
Operating Manual

English

ML70B

Hottinger Baldwin Messtechnik GmbH

Im Tiefen See 45

D-64293 Darmstadt

Tel. +49 6151 803-0

Fax +49 6151 803-9100

info@hbm.com

www.hbm.com

Mat.: 7-2002.0573

DVS: A00863_05_E00_00 HBM: public

07.2018

� Hottinger Baldwin Messtechnik GmbH.

Subject to modifications.

All product descriptions are for general information only.

They are not to be understood as a guarantee of quality or

durability.

ML70B A00863_05_E00_00 HBM: public 3

English

1 Safety instructions 5. .

2 Markings used 7. .

2.1 The markings used in this document 7. .

3 Introduction 8. .

4 Front panel 10. .

5 Connection boards 11. .

5.1 Connection Board AP71 13. .

5.2 Connection Board AP72 14. .

5.3 Connection Board AP75 15. .

5.4 Connection Board AP78 16. .

6 ML70B working methods 17. .

6.1 Time response 17. .

6.2 Data transmission 18. .

6.3 Program architecture 21. .

6.4 Saving programs 22. .

6.5 PLC_PRG main program 23. .

7 Introduction to programming 25. .

7.1 Installing the programming system 26. .

7.2 Program example 27. .

7.3 Translating the project 33. .

7.4 Starting the target system and loading the program 34.

8 Communication with other amplifier channels 35.

8.1 Loading measured values 35. .

8.2 Sending commands 36. .

9 Configuring hardware components 37. .

9.1 Analog outputs 37. .

9.2 Front panel LEDs 37. .

4 A00863_05_E00_00 HBM: public ML70B

9.3 Outputting computed values 37. .

10 Connection board control 39. .

10.1 AP71/CAN 39. .

10.1.1 Basic CAN driver function 39. .

10.2 Serial communication (AP72) 42. .

10.2.1 Sending data 42. .

10.2.2 Receiving data 43. .

10.3 Digital inputs and outputs (AP75) 45. .

10.4 AP78 analog outputs 46. .

11 Generating dialogs 47. .

11.1 Dialog structure 47. .

11.2 Parameter properties 49. .

11.2.1 Properties of the NODE parameter type 49. .

11.2.2 Properties of the DINTPAR, INTPAR and REALPAR parameter types .

50

11.2.3 Properties of the KEY parameter type 51. .

11.2.4 Properties of the TEXT parameter type 51. .

11.2.5 Properties of the MENUE parameter type 52. .

12 Saving setup parameters 57. .

13 Multi‐program mode 61. .

14 Special cases 62. .

14.1 Equidistant measurement output 62. .

14.2 Changing the number of subchannels 62. .

15 Debug functions (PLC browser) 63. .

16 System variables 65. .

17 Error messages 66. .

Safety instructions

ML70B A00863_05_E00_00 HBM: public 5

1 Safety instructions

Appropriate use

The ML70B programmable module is to be used exclusively for measurement

tasks and directly related control tasks. Use for any purpose other than the

above shall be deemed to be not in accordance with the regulations.

To ensure safe operation, the device may only be operated in accordance with

the information given in the Operating Manual. It is also essential to comply

with the legal and safety requirements for the application concerned during

use. The same applies to the use of accessories.

General dangers of failing to follow the safety instructions

The ML70B module complies with the state of the art and is fail‐safe. The

device may give rise to further dangers if it is inappropriately installed and

operated by untrained personnel.

Any person instructed to carry out installation, commissioning, maintenance or

repair of the device must have read and understood the Operating Manual and

in particular the technical safety instructions.

Remaining dangers

The scope of performance and supply of the ML70B only covers part of the

measurement technology range. In addition, equipment planners, installers and

operators should plan, implement and respond to the safety engineering

considerations of measurement technique in such a way as to minimize

remaining dangers. Prevailing regulations must be complied with at all times.

There must be reference to the remaining dangers connected with

measurement technique.

Working safely

Error messages must only be acknowledged when the cause of the error has

been removed and no further danger exists.

The device complies with the safety requirements of DIN EN 61010‐Part 1

(VDE 0411‐Part 1); Protection Class I.

Safety instructions

6 A00863_05_E00_00 HBM: public ML70B

To ensure adequate immunity from interference, use only Greenline shielded

ducting (see HBM offprint ”Greenline shielding design, EMC‐compliant

measuring cable; G36.35.0)

Conversions and modifications

No modifications that affect the design or the technical safety of the ML70B

module may be carried out without our express agreement. Any modification

shall exclude all liability on our part for any resulting damage.

In particular any repair and soldering work on motherboards is prohibited.

When exchanging complete modules, use only original parts from HBM.

Qualified personnel

This instrument must only to be installed and used by qualified personnel,

strictly in accordance with the technical data and the safety requirements and

regulations listed below. It is also essential to comply with the legal and safety

requirements for the application concerned during use. The same applies to

the use of accessories.

Qualified personnel means persons entrusted with the installation, assembly,

commissioning and operation of the product who possess the appropriate

qualifications for their function.

Maintenance and repair work on an open device with the power on must only

be carried out by trained personnel who are aware of the danger involved.

Markings used

ML70B A00863_05_E00_00 HBM: public 7

2 Markings used

2.1 The markings used in this document

Important instructions for your safety are specifically identified. It is essential to

follow these instructions in order to prevent accidents and damage to property.

Symbol Significance

CAUTION
This marking warns of a potentially dangerous situa

tion in which failure to comply with safety require

ments can result in slight or moderate physical injury.

Notice
This marking draws your attention to a situation in

which failure to comply with safety requirements can

lead to damage to property.

Important

This marking draws your attention to important infor

mation about the product or about handling the

product.

Tip

This marking indicates application tips or other infor

mation that is useful to you.

Information

This marking draws your attention to information

about the product or about handling the product.

Emphasis

See….

Italics are used to emphasize and highlight text and

references to other chapters and external documents.

Device -> New Bold is used to emphasize and highlight menu

options and dialog or window titles. The arrows

between menu choices indicate the order in which

the menu/sub menus have to be opened/executed.

Input Bold-italic is used to indicate necessary inputs and

entry fields in programs.

Introduction

8 A00863_05_E00_00 HBM: public ML70B

3 Introduction

The ML70B programmable module is a 4‐division wide module occupying one

slot in the MGCplus system device. The module can be programmed as

required by the “CoDeSys” programming system in accordance with the

internationally standardized PLC programming standard IEC61131-3.

What can the ML70B do?

� Process measured values from any other MGCplus modules at a sampling

rate of 2400 Hz, including data that is loaded into the system device via the

CAN bus or Profibus.

� Send commands to other amplifiers.

� Output computed values as measured values in MGCplus that can be

displayed and further processed by the AB22A display and control panel

and by the MGCplus Assistant.

� Control up to two connection boards of the AP71, AP72, AP75 and AP78

types (for combination options, see chapter 5 “Connection boards”, page

11).

Introduction

ML70B A00863_05_E00_00 HBM: public 9

ML70B

Connection board A
(slot behind ML70)

AP71: 2 x CAN bus
AP72: 2 x RS interface
AP75: 8 digital In, 8 digital Out
AP78: 10 Analog Out

Connection board B
(looked at from the front, slot is
to the right of the ML70B)

AP72: 2 x RS interface
AP75: 8 digital In, 8 digital Out

Fast serial link (10MBit/s) for internal transfer of measurement data

R
e
a
d
in

g
 d

a
ta

W
ritin

g
 d

a
ta

Serial bus (115kBit/s) for transferring commands to amplifiers

Debug interface to the PC

MGCplus device

Fig. 3.1 ML70B in the MGCplus device

Front panel

10 A00863_05_E00_00 HBM: public ML70B

4 Front panel

Caption Color Meaning

CHAN. Yellow Channel selected

ERROR/WARN Red Error

L1 Red, yellow As per programming

L2 Red, yellow As per programming

L3 Red, yellow As per programming

L4 Red, yellow As per programming

L5 Red, yellow As per programming

L6 Red, yellow As per programming

L7 Red, yellow As per programming

LEDs L1...L7 are programmable (see chapter 9.2

“Front panel LEDs”, Page 37).

