Quick Start Guide

Kurzanleitung

Weighing indicator Wägeindikator

WE2107...

A2087-1.3 en/de

English .	 	 	 . Page 3 - 37
Deutsch	 	 	 Seite 39 - 74

Contents

Sa	ifety i	nstruct	tions	5
1	Intro	oductio	on and appropriate use	6
2	Maiı	ntenan	ce and cleaning	7
3	Elec	ctrical c	connections	8
	3.1	Electr	rical installation notes	8
	3.2	Cable	e inlet gland	9
	3.3	Cable	e preparation	9
	3.4	Load	cell connection	10
	3.5	Proce	ess outputs	11
	3.6	Suppl	ly voltage	11
	3.7	Proce	ess inputs / analog output	11
	3.8	RS23	2 interfaces WE2107	12
	3.9	Serial	I interfaces RS232 and RS485 (2-wire) WE2107M	12
4	Disp	olays ar	nd control functions	13
	4.1	WE21	107_Panel	14
5	Para	ameter	menu and display functions	15
	5.1	Callin	g the parameter menu	15
	5.2	Menu	functions can be disabled / enabled	15
	5.3	The m	nain menu	15
	5.4	Navig	ation in the parameter menu	16
		5.4.1	Navigation in levels 1 and 2	16
		5.4.2	Basic scale function, menu access selection and	
			legal-for-trade operation	19
		5.4.3	Setting and adjusting the scale	20
		5.4.4	Restore the factory settings	22
		5.4.5	Switch off the device	23
6	Sca	le adjus	stment	24
	6.1	Prere	quisites for scale adjustment	24
	6.2	Partia	al load adjustment with the calibration weight (standard	
		metho	od, CAP = CAL)	24
	6.3	Partia	al load adjustment with the calibration weight	25
	6.4	Adjus	tment without a calibration weight (mV/V adjustment)	26
	6.5	Multi-	range scale	28
7	Sett	ing the	date and time	29

Page

8	Error	messages	30
9	Mech	anical dimensions and mounting information	32
	9.1	WE2107	32
	9.2	WE2107M	32
	9.3	Wall-mounting, WE2107	33
	9.4	Mounting on a stand, WE2107	34
	9.5	Sealing / legal-for-trade capability	35
10	WE21	07 – Complete menu structure	36

Safety instructions

The device must not be modified from the design or safety engineering point of view except with our express agreement. Any modification shall exclude all liability on our part for any damage resulting therefrom.

Repair is specifically forbidden. Repairs must only be carried out by HBM.

All the factory defaults are stored at the factory so that they are safe from power failure and cannot be deleted or overwritten. They can be reset at any time by using the command **TDD0**.

The transducer connection must always be assigned. It is essential for a transducer or a bridge model to be connected up for operation.

When replacing the battery for the real-time clock, the device must be disconnected from the power supply.

The production number set at the factory must not be changed.

- There are not normally any hazards associated with the product, provided the notes and instructions for project planning, installation, appropriate operation and maintenance are observed.
- It is essential to comply with the safety and accident prevention regulations specific to the particular application.
- Installation and start-up must only be carried out by suitably qualified personnel.
- Do not allow damp and dirt to get inside the device when connecting the cables.
- When connecting the cables, take action to prevent electrostatic discharge as this may damage the electronics.
- The required power supply for the device is an extra-low voltage (12...30 V) with safe disconnection from the mains.
- When connecting additional devices, comply with the safety requirements.
- Do not exceed maximum voltage levels when connecting external controls to the process inputs and process outputs of the WE2107.
- The ground connections of the supply, of the process inputs and process outputs, of the interface and of the load cell cable shield, must be interconnected in the device. If the potentials of the devices to be connected are different, suitable steps must be taken to isolate the signals (such as using an optocoupler).

- Shielded cables must be used for all connections apart from the supply voltage (see note below). The shield must be connected extensively to ground on both sides.
- The use of unshielded cables for the voltage supply is only permissible for cables with a maximum length of 30 m, laid inside buildings. If cables are longer or are installed outside buildings, shielded cables must be used.
- To compensate for potential differences, the metal housing of the WE2107M must be connected to the scale structures as well as to the ground potential of the connected devices by a low-resistance equalizing conductor. This is unnecessary if a potential difference of 35 V is not exceeded.
- In the device, the reference ground (GND) of all the signals and the supply voltage is connected directly to the cable shield connection but not to the housing.
- The front foil is made from high-quality materials, providing a service life appropriate to the external conditions. The keys must only be operated by hand; under no circumstances must pointed objects be used to press them.

1 Introduction and appropriate use

This Operating Manual contains detailed information both on operation and on the setting options of the WE2107 weighing indicator.

The WE2107 is designed exclusively for use in industrial applications, for example

- As a component of a non-automatic scale (NAWI¹)
- As a component of a non-automatic counting scale (not legal-for-trade applications)
- As a component for a process control system with 4 limit value switches
- As a component of a dosing/filling control system (filling, dosing, emptying)
- As a component of an application for tank weighing (filling, dosing, emptying)

Use for any purpose other than the above is deemed to be non-designated use.

In the case of legal-for-trade use, national legal and safety regulations must be complied with.

1) NAWI – non automatic weighing instrument

2 Maintenance and cleaning

Before starting up the WE2107 / WE2107M, please insert the enclosed new battery.

The WE2107 contains a battery (type: CR2032, lithium, not rechargeable), to back up the integrated real-time clock.

The battery will last for about 3 years at ambient temperatures of -10 to +40 °C and must be replaced at each subsequent verification.

