Operating Manual

DF30CAN, DF31CAN

A1809-3.0 en

Contents

3

1	Safety instructions							
2	Introduction							
	2.1 Scope of supply and accessories							
	2.2	Genera	d	13				
3	Inst	allation		15				
4	Eleo	ctrical c	onnection	17				
	4.1	Connec	cting the digital I/O	22				
	4.2	Use wit	h Zener barriers	23				
	4.3	Synchro	onization of the carrier frequency	24				
	4.4	CANBL	JS installation	25				
	4.5	CAN bu	us line termination	27				
	4.6	Selecti	ing the module address	dule address 28				
	4.7	1.7 Automatic bit rate detection 28						
	4.8 Display LED status, error messages							
5	Cor	nmissioning						
	5.1	Operati	ion with the digiCLIP Assistant	31				
	5.2	No dev	ices can be found on the CANopen bus	32				
6	Par	ameteri	zing via the digiCLIP Assistant	33				
	6.1	6.1 Clarification of significant parameters						
	6.2	6.2 Parameterizing with TEDS 3						
		6.2.1	Electrical connection with TEDS	37				
		6.2.2	Parameterization with TEDS	37				
		6.2.3	Parameters of the required physical conversion unit	40				
7	CAN interface description							
	7.1	7.1 Cyclic data transmission 42						
	7.2	Parame		43				
		7.2.1	Generated error codes for SDO communication	43				
	7.3	FMFR	GENCY messages	44				
	7.0	7.3.1	Protocol of an EMERGENCY message	44				
		7.3.2	Generated EMERGENCY messages	44				
	7.4	Data ty	pes	45				
	7.5 Data structures							

		7.5.1	PDO CommPar	46		
		7.5.2	PDO Mapping	46		
	7.6	Electror	nic data sheet – EDS file	47		
	7.7	CAN ob	ject dictionary, in function group order	47		
		7.7.1	Communication profile	47		
		7.7.2	Parameter set and factory setting	49		
		7.7.3	Measured values	50		
		7.7.4	Device status	51		
		7.7.5	Device control	54		
		7.7.6	Peak-value memory control	56		
		7.7.7	Digital inputs and outputs (DF31CAN only)	58		
		7.7.8	Scaling	62		
		7.7.9	TEDS	64		
		7.7.10	Transducer settings	66		
		7.7.11	Signal conditioning	67		
		7.7.12	Other device functions	68		
		7.7.13	Range monitoring	70		
		7.7.14	Limit value monitoring	71		
		7.7.15	PDO Transfer	75		
		7.7.16	Dynamic PDO Mapping	76		
	7.8	CAN ex	amples	77		
8	Digi	iCLIP da	ata memory in the sensor	78		
	8.1	Objects	for CANopen	80		
9	Exa	mples .		82		
10 Technical support 85						

1 Safety instructions

Appropriate use

The digiCLIP with the connected transducers may be used for measurement and directly related control and regulation tasks, only. Any other use is not appropriate.

To ensure safe operation, the transducer may only be used according to the specifications given in this manual. It is also essential to comply with the legal and safety requirements for the application concerned during use. The same applies to the use of accessories.

Each time, before starting up the equipment, you must first run a project planning and risk analysis that takes into account all the safety aspects of automation technology. This particularly concerns personal and machine protection.

Additional safety precautions must be taken in plants where malfunctions could cause major damage, loss of data or even personal injury. In the event of a fault, these precautions establish safe operating conditions.

This can be done, for example, by mechanical interlocking, error signaling, limit value switches, etc.

The device must not be connected directly to the mains supply. The supply voltage must be 10 V ... 30 V (DC). It is essential to ensure that the device can be quickly disconnected from the mains supply at any time.

Before connecting the device, make sure that the mains voltage and current type specified on the name plate correspond to the mains voltage and current type at the site of installation and that the current circuit used is sufficiently safe.

The device complies with the safety requirements of DIN EN 61010-part1 (VDE 0411-part1).

General dangers in the case of non-observance of the safety instructions

The digiCLIP complies with the state of the art and is operationally reliable. If the device is used and operated inappropriately by untrained personnel, residual dangers might develop.

Any person charged with device installation, operation, maintenance or repair must in any case have read and understood the operating manual and the safety instructions, in particular.

Conditions on site

- Protect the device from direct contact with water.
- Protect the device from moisture and humidity or weather conditions such as rain, snow, etc. The degree of protection per EN 60529 standard is IP 20.
- Do not expose the device to direct sunlight.
- Please observe the permissible maximum ambient temperatures stated in the specifications.
- The permissible relative humidity at 31 °C is 95 % (non condensing); linear reduction to 50 % at 40 °C.
- Install the device so that it can be disconnected from the supply voltage at any time without difficulty.
- It is safe to operate the device up to a height of 2000 m.

Maintenance and cleaning

digiCLIP devices are maintenance-free.

- Withdraw the mains plug from the socket before carrying out any cleaning.
- Clean the housing with a soft, slightly damp (not wet!) cloth. You should on no account use solvent, since it may damage the labelling on the front panel and the indicator box.
- When cleaning, ensure that no liquid gets into the device or connections.

Residual dangers

The digiCLIP's scope of performance and supply covers part of the measuring-technology, only. The plant designer/constructor/operator must in addition design, realise and take responsibility for the measuring-system's safety such that potential residual dangers are minimized. The respective regulations must in any case be observed. Residual dangers regarding the measuringsystem must be specified explicitly.

Product liability

In the following cases, the protection provided for the device may be adversely affected. Liability for device functionality then passes to the operator:

- The device is not used in accordance with the operating manual.
- The device is used outside the field of application described in this Chapter.
- The operator makes unauthorized changes to the device.

Warning signs and danger symbols

Important instructions for your safety are specifically identified. It is essential to follow these instructions in order to prevent accidents and damage to property.

Safety instructions are structured as follows:

▲ SIGNAL WORD

Type of danger

Consequences of non-compliance

Averting the danger

- **Warning sign:** draws your attention to the danger
- Signal word: indicates the severity of the danger
 - (see table below)
- **Type of danger:** mentions the type or source of the danger
- **Consequences:** describes the consequences of non-compliance
- **Defense:** indicates how the danger can be avoided/bypassed

Warning sign, signal word	Significance
	This marking warns of a <i>potentially</i> dangerous situation in which failure to comply with safety requirements <i>can</i> result in death or serious physical injury.
	This marking warns of a <i>potentially</i> dangerous situation in which failure to comply with safety requirements <i>can</i> result in slight or moderate physical injury.
NOTE	This marking draws your attention to a situation in which failure to comply with safety requirements <i>could</i> lead to damage to property .

Danger class according to ANSI

On the module

Meaning: Take details in the operating manual into account

On the module

Meaning: CE mark

The CE mark is used by the manufacturer to declare that the product complies with the requirements of the relevant EC directives (the Declaration of Conformity can be found at <u>http://www.hbm.com/HBMdoc</u>).

On the module

Meaning : Statutory waste disposal mark

The electrical and electronic devices that bear this symbol are subject to the European Waste Electrical and Electronic Equipment Directive 2002/96/EC.

The symbol indicates that the device must not be disposed of as household garbage.

In accordance with national and local environmental protection and material recovery and recycling regulations, old modules that can no longer be used must be disposed of separately and not with normal household garbage.

If you need more information about waste disposal, please contact your local authorities or the dealer from whom you purchased the product.

As waste disposal regulations within the EU may differ from country to country, we ask that you contact your supplier as necessary.

Environmental protection

The product will comply with general hazardous substances limits for at least 20 years, and will be ecologically safe to use during this period, as well as recyclable. This is documented by the following symbol.

On the modul

Meaning: Statutory mark of compliance with emission limits in electronic equipment supplied to China.

Working safely

Note

The device must not be connected directly to the mains supply. The supply voltage must be 10 V ... 30 V (DC).

The supply connection, as well as the signal and sense leads, must be installed in such a way that electromagnetic interference does not adversely affect device functionality (HBM recommendation: "Greenline shielding design", downloadable from the Internet at <u>http://www.hbm.com/Greenline</u>).

Automation equipment and devices must be covered over in such a way that adequate protection or locking against unintentional actuation is provided (such as access checks, password protection, etc.).

When devices are working in a network, these networks must be designed in such a way that malfunctions in individual nodes can be detected and shut down.

Safety precautions must be taken both in terms of hardware and software, so that a line break or other interruptions to signal transmission, such as via the bus interfaces, do not cause undefined states or loss of data in the automation device.

The digiCLIP module must be operated with a safety extra low voltage (18 to 30 V supply voltage (DC)). The supply voltage lead must be no more than 3 m long. **Connecting to a direct voltage network in accordance with EN 61326 is not permitted.** Instead you must use a power pack mounted, for example, in the control cabinet, together with the digiCLIP modules.

Note

This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Reconstruction and modifications

HBM's express consent is required for modifications regarding the digiCLIP's construction and safety. HBM does not take responsibility for damage resulting from unauthorized modifications.

In particular, repair and soldering works on the boards are prohibited. If complete componentry is replaced use original HBM components, only.

The product is delivered from the factory with a fixed hardware and software configuration. Changes can only be made within the possibilities documented in the manuals.

Qualified personnel

Qualified personnel means persons entrusted with siting, mounting, starting up and operating the product, who possess the appropriate qualifications for their function (qualified electrician, or by someone with electrical training under the supervision of a qualified electrician).

This device is only to be installed and used by qualified personnel strictly in accordance with the specifications and with the safety rules and regulations which follow.

This includes people who meet at least one of the three following requirements:

- Knowledge of the safety concepts of automation technology is a requirement and as project personnel, you must be familiar with these concepts.
- As automation plant operating personnel, you have been instructed how to handle the machinery and are familiar with the operation of the equipment and technologies described in this documentation.
- As commissioning engineers or service engineers, you have successfully completed the training to qualify you to repair the automation systems. You are also authorized to activate, to ground and label circuits and equipment in accordance with safety engineering standards.

It is also essential to comply with the legal and safety requirements for the application concerned during use. The same applies to the use of accessories.

Maintenance and repair work on an open device with the power on must only be carried out by trained personnel who are aware of the dangers involved. During installation and operation, operating personnel must act in accordance with the electrostatic discharge safety measures.

i Important

The safety instructions are also included in paper format with the product.

11

2 Introduction

2.1 Scope of supply and accessories

Scope of supply:

• 1 digiCLIP module

Order no.: 1–DF30CAN Order no.: 1–DF31CAN

• Coded plug connector for the sensor connection

Order no.: 3-3312.0404

• Connector terminal for CANBUS and supply voltage

Combicon order no.: CR-MSTB

• digiCLIP Operating Manual

CD-ROM including free setup software (digiCLIP Assistant), (a free updated version of the Assistant can be downloaded from http://www.hbm.com/support).

For DF31CAN:

• Coded plug connector for Digital IN/OUT (2 pieces)

24 V / 0 V Order No.: 3-3312.0418 IN / OUT Order No.: 3-3312.0444

Accessories:

• 1 connector set:

containing 1 "CANBUS" connector terminal

1 male and 1 female connector for "synchronization" (needed for two-tier installation in the control cabinet)

• Setup Toolkit for digiCLIP with a CAN to USB adapter, a connection cable and free setup software (digiCLIP Assistant) Order no.:1-digiCLIP-Setup

HBM

Order no.:1-digiCLIP-ST

Connection module for frontal assignment of the rear terminal strip (bus and power supply) Order no.:1–DF002

2.2 General

The DF30CAN/DF31CAN module from the digiCLIP product line is a carrier–frequency amplifier suitable for connecting force transducers, pressure transducers, torque transducers and load cells.

The DF30CAN/DF31CAN module is set up and parameterized by means of the digiCLIP Setup Assistant and a simple interface under MS–Windows.

The Setup Assistant also provides extensive Online Help, with descriptions of all the functions and many tips for the DF30CAN/DF31CAN.