ML70B

Connection boards

ML70B A00863_05_E00_00 HBM: public 11

5 Connection boards

The ML70B can control up to two of the following connection boards:

� AP71 (2 x CAN bus)

� AP72 (2 x RS232/RS485/RS422; individually software‐switchable)

� AP75 (8 x Digital‐In, 8 x Digital‐Out)

� AP78 (8 x Analog Out)

Each of the connection boards listed can be controlled individually. The

following combinations are possible:

� AP71, AP72

� AP71, AP75

� AP72, AP72

� AP72, AP75

� AP75, AP72

� AP75, AP75

� AP78, AP72

� AP78, AP75

Connection boards can be plugged in directly behind the amplifier module or to

the right of it, as seen from above (see Fig. 5.1).

Information

Only the connection board fitted behind the ML70B module has analog output

voltages VO1 and VO2!

The outputs from the AP78 connection board are tagged with AO (analog

output) in the setup menus.

If the AP75 connection board is fitted directly behind the module, the I/Os are

tagged with A. If it is fitted on the right, the I/O numbers are prefixed with B..

Connection boards

12 A00863_05_E00_00 HBM: public ML70B

Power

pack

AB22A
display and control
panel

CP52

M
L
x
x

M
L
x
x

M
L
7
0
B

S
lo

t
B

S
lo

t
A

B
la

n
k
 p

la
te

A
P

x
x

A
P

x
x

Fig. 5.1 Connection board combinations in the system device (top view)

Connection boards

ML70B A00863_05_E00_00 HBM: public 13

5.1 Connection Board AP71

CAN1/CAN2

male connectors

Physical layer:

High: Standard CAN speeds up to 1 MBaud acc. to ISO11898

(24 V dielectric strength).

Low: comfort bus for in-car communication up to 100 kBaud

(CAN_V+ must be connected to 12 V)

5

1

9

6

CAN Shield

CAN_GND

CAN_L
CAN_H

CAN_V+

GND

Fig. 5.2 Pin assignment AP71

Connection boards

14 A00863_05_E00_00 HBM: public ML70B

5.2 Connection Board AP72

Pin Function RS232 Function RS422 Function RS485

1 CD (not used) - -

2 RXD – Receive

Data

RXA – Receive

Data A (non

inverse)

-

3 TXD – Transmit

Data

TXB – Transmit

Data B (inverse)

RXB – Receive

Data B (inverse)

4 DTR –12V via

series resistor

- -

5 GND GND GND

6 DSR (not used) - -

7 RTS – Request

To Send

TXA –Transmit

Data A (non

inverse)

RXA – Receive

Data A (non

inverse)

8 CTS – Clear To

Send

RXB – Receive

Data B (inverse)

-

9 RI (not used) - -

Connector

5

1

9

6

Connection boards

ML70B A00863_05_E00_00 HBM: public 15

5.3 Connection Board AP75

An AP75 connection board has eight digital inputs and

eight digital outputs. Inputs and outputs are electrically

isolated and have their own grounding system (GND

OUT: ground for outputs; GND IN: ground for inputs).

Connection boards

16 A00863_05_E00_00 HBM: public ML70B

5.4 Connection Board AP78

Pin Function

1 Connection board analogue output AO3

2 Connection board analogue output AO4

3 Connection board analogue output AO5

4 Connection board analogue output AO6

5 Connection board analogue output AO7

6 Connection board analogue output AO8

7 Connection board analogue output AO9

8 Connection board analogue output AO10

9 -

10 -

11 Amplifier analogue output VO1

12 Amplifier analogue output VO2

13 -

14 GND to AO3

15 GND to AO4

16 GND to AO5

17 GND to AO6

18 GND to AO7

19 GND to AO8

20 GND to AO9

21 GND to AO10

22 -

23 -

24 GND to VO1

25 GND to VO2

1

13
25

14

ML70B working methods

ML70B A00863_05_E00_00 HBM: public 17

6 ML70B working methods

6.1 Time response

The ML70B has the following tasks:

� Loading the measured values

� Executing the loaded program

� Operating the connection boards

� Communication with MGCplus components (CP42 or CP52, amplifier

channels, ext. computer, etc.)

These tasks are processed cyclically (see Fig. 6.1). Communication runs

continuously in the background.

Loading of the measured values is interrupt‐driven at a frequency of 2400 Hz.

Measurement data also accumulates at this rate internally in the MGCplus.

Once the measured values are loaded, the connection boards are operated

and the user program is executed.

T

Load

measured

values

Operate

connection

boards

416 �s

Execute

program

Communication, etc.

Load

measured

values
Operate

connection

boards

Execute

program

Fig. 6.1 ML70B cycle time

The maximum call frequency of 2400 Hz is only achieved if the IEC program is

exited in less than 400 �s (1/2400 Hz). If a step takes longer, the call

frequency is reduced accordingly (next‐lowest frequency 1200 Hz).

ML70B working methods

18 A00863_05_E00_00 HBM: public ML70B

This is why each program should be formulated in such a way that it can be

exited as quickly as possible. This property basically distinguishes PLC

programs from ”normal” programs.

6.2 Data transmission

The amplifier modules (ML ...) and the communications processor (CP ...) in

the MGCplus are connected by a fast synchronous data interface (link) via

which measurement data can be exchanged in the system. Data is exchanged

at a frequency of 2400 Hz.

ML70B working methods

ML70B A00863_05_E00_00 HBM: public 19

2 PC card slots
(PCMCIA)

SynchronizationS
e
ria

l b
u
s

L
in

k
 1

.2
 M

B
y
te

/s

RS232C,
RS485, parallel
interface

Hard disk

IEEE 488

Ethernet

More
MGCplus

...

D
is

p
la

y

a
n
d

c
o
n
tro

l
p
a
n
e
l

C
P

U

...

1
2

8

2400 Hz

2400 Hz

2400 Hz

...

C
P

U

2 x RS232

...

�10V

Digital remote
contacts, limit
switches

D
ig

ita
l

 s
ig

n
a
l c

o
n
d
itio

n
in

g

F
ilte

rin
g
, s

c
a
lin

g
, z

e
ro

b
a
la

n
c
in

g
, e

tc
.

D
ig

ita
l

 s
ig

n
a
l

c
o
n
d
itio

n
in

g

F
ilte

rin
g

s
c
a
lin

g
, z

e
ro

b
a
la

n
c
in

g
,

e
tc

.

C
P

U

8
‐c

h
a
n
n
e
l

m
o
d
u
le

S
in

g
le

‐c
h
a
n
n
e
l

m
o
d
u
le

 In
te

rn
a
l P

C
w

ith
 d

a
ta

b
u
ffe

r

C
P

U

�10V

M
L

70B

...

Fig. 6.2 Communication within MGCplus

ML70B working methods

20 A00863_05_E00_00 HBM: public ML70B

Each module can output a total of 8 measured values, each at a transfer rate

of 2400 Hz. For a single channel amplifier, this means that several signals

(gross, net, peak value, etc.), can be output simultaneously.

Multi‐channel amplifiers can only ever output one signal per subchannel for

each of their eight subchannels, as only eight can be transmitted at any one

time. For example, with a multi‐channel amplifier, it is not possible to

simultaneously request a gross signal and a net signal from one subchannel.

If measured values are requested by several components in the MGCplus, the

control sequence must be defined. The communications processor (CP52)

manages data transport, during which the requisite measured values must be

requested. Each component that needs measured values must register this

with the communications processor.

Conflicts will be caused if, for example, two signals are requested

simultaneously from an 8‐channel amplifier. In this case, the second request

will be acknowledged with an error message.

When registering link resources, the following always applies: as long as

resources are available these will be allocated and they will be allocated in the

sequence in which they are requested.