To replace the battery, proceed as follows:

- Disconnect the WE from the voltage supply
- Open the housing
- Remove the old battery and dispose of it in an environmentally sound manner
- Insert the new battery (positive pole at the top)
- Close the device
- Setting the date and time

The WE2107 is maintenance-free. Please note the following points when cleaning the housing:

- Before cleaning, disconnect the device from the power supply.
- Clean the housing with a soft, slightly damp (not wet!) cloth. Under no circumstances use cleaners that contain scouring agents or solvents, as these can attack the front panel labeling and the display!

3 Electrical connections

3.1 Electrical installation notes

In all the housing variants, the reference ground (GND) of all the signals and the supply voltage is connected directly to the cable shield connection in the device, but not to the housing.

The metal housing of the WE2107M is not connected to the reference ground. To compensate for potential differences, the metal housing of the WE2107M must be connected to the scale structures as well as to the ground potential of the connected devices by a low-resistance equalizing conductor. This is unnecessary if a potential difference of 35 V is not exceeded.

Only high-quality, flexible cables with a shield must be used to connect the load cells. HBM recommends using these cables for all the WE2107 connections. For a connection that meets EMC requirements (EMC = electromagnetic compatibility), the cable shield contact of all the cables to the device ground must be low-resistance; the shield must be stripped to about 5 mm and the cable must be secured with the strain relief clamps.

To minimize EMC problems, the individual wires should be as short as possible from the end of the shield to the terminal. Avoid making cross-connections, such as from the interface cable to a switching input, and instead use separate cables in accordance with the terminal arrangement. A common cable should be used for the supply and the switching inputs.

Electrical and magnetic fields often induce interference voltages in the measuring circuit. Use shielded, low-capacitance measurement cables only (HBM measurement cables meet these conditions). Do not route the measurement cables parallel to power lines and control circuits. If this is not possible, protect the measurement cable (with steel conduits, for example). Avoid stray fields from transformers, motors and contact switches.

Please comply with the safety instructions at the start of this description.

The load cell and all the control and supply cables are connected by means of screw terminals inside the housing. The terminals are fitted with wire protection and the use of end sleeves is recommended, particularly for the load cell cables.

Connection terminals are identified on the motherboard by a short text or numbers.

All the ground connections are interconnected on the motherboard!

3.2 Cable inlet gland

Four PG glands are available at the back of the housing to provide sealed cable entry. Round cables, between 5 and 7 mm in diameter, can be used. The PG glands are used purely for sealing and strain relief. So the cable shielding does not have to come into contact with the PG gland (as it does for other HBM devices), but with the screw clamps in front of the connection terminals.

This also applies to versions with a steel housing (WE2107M) and is important for device EMC properties.

To minimize EMC problems, the individual wires should be as short as possible from the end of the shield to the terminal. So avoid making cross-connections, such as from the interface cable to a switching input, and instead use separate cables in accordance with the terminal arrangement. A common cable should be used for the supply and the switching inputs.

3.3 Cable preparation

- Remove the outer sheath to about 20 mm.
- Shorten the braided shield to 5 mm and fold it back.
- If necessary, remove the inner sheath.
- Strip the wire ends to about 5 mm.
- Run the cable through the PG gland.
- Push the cable under the terminal clamp and screw it down, so that the folded over shield area is firmly held.
- Connect the wires to the terminals.

Connection				
1			EX +	Bridge excitation voltage +
2			EX -	Bridge excitation voltage -
3	Load cell connection \langle		IN +	Signal +
4			In -	Signal -
5			Se +	Sense line +
6			Se -	Sense line -
			7	
7		/ Ø	Out4	Process output 4
8			Out3	Process output 3
9	Process outputs	Ø	Out2	Process output 2
10) Ø	Out1	Process output 1
11			Uext	Supply voltage Out 14
12		\ 0	GND	Ground, Out 14
10				
13	Supply <		GND	
14				
15	Current output			Current output, 420 mA
16				Current output, 420 mA
17	Process inputs		IN2	Process input 2
18				Process input 1
19		10	Rx1	COM1: RxD (RS232) or TRb (RS485)
20		(0	Tx1	COM1: TxD (RS232) or TRa (RS485)
21) @	GND	Ground
22	COM1/2 interface	10	Rx2	COM2 (RS232): RxD or DTR
23			Tx2	COM2 (BS232): TxD
24		10	GND	Ground
<u> </u>				

Figure 3.2: Connection positions (open housing, rear view)

3.4 Load cell connection

Connection	Board imprint	Function
1	Ex+	Bridge excitation voltage +
2	Ex-	Bridge excitation voltage –
3	In+	Signal +
4	In-	Signal –
5	Se+	Sense line +
6	Se-	Sense line -

Up to six load cells, each of 350 Ω (= 58 Ω loading) can be connected to the WE2107. HBM provides type **VKK...** junction boxes for connecting cables and for corner load adjustment for scales with several load cells.

The WE2107 is designed for a six-wire load cell configuration. When connecting four-wire load cells, use cable jumpers to connect terminals **1 with 5** and **2**

with 6 in each case. If the load cell connection is incorrect or the sense lines are left open (terminals 1 and 2) the message <u>Er 68</u> will appear on the display.

3.5 Process outputs

Connection	Board imprint	Function	Connection example
7	OUT4	Process output 4 ¹⁾	
8	OUT3	Process output 3 ¹⁾	
9	OUT2	Process output 2 ¹⁾	Load
10	OUT1	Process output 1 ¹⁾	
11	Uext	Supply voltage (+1230 V _{DC}) Process outputs	GND
12	GNDext	Ground, process outputs	

¹⁾ High-side switch, high voltage = active (true logic), I_{max} = typically 500 mA (electronically protected).

