9	1,9	2,4	2,4	4,9	4,9	8,3	14,6
Stator	kg	1,2 1,2 1,2 1,2 1,3 1,3 1,3 1,3							1,3
Referenztemperatur	°C	+23							
Nenntemperaturbereich	°C	+10 +60							
Gebrauchstemperatur- bereich	°C				-10	+60			

Nenndrehmoment M _{nom}	N⋅m	100	200	500	1 k	2 k	3 k	5 k	10 k
Lagerungstemperaturbe- reich	°C	-20 +70							
Stoßbeständigkeit, Prüfschä grad nach DIN IEC 68; Teil 22 IEC 682271987									
Anzahl	n				10	000			
Dauer	ms	3							
Beschleunigung (Halbsinus)	m/s ²	650							
Vibrationsbeständigkeit, Prü schärfegrad nach DIN IEC 68 Teil 2-6: IEC 68-2-6-1982									
Frequenzbereich	Hz	5 65							
Dauer	h				1	,5			
Beschleunigung (Amplitude)	m/s ²				5	50			

¹¹⁾ Werkseinstellung12) Komplementäre Signale RS-42213) Ausschaltbar

Nenndrehmoment	N⋅m	100	200	500	1 k	2 k	3 k	5 k	10 k
Nenndrehzahl	min ⁻¹	150	000		12	000		10000	8000
Nenndrehzahl optional	min ⁻¹	240	000	220	000	180	000	14000	12000
Belastungsgrenzen ¹⁴						•		•	
Grenzdrehmoment, bezogen auf M _{nom}	%	400		20	00			160	
Bruchdrehmoment, bezogen auf M _{nom}	%	>800		>4	.00			>320	
Grenzlängskraft	kN	5	10	16	19	39	42	80	120
Grenzquerkraft	kN	1	2	4	5	9	10	12	18
Grenzbiegemoment	N⋅m	50	100	200	220	560	600	800	1200
Schwingbreite nach DIN 50 100 (Spitze/ Spitze) ¹⁵	N⋅m	400	400	1000	2000	4000	4800	8000	16000
Mechanische Werte									
Drehsteifigkeit c _T	kN·m/ rad	270	270	540	900	2300	2600	4600	7900
Verdrehwinkel bei M _{nom}	Grad	0,022	0,043	0,055	0,066	0,049	0,066	0,06	0,07
Steifigkeit in axialer Richtung c _a	kN/mm	800	800	740	760	950	1000	950	1600
Steifigkeit in radialer Richtung c _r	kN/mm	290	290	550	810	1300	1500	1650	2450
Steifigkeit bei Biegemoment um eine radiale Achse c _b	kN·m/ Grad	7	7	11,5	12	21,7	22,4	43	74
Maximale Aus- lenkung bei Grenz- längskraft	mm	< 0	,02	< 0,03 < 0,05 <),1
Zusätzlicher max. Rundlauffehler bei Grenzquerkraft	mm				< (0,02			

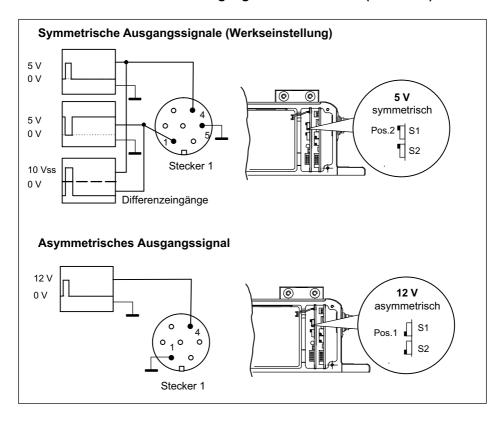
Nenndrehmoment	N⋅m	100	200	500	1 k	2 k	3 k	5 k	10 k	
Verdrehwinkel bei M _{nom}	Grad	0,022	0,043	0,055	0,066	0,049	0,066	0,06	0,07	
Zusätzliche Planpar- allelitätsabweichung bei Grenz- biegemoment	mm	< 0	,03	< 0	,05	< 0	,07	< 0	,07	
Auswucht-Gütestufe na DIN ISO 1940	ach				G	2,5				
Zul. max. Schwingweg Rotors (Spitze/Spitze) ¹										
Wellenschwingungen im der Anschlussflansche ir Anlehnung an ISO 7919-	า									
Normalbetrieb (Dauerbetrieb)	μm	$s_{(p-p)} = \frac{9000}{\sqrt{n}}$ n in min ⁻¹)								
Start- u. Stoppbe- trieb / Resonanz- bereiche (temporär)	μm	$s_{(p-p)} = \frac{13200}{\sqrt{n}}$ (n in min ⁻¹)								
Massenträgheitsmome Rotors	nt des									
I _V (um Drehachse)	kg⋅m²	0,0	026	0,0	059	0,0	192	0,0370	0,0970	
I _V mit optischem Drehzahl-Mess- system	kg⋅m²	0,0	027	0,0	062	0,0196		0,0380	0,0995	
I _v mit magne- tischem Drehzahl-Mess- system	kg⋅m²	0,0	029	0,0	065	0,0203	0,0201	0,0390	0,1	
Anteiliges Massenträgl moment für Übertrager										
ohne Dreh- zahl-Messsystem	%	5	7	5	6	54 53				
mit optischem Drehzahl-Mess- system	%	5	5	5	4	5	3	5	2	

Nenndrehmoment	N⋅m	100	200	500	1 k	2 k	3 k	5 k	10 k
mit magnetischem Drehzahl-Mess- system	%				Į	51			
Zul. max. stat. Exzentri des Rotors (radial) zum mittelpunkt									
ohne Drehzahl- Messsystem	mm	±2							
mit optischem Drehzahl-Mess- system (mit oder ohne Referenz- impuls)	mm					±1 0,7			
mit magnetischem Drehzahl-Mess- system					_	-,.			