ML70B working methods

ML70B A00863_05_E00_00 HBM: public 21

6.3 Program architecture

For the reasons explained in the previous section, an ML70B program always

comprises the following steps:

Activating signal transmission

Executing the computer program

Releasing signals

Requesting signals

Fig. 6.3 Program architecture

This gives the same program architecture for all projects during which

measured values are to be processed by MGCplus. We recommend that all

measurement programs are structured as described in Section 6.5

“PLC_PRG main program”, page 23.

ML70B working methods

22 A00863_05_E00_00 HBM: public ML70B

6.4 Saving programs

In the ML70B, a program is executed in internal volatile memory (RAM).

When the MGCplus is switched on, the system checks whether there is a

program in non‐volatile memory (FLASH). If there is, the stored program is

copied from the FLASH into volatile memory and automatically executed.

The programming system can load another program into the ML70B and test it,

without changing the existing program in the permanent memory. Provided the

contents of the RAM are not copied to the FLASH, the ML70B will execute the

old program from the FLASH after switching the MGCplus off and then back on

again (see also Chapter 12 “Saving setup parameters”, page 57).

You can delete the contents of the FLASH if required:

1. Switch off the MGCplus device.

2. Withdraw the ML70B module from the housing. There is a 10‐pin multipoint

connector on the underside of the module.

3. Connect a bridge to pin 9 and pin10.

4. Switch the MGCplus device back on, which deletes the contents of the

FLASH.

5. Switch the MGCplus device back off and remove the bridge.

JumpersFront panel

Fig. 6.4 ML70B amplifier module; view from below

Should a new program be saved permanently in the ML70B, it will be copied

from the RAM to the FLASH ROM (see CoDeSys “Boot project generation”).

ML70B working methods

ML70B A00863_05_E00_00 HBM: public 23

6.5 PLC_PRG main program

The ML70B calls the PLC_PRG main program synchronously with the

measured values. Each program should be structured in the following form in

SFC (sequential function chart) programming language:

In the INIT step, all the signals required for

measurement are requested (channel, sub

channel, signal type).

In the START step, the requested signals are

registered. In this step, the program stops until

all the signals are available.

If the measurement run is to be terminated, the

signal requests are stopped in the STOP step,

so that the other components in the MGCplus

have the opportunity to access it.

In the RUN step, the actual program is exe

cuted. After start‐up, this step is not usually

exited.

Fig. 6.5 Program run in ML70B

This diagram only plots the request and release of measurement data. The

individual steps contain the actual function of the program.

ML70B working methods

24 A00863_05_E00_00 HBM: public ML70B

The contents of the individual steps can be formulated in any IEC61131-3

language and are opened by double‐clicking the individual step.

Important

The diagram shown should not be interpreted as a ”normal” flowchart! Each

time the program is called only one step is executed and the program is then

exited again. If the transition condition between the two steps is met, the next

time the program is called, the next step will be processed. If the condition is

not met, the next time the program is called, the same step will be run again.

Introduction to programming

ML70B A00863_05_E00_00 HBM: public 25

7 Introduction to programming

In this chapter a simple program example is used to explain the CoDeSys

programming system and operation of the ML70B. For a detailed description of

the programming system, refer to the online documentation of the CoDeSys

installation.

System requirements

� MGCplus device with:

- AB22A

- CP42 or CP52 (optional)

- Channel 1: ML55, ML01 or similar (single‐channel amplifier)

- Channel 2: ML55, ML01 or similar (single‐channel amplifier)

- Channel 3: ML70B with/without connection board

� PC with Windows operating system and serial interface

Introduction to programming

26 A00863_05_E00_00 HBM: public ML70B

7.1 Installing the programming system

1. Put the MGCplus System-CD into the CD‐ROM drive of your computer or

download the data from https://www.hbm.com/downloads. Start the Set

up.exe file, which is in the directory CoDeSys.

The delivered CoDeSys version is V2.3.9.43.

2. Choose the required setup language and click OK.

3. Close the ”Welcome...” window by clicking Continue.

4. In the setup type selection window, choose Development system and click

Continue.

5. In the component selection window, all the checkboxes should be activated

(default setting). Maintain the target folder setting and click Continue.

6. Choose the required language for the programming interface and click Con

tinue.

7. Choose the required folder and click Continue.

After the summary is displayed, the development system is installed.

On the installation CD provided, the ML70B target system (Target) is installed

automatically. But you can also install the target system later:

1. Use Start → Programs → CoDeSys V2.3 to start the InstallTarget pro

gram.

2. Use the Open... button to open the file MGCplus_System_CD\MGCplus\

CoDeSys\Targets\hbm\/Hottinger.tnf.

3. Select the entry ”Hottinger Baldwin Messtechnik GmbH” in the left-hand

window and press the Install button. Answer the ”Installation directory

does not exist...?” question with Yes.

The entry ''Hottinger Baldwin Messtechnik GmbH” should now appear in the

right-hand window Installed target systems. This concludes the installation.

https://www.hbm.com/downloads

Introduction to programming

ML70B A00863_05_E00_00 HBM: public 27

7.2 Program example

To determine the output of a motor, multiply the measured torque by the

measured speed. The result is displayed in the display of the MGCplus device

or in the Assistant.

Formula for calculating output:

Output�[W] � Torque�[N � m] � Speed� �� 1
min
� � 2 � �

60

1. Start the CoDeSys programming system by using Start → Programs

→ CoDeSys V2.3.

2. Use File → New to generate a new project.

3. Select the target system HBM_ML70B and confirm with OK (the New POU

window will then open automatically).

4. Select the PLC_PRG process object unit from Program type in SFC

(sequential function chart) language and confirm with OK.

5. To enable you to access MGCplus components from the program, you must

load the MGCPLUS.LIB library. Open Window→Library management and

use Insert→Additional library →MGCplus.lib to add the library.

The library contains all the functions to enable you to access the hardware

components of the MGCplus. Each available function is presented as a POU

with a brief description of the significance of the parameters.

Special computing rules etc., are packed in the separate libraries.

Introduction to programming

28 A00863_05_E00_00 HBM: public ML70B

Once you have set up the new project, you will see the following window in the

work area:

Introduction to programming

ML70B A00863_05_E00_00 HBM: public 29

Creating the program architecture of the main program

As described in Section 6.5, the main program comprises four steps.

1. Click the hyphen of transition Trans0 to make a dotted frame appear

around Trans0 and in the context menu (click the right‐hand mouse button),

choose the command Step transition (afterwards). Repeat this action

twice up to step 4 (Step 4).

2. If you click directly on the name of a transition or a step, this will be marked

in blue and can be modified. In this way, rename the three new steps as

START, RUN and STOP.

Entering comments

3. Select a step by clicking just outside the frame, to make a dotted frame

appear around the step. Click the right‐hand mouse button on the step and

select Step attribute from the context menu. You can then enter your com

ments in the window that opens.

4. To display the comments to the right of the steps, in the Tools ->

Options... menu, select the Comments option.

Programming the “Init” step

The requisite signals in the system are called using the RequestSignal()
function from library management. The channel number, the subchannel

number and the signal number must be transmitted as call parameters. The

coding for the signal types is explained in the ”Library Manager” window. The

return value provided by the function is an identifier (handle), by which the

required measured value can later be queried.

In our example, the torque signal from channel 1, subchannel 1 is measured as

a gross signal and the speed as a net signal from channel 2, subchannel 1.

1. Double‐click on the ”Init” step. You will be asked which language you

require. Choose ST (structured text) and a new window will appear for the

action for this step. In the first two program lines, enter the following:

HandleTorque := RequestSignal(1,1,0);

HandleRpm := RequestSignal(2,1,1);

Introduction to programming

30 A00863_05_E00_00 HBM: public ML70B

You must declare the variables “HandleTorque” and “HandleRpm” as

integers (INT).

You must then define the scaling for the result of the calculation:

For example, the maximum value of the torque is 500 N⋅m, the maximum

speed 10000 min-1.