3.6 Supply voltage

Connection	Board imprint	Function	Comments
13	GND	Ground	
14	UB	Supply voltage	+1230 V _{DC} ²⁾ without analog output (420 mA)
			+1830 V _{DC} ²⁾ with analog output (420 mA)

²⁾ The supply voltage must be sufficiently smoothed (effective value minus residual ripple <1 V).

3.7 Process inputs / analog output

Connection	Board imprint	Function
15	 -	Analog output 420 mA
16	l+	Analog output 420 mA
17	IN2	Process input 2 ³⁾
18	IN1	Process input 1 ³⁾

³⁾ Actuate by switching to ground, max. voltage 30 V, level: Low = 0...1 V, High = 3 V ...UB

Process input assignment:

Analog output assignment:

3.8 RS232 interfaces WE2107

Connection	Board imprint	Function		Standard assignment of external device
				RS232, DB9
19	Rx1	Receiver	COM1	Pin 3
20	Tx1	Transmitter	COM1	Pin 2
21	GND	Ground	COM1	Pin 5
22	Rx2 / DTR 1)	Receiver	COM2	Pin 3 / Pin 4
23	Tx2	Transmitter	COM2	Pin 2
24	GND	Ground	COM2	Pin 5

¹⁾ defined by the COM2 protocol (parameter menu)

3.9 Serial interfaces RS232 and RS485 (2-wire) WE2107M

Connection	Board imprint	Function	
19	Rx1 / TRb	RS485 line B	COM1
20	Tx1 / TRa	RS485 line A	COM1
21	GND	Ground	COM1
22	Rx2 / DTR 1)	Receiver	COM2
23	Tx2	Transmitter	COM2
24	GND	Ground	COM2

¹⁾ defined by the COM2 protocol (parameter menu)

4 Displays and control functions

The calibration menu key can be accessed with a thin object. After calibration, the opening must be sealed with the enclosed adhesive label or, for legal-for-trade applications, with the calibration label. Device calibration is protected in operation and can only be changed when this pushbutton is actuated.

Each of the four control keys has a basic function for scale operation, which is identified by a symbol on the key.

"G/N"	Key for toggling betwee	n the gross and net display.
-------	-------------------------	------------------------------

- ">T<" Key for taring and switching to the net display.
- "F1" Function key, defined by user in parameter menu.

"F2" Function key, defined by user in parameter menu.

The labeling above the keys indicates the second function of the keys during parameter input (menu guidance).

MENU function activation:

- Press the *"ENTER"* + *"UP"* keys simultaneously
- Hidden pushbutton for access to the Adjustment menu.

4.1 WE2107_Panel

Many of the parameters described below can also be entered via the PC interface (RS232 / RS485). The CD-ROM available as an accessory under Order No. *1-WE2107-DOC* not only contains full device documentation (Operating Manual), it also includes the *WE2107Panel* setup program. This PC software is used for measured value presentation and WE2107 configuration via the serial interface.

5 Parameter menu and display functions

5.1 Calling the parameter menu

There are two ways to activate the parameter menu:

- Press the "G/N" and ">T<" keys simultaneously or
- Press the hidden pushbutton

The difference is the access to the legal / scale adjustment parameters:

Pressing the hidden pushbutton gives access to the legal parameters of the first menu level ("ScALE", "AdJ" and "F_AdJ"), otherwise these parameters are only displayed.

You are prevented from calling the parameter menu if input IN2 has been activated accordingly.

5.2 Menu functions can be disabled / enabled

The parameter menu has so-called access levels (0...4). This feature is used to enable or disable user access to the parameters. Only those menu items that are enabled are displayed.

Access to change parameters is defined in the "ScALE $\rightarrow \times$ ACCES" menu. The lowest level is zero. The "ScALE $\rightarrow \times$ ACCES" menu is protected by the hidden pushbutton.

ACCES parameter	Access levels
0	0 only
1	0 and 1
2	0 to 2
3	0 to 3
4	All

5.3 The main menu

To make things clearer, the parameters are grouped into several sub-menus, which can be called from the main menu. It is also possible to manually switch off the device (see Operating Manual, Chapter 7, Operating Manual, Part 1) and print out the parameters (but only if the printer interface is active). Certain parameters are not accessible in every mode of device operation, or are read-only. To make adjustments for legal-for-trade devices, it is necessary to actuate a hidden pushbutton, which is only accessible once the calibration label has been removed.

Access level	Main menu level	Explanation	Legal for trade parameter 1)
0	"InFo"	Information	-
1	"Print"	Printing	-
2	"SEtPt"	Limit values / filling parameters	-
2	"SEtuP"	Filters / manual tare value / counting scale	-
3	"UArt1"	COM1 for the PC interface	-
3	"UArt2"	COM2 for the printer / external display	-
3	"Prt_S"	Real time setting, print protocol settings	-
3	"inPut"	IN1/2 digital inputs function	-
3	"buttn"	Function for setting function keys F1/2	-
3	"tESt"	WE2107 test functions	-
0	"ScALE"	Basic scale functions	Yes
4	"AdJ"	Adjustment parameters	Yes
4	"F_AdJ"	Restores the factory settings	Yes
0	"oFF"	Switch off the device	-

The parameter menu contains the following items:

1) Access only via hidden pushbutton

5.4 Navigation in the parameter menu

The parameter menu has three levels. The first two levels are used for structuring the menu. Parameters are displayed and entered in the third level. All four keys are used for navigation in the parameter menu.