Fig. 2.2: digiCLIP module DF31CAN

3 Installation

The modules are mounted on support rails in accordance with DIN EN 60715 (IEC 60715) by hooking on the top edge and engaging the spring plate at the bottom edge.

Fig. 3.1 Mounting on a support rail (here DF30CAN)

To remove, press down on the spring plate with a screwdriver and detach the housing.

The support rail should be connected to grounded conductor potential 🖃

Several type DF30CAN and DF31CAN can be connected, also in mixed operation. The rear multipoint connector with internal wiring makes the local connection for supply voltage, CAN bus and synchronization.

Interconnecting several modules:

- Intermate modules 1, 2 and 3
- When mounting at several levels: mate the SYNC-OUT connector to module 3 (see Fig. 3.4 and Fig. 4.5) and connect to SYNC-IN of the first module of the next level

Fig. 3.4: Modules mounted side-by-side

HBM

4 Electrical connection

Transducers can be connected to the module in a strain gage full-bridge circuit.

The transducers are connected via 2 screw terminals on the front. Use the strain relief provided. The shield of the transducer cable must make contact over a large area. The clamping area is 0.2 mm² to 3.3 mm².

If several conductors are to be connected to a terminal, the line cross-section must be adapted accordingly.

The CAN bus and the power supply can be connected via the 10–pin terminal strip at the side, or via an adapter module. The clamping area is 0.05 mm² to 2 mm². Connection module DF002 can be used as an alternative.

End sleeves (without plastic collars, length 10 mm) should be used on the strands to connect the wires to the terminals.

Note

To ensure that the electric load-carrying capacity of the plug terminals is not exceeded, a maximum of 30 modules can be intermated when **one** voltage source is connected.

If there are more than 30 modules, the series must be split and an **additional** voltage source connected.

Power is supplied via the DF002 adapter module's *front panel* or the *multipoint connector at its rear* (pin 9 and 10).

Fig. 4.1: DF30CAN/DF31CAN :pin assignment of the DF002 adapter module

HBM

Fig. 4.2: Plug-in terminal assignment (single-shielded cable)

Terminal	function	Color (HBM cable)
1	measurement signal (+)	WH (white)
2	excitation voltage (-)	BK (black)
2'	sense lead (-)	GY (gray)
3	excitation voltage (+)	BU (blue)
3'	sense lead (+)	GN (green)
4	Measurement signal (-)	RD (red)
<u> </u>	cable shield / grounding	

Transducer connection in six-wire configuration

The transducer connection terminals are coded with coding tabs, to prevent confusion when attaching them to the female connectors.

Six-wire circuitry is used for connection (with two sense leads).

Note

With double-shielded cables, the inner shield is connected to ground, the outer shield to the housing connection.

Fig. 4.3: Transducer connection in six-wire configuration

Transducer connection in four-wire configuration

When connecting a transducer in four–wire circuitry, the sense leads must be connected to the relevant bridge excitation line (PIN 2'–2 and Pin 3'–3) by jumpers, as otherwise a sensor error will be detected.

When connecting in four–wire circuitry, TEDS functionality is not available.

When connecting in four–wire circuitry, the connections for long lead compensation are missing. So line influences have to be calibrated in. This can be done by the digiCLIP Assistant in the "2–point scaling" range.

Note

Use standard HBM cables for connecting the transducers. When using other shielded, low-capacitance measurement cables, attach the shield of the transducer cable to the cable shield connection in accordance with HBM Greenline information. The power supply for the digiCLIP modules must not come from a direct voltage network. We recommend a local voltage supply, in the control cabinet.

Connect the shield of the particular transducer cable via as short a lead as possible (<5 cm). Alternatively, you can use the supplied cable holder, that also acts as strain relief. This ensures EMC protection.

Please also note:

- When connecting the leads, measures need to be taken to prevent electrostatic discharge.
- The relevant connection diagram is printed on the side of the housing.
- digiCLIP modules are designed for installation in enclosed, metal housings (such as a control cabinet); however, they can be operated without any additional housing.

4.1 Connecting the digital I/O

This function is only available in DF31CAN.

The frontal terminals "24V" are connected to the side bus terminals "+24V" (Pin 9). The frontal terminals "0V" are connected to the side bus terminals "0V" (Pin 10).

4.2 Use with Zener barriers

When transducers are used in potentially explosive atmospheres, intrinsically safe measurement circuits (Ex II (1) GD, [EEX ia]IIC) have to be set up by connecting SD01A safety barriers (Zener barriers) to the digiCLIP. Similar to the digiCLIP modules, the safety barriers are also mounted on DIN rails. An ATEX test certificate must be available for the transducers that are used.

For use with Zener barriers, the excitation voltage has to be set to 1 V on the digiCLIP. For this purpose, use the "Transducer – Excitation voltage" menu in the digiCLIP Assistant.

For more information on the design, mounting, and use of the safety barriers, please see the SD01A manual.

Note

TEDS transducer identification is not available for use with Zener barriers. Use with line lengths > 100 m and transducer resistances < 80 ohms is not permitted.

23

4.3 Synchronization of the carrier frequency

The first device (starting from the right) is used as the master when synchronizing. All the subsequent modules are automatically set as slaves and work at the carrier frequency of the first module. Should the connection between the modules be interrupted, the first module after the interruption is automatically set as the master and synchronizes the subsequent modules. If the modules are divided among several rails, use the 2–pin synchronization connectors, 1–digiCLIP–ST; (see Fig. 4.5).

Fig. 4.5: Mounting at several levels (here : DF30CAN)

Synchronizing:

Synchronizing is advisable for transducers with carrier frequency excitation when

- the transducer cables of several devices run side by side
- the measuring points are unshielded and are close together

Synchronization prevents differences in the carrier frequency causing disturbing superpositions. A maximum of 99 modules can be interconnected.

4.4 CANBUS installation

Located on the front of the DF002 connection module is a 9-pin D-Sub connection socket for the PROFIBUS connection. As an alternative, the PROFIBUS connection can also be made via the 10-pin connector terminal at the side.

Fig. 4.6: CANBUS connector (9-pin D-Sub connection socket)

The CANopen system is cabled in a bus topology with (120 ohm) termination resistors at the start and at the end. Stub lines should be avoided if possible.

The cable should be run as a shielded, twisted-pair cable, and should have an impedance of 120 ohms and a resistance of 70 mOhm/m.

Data is transmitted by the CAN-H and CAN-L signals, with a common GND as the data ground. There is also the option to incorporate a 24-volt supply voltage.

A maximum of **127** nodes can be connected in a CANopen network. The transmission speed can be adjusted in specified steps in the 10 kbit/s to 1 Mbit/s range. The length of a CANopen network depends on the transmission speed, and is shown in the table below.

Bit rate (kbit/s)	Line length (m)
1000	25
500	100
250	250
125	500
100	600
50	1000

4.5 CAN bus line termination

The CAN bus is connected via the 10-pin plug-in terminal. A maximum of 99 digiCLIP devices can be connected in one bus segment – each with different CAN addresses – (in accordance with the CANopen specification).

In the **first** and **last** bus nodes, the CAN bus needs a termination resistor of 120 Ω (min. 1/4 W). The bus line must have no more than two termination resistors. The digiCLIP has an integrated termination resistor which is activated by a slide switch. The alternative is for the termination resistor to be connected to the connection terminals. When the digiCLIP is delivered, this slide switch is in the "OFF" position.

Fig. 4.7: Slide switch for the CAN bus termination resistor

4.6 Selecting the module address

Address 1 to address 99 can be set as the module address.

4.7 Automatic bit rate detection

Each time it is activated, the digiCLIP applies the last bit rate to be selected. Should the bit rate have been changed in the CAN network, proceed as follows:

- Connect the digiCLIP
- Activate the digiCLIP
- Use the rotary switch to change the address (any value)
 - The lower LED flashes yellow/red (sensitized to receive data)
- Transmit data (e.g. start the digiCLIP Assistant)
 - Lower LED stays on or flickers yellow

As of now, the bit rate is automatically registered and applied.

In the delivery condition, the bit rate is set to 1 MBit/s.

4.8 Display LED status, error messages

Two LEDs show the operating states. The upper LED relates to measurement acquisition, the lower to communication.

STATUS LED (top): Measured value status			
Green	No error, normal operation, measured values valid.		
Flashing green	No error, normal operation. However, the amplifier does not acquire the transducer signal, it acquires the internal reference signals		
Orange	No error, normal operation, measured values valid, but out-of-range or limit value switch active.		
Red	Error, measured values invalid. As there could be a number of different causes, you should use Device "Show device status, in the digiCLIP Assistant to call the status window and evaluate the detailed displays that are shown there.		

BUS LED (bottom): Communication status				
Green	No error at the interface, normal operation. The digiCLIP status is "op- erational", the transmission rate is set.			
Orange	No error at the interface, normal operation. The digiCLIP status is "pre- operational", the transmission rate is set.			
Flickering orange-dark or green-dark	No error at the interface, normal operation with data traffic on the CAN- BUS.			
Flashing orange-red	The digiCLIP status is "pre-operational", automatic bit rate detection is running.			
Red	Error on the CANBUS, the digiCLIP is not working.			

If the two LEDs flash red, quickly and alternately, there is a firmware error in the flash memory area, because a firmware update was incomplete, for example. Transfer the firmware again (see Software update, Firmware update). The digiCLIP does not work.

If the two LEDS show permanently red, an internal error is stopping the digiCLIP working. Switch the digiCLIP off and then back on again, to test whether the error is still present. If the error keeps occurring, please contact HBM Technical Support.

5 Commissioning

Mount one or more digiCLIP modules and connect the transducers.

- Activate bus termination resistance for the first and last modules
- Connect the power supply
- Synchronization is performed automatically
- Set the address for each module; addresses must not be duplicated

As delivered, digiCLIP is assigned the address 63 and the bit rate 125 kbit/s. The bit rate can only be modified via the Assistant (see chapter 4.7).

5.1 Operation with the digiCLIP Assistant

The digiCLIP Assistant allows you to parameterize and scaling this measurement system, the display and measured value recording.

The software only shows devices of the digiCLIP product family. All other CAN nodes are ignored.

Procedure

- The digiCLIP must be ready for operation.
- Connect the PC's CAN bus interface to the digiCLIP (this can also be done while operation is ongoing).
- Should the PC not have its own CAN bus interface, you can use the CAN to USB adapter (1-digiCLIP-Setup).
- Make sure that the digiCLIP is not being parameterized from elsewhere at the same time (no further SDO Transfer active)
- Start the digiCLIP Assistant.
- When you start the software for the first time, you must choose the CAN network to be used in a window. If you select *Use as standard*, this network will be chosen automatically the next time the system starts up.
- The digiCLIP Assistant finds all the devices and displays them in a list in the Devices area with their CAN address and serial number.
- Start a new search for connected devices via Interface \rightarrow Devices.

i Important

You can obtain the latest version of the relevant Assistant free of charge from http://www.hbm.com/support/.

5.2 No devices can be found on the CANopen bus

- Check whether the CANBUS interface is correctly installed on the PC; see the CAN adapter installation instructions and the operating requirements.
- If the digiCLIP is not using the same bit rate (also called the baud rate) as the CAN network, with the digiCLIP active, use the rotary switches to temporarily set a different address. Each time an address is changed, the bit rate used by the CANBUS is re-checked and if necessary, the particular bit rate is changed. Then use the digiCLIP Assistant to find devices again.
- The digiCLIP only supports bit rates between 50 kbit/s and 1 Mbit/s for CANopen. Check that the specified network uses a permissible bit rate.
- On the CANBUS, verify for several devices that each digiCLIP has its own CAN address (that there are no duplicate addresses in the network). The upper switch on the digiCLIP gives the more significant digit: a setting of 1 above and 2 below corresponds to the decimal address 12.
- Check that the termination resistors on the CAN bus are correctly set: the resistors for the first and last devices on the bus (or PC) must be activated (DIP switches on the digiCLIP). If you are using more than one device, **no** resistors can be activated on any of the other devices.
- Call the PCANStat program from Peak (Windows Start menu, Programs → PCAN).