The maximum output to be measured is:

10000 ⋅ 100 ⋅ 2 ⋅ 3,14/60 W = 104666 W

2. In the third program line, enter the following:

SetScaling(1,120000.0,0.0, 1,'W');

The meaning of the parameters is as follows:

1 Scaling for subchannel 1 of the ML70B

120000.0 Maximum value that can occur during calculation

0.0 No zero offset

1 The result of the calculation is displayed with one decimal

place

'W' The measured value unit is 'W' (watt)

This concludes the programming of the “Init” step and you can close the

Action Init window. A small triangle now appears in the top left corner of the

INITstep to indicate that this step is programmed.

Programming the ”START” step

The requisite signals are requested in the system by calling the

ActivateSignals() function. The START step is called until the measurement

signals are released. This meets the condition for the transition to the RUN

step.

For the START step, enter the following program line:

Ready := ActivateSignals(SIGNAL_REQUEST);

Declare the Ready variable as INT.

Introduction to programming

ML70B A00863_05_E00_00 HBM: public 31

Programming the ”START” step

The START step is programmed in FBD (function block diagram) language, the

actual computing takes place here. In our program example, this step is then

not exited.

1. Double‐click on the RUN step and choose FBD language. The following

window will appear:

2. Position the mouse pointer in the square mark after the three question

marks and by using the context menu (right-hand mouse button) execute

the POU command. The default is for the AND process object unit to be

inserted, the name is selected.

3. Press key F2 (input Help). This opens a dialog in which you can select from

the available POUs. For our example, first select in the left-hand window

the category Standard functions. Then, in the right-hand window, from the

Targets\Hottinger\...\MGCplus.lib library in the Access to ML70B folder,

select the OutputSignal function.

4. Now click the three question marks next to the input variable SubChan and

enter the value 1.

5. Select the connecting line next to the Signal input variable so that it is

marked by a dotted frame and in the context menu execute the POU com

mand.

6. Replace the selected text AND by entering MUL (for multiplication).

7. Again select the connecting line next to the upper input variable of 'MUL'

and use the context menu to execute the POU command.

8. Press F2 and add the function Standard functions �� MGCplus.lib

�� Read measuring values � GetMeasValReal.

Introduction to programming

32 A00863_05_E00_00 HBM: public ML70B

9. Repeat this action for the second input variable of 'MUL'. Enter the variables

HandleTorque and HandleRpm as the input variables of GetMeasValReal().

Now insert the correction factor for multiplication.

10.To do this, click the MUL process object unit and use the context menu to

execute the Input command. You will see another input with ??? as the

input variable. Select the three question marks and replace them with the

expression 2 * 3.1415/60

This concludes the programming of the RUN step. The resultant network

should now look like this:

Defining transitions

Transitions are the conditions for moving from one step to the next. Overwrite

the first transition after Init with the value TRUE. This will mean that the Init

step is called once only. The second transition after START is given the

condition Ready = 0 (the variable set in the Start step). When Ready = TRUE

(i.e. when signal registration is concluded) the next step starts.

The third and fourth transitions are given the value FALSE, i.e. the RUN step is

never exited.

Introduction to programming

ML70B A00863_05_E00_00 HBM: public 33

Programming is now complete. The resultant program should now look like

this:

7.3 Translating the project

Translate the project using the menu command Project � Translate all or

press function key <F11>. After the translation run, ”0 errors” should be

reported in the message window at the bottom right. If this is not the case,

please check all entries for correctness. Also take note of the error messages.

Pressing function key <F4> takes you directly to the errors in the program.

Introduction to programming

34 A00863_05_E00_00 HBM: public ML70B

7.4 Starting the target system and loading the program

The target system for this example is an MGCplus with the following

configuration:

� AB22A display and control panel

� CP42 or CP52 communications processor (optional)

� Channel 1: ML55, ML01 or similar (single‐channel amplifier)

� Channel 2: ML55, ML01 or similar (single‐channel amplifier)

� Channel 3: ML70B

The PC and the ML70B communicate via a serial connection. Use the cable

supplied to connect the ML70B via the DEBUG socket on the front panel to a

serial PC interface. To set up the interface, proceed as follows:

� Execute the menu command Online � Communications parameter. In

the dialog that then appears, choose the New button to configure the con

nection setup to your target system.

� In the new dialog, assign a suitable name to the connection and select

Serial RS232. By clicking the COM1 interface repeatedly, you can change

to COM2,3,... Quit and exit the dialog with OK.

� Use the menu command Online � Login in the programming system

CoDeSys to establish the connection to the target system and start your

program on the target system with Online � Start.

The result of multiplication can now be read on the AB22A when the ML70B is

selected by the channel selection key CHANNEL + / -. You can now view the

variables in the individual windows on the PC screen.

If the program is to be saved permanently in the ML70B, you must call the

Online � Generate boot project menu. This transfers the program to

non‐volatile FLASH memory. The next time MGCplus is switched on, this

program starts up automatically.

Communication with other amplifier channels

ML70B A00863_05_E00_00 HBM: public 35

8 Communication with other amplifier channels

8.1 Loading measured values

Before measured values from other MGCplus amplifier channels can be

loaded, the requisite signals must first be requested and then activated (see

Section 6.5 ff..)

The measured values are loaded using the functions GetMeasValReal() and

GetMeasValRaw().

Example:

Measured value: REAL

Handle: INT

MeasVal := GetMeasValReal(Handle)

The variable “Handle” must have previously been assigned in the START step

(see Section 6.5 and Section 7.2)

Access to the measured values is then only via this handle. The function

GetMeasValReal() then always returns the current value for the particular

handle as a physically scaled variable.

GetMeasValRaw() returns an unscaled raw value as a 32‐bit integer in the

format DINT. This data format is preferred when for reasons of time,

calculations in REAL format have to be dispensed with. The raw value is

converted to the physical measured value according to the following formula:

Measured�value� ��
Raw�value
7�680�000

�� Full�scale� �� Zero�offset

The full scale and the zero offset are defined in the amplifier scaling (also see

Section 9.3 “Outputting computed values, page 37”) and can be queried by the

amplifier using the function GetChannelInfo().

Communication with other amplifier channels

36 A00863_05_E00_00 HBM: public ML70B

8.2 Sending commands

The ML70B communicates with other amplifier modules using the functions

SendMgcCommand(), WaitMgcAnswer() and GetMgcAnswer().

In the first step, the command string is sent to the required channel or

subchannel by calling the function SendMgcCommand().

Then the function WaitMgcAnswer() is queried until the result 0 (OK) or <0

(errors) is obtained. You can then use the function GetMgcAnswer() to get

the response string.

Configuring hardware components

ML70B A00863_05_E00_00 HBM: public 37

9 Configuring hardware components

9.1 Analog outputs

The analog outputs of the ML70B are actuated using the functions

SetAnalogOutputReal() and SetAnalogOutputInt().

Parameter 1 corresponds to the number of the analog output (1 =VO1 on the

BNC connector or AP75/AP78; 2=VO2 on the AP75/AP78).

With the SetAnalogOutputReal() function, for the second parameter, you

can enter the required output voltage directly in volts (-10....+10.) as a REAL

variable.

If computing in REAL takes up too much time, you can use the function

SetAnalogOutputInt(). For the second parameter, a value between

-30000 ... 30000 is given as an INT value. -30000 corresponds to -10 V, 30000

corresponds to 10 V.

9.2 Front panel LEDs

The LEDs on the front panel of the ML70B can be actuated using the function

SetLED().

Parameter 1 transfers the number of the LED (1...7), corresponding to the

numbering on the front panel. Parameter 2 contains the required status of the

LED: 0=Off, 1=Red, 2=Yellow

9.3 Outputting computed values

The function OutputSignal() outputs the computed values on the internal

data bus. The first parameter transfers the number of the required subchannel

on which the ML70B is to output the signal. The second parameter is the value

to be output as a REAL value.