5.4.1 Navigation in levels 1 and 2

Button	Explanation
"UP"	Previous parameter
"NEXT"	Next parameter
"ENTER"	Go to sub-menu / change parameter
"CE"	Back to the higher menu level or back to measurement

Fig. 5.1: Example of navigation in levels 1 and 2

There are four types of parameter access: D / S / M / I. The menu descriptions below explain each type.

Parameter or information display only (D = display):

Button	Explanation
<i>"CE"</i> or <i>"ENTER"</i>	No change \rightarrow Next parameter

Parameter selection (S = select):

Button	Explanation
"UP"	Previous feature
"NEXT"	Next feature
"ENTER"	Stores new value → Next parameter
"CE"	No change → Next parameter

Measurement function (M = measure):

Button	Explanation
"ENTER"	Stores new value → Next parameter
"CE"	No change \rightarrow Next parameter

This measurement function is only implemented in the Adjustment menu ("AdJ \rightarrow MEAS").

Parameter input (I = input):

Button	Explanation
"UP"	Next number $0 \rightarrow 9 \rightarrow 0 \dots$
"NEXT"	Next digit position (from right to left)

Fig. 5.3: Example – Parameter input (current input position flashes)

5.4.2 Basic scale function, menu access selection and legal-for-trade operation

This function can only be executed when the hidden pushbutton (for calling the parameter menu) is pressed.

Access level	Main menu level	Second menu level	Third menu level	Туре	Sub-menu explanation
	1	2	12		1 2 (flashing) = parameter input / selection
0	"ScALE →				Basic scale functions
		Funct"		S	Basic scale function selection:
					StAnd – non-automatic scale/
					FILL1 – Dosing function/
					FILL2 – Tank weighing /Fill 1 /
					FILL3 – Tank weighing /Fill 2 /
		ACCES"		S	Menu access level selection: 04
		LEGAL"		S	Legal-for-trade operation: OFF / OIML / NTEP
					See also OM, Chapter 12

 $\label{eq:parameter} \text{Parameter access types: } D-\text{display only, } S-\text{individual item selection, } I-\text{parameter input; } M-\text{measurement}$

Funct parameter:

Standard (StAnd): non-automatic scale (NAWI) with/without limit value switches, counting scale

FILL1,2,3:

Filling and dosing function (see Chapter 20, Operating Manual, Part 1)

ACCES parameter:

The various menu levels have so-called access levels. Access to change parameters is defined with the "ScALE \rightarrow ACCES" parameter. The lowest level is zero. This feature is used to define user access to the parameters. The "ScALE \rightarrow ACCES" parameter is protected by the hidden pushbutton. The first parameter description column shows the relevant access level of each item in the main menu.

ACCES parameter	Access levels
0	0 only
1	0 and 1
2	0 to 2
3	0 to 3
4	All (standard factory setting)

LEGAL parameter:

LEGAL setting	Display, lower limit value	Display, upper limit value
Not legal-for-trade	-160 %	160 %
OIML	–20 d	CAP + 9 d
NTEP	-2 %	105 %
LEGAL setting	Tare range, lower limit	Tare range, upper limit
Not legal-for-trade	-100 %	100 %
OIML, NTEP	>0	100 %

The % figures relate to the nominal weighing range ("AdJ \rightarrow CAP" parameter)

Each time this parameter is changed, the legal-for-trade counter is incremented. This is displayed in the Information sub-menu.

5.4.3 Setting and adjusting the scale

This function can only be executed when the hidden pushbutton (for calling the parameter menu) is pressed.

Access level	Main menu level	Second menu level	Third menu level	Туре	Sub-menu explanation
	1	2	12		1 2 (flashing) = parameter input / selection
4	"AdJ →				Scale adjustment parameters
		SEtUP →			
			Unlt"	S	Unit selection: OFF / g / kg / t / lbs
			AZEro"	S	Zero on startup: OFF / ±2 / 5 / 10 / 20
			ZtrAc"	S	Automatic zero tracking: OFF / ON (0.5 d/s)
			StiLL"	S	Standstill monitoring:
					±OFF / 0.5 / 1 / 2 / 5 d/s
			rES"	S	Increment: 1 / 2 / 5 / 10 / 20 / 50 d
			Point"	S	Decimal point:
					0 = xxxxx.
					1 = xxxx.x
					2 = xxx.xx
					3 = xx.xxx
					4 = x.xxxx
			CAP"	I	Max. capacity (weighing range): 10099999
			rAnG1"	I	Changeover point for dual-range balance: 099999 of the nominal (rated) value, 0 = Single-range balance

Access level	Main menu	Second menu	Third menu	Туре	Sub-menu explanation
	level	level	level		
	1	2	12		1 2 (flashing) = parameter input / selection
			rAnG2"	Ι	Changeover point for three-range scale: 0999999 of nominal (rated) value, 0 = one/two-range balance
		SEtUP →			
			CAL"	I	Calibration weight: 10099999, CAL = CAP = 100 %
			EA_CL"	I	Gravitational acceleration at place of calibration:
				_	9.70009.9000
			EA_UL"	I	Gravitational acceleration at installation location:
					9.70009.9000
		InPut →			Input known scale characteristic curve
			ZEro"	I	Value when scale is empty, but with initial load: ±99999
					(0 = standard value = 0 mV/V)
			SPAn		\pm 99999 (2.0000 = standard value = 2 mV/V)
		MEAS →			Measure scale characteristic curve
			ZEro"	М	Actual display when scale is empty
			SPAn"	М	Actual display when calibration weight on scale
					(OK with <i>"ENTER"</i> key)
		Lin →			Linearization correction between ZEro and SPAn ¹⁾
			diSP1"	Ι	Display value 1, condition: 0 < diSP1 < diSP2
			VAL1"	I	Measured value 1 for diSP1, (0 < VAL1 < VAL2)
			diSP2"		Display value 2, condition:
					diSP1 < diSP2 < nom. resolution (CAP)
			VAL2"	Ι	Measured value 2 for dISP2, (0 < VAL1 < VAL2 < CAP)

Parameter access types: D - display only, S - individual item selection, I - parameter input; M - measurement

¹⁾ Linearization is switched OFF, when disp1=disp2=val1=val2=0, see Section 11 f Operating Manual (Part 1).