The program indicates which nodes are available on the CANBUS at the PC end. The entry PCANLight_USB_Client should be available for DeviceNet, the entry HBM_Client for CANopen, and the CAN network selected for CANopen should be displayed.

It will also be obvious from the status for the PC CAN interface whether the CANBUS is working correctly (OK). BUS HEAVY, for example, can also be caused by a faulty connection. In this situation, check all the cable connections.

NOTE:

The display in the PCANStat window is only updated when the data is transferred. Therefore, once changes have been made, find the devices, so that you can recognize the changes, or reset the CANBUS.

 Call the PCANStat program from Peak (Windows Start menu, Programs →PCAN).

Right-click on the area for the PC's CAN interface and reset the CANBUS. Then, in the digiCLIP Assistant, find the devices again: Interface \rightarrow Find devices.

More information can be found in the online Help on the system-CD.

6 Parameterizing via the digiCLIP Assistant

First check that the sensor connection is healthy: Open the Status window by double-clicking on the displayed measured value or with $Device \rightarrow Show$ *device status*. Red LEDs for *Sensor connection* indicate whether and if so which wiring faults exist.

Description Device status 2						
Dalo						
BITU Dit 1	Invalid reading Resitive input everflow	-				
	Negative input evention					
0112	High open limit eveneded					
Bit 4	I nyn span innit exceeded					
Bit 5	Scaling error (check characteristic and post decimal places)					
Bit 6	Error on initial calibration					
Bit 7	Error on limit switch initialization					
Bit 8						
Bit 9	Limit value 2 exceeded					
Bit 10	Limit value 3 exceeded					
Bit 11	Limit value 4 exceeded					
Bit 12	EEPROM error					
Bit 13	FLASH error					
Bit 14	AutoCal error					
Bit 15	🔴 TEDS error					
Bit 16	Transducer wiring defective: terminal 2 (HBM: black)					
Bit 17	😑 Transducer wiring defective: terminal 2' (HBM: grey)					
Bit 18	Transducer wiring defective: terminal 3 (HBM: blue)					
Bit 19	😑 Transducer wiring defective: terminal 3' (HBM: green)					
Bit 20	😑 Transducer wiring defective: terminal 4 (HBM: [-], red)					
Bit 21	Transducer wiring defective: terminal 1 (HBM: [+], white)					

Fig. 6.1: Assistant: Device status

Then use the Assistant menus to set all the other device parameters. Extensive Help is also available in the Assistant. The parameters are then present in the digiCLIP RAM.

To make them available again after a power failure, they still have to be saved in the digiCLIP EEprom memory (Assistant dialog: Save/load parameters –> Save parameters in device). After a loss of voltage, or after switching the digiCLIP back on, all the parameters last available in the EEprom are automatically reloaded into the device (RAM).

Note

Apart from the factory settings, the digiCLIP only has one parameter set (measurement program) that can be stored in the device. But additional parameter sets can be stored on a PC and then reloaded, using the Assistant. There is no offline mode, that is, creating / changing a parameter set without a connected device.

6.1 Clarification of significant parameters

Taring / zeroing							
Difference betwe	Difference between taring and a zero balance: A zero balance (>0<) affects the gross						
and the net value	e. Tarin	g (>T<)	only affects t	he net value.			
The difference be	etween	a zero	balance and t	taring is made o	clear in this example:		
		Conta	iner	Platform			
]			
2		11111	mm				
			Disp	play			
Weighing steps	Actio	n	Gross	Net			
Put on the	>	0<	before 35 kg	before 35 kg			
platform (35 kg)			after 0 kg	after 0 kg			
Put on the	>	T<	before 8 kg	before 8 kg			
container (8 kg)			after 8 kg	after 0 kg			
Filters / freque	ncies	0.05	Hz 1H	z 20 Hz			
•		0.1 Hz 2 Hz 50 Hz					
		0.2 Hz 5 Hz 100 Hz					
		0.5 Hz 10 Hz					
Autocal	The Autocal function briefly interrupts the measurement function						
Autotal	to link the amplifier input with an internal reference. This evens						
	out errors caused by ageing and temperature. This function is						
	execut	ed once on c	lemand.				

6.2 Parameterizing with TEDS

6.2.1 Electrical connection with TEDS

TEDS stands for "Transducer Electronic Data Sheet".

A transducer with an electronic data sheet as defined in the IEEE 1451.4 standard can be connected to the digiCLIP, making it possible for the amplifier to be set up automatically. A suitably equipped amplifier imports the transducer characteristics (electronic data sheet), translates them into its own settings and measurement can then start.

Six-wire circuitry must be used for TEDS to be connected.

6.2.2 Parameterization with TEDS

If a transducer with TEDS, containing the parameterization data for a full bridge is connected, this can be used to parameterize the amplifier automatically.

When the digiCLIP is activated, it automatically detects whether a TEDS is connected. When the transducer is replaced in the activated state, the new TEDS is also detected automatically.

Check the "Always use TEDS" box to monitor TEDS functionality and protect scaling from manual intervention. If a transducer is being used without TEDS, this checkmark must be cleared.

To enable the data stored in the TEDS to be used for scaling, a setting must be made in the digiCLIP to indicate the physical unit in which the measured values are to be displayed. The scaling values stored in the TEDS are then automatically converted to the required unit. By specifying this conversion unit, scaling can also take place to a power of ten (e.g. "kN") or English units can be used both for the display and in the TEDS.

In the digiCLIP Assistant, in the "TEDS" area, choose the desired conversion unit from the selection menu. If instead you want to use the unit stored in the TEDS directly, set this value to "(auto)".

When the TEDS is activated, its scaling data will be read out and converted to the required physical unit. Should the unit stored in the TEDS and the required conversion unit be incompatible because they describe different quantities (e.g.: torque transducer connected, conversion unit is "N"), a CAN error message is generated and scaling does not take place.

If automatic activation of TEDS is set (checkmark: "Always use TEDS") the TEDS is read out automatically and scaling performed accordingly, whenever the digiCLIP supply voltage is turned on or a new transducer is connected in the on state.

If a scaling error is reported once the TEDS is activated, the reason may be that the value range specified by the two characteristic curve points is so great or so small, that the measured values cannot be displayed with the set decimal places. You then need to adapt the number of decimal places in the "Scaling" area. It may possibly help to change to a different power of ten, such as. "N" after "kN". To obtain more information, click on "TEDS error status" in the digiCLIP Assistant. If you have not connected any transducers with TEDS, make sure that the "TEDS always available" box is not checked. For an accurate analysis, it is advisable to display the data stored in the TEDS. To do this, in the digiCLIP Assistant, click on "Details" in the "TEDS" area.

Example 1:

Torque transducer connected, display required in kilonewton meters, "kNm"

Stored in the TEDS are:

Minimum Force/Weight	1.0 Nm
Maximum Force/Weight	2500.0 Nm
Minimum Electrical Value	0.1 mV/V
Maximum Electrical Value	1.5 mV/V
Reference unit set in the digiCLIP ("kNm")	03560000 (hex)

After scaling by TEDS, the scaling points are set as follows:

Char. curve point 1, physical	0.001 kNm
Char. curve point 1, electrical	0.1 mV/V
Char. curve point 2, physical	2.5 kNm
Char. curve point 2, electrical	1.5 mV/V

Example 2:

Force transducer connected, display required in English pounds, "lb" Stored in the TEDS are:

Minimum Force/Weight	1.0 N
Maximum Force/Weight	1000.0 N
Minimum Electrical Value	–0.1 mV/V
Maximum Electrical Value	4.0 mV/V
Reference unit set in the digiCLIP ("lb")	00EF0001 (hex)

After scaling by TEDS, the scaling points are set as follows:

0.225 lb
–0.1 mV/V
224.81 lb
4.0 mV/V

The data for the minimum and maximum excitation voltage in the TEDS is also checked. If the excitation voltage is too high or too low, it is automatically adapted in the digiCLIP.

If, instead of using the digiCLIP Assistant, you are parameterizing directly by SDO commands, you must use Object 3576 to set the required conversion unit before activating the TEDS. The units available to you correspond to the selection list provided by the digiCLIP Assistant and are defined in accordance with CiA DR303–2. English units of measurement are supplied in accordance with the table below. If value = "00000000" is set, the unit used for conversion is the one stored in the TEDS.

When the TEDS is successfully activated, objects 3231 and 6131 are also changed accordingly.

The CAN objects for using TEDS are located in Section 7.7.9.

Note

If several transducer full bridges are connected to a digiCLIP amplifier input in parallel, their TEDS data should not be used for automatic scaling, as in this case, the distribution of the forces could lead to unwanted scaling.

6.2.3 Parameters of the required physical conversion unit

Value (hex)	Required unit	Conversion	
FA4B0000	μg	1·10 ^{−6} g	
FD4B0000	mg	1.10 ⁻³ g	
004B0000	g		
00020000	kg		
03020000	t	1000 kg	
00210000	Ν		
03210000	kN	1000 N	
06210000	MN	1.10 ⁶ N	
09210000	GN	1·10 ⁹ N	
00EF0001	lb	4.44822 N	
00EE0001	οz	0.278 N	
00ED0001	kgf	9.8 N	
FE560000	Ncm	0.01 Nm	
00560000	Nm		
03560000	kNm	1000 Nm	
06560000	MNm	1.10 ⁶ Nm	
00EA0001	ozf–in	7.06·10 ^{−3} Nm	
00E90001	ozf–ft	84.73 [.] 10 ⁻³ Nm	
00E80001	lbf–in	1.12 Nm	
00E70001	lbf-ft	1.35 Nm	
00E60001	in oz	7.06·10 ^{−3} Nm	
00E50001	ozf-ft	84.73·10 ^{−3} Nm	
00E40001	in lb	1.12·10 ^{−1} Nm	
00E30001	ft lb	1.35 Nm	
004E0000	bar	1·105 Pa	
034E0000	kbar	1000 bar	
FD4E0000	mbar	100.0 Pa	
00220000	Pa		
02220000	hPa	100.0 Pa	
03220000	kPa	1000 Pa	
06220000	MPa	1.10 ⁶ Pa	
09220000	GPa	1.10 ⁹ Pa	
00AB0000	psi	6894.757 Pa	
00010000	m		
FD010000	mm	1 · 10 ^{−3} m	
FE010000	cm	1 · 10 ^{−2} m	
FA010000	μm	1.10 ^{−6} m	
00EC0001	in	25.4·10 ^{−3} m	
00EB0001	ft	0.3048 m	

40

Value (hex)	Required unit	Conversion
00010300	m/s	
00EB0301	fps	0.304 m/s
00014700	m/min	1.66 m/s
FD550000	mm/s²	1·10 ^{−3} m/s²
00550000	m/s 2	
00EB5701	ft/s2	3.048·10 ⁻¹ m/s ²
00EC5701	in/s ²	2.54·10 ^{−2} m/s ²
FA010100	μm/m	1·10 ^{−6} m/m
FE000000	%	
FD000000	%~	0.1 %
FA000000	ppm	0.1·10 ⁻³ %

7 CAN interface description

The digiCLIP module has an inbuilt CAN interface which can be used both for transmitting measured values and for module parameterization. Different bit rates can be selected up to a maximum of 1 Mbit/s. The interface protocol is adapted to the CANopen Standard, in particular DS301 and DS404.

CANopen was developed by CiA (CAN in Automation), the users' and manufacturers' organization for CANopen, and has been standardized in European standard EN 50325-4 since the end of 2002.

CANopen uses layers 1 and 2 of the CAN standard originally developed for use in automotive applications (ISO 11898-2) as its transmission technology. In automation, these have been extended with regard to connector pin assignment, transmission rates and application layer, on the recommendations of the industrial association of the CiA.