Configuring hardware components

38 A00863_05_E00_00 HBM: public ML70B

Important

In order for values to be properly presented by catman� or the AB22A, scaling

must be specified before the first value is output.

In MGCplus, all measured values are transferred as 24‐bit‐integers. The

number range runs from -7 680 000 ... +7 680 000. Each REAL number is

converted to a 24‐bit integer for transmission, in accordance with the following

system.

7,680,000-7,680,000

Full scale

Zero value

At the receiver end, the integer is converted back to REAL values.

For this conversion, the full scale and the zero value must be specified for the

ML70B using the SetScaling() function:

Zero valueFull scale
Link value

Measured value -•=
000.680.7

Connection board control

ML70B A00863_05_E00_00 HBM: public 39

10 Connection board control

10.1 AP71/CAN

To explain CAN interface operation, we have included the program examples

MGC_CanDemo, MGC_CanOpenDemo and MGC_SDOTerm. CAN_Hardware

is operated by using the AP71 functions in the MGCplus.lib library. To make it

easier to send and receive CAN messages, we have included an additional

library MGCcan.lib, which contains all the functions you need.

10.1.1 Basic CAN driver function

Operation of the two CAN interfaces of the AP71 connection board is

interrupt‐driven by the firmware. The data structure shown below is the only

way in which the IEC61131-3 program accesses the CAN interfaces. CAN

messages are transmitted and received via a ring buffer. By comparing the

read and write indexes, the IEC program can establish whether new messages

have been received.

The library MGCcan.lib contains all the functions for user‐friendly read out of

CAN messages from CAN_Interface.

Connection board control

40 A00863_05_E00_00 HBM: public ML70B

Example 1:

Communication with a CAN node at low level

The measured values are to be loaded continuously by a CAN node.

In the Init step, you must first initialize the required CAN interface. In this

example, this is interface No. 1 on the AP71. The function InitCanDriver()
is used to initialize both the data structure CAN_Interface and the hardware for

the CAN interface.

In the Run step, the data structure CanBuf is filled with the required values and

then the CAN message is sent out using the function WriteCanMsg().

The response is loaded by using the function ReadCanMsg(). The function

returns the value 0 when a new CAN message arrives.

Connection board control

ML70B A00863_05_E00_00 HBM: public 41

Example 2:

Using the CANopen protocol to control a CAN node

A measured value is to be continuously loaded using a CANopen SDO (service

data object).

The functions ReadSdo() and WriteSdo() are available in the MGCcan library

for reading and writing an object in the object catalog of a CANopen slave.

In our example, the CANopen slave has node‐ID 110 and the measured value

is in the object catalog under index 16#2000 and subindex 1 in DINT format.

In the Init step, the CAN interface is initialized (once). In the Run step, the

function ReadSdo() is used to load the measured value of the CANopen

slave.

Connection board control

42 A00863_05_E00_00 HBM: public ML70B

10.2 Serial communication (AP72)

With the ML70B, you can control up to four serial interfaces. Interfaces No. 1

and No. 2 are at slot AP‐A, with No. 3 and No. 4 at AP‐B. You can choose

between three types:

� RS232

� RS422 (full duplex 4‐wire connection with push‐pull signals)

� RS485 (half duplex 2‐wire connection with push‐pull signals)

In order to send and receive data, corresponding buffers must be made

available in the IEC program. The actual send and receive operation is

(interrupt‐driven) and runs in the background. The data types of the buffers

depend on the particular application. STRING or ARRAY OF BYTE are usually

advisable.

10.2.1 Sending data

To send data, you need the functions OpenCom(), WriteCom() and

WriteReady().

There are three steps to sending data:

1. Opening the interface (see diagram; “Init” status)

2. Preparing the data and starting the send operation (see below, “SEND” sta

tus)

3. Waiting until the send operation is completed (see below, “WAIT” status)

Connection board control

ML70B A00863_05_E00_00 HBM: public 43

The program example continuously sends the string ”Hello world!” at

interface 2. The constants needed to set up the interface (the parameters of

the OPENCOM() function) can be found in library management in the ”Data

types” resister.

10.2.2 Receiving data

To receive data, you need the functions OpenCom(), ReadCom() and

ReadReady().

There are three steps to receiving data:

1. Opening the interface (see diagram; ”Init” status)

2. Starting receiving (”RECEIVE” status)

3. Waiting until the expected data has been received (see below, WAIT status)

Connection board control

44 A00863_05_E00_00 HBM: public ML70B

Example 1

The program receives endless blocks of 20 characters each and writes these

to the ”RecBuffer”.

Example 2

If the length of the received data block is unknown or variable, choose a

receive mode that breaks off when an end label is received.

A negative number is given as the data length. The value of the figure is the

maximum buffer length available. The required end label must also be given.

Connection board control

ML70B A00863_05_E00_00 HBM: public 45

10.3 Digital inputs and outputs (AP75)

You can use the function SetOutputAP75() (MGCplus.lib) to set the digital

outputs of the AP75 (caution: you need an external supply).

The first parameter specifies the number of the output. Outputs 1...8 are found

on the AP75 at slot A (slot directly behind the ML70B). Outputs 9..16 are

located on the AP75 at slot B.

The second parameter specifies the level: TRUE = 24 V, FALSE = 0 V.

The inputs are read by using the function GetInputAp75(). Numbering is the

same as for the digital outputs. The return value TRUE corresponds to a level

> 10 V at the input, the return value FALSE corresponds to 0 V.

Connection board control

46 A00863_05_E00_00 HBM: public ML70B

Example

Output3 of the AP75 at slot A should be set to HIGH level:

SetOutputAp75(3,TRUE);

10.4 AP78 analog outputs

The functions SetAnalogOutputReal() and SetAnalogOutputInt() are

used to control the analog outputs on the AP78.

The number of the analog output (3 ... 10; 1 and 2 are reserved for the analog

outputs of the ML70B) is given to these functions as parameter 1.

The function SetAnalogOutputReal() has as its second parameter the

required output voltage directly in volts (-10....+10.) as a REAL variable.

If computing in REAL takes up too much time, you can use the function

SetAnalogOutputInt(). For the second parameter, a value between

-30000 ... 30000 is given as an INT value. -30000 corresponds to -10 V, 30000

corresponds to 10 V.

Generating dialogs

ML70B A00863_05_E00_00 HBM: public 47

11 Generating dialogs

11.1 Dialog structure

The computing module ML70B gives you the opportunity to create dialog boxes

that can be called in the MGCplus Assistant or on the ABxx display and control

panel. On the ABxx, you can then allocate the required dialogs to function keys

F3 and F4 in setup mode. It is also possible to define actions that can be

triggered by the function keys in measuring mode.

The dialogs are formed from various parameter types. Parameters of the

”node” type make up a new dialog box, all the other parameter types make up

its contents (menu entries, buttons, selection fields, etc.).

The dialog parameters form a tree structure. In top position is a root node,

which makes up the output display. You can keep branching one level lower to

further ”subdialogs” via additional ”parent nodes”. The parameters directly

subordinate to a node form a self‐contained dialog.

Each node and each parameter are identified by a unique number. The root

node always has the number 1. You can generate a maximum of 19 dialogs

below the root node, assigning them the numbers 2 ... 999 (apart from 20, this

number is already taken).

Parameter numbers 20 000 to 20 499 are reserved for the ABxx function key

assignments. The root node has the number 10 000. You can assign the

required functions to keys F1 ... F4 in setup mode via the setup window

”Display”→ ”F‐keys”.