NOTE

The WE2107 does **not** check whether the settings made are valid under OIML R76 or NTEP!

The adjustment of the scale and the multi-range display are described in Chapter 10 of the Operating Manual (Part 1).

Taking gravitational acceleration into account is described in Chapter 19 of the Operating Manual (Part 1).

The linearization function is described in Chapter 11 of the Operating Manual (Part 1).

5.4.4 Restore the factory settings

This function can only be executed when the hidden pushbutton (for calling the parameter menu) is pressed.

Access level	Main menu level	Second menu level	Third menu level	Туре	Sub-menu explanation
	1	2	12		1 2 (flashing) = parameter input / selection
4	"F_AdJ →				Restores the factory setting
		dEFLt"		S	See Chapter 23, OM (P1)

Parameter access types: D - display only, S - individual item selection, I - parameter input; M - measurement

Factory settings			
Parameters	Default value	Explanation	
Limit values 14		switched off	
Dosing time parameters	0	switched off	
Filter mode	0	Standard filter	
Filter	3	2 Hz	
Manual tare value	0	switched off	
Reference number of pieces	0	Counting scale deactivated	
COM1, address	31		
COM1, baud rate	9600		
COM1, parity bit	even		
COM2, function	OFF	switched off	
COM2, baud rate	9600		
COM2, parity bit	even		
Printing, ESC sequences	0	switched off	
Digital inputs IN1/2	OFF	no function	
Function keys F1/2	OFF	no function	
Basic scale function	Standard	non-automatic weighing	
		instrument	
Menu access	4	all menus	
Legal-for-trade operation	OFF	switched off	
Unit	OFF	no unit of measurement	
Zero on start-up	OFF	switched off	
Zero tracking	OFF	switched off	
Standstill monitoring	OFF	switched off	
Digit / increment	1d		
Decimal point	0	right	
maximum capacity	6000		
Multi-range weighing machine	0	switched off	
Calibration weight	6000	max. capacity adjustment	
Gravitational acceleration	9.8102	switched off	
correction			
Scale char. curve, zero	0.0000 mV/V		
Scale char. curve, nom. value	2.0000 mV/V		
Linearization		switched off	

When restoring to the factory settings (" $F_AdJ \rightarrow dEFLt$ " menu), the parameters described above are set to their default values.

5.4.5 Switch off the device

Access level	Main menu level	Second menu level	Third menu level	Туре	Sub-menu explanation
	1	2	12		1 2 (flashing) = parameter input / selection
0	"oFF"				Switches off the WE2107

6 Scale adjustment

The scale is adjusted by setting the user characteristic curve on the WE2107, that is to say, the weighing electronics adapt to the actual output signals that the load cell supplies when the scale is not loaded or at nominal weight. Calibration weights are usually required for this, although the alternative is to input the measured values, if these are known.

The WE2107 is adjusted in the 0 and 2 mV/V range as what is called the factory characteristic curve (F_AdJ) (factory setting).

6.1 Prerequisites for scale adjustment

Before the scale can be adjusted, the nominal (rated) range of the scale and other parameters must be set.

The prerequisites here are:

- The parameter menu is called via the hidden pushbutton
- The "ScALE \rightarrow ACCES" parameter = 4 (access to all menus)
- The "ScALE → LEGAL" parameter = oFF (legal-for-trade application switched off)
- Set the "AdJ → Unit...CAL" parameter
- Set the "EA_CL" parameter to the gravitational acceleration of the adjustment location
- The "EA_UL" parameter = EA_CL (disable gravitational acceleration correction)
- Disable linearization ("AdJ \rightarrow Lin": VAL1 = VAL2 = diSP1 = diSP2 = 0)

6.2 Partial load adjustment with the calibration weight (standard method, CAP = CAL)

In most scale applications, the adjustment is made at two points, that is to say, when the scale is not loaded and when a calibration weight is placed on it. Calibration is carried out as follows:

- 1. Call the "AdJ" menu.
- Check that the calibration weight is the same as the maximum capacity (CAL = CAP).
- 3. Go to the "MEAS" (measurement) sub-menu.

- 4. Zero value:
 - Leave the scale unloaded
 - Call up sub-menu "ZEro"
 - The current measured value is displayed. The value is displayed in mV/V
 - (2.0000 = 2 mV/V)
 - Wait for a steady measurement display
 - Press the "ENTER" key to store the value
- 5. Calibration weight:
 - Place the calibration weight (= maximum scale capacity) onto the scale
 - Call the "SPAn" sub-menu
 - The current measured value is displayed. The value is displayed in mV/V

(2.0000 = 2 mV/V)

- Wait for a steady measurement display
- Press the "ENTER" key to store the value

Use the "*CE*" key to cancel at any time. This will reset the parameter that has just been called (and this one only!) to its former value. The former value is only deleted after storing.

The two values are stored internally at high resolution.

If the measurement display is too unsteady, reduce the filter bandwidth (Operating Manual, Part 1, Chapter 9).

The other parameters must then be set.