7.1 Cyclic data transmission

The cyclic data are transmitted as so-called "Process Data Objects" (PDOs, in accordance with the CANopen definition). Interesting measured values are transmitted cyclically from the measurement device under a previously defined CAN Identifier, without any further identification. A query message is not required. A parameter setting determines how often the PDOs are transmitted (see object dictionary).

PDOs are transmitted event-oriented, cyclically or as broadcast objects on request. A maximum of 8 bytes of data can be transferred within a PDO. Transmission and acceptance of PDOs across the network can be synchronized in conjunction with a synchronization message ("synchronous PDOs"). This allows both the bus load and the network response time to be reduced to a minimum. CANopen achieves a high communication capacity at a comparably low bit rate. The allocation of application objects to a PDO can be set using a structural description ("PDO-Mapping") stored in the object dictionary (OD), and can thus be adapted to the particular requirements of use for a device.

Data formats longer than one byte are always transmitted in LSB/MSB order. As well as these pre-defined PDOs, others can be set up in accordance with CANopen definitions (CiA-DS 301) via so-called mapping (see section 6.5.2). Appropriate tools are available on the market. The exchange of cyclic PDOs only starts once the module has been brought to the "Operational" state.

7.2 Parameterization

Messages for device parameterization are transmitted as so-called "Service Data Objects" (SDOs, in accordance with the CANopen definition). The various parameters are addressed by an index number and a sub-index number. For the assignment of these index numbers, please refer to the object dictionary (see section 6.5).

Data formats longer than one byte are always transmitted in LSB/MSB order. Transmission of the SDOs is a confirmed data transfer, in each case with two CAN objects, in the form of a point-to-point connection between two network nodes. The relevant object dictionary entry is addressed by specifying the index and sub-index of the entry. There is no limit to the length of message that can be transmitted, although this is associated with an additional protocol overhead.

7.2.1	Generated error codes for SDO communication
	("SDO abort codes")

Error code (hex)	Error description
05 03 00 00	Incorrect toggle bit
06 01 00 00	Object access not supported, not permitted
06 02 00 00	Object does not exist in the dictionary
06 04 00 41	Object cannot be mapped to PDO
06 04 00 42	Number or length of the objects to be mapped exceeds the maxi- mum PDO length
06 04 00 43	General parameter compatibility error
06 06 00 00	Hardware error
06 07 00 10	Unknown data type
06 07 00 12	Data type length too long
06 07 00 13	Data type length too short
06 09 00 11	Sub-index does not exist
06 09 00 30	Measuring range monitoring exceeded
06 09 00 31	Measuring range monitoring exceeded at the upper limit
06 09 00 32	Measuring range monitoring exceeded at the lower limit
08 00 00 00	General error
08 00 00 20	Data cannot be transferred

7.3 EMERGENCY messages

EMERGENCY messages are a high-priority response to indicate critical changes of state, without having to request this information. An EMERGENCY message is only sent if the device is in the "operational" state and the event changes from the Normal state to the Error state. The RESET message is sent when the error that lead to the EMERGENCY event is removed.

Notes on the limit value switches:

Each of the 4 limit value switches can be set up so that when its state changes, an EMERGENCY message is sent. If several limit value switches are activated in this way, a message is not sent every time there is a change of state, instead the following applies.

All the limit value switches are in the "0" state. If one of the limit value switches now changes state, an EMERGENCY message is sent. If there are further limit overshoots at the other limit value switches, no additional message is transmitted. A RESET message will only be transmitted once all the limit value switches have assumed the "0" state.

7.3.1 Protocol of an EMERGENCY message

CAN Identifier	128 (080 hex) + module address
1st[2nd data byte	EMERGENCY message, part 1
3rd data byte	Error status
4th data byte	EMERGENCY message, part 2
5th[Bth data byte	For DF30CAN always = 00

7.3.2 Generated EMERGENCY messages

1st[2nd data byte (hex)	4th data byte (hex)	Description of the EMERGENCY message
00 00	00	No error or error just cleared (RESET message); the error status in the 3rd data byte is also = 00.
50 10	00	Self-test: FLASH program memory error; unreliable program ex- ecution
50 20	00	Autocalibration error ("Auto-Cal")
50 30	00	Transducer connection faulty or TEDS cannot be read ¹⁾
63 10	00	Scaling error

1st …[2nd data byte (hex)	4th data byte (hex)	Description of the EMERGENCY message
81 10	00	PDO transfer rate cannot be adhered to; measured values are being lost
F0 01	00	Measurement input overload
F0 11	00	Limit value switch; see note
FF 00	01	Gross measured value range monitoring overshoot
FF 00	02	Error when reading or editing initial calibration values
FF 00	03	Error when parameterizing limit value switches
FF 00	04	Error when reading or writing the EEPROM

 TEDS data availability is only monitored if this has been activated (object 3581 or digiCLIP Assistant: "Always use TEDS" checked)

7.4 Data types

CANopen des- ignation	Description	Abbreviation in the following tables
Boolean	Byte with the information in the least significant bit (Bit 0)	b8
Unsigned8	Unsigned byte 8 bits in length	u8
Unsigned16	Unsigned word 16 bits in length	u16
Unsigned32	Unsigned integer 32 bits in length	u32
Integer16	Integer signed in the most significant bit and 16 bits in length	i16
Integer32	Integer signed in the most significant bit and 32 bits in length	i32
Real32	Signed floating-point number, 32 bits in length	r32
VisibleString	String that does not have to be concluded with a zero character (00 hex). The length of the string is defined in the object dictionary and must be adhered to exactly. In the following tables, the number of admissible characters is given in each case	VS
OctetString	Sequence of bytes each 8 bits in length	OS
TimeOfDay	Date format per DS341	TOD
TimeDifference	Difference between two dates per DS301	TDIFF

A1809-3.0 en

HBM

7.5 Data structures

7.5.1 PDO CommPar

Sub-Index	Data type	Description
0	u8	Number of entries
1	u32	CAN Identifier of the PDO, see below
2	u8	Transmission type, see below
3	u16	Cut-off time; value is not evaluated
4	u8	Priority group; value is not evaluated

Supported transmission rates of the Transmit PDO (Sub-index 2, "Transmission type")

Value	Description
0	No PDO is transmitted
1	Cyclic transmission immediately a SYNC message is received
2240	Cyclic transmission once n SYNC messages are received; n corresponds to the value of the transmission type
254	Cyclic transmission in accordance with the setting by Object 3400, indepen- dently of the SYNC message

7.5.2 PDO Mapping

Sub-Index	Data type	Description
0	u8	Number of entries
1	u32	1st mapped object
2	u32	2nd mapped object
8	u32	8th mapped object

Structure of a PDO Mapping entry

Index (16-bit)	Sub-index (8-bit)	Object length in bits
		(8–bit)

The total of the object lengths of a PDO Mapping must not exceed 64 bits. If, for example, the object lengths of the first two mapped objects are each 32 bits, objects 3 to 8 are not available

7.6 Electronic data sheet – EDS file

The functionality and properties of a CANopen device are described in ASCII format in the standardized, electronic data sheet (Electronic Data Sheet, EDS). The EDS should be understood as a kind of form, describing all the data and functionalities of a device that are accessible via the network. The EDS files for the digiCLIP CANBUS modules can be found on the digiCLIP system–CD or at www.hbm.com/support.

7.7 CAN object dictionary, in function group order

The object dictionary (OD) structures the data of a CANopen device, clearly arranging them in a table. This includes all the device parameters and all the current process data, which are also accessible via the SDO.

The object dictionary is divided into areas containing general data about the device (device identification, manufacturer's name, etc.), as well as describing the communication parameters or specific device functionality. An object dictionary entry ("object") is identified by a 16-bit index and an 8-bit sub-index. The "application objects" of a device, such as the input and output signals, the device parameters, the device functions or the network variables, are made accessible in a standardized form over the network by the object dictionary entries.

7.7.1 Communication profile

The CANopen communication profile (documented in CiA DS-301), governs how devices exchange data with one another. As with all other fieldbus protocols, a distinction is made between real-time data and parameter data. These data types are totally different in character, and CANopen always assigns suitable communication elements to them.

In- dex (hex)	Index (dec)	Sub-Index	Access ¹⁾	Data type ^ź	Value	Description	Definition ³⁾	Parameter set ⁴⁾
1000	4096	0	RO	u32	00220194 hex (constant)	Device supports Alarm and Analog Input Blocks in ac- cordance with CiA DS404	DS404	-
1001	4097	0	RO	u8	Bit 0 corre- sponds to bit 0 set in Index 6150; bit 17 always = 0	Error register with status; preferably monitor status from Index 6150 and Index 2011!	DS404	_
1002	4098	0	ROP	u32	see Index 2011, sub-index 1	Manufacturer-specific error register; corresponds to system sta- tus 2	НВМ	_
1003	4099	0	RO	u8		Error states: number of en- tries	DS301	-
1003	4099	1 	RO	u32		Error states	DS301	_
1004	4100	0	RO	u32		Max. number of supported Receive and Transmit PDOs		
1004	4100	1	RO	u32	hex (constant)	Max. number of supported synchronous Receive and Transmit PDOs	DS301	_
1004	4100	2	RO	u32		Max. number of supported asynchronous Receive and Transmit PDOs		
1005	4101	0	RW	u32		COB-ID SYNC	DS301	С
1008	4104	0	RO	VS	Visible string	Manufacturer device name (20 characters)	DS301	-
1009	4105	0	RO	VS	Visible string	Manufacturer hardware ver- sion (13 characters)	DS301	-
100A	4106	0	RO	VS	Visible string	Manufacturer firmware ver- sion (8 characters)	DS301	_
100B	4107	0	RO	u32	Node ID	Device address	DS301	_
100C	4108	0	RW	u16		Node guarding: Guard Time	DS301	С

 RW: Read and write accessf RO: Read access only

WO: Write access only

ROP:Read access only by SDO and PDOWOP:Write access only by SDO and PDORWP:Read and write access by SDO and PDOObjects with the addition "P" can be mapped in an SDO or PDO.

²⁾ The format describes the data type, as noted in Section 7.4.

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Value	Description	Definition ³⁾	Parameter set ⁴⁾
100D	4109	0	RW	u8		Node guarding: Life Time	DS301	С
100E	4110	0	RW	u32		Node guarding: Identifier	DS301	С
1014	4116	0	RW	u32	COB-ID EMCY	EMERGENCY message identifier	DS301	_
1018	4120	1	RO	u32	HBM: 011D hex	CANopen Vendor-ID	DS301	-
1018	4120	2	RO	u32	DF30CAN: 0301hex	CANopen Product-ID	DS301	-
2083	8323	0	RO	VS	Visible String (12 characters)	HBM serial number	HBM	_
2084	8324	1	RW	VS	Visible String (16 characters)	Channel name, defined indi- vidually by user	HBM	A

³⁾ HBM: HBM-specific definition;

DS301: Definition from CiA Draft Standard 301, DS404: Definition from CiA Draft Standard 404; DR303: Definition from CiA Draft Recommendation 303

⁴⁾ Parameter set column: A: Value is stored in the application parameter set; C: Value is stored in the communication parameter set; _ : Value is not stored in a parameter set

7.7.2 Parameter set and factory setting

In the digiCLIP Assistant, click on "Store parameter in device" or "Restore factory setting" to read or write the application parameter set. This is marked in the tables by an "A". The communication parameters are written and loaded in the extra "PDO Details" dialog. The objects concerned are marked in the tables by a "C".