Generating dialogs

48 A00863_05_E00_00 HBM: public ML70B

Parameter “x”

Type: REALPAR

21

Dialog 2 (parent node)

Type: NODE

Parameter “y”

Type: REALPAR

22

Dialog 3 (parent node)

Type: NODE

Parameter “z”

Type: KEY

23

Parameter “a”

Type: REALPAR

31

Parameter “b”

Type: STRING

32

Dialog 1 (root node)

Type: NODE

To generate a dialog, you must first declare two variables for each parameter

in the IEC program:

� The variable itself

� A function block with the particular properties and a function for the entry in

the parameter list

Parame

ter type

Data type

for the

parameter

Data type for the

parameter

properties

Remarks

NODE INT CreateNode Node

REALPAR REAL CreateRealPar Parameter of the REAL type

INTPAR INT CreateIntPar Parameter of the INT type

DINTPAR DINT CreateDintPar Parameter of the DINT type

KEY INT CreateKeyPar Button

(corresponds to a Windows button)

MENUE INT CreateMenuePar Selection menu

(corresponds to a Windows ComboBox)

TEXT STRING CreateTextPar Parameter of the STRING type

Tab. 11.1 Parameter types

Generating dialogs

ML70B A00863_05_E00_00 HBM: public 49

11.2 Parameter properties

Each parameter is described by several properties and is entered in the

parameter list via a function call. Each property is pre‐assigned a start value.

Only those properties that differ from the preassignment have to be set in the

program.

11.2.1 Properties of the NODE parameter type

NODEs combine parameters into groups.

pValue: POINTER TO INT Pointer to the variable (which must also be defined in

the IEC program) containing the status of the node.

ParId: INT Number of the node (1...19)

Nodes 2..9 are presented in the SET mode of the

ABxx under F3, nodes 11..19 under F4.

Name: STRING Name of the node: This text is presented in the ABxx

dialog when the relevant key (F3 or F4) is pressed in

SET mode.

Root: INT The entry here shows the root node to which the node

belongs (nothing has to be entered here for node 1)

To generate nodes, use the function CreateNode();

Information

The node with the number 1 (root node) is already set in the ML70B.

Generating dialogs

50 A00863_05_E00_00 HBM: public ML70B

11.2.2 Properties of the DINTPAR, INTPAR and REALPAR parameter

types

These parameter types are used to present numeric parameters of the DINT,

INT and REAL types.

<Type> represents below the respective types DINT, INT and REAL

pValue: POINTER TO

<Type>

Pointer to the variable (which also has to be defined in

the IEC program) to be modified by the parameter

assignment dialog

ParId: INT Number of the parameter (2...999)

Name: STRING Name of the parameter: This text is presented in the

ABxx dialog, together with the value of the parameter

Root: INT The entry here indicates the root node to which the

parameter belongs.

MinVal: <Type> Minimum value, which the parameter setting must not

fall below

MaxVal: <Type> Maximum value, which the parameter setting must not

exceed

EditWidth: INT Editing width

Decimals: INT Number of decimal places to be presented for the

parameter

ScalFact: REAL Scale factor for presentation on the ABxx

Offset: REAL Offset for presentation on the ABxx

Unit: STRING Physical unit as a string with 4 characters, shown in

the parameter assignment dialog together with the

parameter.

Flags: PARFLAGS Special properties (not previously supported)

The parameters ScalFact and Offset can be used to present the value of the

parameter in a different scaling in the indicator. If the parameter is to be

presented without scaling (normal case), Scalfact = 1.0 and Offset = 0.0

Display value = Parameter * ScalFact - Offset

Generate the parameters by using the function blocks CreateRealPar(),
CreateIntPar() and CreateDintPar().

Generating dialogs

ML70B A00863_05_E00_00 HBM: public 51

11.2.3 Properties of the KEY parameter type

Use the KEY parameter type to generate the buttons in the dialogs. Buttons

can be used to trigger actions or open further subdialogs.

To create a button, use the function block CreateKey()

pValue: POINTER TO INT Pointer to the variable (which also has to be defined in

the IEC program) to present the status of the button in

the dialog

ParId: INT Number of the parameter (2...999)

Name: STRING Name of the button: This text is used to label the but

ton in the ABxx and Assistant dialogs.

Root: INT Number of the root node to which the parameter

belongs.

Flags: PARFLAGS Special properties (not previously supported)

11.2.4 Properties of the TEXT parameter type

Use this parameter type to create the texts in the dialogs.

You generate a text by using the function block CreateTextPar().

pValue: POINTER TO

STRING

Pointer to the text (which also has to be defined in the

IEC program) to be modified by the dialog

ParId: INT Number of the parameter (2...999)

Name: STRING Name of the parameter: This text is presented in the

ABxx dialog, together with the value of the parameter

Root: INT Number of the root node to which the parameter

belongs

Flags: PARFLAGS Special properties (not previously supported)

Generating dialogs

52 A00863_05_E00_00 HBM: public ML70B

11.2.5 Properties of the MENUE parameter type

Use this parameter type to create selection fields in dialog boxes. A selection

field is presented by an INT variable. You can select up to 20 different values,

with each individual value being represented by a text.

Use the function block CreateMenuePar() to generate a selection field.

pValue: POINTER TO INT Pointer to the variable (which also has to be defined in

the IEC program) to be modified by the menu

ParId: INT Number of the parameter (2...999)

Name: STRING Name of the parameter: This text is presented in the

ABxx dialog, together with the value of the parameter

Root: INT Number of the root node to which the parameter

belongs.

Flags: PARFLAGS Special properties (not previously supported)

Items: ARRAY[1..20] OF INT Numerical values from which a selection is made

ItemTexts: ARRAY[1..20] OF

STRING

Texts for the numerical values

Example 1

The measured values of two channels are to be multiplied. The result is to be

output at the analog output and checked to make sure that the value does not

fall below the minimum nor exceed the maximum.

The following must be set:

Pmin: lower limit

Pmax: upper limit

Delete: Delete key

Rate: Output rate of the analog output

AnalogP1: Point 1 of the analog output characteristics

AnalogP2: Point 2 of the analog output characteristics

Generating dialogs

ML70B A00863_05_E00_00 HBM: public 53

Within the display, the parameters are to be divided into the following groups:

System Display Parameters Options

Limits

Output

System Display Parameters Options

Limits Channel 15.1

Minimum output 2000 W

Maximum output 10000 W

Clear LEDs

System Display Parameters Options

Output Channel 15.1

Output rate 2400 Hz

Point 1 (0.0V) 0.000 Nm

Point 2 (10.0V) 10.000 Nm

Output dialog:

Selection field for ”Limits” or ”Output”

In the “Limits” window, the parameters

Pmin and Pmax and the Delete key are

presented

In the ”Output” window, the output rate

and points 1 and 2 are presented

Generating dialogs

54 A00863_05_E00_00 HBM: public ML70B

The dialogs form the following tree structure:

Root node

Type: NODE

1

“Limits” dialog

Type: NODE

2

“Output” dialog

Type: NODE

3

Parameter: Pmin

Type: REALPAR

21

Parameter: Pmax

Type: REALPAR

22

Button:Delete

Type: KEY

23

Parameter: Rate

Type: MENUE

31

Parameter: Analog P1

Type: REALPAR

32

Parameter: Analog P2

Type: REALPAR

33

In order to define a dialog of this type, you must encode the properties of the

parameters in the IEC-61131-3 program. In the MGCplus.LIB library, you will

find in the ”Parametering ML70B” subgroup prototypes of functional process

object units for describing the various parameter types.

You will need the following source code to encode the depicted parameter tree

in the IEC program. This code must only be run through once. We recommend

integrating this code with the INIT step of the measurement program (see

Section 6.5).

An individual dialog (parameter group) comprises the node (here numbers 2

and 3) and the individual parameters.

Each parameter is linked to the node by the property ”Root”.