6.3 Partial load adjustment with the calibration weight

If there is no calibration weight available to correspond to the maximum scale capacity, CAP, a partial calibration can be performed. The CAL parameter must be set to the value of the calibration weight used. This must be in the range 20 % to 120 % of the maximum scale capacity. CAL is scaled like the display value (e.g. 2 kg = 2.000, with 3 decimal places).

Until a calibration has been performed, CAL is equal to CAP.

Before calibration, the "AdJ \rightarrow CAP" parameter must be set to the maximum scale capacity!

Calibration is carried out as follows:

- 1. Call the "AdJ" menu
- 2. Set the calibration weight (CAL)
- 3. Go to the "MEAS" (measurement) sub-menu
- 4. Zero value:
 - Leave the scale unloaded
 - Call up sub-menu "ZEro"
 - The current measured value is displayed. The value is displayed in mV/V

(2.0000 = 2 mV/V)

- Wait for a steady measurement display
- Press the "ENTER" key to store the value
- 5. Calibration weight:
 - Place the calibration weight (= CAL) onto the scale
 - Call the "SPAn" sub-menu
 - The current measured value is displayed. The value is displayed in mV/V

(2.0000 = 2 mV/V)

- Wait for a steady measurement display
- Press the "ENTER" key to store the value

Use the "*CE*" key to cancel at any time. This will reset the parameter that has just been called (and this one only!) to its former value. The former value is only deleted after storing.

The two values are stored internally at high resolution.

If the measurement display is too unsteady, reduce the filter bandwidth (Operating Manual, Part 1, Chapter 9).

The other parameters must then be set.

6.4 Adjustment without a calibration weight (mV/V adjustment)

If there is no calibration weight available, an adjustment can be performed by entering the calculated values.

When scales have vast maximum capacities, it is often not possible to use calibration weights for adjustment. As the WE2107 is factory-calibrated to an input range of 2 mV/V, the user characteristic curve can also be determined

using the known nominal value of the load cells. The zero value is defined by automatic measurement, but the nominal (rated) value is defined by manual entry.

1. Measuring the zero value of the characteristic curve when the scale is not loaded:

Call the "AdJ" menu.

Go to the "MEAS" (measurement) sub-menu.

Zero value:

- Leave the scale unloaded
- Call up sub-menu "ZEro"
- The current measured value is displayed. The value is displayed in mV/V
 - (2.0000 = 2 mV/V)
- Wait for a steady measurement display
- Make a note of the measured value (mw0) for later input
- Press the "CE" key to exit the measurement display

2. Calculating the nominal (rated) value of the scale:

As the WE2107 is factory-adjusted in mV/V, the nominal value can now be calculated in mV/V. The nominal value of the scale characteristic curve is composed of the zero value and the weighing range. As the zero value has already been measured, it only remains to define the weighing range.

Weighing rang = Load cell sensitivity [mV/V] · <u>Maximum load cell capacity</u> Maximum load cell capacity

The load cell sensitivity is normally 2mV/V (at maximum load cell capacity) . The maximum load cell capacity is stated on the load cell type plate. The following applies

Maximum scale capacity < Maximum load cell capacity

So the weighing range result is a value in mV/V.

3. Entering the characteristic curve

If you now add the value for the weighing range to the previously measured zero value, you obtain the nominal value of the scale (mw1). The characteristic curve can now be entered:

- Call the "AdJ" menu.
- Go to the "InPut" (input) sub-menu.

- Input the zero value (mw0) at ZEro
- Input the nominal value (mw1) at SPAn

Scales with several load cells supply the nominal output signal (2 mV/V), if the weight that applied is the sum of all the maximum load cell capacities.

4 load cells connected in parallel, each at 20 t, sensitivity 2 mV/V. Maximum capacity of the scale is 60 t. →Maximum load cell capacity: = 4 * 20t = 80 t →Weighing range: = 2 mV/V * 60t / 80 t = 1.5 mV/V

Adjustment in mV/V does not achieve the same accuracy as adjustment with calibration weights and so is only used for non legal-for-trade applications, where required accuracy is less.

6.5 Multi-range scale

The WE2107 can be operated as a single-range or multi-range scale.

Two parameters are available for this in the "AdJ \rightarrow SEtuP" parameter menu. The weighing range (CAP) must be set before this setting.

Scale type	Parameters
Single-range balance	rAnG1 = rAnG2 = 0
Dual-range balance	0 < rAnG1 < CAP and rAnG2 = 0
Three-range scale	0 < rAnG1 < rAnG2 < CAP

The increment for two/three weighing ranges is automatically derived from the rES parameter, where this parameter always describes the increment of the first measuring range:

"rES" = 1d \rightarrow Increment range 2 = 2d \rightarrow Increment range 3 = 5d

"rES" = 2d \rightarrow Increment range 2 = 5d \rightarrow Increment range 3 = 10d

7 Setting the date and time

The internal clock of the WE2107 is used to output the date and time when printing and has no significance for the remaining device functions. The settings are made in the "Prt_s" menu. The clock continues to work when the device is switched off (battery backup).