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Value	Description	Definition	Parameter set
1010	4112	0	RO	u8		Protect parameters: sup- ported functions (maximum supported sub-index)	DS301	-
1010	4112	1	RW	u32	Write: 6576617 hex	Protect all current applica- tion ("A"), communication ("C") and PDO Mapping pa- rameters (Index 10009FFF).	DS301	_

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Value	Description	Definition	Parameter set
1010	4112	2	RW	u32	Write: 65766173 hex	Protect only the current communication ("C") and PDO Mapping parameters (Index 10001FFF).	DS301	_
1010	4112	3	RW	u32	Write: 65766173 hex	Protect only the current ap- plication parameters ("A") (Index 20003FFF and 60009FFF).	DS301	_
1011	4113	0	RO	u8		Restore factory setting: sup- ported functions (maximum supported sub-index)	DS301	_
1011	4113	1	RW	u32	Write: 64616F6C hex	Factory setting: Restore all applications ("C") and PDO Mapping Parameters (Index 10009FFF)	DS301	_
1011	4113	2	RW	u32	Write: 64616F6C hex	Factory setting: only restore application parameters ("A")	DS301	_
1011	4113	3	RW	u32	Write: 64616F6C hex	Factory setting: Only restore communications ("C") and PDO Mapping Parameters	DS301	_

7.7.3 Measured values

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Value	Description	Definition	Parameter set
2002	8194	1	ROP	i32		Max. peaks measured value	HBM	_
2003	8195	1	ROP	i32		Min. peaks measured value	HBM	_
2004	8196	1	ROP	i32		Peak-to-peak measured value	HBM	_
3002	12290	1	ROP	r32		Max. peaks measured value	HBM	-
3003	12291	1	ROP	r32		Min. peaks measured value	HBM	-
3004	12292	1	ROP	r32		Peak-to-peak measured value	HBM	_
6130	24880	1	ROP	r32		Gross measured value	DS404	_

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Value	Description	Definition	Parameter set
6140	24896	1	ROP	r32		Net measured value	DS404	Α
9130	37168	1	ROP	i32		Gross measured value	DS404	_
9140	37184	1	ROP	i32		Net measured value	DS404	-

7.7.4 Device status

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Value	Description	Definition	Parameter set
1001	4097	0	RO	u8	Bit 0 corre- sponds to bit 0 set in Index 6150; bit 17 al- ways = 0	Error register with status; for reasons of compatibility, pre- ferably monitor status from Index 6150, 2010 and Index 2011!	DS404	_
1002	4098	0	ROP	u32	see Index 2011, sub- index 1	Manufacturer-specific error register; corresponds to system sta- tus 2	НВМ	_
2010	8208	1	ROP	u8	Bits 0…2 Bit 3: C Bits 4…7: L	System status 1 2: as Index 6150, bits 02 3AN bus error or warning 14 trig- gered	HBM	_

In- dex (hex)	Index (dec)	lb-Index	Access	ata type	Value	Description	nition	ter set
		nS					Defi	Parame
2011	8209	1	ROP	u32	System statu Bit 0: Measur dex 6150, Bit Bit 1: Positive load Bit 2: Negativ load Bit 2: Negativ load Bit 3: Pos. m (see Index 6 Bit 4: Neg. m (see Index 6 Bit 5: Scaling Bit 6: Incorre Bit 7: Error w switches Bits 811: L gered (as Incorre Bit 7: Error w switches Bits 811: L gered (as Incorre Bit 12: Hardw (EEPROM) Bit 13: Hardw (EEPROM) Bit 13: Hardw (FLASH) Bit 14: Hardw Bit 15: TEDS Bits 1621: Bit 16: Termin Bit 17: Termin Bit 17: Termin Bit 18: Termin Bit 19: Termin Bit 20: Termin Bit 21: Termin Bit 21: Termin Bit 22:23: Bit 24: CAN: Bit 26: CAN: Bits 2731:	s 2 (copy in Index 1002): red value invalid (as In- : 0) e measurement input over- we measurement input over- easuring range overshoot 149, 9149) easuring range overshoot 148, 9148) error ct initial calibration values hen initializing limit value imit value switches 14 trig- lex 2010, bits 47) ware error: parameter memory ware error: program memory ware error: Autocalibration error *) Transducer connection faulty: hal 2, HBM: black hal 2', HBM: gray hal 3, HBM: green hal 4 [+], HBM: red hal 1 [-], HBM: white reserved "Bus OFF" "Tx not ok" "Main error" reserved	HBM	
2012	8210	0	RO	u8	0: digiCLIP is SLAVE 1: digiCLIP is MASTER	Hardware synchronization	НВМ	-
2013	8211	0	RO	u8	0: identical 1: not iden- tical	Check whether the current application parameters match the data in the EE- PROM	НВМ	-

*) TEDS data availability is only monitored if this has been activated (object 3581 or digiCLIP Assistant: "Always use TEDS" checked)

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Value	Description	Definition	Parameter set
6150	24912	1	ROP	u8	Status bits, see foot- note ¹⁾	Status as per DS404	DS404	_
6F20	28448	1	ROP	u8		Random count value ("Life counter")	DS404	-
61E0	25056	0	RO	u8		Number of measurement channels	DS404	_
61E1	25057	1	RO	U3 2		Sensor type per DS404: res- istive full bridge	DS404	_

¹⁾ Index 6150: Bit 0 is set when an error occurs which influences the measured value. So when this bit is set, it means that the measured value is invalid. This is the case, for example, with a measurement input overload, a faulty transducer connection, an undefined choice of excitation voltage and for all scaling errors. This bit is cleared when the cause of the error is removed. It is not set when range monitoring is exceeded.

Bit 1 is set when the measurement input is overloaded in the positive direction or when the gross measured value exceeds range monitoring in the positive direction. See Objects 6148, 6149, 9148 and 9149.

Bit 2 is set accordingly for overshoots in the negative direction.

7.7.5 Device control

In-	Index	lex	SS	/pe	Value	Description	_	Ĭ
dex (hex)	(dec)	Sub-Inc	Acce	Data ty			Definition	Parameter se
2268	8808	1	RWP	u8	Control byte Bit 0: Run ze (see Index 6 Bit 1: Run ta (see Index 6 Bit 2: Continu- value memory Bit 3: Continu- memory (see Bit 4: One-o memory (see Bit 5: One-o memory (see Bit 6: Stop m (see Index 2) Bit 7: Stop m (see Index 2) Factory setting	1: ¹⁾ proing 125) ring 139) Lous clear of max. peak- ry (see Index 2262) Lous clear of min. peak-value e Index 2263) ff clear of max. peak-value e Index 2264) ff clear of min. peak-value e Index 2265) ax. peak-value memory 266) in. peak-value memory 267) ng: all Bit = 0	HBM	A ²⁾
2269	8809	1	RW	u8	Bit n = 1: Function enabled Bit n = 0: Function in- hibited Fact	Control byte 1 Mask The bits correspond to Index 2268. When bit = 1, the cor- responding control byte bit (Index 2268) is executed; when bit = 0, the corre- sponding control word bit is ignored and assumed to be "0". tory setting: all Bit = 1	HBM	A
226A	8810	1	RWP	u8	Control byte Bit 0: Run au Bit 1: Run ze Bit 2: Run tau Bit 7: Read c calibration Factory settin	2 ³⁾ : itocalibration ("Auto–Cal") roing ("Auto–Zero") ring ("Auto–Tare") out TEDS and trigger TEDS ng: all Bit = 0	HBM	_

- ¹⁾ If several command bits are set at the same time, this is the sequence that is followed: zeroing, taring, edit peak-value memory. If several bits are set to control the peak-value memory, this is the priority that is applied (the first-named has the highest priority): continuous clear, one-off clear, stop.
- ²⁾ Only the state of bits 2, 3, 6 and 7 is protected in the application parameter set.
- ³⁾ If several command bits are set at the same time, this is the sequence that is followed: zeroing, taring, autocalibration. Bit 7, for calibrating by TEDS, must not be set at the same time as the other control bits of Object 226A.

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Value	Description	Definition	Parameter set
226B	8811	1	RW	u8	Bit n = 1: Function enabled Bit n = 0: Function in- hibited	Control byte 2 Mask Bits correspond to Index 226A. When bit = 1, the cor- responding control byte bit (Index 226A) is executed; when bit = 0, the corre- sponding control byte bit is ignored and assumed to be "0". Factory setting: all Bit = 0	HBM	A
6111	24849	1	WO	u32	696C6163 hex (constant)	Trigger one-off autocalibra- tion ("Auto-Cal")	DS404	_
6125	24869	1	WO	u32	7A65726F hex (constant)	Trigger zeroing ("Auto– Zero")	DS404	_
6139	24889	1	WO	u32	74617261 hex (constant)	Trigger taring ("Auto-Tare")	DS404	_

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Value	Description	Definition	Parameter set
6160	24928	1	RWP	u8	Bit 0: Auto-Cal Bit 1: Zeroing Bit 2: Taring	Control byte as per DS404 ¹⁾	DS404	A
6161	24929	1	RW	u8	Bit n = 1: Function en- abled Bit n = 0: Function inhib- ited	Control byte Mask as per DS404	DS404	A

 If several command bits are set at the same time, this is the sequence that is followed: zeroing, taring, autocalibration

7.7.6	Peak-value memory	control
-------	-------------------	---------

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Parameter	Description	Definition	Parameter set
2260	8800	1	RW	u8	0: Gross measured value 1: Net mea- sured value	Input signal for max. peak- value memory	HBM	A
2261	8801	1	RW	u8	0: Gross measured value 1: Net mea- sured value	Input signal for min. peak- value memory	HBM	A
2262	8802	1	RW	u8	0: Normal operation 1: continu- ous clear	Continuous clear of max. peak-value memory: Peak value follows current mea- sured value	НВМ	A
2263	8803	1	RW	u8	0: Normal operation 1: continu- ous clear	Continuous clear of min. peak-value memory: Peak value follows current mea- sured value	НВМ	A

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Parameter	Description	Definition	Parameter set
2264	8804	1	RW	u8	0: Normal operation 1: one-off clear	One-off clear of max. peak-value memory: Next measured value is current max peak value. Read returns = 1 until clearing has been executed in the device	HBM	_
2265	8805	1	RW	u8	0: Normal operation 1: one-off clear	One-off clear of min. peak- value memory: Next mea- sured value is current min. peak value. Read returns = 1 until clearing has been executed in the device	HBM	_
2266	8806	1	RW	u8	0: Normal operation 1: stop	Stop max. peak-value memory: Peak-value memory remains un- changed, whatever the subsequent measured val- ues	HBM	A
2267	8807	1	RW	u8	0: Normal operation 1: stop	Stop min. peak-value memory: Peak-value memory remains un- changed, whatever the subsequent measured val- ues	HBM	A

7.7.7 Digital inputs and outputs (DF31CAN only)

Slot C2	Index (hex)	Access	Data type	Value	Description	Parameter set
1	80	RW	u8	Bit 0: input polarity Bit 4: output 1 polarity Bit 5: output 2 polarity Factor	Polarity of digital input and digital outputs: inverting when bit set v settings: all bits = 0	A
1	81	RW	u8	Action Bit 0: run zero baland Bit 1: run taring Bit 2: continuous clea Bit 3: continuous clea Bit 4: one-off clear of Bit 5: one-off clear of Bit 5: one-off clear of Bit 6: stop max. Pea Bit 7: stop min. Peak Factory settings: all	on of digital input: ¹⁾ ce ar of max. peak-value memory ar of min. Peak-value memory of max. Peak-value memory of min. Peak-value memory k-value memory k-value memory bits = 1	A
1	82	RO	u8	Bit 0: input status Bit 4: output 1 status Bit 5: output 2 status	Electrical status of digital input and digital outputs ²⁾ : bit set when 24 V	_
1	83	RO	u8	Bit 0: input status Bit 4: output 1 status Bit 5: output 2 status	Logic state of digital input and di- gital outputs, taking polarity into consideration: bit set when action active	_

¹⁾ If several bits are set at the same time, this is the sequence that is followed: zero balance, taring, edit peak-value memory. If several bits are set to control the peak-value memory, this is the priority that is applied (first-named has the highest priority): continuous clear, one-off clear, stop. The actions for bit 0, bit 1, bit 4 and bit 5 are carried out precisely when the input voltage changes from the quiescent level to the active level. The actions for bit 2, bit 3, bit 6 and bit 7 are carried out as long as the input voltage corresponds to the active level. The quiescent or active levels are defined with index 2300. The response occurs with the next but one measured value at the latest. The latency time of the electronic digital input can be found in the current data sheet.