Generating dialogs

ML70B A00863_05_E00_00 HBM: public 55

IEC61131-3 - Source Text

(* −−−−−− ”Limits” menu −−−−−−−−−−−− *)

AttrNode2.pValue := ADR(Node2); (* ”Limits” menu node *)
AttrNode2.Name := ’Limits’; (* Display text *)
AttrNode2.ParId := 2; (* Parameter number *)
AttrNode2.Root := 1; (* Root node *)
AttrNode2(); (* Generating the entry in the param. list *)

AttrPmin.pValue := ADR(Pmin); (* Minimum torque *)
AttrPmin.ParId := 21; (* Parameter number *)
AttrPmin.Name := ’Minimum output’;(* Display text *)
AttrPmin.Root := 2; (* Root node *)
AttrPmin.Decimals := 3; (* Number of decimal places for indicators *)
AttrPmin.Unit := ’Nm’; (* Physical unit *)
AttrPmin(); (* Generating the entry in the param. list *)

AttrPmax.pValue := ADR(Pmax); (* Maximum force *)
AttrPmax.ParId := 22; (* Parameter number *)
AttrPmax.Name := ’Maximum output’;(* Display text *)
AttrPmax.Root := 2; (* Root node *)
AttrPmax.Decimals := 3; (* Number of decimal places for indicators *)
AttrPmax.Unit := ’Nm’; (* Physical unit *)
AttrPmax(); (* Generating the entry in the param. list *)

AttrKey1.pValue := ADR(ClearLeds); (* ”Clear LEDs key *)
AttrKey1.ParId := 23; (* Parameter number *)
AttrKey1.Name := ’Clear LEDs’; (* Display text *)
AttrKey1.Root := 2; (* Root node *)
AttrKey1(); (* Generating the entry in the param. list *)

(* −−−−−− ”Output” menu −−−−−−−−−−−− *)

AttrNode3.pValue := ADR(Node3); (* ”Output” menu *)
AttrNode3.Name := ’Output’; (* Display text *)
AttrNode3.ParId := 3; (* Parameter number *)
AttrNode3.Root := 1; (* Root node *)
AttrNode3(); (* Generating the entry in the param. list *)

AttrMenueRate.pValue := ADR(Rate); (* ”Output rate” selection menu *)
AttrMenueRate.ParId := 31; (* Parameter number *)
AttrMenueRate.Name := ’Output rate’;(* Display text *)
AttrMenueRate.Root := 3; (* Root node *)
AttrMenueRate.Items[1] := 1; (* Numerical value 1st menu entry *)
AttrMenueRate.ItemTexts[1] := ’2400 Hz’;(* Text 1st menu entry *)
AttrMenueRate.Items[2] := 2; (* Numerical value 2nd menu entry *)
AttrMenueRate.ItemTexts[2] := ’1200 Hz’;(* Text 2nd menu entry *)
AttrMenueRate.Items[3] := 4; (* Numerical value 3rd menu entry *)
AttrMenueRate.ItemTexts[3] := ’600 Hz’;(* Text 3rd menu entry *)
AttrMenueRate.Items[4] := 8; (* Numerical value 4th menu entry *)
AttrMenueRate.ItemTexts[4] := ’300 Hz’;(* Text 4th menu entry *)
AttrMenueRate(); (* Generating the entry in the param. list *)

AttrP1.pValue := ADR(AnalogP1); (* Characteristic point 1 analog output *)
AttrP1.ParId := 32; (* Parameter number *)
AttrP1.Name := ’Point 1 (0.0 V)’; (* Display text *)
AttrP1.Root := 3; (* Root node *)
AttrP1.Decimals := 3; (* Number of decimal places for indicators *)
AttrP1.Unit := ’Nm’; (* Physical unit *)
AttrP1(); (* Generating the entry in the param. list *)

AttrP2.pValue := ADR(AnalogP2); (* Characteristic point 2 analog output *)
AttrP2.ParId := 33; (* Parameter number *)
AttrP2.Name := ’Point 2 (10.0 V)’; (* Display text *)
AttrP2.Root := 3; (* Root node *)
AttrP2.Decimals := 3; (* Number of decimal places for indicators *)
AttrP2.Unit := ’Nm’; (* Physical unit *)
AttrP2(); (* Generating the entry in the param. list *)

Generating dialogs

56 A00863_05_E00_00 HBM: public ML70B

Example 2

With a user program, ”Start” and ”Stop” should be assigned to the function

keys.

This example gives the following tree structure:

Root node

Type: NODE

10000

”Output” dialog

Type: NODE

20001

”Limits” dialog

Type: NODE

20001

IEC Source Text

(* −−− Function keys −−−−−− *)
AttrNodeF.pValue := ADR(NodeF); (* Node F-keys *)
AttrNodeF.Name := ’F-keys’; (* Display text *)
AttrNodeF.ParId := 10000; (* Parameter number *)
AttrNodeF(); (* Generating the entry in the
parameter list *)
AttrKeyF1.pValue := ADR(FStart); (* ”Start” key *)
AttrKeyF1.ParId := 20000; (* Parameter number *)
AttrKeyF1.Name := ’Start’; (* Display text *)
AttrKeyF1.Root := 10000; (* Root node *)
AttrKeyF1(); (* Generating the entry in the
parameter list *)
AttrKeyF2.pValue := ADR(FStop); (* ”Stop” key *)
AttrKeyF2.ParId := 20001; (* Parameter number *)
AttrKeyF2.Name := ’Stop’; (* Display text *)
AttrKeyF2.Root := 10000; (* Root node *)
AttrKeyF2(); (* Generating the entry in the
parameter list *)

The functions are triggered from the ABxx, by incrementing the values of the

variables Fstart or Fstop each time the key is pressed. The IEC program

must therefore query the the values of the variables cyclically in order to be

able to execute the desired function.

Saving setup parameters

ML70B A00863_05_E00_00 HBM: public 57

12 Saving setup parameters

You can save the dialog parameters described in Chapter 11

“Generating dialogs”, page 47. All the MGCplus modules save in accordance

with the following principle:

FLASH

parameter set

RAM

Active parameter set

ROM

Volatile memory (8 h)

Permanent save

saveFactory setting

load

Permanent save

The settings of a module are always read from the parameter set in working

memory (RAM), where they can be retained for up to 8 hours in the event of a

power failure.

When the current parameter set is saved, a copy is stored in non‐volatile

memory (FLASH). When loading, the parameter set from the FLASH is copied

to the working memory. When loading the parameters preset at the factory,

these are loaded from the ROM into working memory.

The example which follows clarifies the effects of this principle of operation on

your user program. The example used is the standard application in the

..\CodeSys..\Targets\HBM\ML70B_DemoPrj directory.

All the variables that are to be saved permanently must be stored in the

so‐called ”RETAIN area” as global variables. This area is not initialized when

the MGCplus is switched off and on. Data saved here is saved for about 8

hours in the event of a power failure.

Saving setup parameters

58 A00863_05_E00_00 HBM: public ML70B

If the display and control panel or an external interface (e.g. Assistant) sends

the Save command to the ML70B, the ML70B operating system copies the

RETAIN area to non‐volatile memory. If the Load command is sent to the

ML70B, the operating system copies the parameter set from the FLASH to the

RETAIN area.

You must run the Load factory settings function in your program, as the

operating system cannot be aware of the factory settings of the user program.

The IEC user program uses the system variables SYSV_TDDREQUEST and

SYSV_TDDCMD to query whether a TDD Command (Save/Load) has been

received.

Saving setup parameters

ML70B A00863_05_E00_00 HBM: public 59

The operating system increments the

variable SYSV_TDDREQUEST when a

TDD command has been received.

The system variable is queried here
cyclically. When a TDD command is

received, the HandleTddCommand
program is called.

The variable SYSV_TDDCMD shows

the type of command received:

0: Load factory setup

1: Load

2: Save

The program also operates the

”Load” command here, because if

some of the parameters are changed,

it becomes necessary to make addi

tional internal program settings.

When saving the RETAIN area, the operating system calculates a check sum.

When the MGCplus is switched on, the operating system first checks whether

the RETAIN data check sum is correct. If the check sum does not conform, the

parameter set from the FLASH is automatically copied to the RAM.

Information

But this design of program does not guarantee that the parameter set goes

with the program currently being executed. The parameter set could, for exam

ple, be from a previously loaded program.

Which is why your program should start by running the following check:

Saving setup parameters

60 A00863_05_E00_00 HBM: public ML70B

If the string InitString does not contain a value suitable for the application,

the factory settings are automatically executed so that all the parameter set

variables are preset with meaningful values.