Access level	Main menu level	Second menu level	Third menu level	Туре	Sub-menu explanation
	1	2	12		1 2 (flashing) = parameter input / selection
3	"Prt_S →				Print protocol settings
		timE"		I	xx:xx (real-time clock Hours : Minutes)
		modE"		S	Time mode selection: 24 h/12 h
		dAtE →			Date, real-time clock
			dAY"	I	Day: xx
			month"	I	Month: xx
			YEAr"	I	Year: xx
		Init"			Print protocol settings, ESC sequences

 $Parameter \ access \ types: \ D-display \ only, \ S-individual \ item \ selection, \ I-parameter \ input; \ M-measurement$

8 Error messages

The error code is subdivided into different sections:

- Hardware errors
- Load cell errors
- Parameter errors
- Communication errors

Hardware errors:

Error code	Description	Recovery
128	Several hardware errors simultaneously	
129	Internal EEPROM	→ Repair
130	External EEPROM	→ Repair
131	ADC overflow	→ Repair
132	ADC underflow	→ Repair
133	External supply voltage too low	Check external voltage supply
134	Digital output overload	Eliminate short-circuit
135	Internal supply voltage too low	→ Repair

Load cell errors:

Error code	Description	Recovery
64	Several load cell errors simultaneously	
65	Input signal > 160 % (> 3.2 mV/V)	Check load cell / connection
66	Input signal <-160 % (< -3.2 mV/V)	Check load cell / connection
67	Bridge excitation voltage too small (< 3V)	Check load cell / connection
68	Open load cell signal	Check load cell / connection

Parameter errors:

Error code	Description	Recovery
32	Several errors simultaneously	
33	SFA – SZA <2000 d (10%), internal factory characteristic curve too sensitive	→ Repair
34	LWT – LDW < 2000 d, scale characteristic curve too sensitive	New scale adjustment
35	Faulty linearization parameter, LIN1 >LIN2 or LIM1 > LIM2	Check parameters, Chapter 11 (OM, Part 1)
36	Gross value overflow	Reduce load
37	Faulty linearization adjustment	Repeat, Chapter 11 (OM, Part 1)
38	Gross value underflow	Set to zero, re-adjust scale
39	Faulty zero on start-up (outside range or no standstill)	Do not load scale before switching on
40	Faulty zeroing	Check steadiness of measured value (poss. set a higher filter), new scale adjustment
41	Faulty taring	Check steadiness of measured value (poss. set a higher filter)

Error code	Description	Recovery
42	Dosing time exceeded	Check flow of material when dosing
43	Dosing start weight too high	Empty scale beforehand
44	Tank filling too low (not enough material for next batch)	Top up with material
45	Cumulative weight overflow	Use print function to clear sum (Prt4 or 6, see Chapter 15.5, OM, Part 1)
46	Incorrect multi-range parameter	Check parameters, Chapter 10.5 (OM, Part 1)

Communication errors:

Error code	Description	Recovery
16	Several errors simultaneously	
17	Input parameter outside input range	See Description Part 2
18	Unknown command	
19	Incorrect password (DPW command)	See Description Part 2
20	Write-protected parameter	Mandatory calibration switched on
21	Print time timeout	No standstill within 5s
		Print command cleared
22	LFT counter overflow (TCR command)	→ Repair
23	COM1 parity / framing error	Check COM interface setting

9 Mechanical dimensions and mounting information

9.1 WE2107

9.2 WE2107M

9.3 Wall-mounting, WE2107

Two bolts are required (countersunk head bolts included among the items supplied) with an 86 mm gap. With this type of assembly, the bolts are locked in place to secure the housing and prevent the forces that occur in everyday use from lifting it off. Using one of the following types of bolt is a prerequisite:

Cylinder head bolts, 4 mm diameter shaft, without thread.

Countersunk head bolts, diameter below the head max. 3.5 mm. When mounting with plugs, suitable bolts include 4.0 * 50 mm chipboard bolts, with the thread finishing about 10 mm below the head.

9.4 Mounting on a stand, WE2107

Take the following steps to mount the device:

- 1. Remove the mounting base from the back of the device by loosening the two bolts.
- 2. Attach the mounting base to the stand plate with the four M4 bolts.
- 3. Run the cables through the PG glands and connect them to the electronics.
- 4. Close the two halves of the housing and join them together with the two bolts. Pull the cables a little way out of the PG glands.
- 5. Attach the closed housing to the mounting plate with the two bolts. If applicable, run the cables into the conduit inside the stand.

9.5 Sealing / legal-for-trade capability

The weighing electronics must be labeled and sealed in accordance with the scale application. Different labeling strips are included for use as a Class III and IIII non-automatic scale.

The labeling strip must contain at least the following data:

Max	Maximum scale loading
Min	Minimum scale loading
е	Increments
Туре	Scale name
S.N.	Individual scale serial number

In the case of legal-for-trade scales, verification must be performed by a nominated station, in accordance with current laws. The sealing and calibration labels must be attached in accordance with the approval.