²⁾ Short circuit of digital output is not recognized.

Slot C2	Index (hex)	Access	Data type	Value	Description	Parameter set
1	85	RW	u8	Signal sou Bit 0: limit value swite Bit 1: limit value swite Bit 2: limit value swite Bit 3: limit value swite Bit 3: limit value swite Bit 4: positive out-of- Bit 5: negative out-of Bit 6: overload of inp Bit 7: general error w Factory settings: all b	urce of digital output 1: ³⁾ ch 1 ch 2 ch 3 ch 4 range f-range ut amplifier <i>v</i> ith invalid measured value pits = 0	A
1	86	RW	u8	Signal so bit assignment as for Factory settings: all l	ource of digital output 2: r digital output 1 oits = 1	A

³⁾ Several bits can be set simultaneously. The logic states are then assigned "or-linked" to the digital output. The switching states of bits 0 to 6 are updated with every measured value. The status of bit 7 indicates general errors that lead to invalid measured values, such as transducer, scaling or TEDS errors. A response time greater than 400 ms must be assumed here. The latency time of the electronic digital input can be found in the current data sheet.

In- dex (hex)	Index (dez)	Sub-Index	Zugriff	Datentyp	Parameter	Beschreibung	Definition	Parametersatz
2311	8977	1	RW	u8	Signalquelle d Bit 0: Grenzwer Bit 1: Grenzwer Bit 2: Grenzwer Bit 3: Grenzwer Bit 4: positive E (siehe Index 61 Bit 5: begative f (siehe Index 61 Bit 6: Übersteue kers Bit 7: allgemein Messwert Sind alle Bit=0 Ausgang 1 durd 6200 oder 6220	es digitalen Ausgangs 1: ¹⁾ tschalter 1 tschalter 2 tschalter 3 tschalter 4 Bereichsüberschreitung 49, 9149) Bereichsüberschreitung 48, 9148) erung des Eingangsverstär- her Fehler mit ungültigem gesetzt, kann der digitale ch Schreiben des Objektes 0 gesteuert werden. ng: alle Bit = 0	HBM	A
2312	8978	1	RW	u8	Signalquelle (Bit-Zuordnung v Werkseinstellur	des digitalen Ausgangs 2: wie für digitalen Ausgang 1 ng: alle Bit = 1	НВМ	A
6000	24576	1	RO	u8	Bit 0: Digitaleingang	Logischer Zustand des Digitaleingangs unter Be- rücksichtigung der Polari- tät	DS404	_
6002	24578	1	RW	u8	Bit 0: Polarität Digi- taleingang	Polarität des digitalen Ein- gangs: invertierend wenn Bit gesetzt	DS404	A
6020	24608	1	RO	b8		Logischer Zustand des Digitaleingangs unter Be- rücksichtigung der Polari- tät	DS404	-

¹⁾ Es können mehrere Bit gleichzeitig gesetzt werden. Dann werden die logischen Zustände "oder-verknüpft" an den digitalen Ausgang gelegt. Die Schaltzustände der Bit 0 bis 6 werden mit jedem Messwert aktualisiert. Der Zustand von Bit 7 signalisiert allgemeine Fehler, die zu ungültigen Messwerten führen, wie Aufnehmer-, Skalier- oder TEDS-Fehler. Hierfür ist eine Reaktionszeit größer 400 ms anzunehmen. Die Latenzzeit des elektronischen Digitaleingangs ist dem aktuellen Datenblatt zu entnehmen.

-								<u> </u>
In- dex (hex)	Index (dez)	Sub-Index	Zugriff	Datentyp	Parameter	Beschreibung	Definition	Parametersatz
6030	24624	1	RW	b8		Polarität des digitalen Ein- gangs: invertierend wenn Bit gesetzt	DS404	A
6200	25088	1	RW	u8	Bit 0: Ausgang 1 Bit 1: Ausgang 2	Logischer Zustand der Di- gitalausgänge (unabhän- gig von der gewählten Polarität). Schreiben nur dann mit Wirkung, wenn in Objekt 2311 bzw. 2312 alle Bit gelöscht sind.	DS404	_
6202	25090	1	RW	u8	Bit 0: Ausgang 1 Bit 1: Ausgang 2	Polarität der Digitalaus- gänge: invertierend wenn Bit gesetzt.	DS404	A
6220	25120	1	RW	b8		Logischer Zustand des Digitalausgangs 1 (un- abhängig von der gewähl- ten Polarität). Schreiben nur dann mit Wirkung, wenn in Objekt 2311 alle Bit gelöscht sind.	DS404	_
6220	25120	2	RW	b8		Logischer Zustand des Digitalausgangs 2 (un- abhängig von der gewähl- ten Polarität). Schreiben nur dann mit Wirkung, wenn in Objekt 2312 alle Bit gelöscht sind.	DS404	-
6230	25136	1	RW	b8		Polarität des Digitalaus- gangs 1: invertierend wenn Bit gesetzt.	DS404	A
6230	25136	2	RW	b8		Polarität des Digitalaus- gangs 2: invertierend wenn Bit gesetzt.	DS404	A

7.7.8 Scaling

There are four scaling methods available: With HBM transducers, the zero value and the span are most often available as scaling data. Two-point scaling or the scaling with slope and offset option, as defined in CANopen, can be used as an alternative. If a transducer with TEDS is connected, the scaling values can also be set with TEDS. The objects for TEDS can be found in Section 7.7.9. If a scaling value is changed, the scaling values in the other representation are adapted automatically.

In-	Index	ех	SS	pe	Parameter	Description	_	t
dex (hex)	(dec)	Sub-Ind	Acce	Data ty			Definition	Parameter se
3130	12592	1	RW	r32		Span scaling: scaling value: mV/V zero point	НВМ	A
3140	12608	1	RW	i32		Span scaling: scaling value: mV/V zero point	НВМ	A
3131	12593	1	RW	r32		Span scaling: scaling value: phys. zero point	НВМ	A
3141	12609	1	RW	i32		Span scaling: scaling value: phys. zero point	НВМ	A
3132	12594	1	RW	r32		Span scaling: scaling value: mV/V span	HBM	A
3142	12610	1	RW	i32		Span scaling: scaling value: mV/V span	HBM	A
3133	12595	1	RW	r32		Span scaling: scaling value: phys. span.	HBM	A
3143	12611	1	RW	i32		Span scaling: scaling value: phys. span.	HBM	A
3120	12576	1	WO	u32	31746573 hex	Two-point scaling: Calibrate X1: set the current internal mV/V meas. value as scaling value point 1	НВМ	_
3122	12578	1	WO	u32	32746573 hex	Two-point scaling: Calibrate X2: set the current internal mV/V meas. value as scaling value point 2	НВМ	-
6120	24864	1	RW	r32		Two-point scaling: scaling value: mV/V point 1	DS404	A

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Parameter	Description	Definition	arameter set
9120	37152	1	RW	i32		Two-point scaling: scaling value: mV/V point 1	DS404	A
6121	24865	1	RW	r32		Two-point scaling: scaling value: phys. point 1	DS404	A
9121	37153	1	RW	i32		Two-point scaling: scaling value: phys. point 1	DS404	A
6122	24866	1	RW	r32		Two-point scaling: scaling value: mV/V point 2	DS404	A
9122	37154	1	RW	i32		Two-point scaling: scaling value: mV/V point 2	DS404	A
6123	24867	1	RW	r32		Two-point scaling: scaling value: phys. point 2	DS404	A
9123	37155	1	RW	i32		Two-point scaling: scaling value: phys. point 2	DS404	A
6126	24870	1	RW	i32		Scaling acc. to y=m·x +b: slope m.	DS404	А
9126	37158	1	RW	i32		Slope m, as with object 6126 taking into account object 6132	DS404	A
6127	24871	1	RW	r32		Scaling acc. to y = m·x + b: offset b	DS404	A
9127	37159	1	RW	r32		Offset b, as with object 6127 taking into account object 6132	DS404	A
6132	24882	1	RW	u8	09	Decimal point position, the value range can be fur- ther restricted, subject to scaling.	DS404	A

7.7.9 TEDS

If several transducers with TEDS are connected to an amplifier input, it is only ever the first TEDS to be found that is evaluated. In this case, automatic scaling by TEDS and the "Always use TEDS" function should be dispensed with.

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Parameter	Description	Definition	Parameter set
3574	13685	1	RW	u8		Write: Parameter = 1: Contact the first TEDS and load the data to the device memory ¹⁾ . Read: Return value = 1, if the data has been success- fully read and is available, otherwise return value = 0	HBM	A
3576	13686	1	RW	u32		Physical reference unit, into which TEDS data are to be converted ²⁾	НВМ	A
3577	13687	1	WO	u32	73646574 hex	Activate scaling by TEDS	HBM	-
3578	13688	1	RO	i16		TEDS: Read out the last cal- ibration date (number of days since January 1, 1998)	НВМ	_
3579	13689	1	RO	i16		TEDS: Read out the calibra- tion period	HBM	-
357A	13690	1	RO	VS	Visible string (3 characters)	TEDS: Read out the initials of the calibrator	НВМ	_
357B	13691	1	RO	VS	Visible string (45 charac- ters)	TEDS: Read out the trans- ducer comments	НВМ	_
357C	13692	1	OS	i16	OctetString (8 bytes)	TEDS: Read out transducer identification (T-ID)	HBM	-

¹⁾ Object 3574: Whenever a transducer is connected and each time the device is re-started, the TEDS data are read into the device automatically, so that it is not normally necessary to address the TEDS specifically.

²⁾ Object 3576: The physical reference unit is the quantity into which the scaling values are converted, when a TEDS has been read out. This method also allows non-metric units to be supported or a conversion, for example, from newtons (as stored in the TEDS) to kilonewtons (as required in the digiCLIP application). In many cases, the user will set the same unit here, as for displaying the measured values. If a required unit is not compatible with the TEDS data because, for example, a torque transducer has been connected, but newtons, the force transducer unit, have been selected, a CAN error message is returned and scaling does not take place.

In-	Index	ex	SS	/pe	Parameter	Description	_	Ţ
dex (hex)	(dec)	Sub-Inc	Acce	Data ty			Definition	Parameter se
3581	13697	1	RW	u8	0: Do not use TEDS automati- cally 1: Always use TEDS	Always use TEDS *)	HBM	A
3582	13698	1	RO	u8	0: Manual scaling 1: Current scaling cor- responds to the TEDS data	Current scaling took place on account of TEDS activa- tion	HBM	_
358A	13706	1	RO	u16		Basic-TEDS-Template: "Manufacturer"	HBM	_
358B	13707	1	RO	u16		Basic-TEDS-Template: "Model"	HBM	_
358C	13708	1	RO	u8		Basic-TEDS-Template: "Version letter"	HBM	_
358D	13709	1	RO	u16		Basic-TEDS-Template: "Version number"	HBM	-
358E	13710	1	RO	u32		Basic-TEDS-Template: "Serial number"	HBM	-
6115	24853	1	RO	VS		"Manufacturer Id" from TEDS	DS404	_
6116	24854	1	RO	VS		"Model number" from TEDS	DS404	-
6117	24855	1	RO	VS		"Version number" and "Ver- sion letter" from TEDS	DS404	-
6118	24856	1	RO	VS		"Serial number" from TEDS (not: T-ID)	DS404	-
6119	24857	1	RO	VS		"Sensor Location" from TEDS	DS404	-
611A	24858	1	RO	TO D		Calibration date from TEDS: Number of days since 1/1/1984	DS404	_
611B	24859	1	RO	TDI FF		Calibration period: Number of days	DS404	_
611D	24861	1	RO	OS		Binary TEDS data	DS404	_

*) "Always use TEDS" causes the availability of the TEDS data to be monitored, the TEDS activates and scaling takes place in accordance with the TEDS data. Write access to scaling values is then declined.