Multi‐program mode

ML70B A00863_05_E00_00 HBM: public 61

13 Multi‐program mode

Several independent programs can be executed seemingly ”simultaneously”

(multitasking). The ”Task configuration” entry is located in the “Resources” list.

You can assign different programs to various tasks here. Up to 32 different

tasks are possible. You can assign each individual task a call frequency in ms

increments and a priority.

The precise description of task configuration operation can be found in

CoDeSys online Help under Contents -> Resources -> Task configuration.

Information

The call frequency of the IEC program in the ML70B is 2400 Hz (see Sec

tion 6.1 “Time response”, page 17).

The call frequency of the tasks has to be given in milliseconds. There is only

equidistant measurement data transfer if the following formula for Divisor

produces an integer value:

Divisor � 2400�Hz
1000

� Timeintervall_Task�call�[ms]

The highest output frequency for precisely equidistant measurement output

during multitasking is thus 200 Hz.

Special cases

62 A00863_05_E00_00 HBM: public ML70B

14 Special cases

14.1 Equidistant measurement output

In some applications, it may be necessary to output measured values at

synchronized intervals (equidistant). The following steps are necessary to

discover the maximum program turnaround time and then to define this time as

the output rate.

1. Log in.

2. Delete the system variable SYSV_MAXEXECTIME in the ”Global variables”

window.

3. Start the program.

4. Read out the global variable SYSV_MAXEXECTIME.

5. Add the line SYSV_REQEXECTIME := <value> at the start of the IEC pro

gram. Insert the discovered value for <value>.

This defines the maximum turnaround time as the output rate.

The time is specified in increments of 1/2400 Hz = 416.6 μs.

14.2 Changing the number of subchannels

You can choose between 1 and 128 subchannels as the number of

subchannels for the ML70B.

Send the command PAR9990, <number of subchannels> via the external

interface. Then switch the MGCplus off and back on again. The number of

subchannels is now permanently set to the required value.

Debug functions (PLC browser)

ML70B A00863_05_E00_00 HBM: public 63

15 Debug functions (PLC browser)

The CoDeSys programming system has some debug functions to make

troubleshooting easier in the programs. There is a PLC browser entry in the

”Resources” list. The browser comprises a command line and a display

window. The results of the commands entered in the command line are shown

in the display window.

There is a detailed guide to browser operation in the CoDeSys online Help

under Contents -> Resources -> PLC browser. More help for entering

commands can be found via the button labelled ”...” to the right of the PLC

browser input line.

The following commands are available in the PLC browser:

Command Description

comp Compare memory

compd Compare memory with memory dump

mem Hex dump of a memory area

memc Hex dump relative to the start address of the code on the control

memd Hex dump relative to the database address on the control

memset Set memory area: <start address>, <fill byte>, <length>

metrics Display PLC metrics

reflect Reflect current command line, for test purposes

Debug functions (PLC browser)

64 A00863_05_E00_00 HBM: public ML70B

DescriptionCommand

dpt Read data pointer table.

ppt Read out POU table.

pid Read project ID.

pinf Read project info

? Output list of available commands

cycletimes Display of cycle times of the program on the ML70B

parlist Display of ML70B parameter list

signals Display of list of all signals requested by ML70B

System variables

ML70B A00863_05_E00_00 HBM: public 65

16 System variables

Variable name Type Meaning

SYSV_ActualExecTime WORD Execution time of the last step measured in

time increments of 1/2400 Hz = 416 μs

SYSV_MaxExecTime WORD Max. execution time of all the last steps

measured in time increments

of 1/2400 Hz = 416 μs

SYSV_ReqExecTime WORD Execution time of the last step measured in

time increments of 1/2400 Hz = 416 μs

SYSV_ParChange

FromML70B

WORD Each time a parameter is changed from out

side (ext. interface CP or AB), incremented

by ML70B

SYSV_ParChangeFromIEC WORD

SYSV_TddRequest WORD Incremented when a TDD command is

received from outside (ext. interface CP or

AB)

SYSV_TddCmd WORD Last received TDD command

SYSV_TddPar WORD Last parameter set received with TDD

Error messages

66 A00863_05_E00_00 HBM: public ML70B

17 Error messages

Many of the functions from the MGCPLUS.LIB library return error codes that

can give a more accurate insight into the cause of the error. Negative values

are errors, positive values are status information.

Error code Meaning

0 No error

-100 Error when calling RemovePar(): this parameter does not exist

-101 The root node specified does not exist

-102 Storage overflow when defining parameter

-103 Too many items in node

-104 Item list already empty

-105 Cannot delete item (1 and 20)

-106 Root node 20 not permitted!

-107 Node numbers 1 and 20 are reserved

-108 Incorrect parameter number

 200 ActivateSignals() still running

-210 OpenComPort(): incorrect PrtNr: this serial interface does not exist

-211 OpenComPort(): incorrect parity info

-212 OpenComPort(): incorrect stop bit number

-213 OpenComPort(): baud rate does not exist

-214 OpenComPort(): incorrect data bit number

-215 Com port not open

-216 ReadCom() BUFF parameter: invalid pointer

-217 Timeout exceeded during serial receive

-218 Line length exceeded during serial receive

-219 Receive error at serial interface (parity, framing or overrun error)

-220 Hardware handshake only possible for RS232

-221 Software handshake not possible for RS485

-230 Incorrect channel number

Error messages

ML70B A00863_05_E00_00 HBM: public 67

MeaningError code

-231 Incorrect subchannel number

-233 SetScaling(): Endscale 0 not permitted

-234 SetScaling(): 0...5 decimal place permitted

 240 Wait for response

-241 Command protocol already running

-242 Timeout at internal MGC interface

-250 Too many signals requested with RequestSignal()

-251 ActivateSignals(): signal not available

-260 SetAnalogOutput(): analog output does not exist

w
w

w
.h

b
m

.c
o

m

HBM Test and Measurement

Tel. +49 6151 803-0

Fax +49 6151 803-9100

info@hbm.com

measure and predict with confidence A
0
0
8
6
3
_
0
5
_
E

0
0
_
0
0

 7
-2

0
0
2
.0

5
7
3

H

B
M

:
p
u
b
lic

	ML70B
	English
	1 Safety instructions
	2 Markings used
	2.1 The markings used in this document

	3 Introduction
	4 Front panel
	5 Connection boards
	5.1 Connection Board AP71
	5.2 Connection Board AP72
	5.3 Connection Board AP75
	5.4 Connection Board AP78

	6 ML70B working methods
	6.1 Time response
	6.2 Data transmission
	6.3 Program architecture
	6.4 Saving programs
	6.5 PLC_PRG main program

	7 Introduction to programming
	7.1 Installing the programming system
	7.2 Program example
	7.3 Translating the project
	7.4 Starting the target system and loading the program

	8 Communication with other amplifier channels
	8.1 Loading measured values
	8.2 Sending commands

	9 Configuring hardware components
	9.1 Analog outputs
	9.2 Front panel LEDs
	9.3 Outputting computed values

	10 Connection board control
	10.1 AP71/CAN
	10.1.1 Basic CAN driver function

	10.2 Serial communication (AP72)
	10.2.1 Sending data
	10.2.2 Receiving data

	10.3 Digital inputs and outputs (AP75)
	10.4 AP78 analog outputs

	11 Generating dialogs
	11.1 Dialog structure
	11.2 Parameter properties
	11.2.1 Properties of the NODE parameter type
	11.2.2 Properties of the DINTPAR, INTPAR and REALPAR parameter types
	11.2.3 Properties of the KEY parameter type
	11.2.4 Properties of the TEXT parameter type
	11.2.5 Properties of the MENUE parameter type

	12 Saving setup parameters
	13 Multi‐program mode
	14 Special cases
	14.1 Equidistant measurement output
	14.2 Changing the number of subchannels

	15 Debug functions (PLC browser)
	16 System variables
	17 Error messages