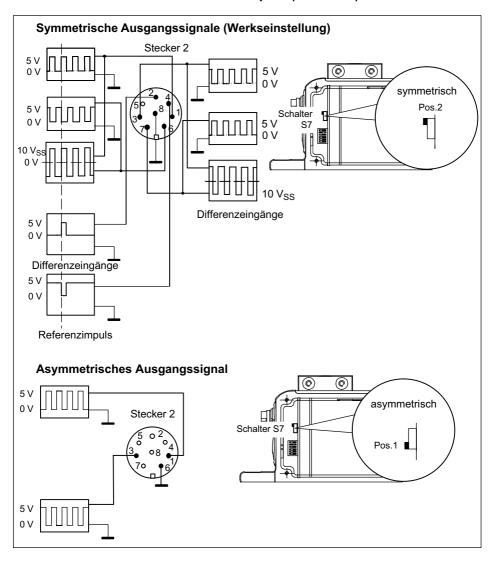
Nenndrehmoment	N⋅m	100	200	500	1 k	2 k	3 k	5 k	10 k
Zul. axialer Verschiebe	weg				•				
zwischen Rotor und Stat	tor								
ohne Drehzahl- Messsystem	mm				:	±3			
mit optischem Drehzahl-Mess- system (mit oder ohne Referenz- impuls)	mm					±2 1,5			
mit magnetischem Drehzahl-Mess- system					_	,-			

¹⁴⁾ Jede irreguläre Beanspruchung (Biegemoment, Quer- oder Längskraft, Überschreiten des Nenndrehmomentes) ist bis zu der angegebenen statischen Belastungsgrenze nur dann zulässig, solange keine der jeweils anderen von ihnen auftreten kann. Andernfalls sind die Grenzwerte zu reduzieren. Wenn je 30 % des Grenzbiegemomentes und der Grenzquerkraft vorkommen, sind nur noch 40 % der Grenzlängskraft zulässig, wobei das Nenndrehmoment nicht überschritten werden darf. Im Messergebnis können sich die zulässigen Biegemomente, Längs- und Querkräfte wie ca. 0,3 % des Nenndrehmomentes auswirken.

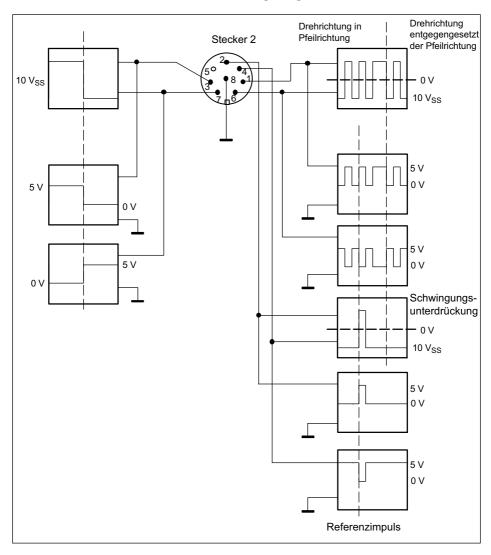
¹⁵⁾ Das Nenndrehmoment darf bei T10FS/200 N·m bis 10 kN·m nicht überschreiten. Bei T10FS/100 N·m kann das Nenndrehmoment um 100 % überschritten werden.


¹⁶⁾ Beeinflussung der Schwingungsmessungen durch Rundlauffehler. Schlag, Formfehler, Kerben, Riefen, örtlicher Restmagnetismus, Gefügeunterschiede oder Werkstoffanomalien sind zu berücksichtigen und von der eigentlichen Wellenschwingung zu trennen.

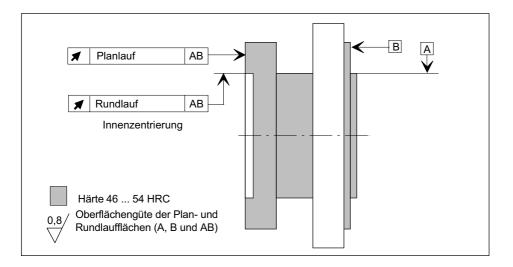
14 Ergänzende technische Informationen


14.1 Ausgangssignale

14.1.1 Ausgang MD Drehmoment (Stecker 1)


14.1.2 Ausgang N: Drehzahl und Drehzahl mit Referenzimpuls (Stecker 2)

109



14.1.3 Stecker 2, doppelte Frequenz, stat. Drehrichtungs-Signal

14.2 Plan- und Rundlauftoleranzen

Messbereich	Planlauftoleranz (mm)	Rundlauftoleranz (mm)
100 N·m	0,01	0,01
200 N⋅m	0,01	0,01
500 N⋅m	0,01	0,01
1 kN·m	0,01	0,01
2 kN·m	0,02	0,02
3 kN·m	0,02	0,02
5 kN·m	0,02	0,02
10 kN⋅m	0,02	0,02

Um die Eigenschaften des Drehmoment-Messflansches im eingebauten Zustand zu erhalten, empfehlen wir die angegebenen Form- und Lagetoleranzen, Oberflächengüte und Härte auch für die kundenseitigen Anschlüsse zu wählen.

HBM Test and Measurement

Tel. +49 6151 803-0 Fax +49 6151 803-9100 info@hbm.com