HBM

7.7.10 Transducer settings

In-	Indov	×		Ð	Daramotor	Description		
dex (hex)	(dec)	Sub-Inde:	Access	Data typ	Farameter	Description	Definition	Parameter set
2131	8497	1	RW	u8	0: 2.5 V (Factory setting) 1: 1.0 V	Excitation voltage, 2.5 V sets the measuring range to ±4 mV/V, 1.0 V sets the measuring range to ±10 mV/V	HBM	A
2132	8498	1	RO	u8	0:±4 mV/V (Factory setting) 1:±10 mV/V	Measuring range	НВМ	-
6110	24848	1	RO	u16	0047 hex (constant)	Transducer type	DS404	-
2125	8485	1	RW	u8	0: Normal measure- ment mode 1: Internal zero signal 2: Internal calibration signal	Selecting the input amplifier signal. Normal measurement mode is always set after a restart.	HBM	_

66

7.7.11 Signal conditioning

In-	Index	X	S)e	Parameter	Description		
dex (hex)	(dec)	Sub-Inde	Acces	Data typ		Decemption	Definition	Parameter set
31A0	12704	1	RW	r32	100.0 (Factory setting)	Write: Choice of filter fre- quency in Hz. ¹⁾ Reading the index returns the actually active filter fre- quency in Hz.	HBM	A
61A0	24992	1	RW	u8	120: 100 Hz, (Factory setting) 119: 50 Hz, 118: 20 Hz, 117: 10 Hz, 116: 5 Hz, 115: 2 Hz, 115: 2 Hz, 114: 1 Hz, 113: 0.5 Hz, 112: 0.2 Hz, 111: 0.1 Hz, 110: 0.05 Hz	Filter frequency, Bessel– like	DS404	A
				•				
6124	24868	1	RW	r32	0.0 (Factory setting)	Zero point	DS404	A
9124	37156	1	RW	i32	0.0 (Factory setting)	Zero point	DS404	A
6138	24888	1	RW	r32	0.0 (Factory setting)	Tare value	DS404	A
9138	37176	1	RW	i32	0.0 (Factory setting)	Tare value	DS404	A
			1				1	
3231	12849	1	RW	VS	Visible string ("empty) (Factory setting)	Physical unit as a string, exactly 12 characters in length. ²⁾	HBM	A

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Parameter	Description	Definition	Parameter set
6131	24881	1	RW	u32	CiA constant	Physical unit as CiA constant	DS404 DR303 -2	A
6132	24882	1	RW	u8	0…9 3 (Factory setting)	Decimal point position, the value range can be fur- ther restricted, subject to scaling.	DS404	A

¹⁾ Index 31A0: If the required frequency is not available in the device, the next highest possible one is set as the frequency. (See Index 61A0.) When a frequency higher than the highest possible one is chosen, the error state is indicated and the previous filter coefficients are not changed. Writing this object resets Index 61A0.

²⁾ Objects 3131 and 6131: These values are only stored in the device, they are not evaluated. If Object 3231 is changed directly by SDO, this does not affect the entry in Object 6131. Conversely, Object 3231 is changed when Object 6131 is written, when there is a text to this effect stored in the device. Scaling by TEDS also causes the entries of these objects to change.

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Parameter	Description	Definition	Parameter set
2020	8224	0	RW	u16	Index to be checked	Object type testing; if the Object is not avail- able, Index 2022 supplies the return value = 0	НВМ	-
2021	8225	0	RW	u8	Sub-index to be checked		HBM	-
2022	8226	0	RO	u16	Number of bytes of the CAN Object to be tested		НВМ	-
2083	8323	0	RO	VS	Visible String (12 charac- ters)	HBM serial number	НВМ	-

7.7.12 Other device functions

In.	Inday	×		Q	Daramotor	Description		
dex (hex)	(dec)	Sub-Inde	Access	Data typ	Farameter	Description	Definition	Parameter set
2084	8324	1	RW	VS	Visible String (20 charac- ters) "HBM di- giCLIP DF31CAN)	Channel name, defined in- dividually by user	HBM	A
5E90	24208	0	RW	u8	"User-Tag" has no effect on the sys- tem (0 Factory setting)	Can be used as a storage cell or for dummy accesses by the user	HBM	A
5E91	24209	0	RW	u16	"User-Tag" has no effect on the sys- tem (0 Factory setting)	Can be used as a storage cell or for dummy accesses by the user	HBM	A
5E92	24210	0	RW	u32	"User-Tag" has no effect on the sys- tem (0 Factory setting)	Can be used as a storage cell or for dummy accesses by the user	HBM	A
2081	8321	0	RW	u32	Write: 746F6F62 hex Read: 0: Normal operation, 1: System in restart	Write: Run a system re- start; Read: System state	HBM	
3561	13665	0	RW	u32	CiA date format (number of days since January 1, 1984)	Date of the last calibration; write with password protec- tion	НВМ	_

7.7.13 Range monitoring

Range monitoring does not lead to an error message when the limit value is exceeded. Instead, corresponding status bits are set to "measuring range monitoring" (see Objects 2010, 2011 and 6150).

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Parameter	Description	Definition	Parameter set
6148	24904	1	RW	r32	−1 · 10 ¹⁰ (Factory setting)	Gross measured value range monitoring: Lower limit	DS404	A
6149	24905	1	RW	r32	+1 · 10 ¹⁰ (Factory setting)	Gross measured value range monitoring: Upper limit	DS404	A
9148	37192	1	RW	i32	–2147483648 (Factory setting)	Gross measured value range monitoring: Lower limit	DS404	A
9149	37193	1	RW	i32	+2147483647 (Factory setting)	Gross measured value range monitoring: Upper limit	DS404	A

7.7.14 Limit value monitoring

Implemented as an "ALARM Block" according to CiA DS404. Limit value monitoring can transmit EMERGENCY messages (see Section 7.3.2).

In-	Indev	×	()	e	Parameter	Description		
dex (hex)	(dec)	Sub-Inde	Access	Data typ	Turumeter	Description	Definition	Parameter set
6503	25859	1	RW	u32	Compare with: Gross mea- sured value: 61300120 hex or 91300120 hex (Factory setting) Net measured value: 61400120 hex or 91400120 hex or 91400120 hex or 30020120 hex or 30020120 hex or 30020120 hex or 30030120 hex or 30030120 hex or 30030120 hex or 30030120 hex or 30030120 hex or 30030120 hex or 30030120 hex or 30030120 hex or	Measured value source for limit value switch 1	DS404	A
6508	25864	1	RW	u8	inactive: 0 (Factory setting) greater or equal: 2 less: 3	Level reference for limit value switch 1	DS404	A

In	Indox	×		Ð	Daramatar	Description		
dex (hex)	(dec)	Sub-Inde	Access	Data typ	Farameter	Description	Definition	Parameter set
6509	25865	1	RW	u8	Bit 0 = 0: inactive Bit 0 = 1: active Bit 151 al- ways = 0	Only bit 0 supported: Transmit EMERGENCY message when limit value 1 exceeded	DS404	A
650A	25866	1	RW	r32	0.0 (Factory setting)	Threshold value for limit value switch 1, physical quantity	DS404	A
950A	38154	1	RW	i32	0.0 (Factory setting)	Threshold value for limit value switch 1, physical quantity	DS404	A
650B	25867	1	RW	r32	Value >= 0 0.0 (Factory setting)	Hysteresis for limit value switch 1, physical quantity	DS404	A
950B	38155	1	RW	i32	0.0 (Factory setting)	Hysteresis for limit value switch 1, physical quantity	DS404	A
650D	25869	1	RO	b8	0: not triggered 1: triggered	State of limit value switch 1	DS404	
650E	25870	1	WO	b8	0: no action 1: clear	Clear hysteresis state of limit value switch 1	DS404	-
6513	25875	1	RW	u32	see Index 6503	Measured value source for limit value switch 2	DS404	A
6518	25880	1	RW	u8	see Index 6508	Level reference for limit value switch 2	DS404	A
6519	25881	1	RW	u8	Bit 0 = 0: inac- tive Bit 0 = 1: active Bit 151 al- ways = 0	Only bit 0 supported: Transmit EMERGENCY message when limit value 2 exceeded	DS404	A
651A	25882	1	RW	r32	0.0 (Factory setting)	Threshold value for limit value switch 2	DS404	A
951A	38170	1	RW	i32	0.0 (Factory setting)	Threshold value for limit value switch 2	DS404	A
651B	25883	1	RW	r32	Value >= 0	Hysteresis for limit value switch 2	DS404	A
951B	38171	1	RW	i32	0.0 (Factory setting)	Hysteresis for limit value switch 2	DS404	A
651D	25885	1	RO	b8	0: not triggered 1: triggered	State of limit value switch 2	DS404	-
651E	25886	1	WO	b8	0: no action 1: clear	Clear hysteresis state of limit value switch 2	DS404	_
In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Parameter	Description	Definition	Parameter set
---------------------	----------------	-----------	--------	-----------	--	---	------------	---------------
6523	25891	1	RW	u32	see Index 6503	Measured value source for limit value switch 3	DS404	A
6528	25896	1	RW	u8	see Index 6508	Level reference for limit value switch 3	DS404	A
6529	25897	1	RW	u8	Bit 0 = 0 (Factory setting): inac- tiveOnly bit 0 supported: Transmit EMERGENCY message when limit value 3 exceededBit 0 = 1: active Bit 151 al- ways = 0Only bit 0 supported: Transmit EMERGENCY message when limit value 3 exceeded		DS404	A
652A	25898	1	RW	r32	0.0 (Factory setting)	Threshold value for limit value switch 3	DS404	A
952A	38186	1	RW	i32	0.0 (Factory setting)	Threshold value for limit value switch 3	DS404	A
652B	25899	1	RW	r32	Value >= 0 0.0 (Factory setting)	Hysteresis for limit value switch 3	DS404	A
952B	38187	1	RW	i32	0.0 (Factory setting)	Hysteresis for limit value switch 3	DS404	A
652D	25901	1	RO	b8	0: not triggered 1: triggered	State of limit value switch 3	DS404	_
652E	25902	1	WO	b8	0: no action 1: clear	Clear hysteresis state of limit value switch 3	DS404	-
6533	25907	1	RW	u32	see Index 6503	Measured value source for limit value switch 4	DS404	A
6538	25912	1	RW	u8	see Index 6508	Level reference for limit value switch 4	DS404	A
6539	25913	1	RW	u8	Bit 0 = 0 (Factory setting): inac- tive Bit 0 = 1: active Bit 151 al- ways = 0	Only bit 0 supported: Transmit EMERGENCY message when limit value 4 exceeded	DS404	A
653A	25914	1	RW	r32	0.0 (Factory setting)	Threshold value for limit value switch 4	DS404	A
953A	38202	1	RW	i32	0.0 (Factory setting)	Threshold value for limit value switch 4	DS404	A

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Parameter	Description	Definition	Parameter set
653B	25915	1	RW	r32	Value >= 0 0.0 (Factory setting)	Hysteresis for limit value switch 4	DS404	A
953B	38203	1	RW	i32	0.0 (Factory Hysteresis for limit value setting) switch 4		DS404	A
653D	25917	1	RO	b8	0: not triggered 1: triggered	State of limit value switch 4	DS404	
653E	25918	1	WO	b8	0: no action 1: clear	Clear hysteresis state of limit value switch 4	DS404	
6600	26112	1	ROP	u8	Bit 0 = switch 1 Bit 3 = switch 4	State of limit value switches 14	DS404	A
6602	26114	0	ROP	b8	0: no switch triggered 1: min. one switch trig- gered	Overall state of all limit value switches	DS404	A
6610	26128	0	WOP	b8	0: no action 1: clear all switches	Clear hysteresis states of all limit value switches	DS404	A
6611	26129	0	WOP	u8	0: switch 1 3: switch 4	Delete hysteresis states of selected limit value switches	DS404	A
6622	26146	0	ROP	b8	0: min. one switch not triggered 1: all switches triggered	Logic AND operation over all limit value switches	DS404	A

7.7.15 PDO Transfer

In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Parameter	Description	Definition	Parameter set
3400	13312	0	RW	u32	0: PDO Transfer with sampling rate (depen- dent on filter frequency) 1260000: time-con- trolled cycle time in 0.1 ms, asynchro- nous to sam- pling rate	Transmission cycle time of the PDO, when PDO trans- mission type = 254 ("asyn- chronous manufacturer specific") is selected; see "PDO-CommPar" data structure in Section 7.5.1	HBM	A
3401	13313	0	RO	u32	Actual PDO cycle time in 1 μs	Transmission cycle time of the PDO in [μ s], when PDO transmission type = 254 is selected, otherwise return value = 0.	HBM	A
3402	13314	0	RW	u8	0: set "pre– operational" 1: set "op- erational" 2: change state	Write: Change state of this module only between "op- erational" and "pre-opera- tional". Read supplies the current state (0/1).	HBM	_
3403	13315	0	RW	u8	0: start "pre– operational" 1: start "op- erational"	"Operational" state of this module once supply volt- age activated. "Opera- tional" state is then only se- lected if Index 6F60 = 1 is also set.	HBM	A
6F60	28512	0	RW	b8	1: enabled 0: inhibited	Enable PDO Transfer	DS404	-

			·		1	Т		1
In- dex (hex)	Index (dec)	Sub-Index	Access	Data type	Parameter	Description	Definition	Parameter set
1400	5120	0	RW	u8	2 (Factory setting)	1st Receive PDO parame- ter number of entries	DS301	С
1400	5120	14	RW		PDOComm- Par	1st Receive PDO parame- ter:	DS301	С
1401	5121	0	RW	u8	2 (Factory setting)	2nd Receive PDO parame- ter: number of entries	DS301	С
1401	5121	14	RW		PDOComm- Par	2nd Receive PDO parame- ter	DS301	С
1600	5632	0	RW	u8	2 (Factory setting)	1st Receive PDO Mapping: number of entries	DS301	С
1600	5632	14	RW	u32	PDOMap- ping	1st Receive PDO Mapping	DS301	С
1601	5633	0	RW	u8	2 (Factory setting)	2nd Receive PDO Map- ping: number of entries	DS301	С
1601	5633	14	RW	u32	PDOMap- ping	2nd Receive PDO Mapping	DS301	С
1800	6144	0	RW	u8	2 (Factory setting)	1st Transmit PDO parame- ter: number of entries	DS301	С
1800	6144	14	RW		PDOComm- Par	1st Transmit PDO parame- ter	DS301	С
1801	6145	0	RW	u8	2 (Factory setting)	2nd Transmit PDO parame- ter: number of entries	DS301	С
1801	6145	14	RW		PDOComm- Par	2nd Transmit PDO parame- ter	DS301	С
1A00	6656	0	RW	u8	2 (Factory setting)	1st Transmit PDO Map- ping: number of entries	DS301	С
1A00	6656	14	RW	u32	PDOMap- ping	1st Transmit PDO Mapping	DS301	С
1A01	6657	0	RW	u8	2 (Factory setting)	2nd Transmit PDO Map- ping: number of entries	DS301	С
1A01	6657	14	RW	u32	PDOMap- ping	2nd Transmit PDO Map- ping	DS301	С

7.8 CAN examples

Example 1:

Reading the gross measured value as a REAL32 value via SDO transfer from digiCLIP with device address 3.

Protocol to digiCLIP (all values as a hex number):

Identifier	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
0603	40	30	61	01	X	X	X	Х
CAN Identifier	Read	Index low byte	Index high byte	Sub-index 01 = chan- nel x 02 = chan- nel y		don't c	are	

Explanation:

06**03**:

Device address 3

Byte 2 30 ; Byte 3 61; Byte 4 01: Index 6130, Sub-index 01

Response from digiCLIP:

Identifier	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
0583	43	30	61	01	r0	r1	r2	r3
CAN Identifier	Read acknowl- edge- ment	Index low byte	Index high byte	Sub–in- dex	Measured I	value a _ow Byte	s REAL3 e first	32 with

Example 2:

Setting the filter cut-off frequency to 100 Hz. Protocol to digiCLIP:

Identifier	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
0603	2B	A0	61	01	78	Х	X	Х
CAN Identifier	Write	Index low byte	Index high byte	Sub- index	100 Hz	de	on't care	

Response from digiCLIP:

Identifier	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
0583	60	A0	61	01	Х	X	Х	Х
CAN Identifier	Write ac- knowl- edge- ment	Index low byte	Index high byte	Sub–in- dex		don't c	are	

8 DigiCLIP data memory in the sensor

This functionality is not available until the following firmware versions:

DF30CAN: ab Version 1.38 DF31CAN: ab Version 1.22

14 data memories are available. Each data memory has a maximum data length of 32 bits of user data. The data format is "unsigned".

The read or write request only returns once the request has been processed in full. Should an error occur here, because, for example, the object has been incorrectly addressed, there is a transmission error that could not be automatically corrected, or the data memory is damaged, the request returns with an error message. Reading from the sensor usually takes less than 500 ms, writing to the sensor about 1 second. Processing can last up to 3 seconds if there is no sensor with TEDS connected, or in rare cases, when there are transmission faults.

Objects are available to set a data memory to a defined value, as well as objects to automatically increment the current value in the data memory with an incremental value communicated as a parameter.

Before it can be set, the data memory must first be unlocked. Then a constant value can be written once to a data memory. To set a data memory once again, locking first has to be deactivated again. This prevents the wrongful setting of a data memory that is used as an incremental counter.

The relevant object can be directly used to increment the counter in the data memory. There is no active locking for this. If the type of increment that is written would exceed the 32-bit number range, FFFFFFF (hex) is written to the data memory and no error is generated.

- As access to the data memories in the sensor is via the measuring lead, there can be no measurement while the data memories in the sensor are being accessed. In this case, the measured values are not updated. The data memory in the sensor is then accessed when the data memory is to be written, or when the data memory is to be read out after the module is switched on, after a sensor replacement or wire break. If the reading of a data memory is repeated, the numerical value stored temporarily in the digiCLIP module is transmitted. Consequently, measurement is not disturbed by repeated readout.

– Suitable measures are applied to increase data security in the digiCLIP module. The aim here is to make sure that module power failure, or removal of the sensor while writing a data memory does not destroy it. However, the reliability of this process cannot be assured to the extent that it is suitable for applications relevant to safety.

– Users must consider that a maximum of 50,000 write accesses can be expected if you add up all the write accesses to the data memories. There is no established limit to the number of read accesses.

– If a tool that has not been approved by HBM is used to write the TEDS data in the sensor, it is possible that data memories will be overwritten. We therefore strongly advise that you only use modules and software from HBM

8.1 Objects for CANopen

UINT8: unsigned integer 8 bit; UINT32: unsigned integer 32 bit; RO: read only, WO: write only, RW: read and write per SDO.

Index (Hex)	ib-Index (Hex)	Access	Data type	Description
	SL			
3590	00	RO	u32	Number of data storage devices available
3590	01	RW	u32	Data memory 1 Write: The parameter value is added as a positive incre- ment to the existing numerical value and stored in the data memory. Should incrementation cause the 32-bit number range to be exceeded, the value FFFFFFF (hex) is writ- ten and no error is generated. Read: The parameter delivers the current numerical value in the data memory.
3590	02	RW	u32	Data memory 2
3590		RW	u32	
3590	0E	RW	u32	Data memory 14

Index (Hex)	Sub-Index (Hex)	Access	Data type	Description
3590	00	RO	u32	Number of data storage devices available
3591	01	RW	u32	Data memory 1 Write: The parameter value is written to the data memory. Object 359F/01 must first have been transmitted to deactiv- ate write locking. After writing, locking is automatically re- activated. Read: The parameter delivers the current numerical value in the data memory.
3591	02	RW	u32	Data memory 2
3591		RW	u32	
3591	0E	RW	u32	Data memory 14

Index (Hex)	Sub-Index (Hex)	Access	Data type	Description
359F	01	WO	u32	Deactivating locking to set a constant value in a data memory (see 3591/01 0E). Write: Locking is only deactivated when the parameter value is 6B636C75 (hex). All the other parameter values generate an error message.

9 Examples

Problem:

The forming process in a press is to be monitored, in order to achieve uniform product quality. The maximum force exerted by the press in each cycle is to be recorded. To safeguard the production process, this maximum force must lie between the lower (F1) and the upper (F2) force limit values.

Solution:

The force response measured by a strain gage force transducer (such as the C9B/10 kN; 1 mV/V) is amplified and assessed by the digiCLIP. The maximum force is recorded with the aid of the (maximum) peak-value memory and assessed with two limit value switches with regard to the upper and lower limits.

The state of limit value switches 1 to 4 is regularly read with Object 6600 (PDO operation).

LV1 source = net measured value

LV2 = gross measured value (machine protection)

A PLC takes over process control. As well as the control commands for the press, it gives the digiCLIP a start signal when the press cycle begins and once the process has run, enlists the help of the limit value outputs for "Go/No–Go testing".

The PLC start signal clears the contents of the peak-value memory via a digiCLIP control input.

Wiring diagram:

Timing diagram:

The following settings must be chosen:

LV1	Checks whether the lower force limit (F1) has been reached. The input signal is the output of the peak-value memory (maximum value). If limit LV1 is exceeded, a High signal is generated. A positive actuating direction with positive output logic must be set for this.
LV2	Checks whether the maximum load limit for the machine is exceeded (Cutoff function). The input signal is the gross measured value. If limit LV2 is exceeded, a PDO signal is generated. This is read immediately by the PLC and ensures that the press is quickly shut down.
LV3	Checks whether the press has returned to its starting position. Only then can the PLC start its " Go / No-Go testing".
PKV	Records the maximum peak value of the force response. The input signal is the net measured value. The PKV is cleared by sending the relevant SDO.

PLC evaluation of the limit value report:

	Go	Reject	
LV1	1	0	1
LV2	1	1	0

84

10 Technical support

Should you have any questions when working with the PMX measuring amplifier system, HBM's technical support can provide:

E-mail support support@hbm.com

Extended support can be obtained through a maintenance contract. Fax support 06151 803–288 (within Germany) +49 6151 803–288 (international)

The following options are also available: HBM on the Internet http://www.hbm.de

Download software updates from HBM http://www.hbm.com/Software

Headquarters world-wide

Europe Hottinger Baldwin Messtechnik GmbH: Im Tiefen See 45, 64293 Darmstadt, Deutschland Tel. +49 6151 8030, Fax +49 6151 8039100 E-Mail: info@hbm.com www@hbm.com

North and South America HBM, Inc., 19 Bartlett Street, Marlborough, MA 01752, USA Tel. +1-800-578-4260 / +1-508-624-4500, Fax +1-508-485-7480 E-Mail: info@usa.com

Asia

Hottinger Baldwin Measurement (Suzhou) Co., Ltd. 106 Heng Shan Road, Suzhou 215009, Jiangsu, VR China Tel. (+86) 512 68247776, Fax (+86) 512 68259343 E-Mail: <u>hbmchina@hbm.com.cn</u>

Up to date addresses of representatives can also be found on the Internet under : <u>www.hbm.com/Contact/Worlwide-Sales-offices</u>

© Hottinger Baldwin Messtechnik GmbH. All rights reserved. Subject to modifications. All product descriptions are for general information only. They are not to be understood as a guarantee of quality or durability.

Hottinger Baldwin Messtechnik GmbH Im Tiefen See 45 • 64293 Darmstadt • Germany Tel. +49 6151 803–0 • Fax: +49 6151 803–9100 Email: info@hbm.com • www.hbm.com