10 WE2107 – Complete menu structure

Main menu	2nd level	3rd level	Sub-menu explanation	
InFo	VAL	CALC	Legal for trade counter	
		tArE	Current tare value	
		ZEro	Zero value	
		totAL	Total weight	
		FILL	Filling result	
		Sv_nb	Software version $(7x, x = 09)$	
		F_nb	WE2107 production number	
	Error	AdC	ADC Overflow counter	
		SEnS	Sensor Overflow counter	
		Error	Last error code: Er xxx	
Print	rESLt	Prt	Print protocol Prt_19 (when UArt2 = Pselected), OM, Page 88	
	PAr	ALL	Print out all parameters	
SEtPt	LS_1	InPut	OFF/NET/GROSS	
		LEvEL	truE / InvErt	
		oFF_L	OFF level: +- 99999	
		on_L	ON level: +-99999	
	LS_2	InPut	OFF/NET/GROSS	
		LEvEL	truE / InvErt	
		OFF_L	OFF level: +- 99999	
		On_L	ON level: +-99999	
	LS_3	InPut	OFF/NET/GROSS	
		LEvEL	truE / InvErt	
		OFF_L	OFF level: +- 99999	
		On_L	ON level: +-99999	
	LS_4	InPut	OFF/NET/GROSS	
		LEvEL	truE / InvErt	
		OFF_L	OFF level: +- 99999	
		On_L	ON level: +-99999	
	FILL	doS_t	Maximum dosing time: 0=OFF; 199999 x 0.1s	
		EtY_t	Emptying time: 0=0FF; 1999999 x 0.1s	
		rES_t	Residual flow time: 0=OFF; 1999999 x 0.1s	
	EU 14	tAr_t	Tare time: 0=0FF; 1_99999 x 0.1s	
SETUP	FILt1		0 = standard, 1 = fast, 24 = tier filter (OM, Page 65)	
	FILt2		0 8 limit frequencies, depending on filter type FILt1 (OM, Page 48)	
	PtArE		Manual tare value: U=OFF; 1= 1Maximum capacity CAP	
	count	no	pieces=ON	
UArt1	Addr	4	Network address: 0_31	
	bAudr		Baud rate: 1200 / 2400 / 4800 / 9600 / 19200 / 38400 baud	
	PArit		Parity bit: nonE (no parity), EvEn (even parity)	
UArt2	Funct		OFF / P_dtr / P_dc1 / E_no / E_dtr / E_dc1 (OM, Page 50)	
	bAudr		Baud rate: 1200 / 2400 / 4800 / 9600 / 19200 / 38400 baud	
	PArit		Parity bit: nonE (no parity), EvEn (even parity)	
	EdSPL	St_Ch	Ext display ON (when UArt2 = E): Start character 031 (0=OFF)	
		Prot	Protocol selection: 07 (OM, Page 51)	
		E_Ch1	End character 1: 031 (0=OFF)	
		E_Ch2	End character 2: 031 (0=OFF)	
		CrC	Checksum: OFF/ON	
Main menu	2nd level	3rd level	Sub-menu explanation	
-----------	-----------	-----------	--	--
Prt S	timE		Print protocol settings: xx:xx (real-time clock Hours : Minutes)	
	modE		Time mode selection: 24 h / 12 h am / 12 h pm	
	dAtE	dAY	Day: xx	
	-	month	Month: xx	
	-	YEAr	Year: xx	
	Init	ESC11	ESC sequence 1, byte 1: 0255 (0=OFF)	
		ESC12	ESC sequence 1, byte 2: 0255	
		ESC13	ESC sequence 1, byte 3: 0255	
		ESC14	ESC sequence 1, byte 4: 0255	
		ESC15	ESC sequence 1, byte 5: 0255	
		ESC21	ESC sequence 2, byte 1: 0255 (0=OFF)	
		ESC22	ESC sequence 2, byte 2: 0255	
	-	ESC23	ESC sequence 2, byte 3: 0255	
	-	ESC24	ESC sequence 2, byte 4: 0255	
	-	ESC25	ESC sequence 2, byte 5: 0255	
	idEnt	nb	Print protocol counter: 099999 (0=OFF)	
	Frt	E Ch	Number of spaces in each line: 099	
	-	E_Ln1	Number of empty lines before printing: 099	
	-	E_Ln2	Number of empty lines after the protocol: 099	
inPut	InP_1	-11	oFF / tArE / Prt / tilt (OM, Page 54)	
	InP_2		oFF / tArE / Prt / Loc_P	
	t_dLY		Tilt delay time: (099) x 100 ms	
buttn	F1		_F1_ (short), function key assignment, see OM, Page 56	
	F1_L		_F1_ (long) "	
	F2		_F2_ (short) "	
	F2_L		_F2_ (long) "	
tESt	diSPL		Test display, LCD segments ON/OFF (via "NEXT" button)	
	UArt		Transmission of 55Hex (see OM, Page 58)	
	d_IO		Test digital inputs/outputs (see OM, Page 58)	
	EEPro		Checksum check in EEPROM: 0 = error, 1 = OK	
	buttn		Button test (see OM, Page 58)	
ScALE	Funct		Scale function: StAnd / FILL1 / FILL2 / FILL3	
	ACCES		Menu access levels: 04	
	LEGAL	.	Legal-for-trade operation: OFF / OIML / NTEP	
AdJ	SEtUP	Unlt	Physical unit: OFF / g / kg / t / lbs	
		AZEro	Zero on startup: OFF / 2 / 5 / 10 / 20 / 50 %	
		ZtrAc	Automatic zero tracking: OFF / ON (0.5d/s)	
		StiLL	Standstill monitoring: OFF / +- 0.5 / 1 / 2 / 5 d/s	
		rES	Increment: 1 / 2 / 5 / 10 / 20 / 50 d	
		Point	Decimal point: 0=xxxxx / 1=xxxx.x / 2=xxx.xx / 3=xx.xxx / 4=x.xxxx	
		CAP	Max. capacity (weighing range): 10099999	
		rAnG1	Changeover point dual-range scale (0 = single-range balance)	
		rAnG2"	Changeover point three-range scale (0 = single/dual-range balance)	
			Calibration weight: 10099999	
		EA_CL	Gravitational acceleration at place of calibration: 9.70009,9000	
	in Dut	EA_UL	Gravitational acceleration at installation location: 9.70009,9000	
	Input	ZEro	walue when scale is empty (but with initial load): 0.00002.0000 mV/V	
		SPAn	Value at maximum capacity (but with initial load): 0.00002.0000 mV/V	
	MEAS	ZEro	Actual display when scale is empty (zero point adjustment with "ENTER")	
		SPAn	Actual display with calibration weight (span adjustment with "ENTER")	
	Lin	diSP1	Display value 1	
		VAL1	Measured value 1 for dISP1	
		diSP2	Display value 2	
		VAL2	Measured value 2 for dISP2	
F_AdJ	dEFLt		Restore the factory settings: YES / NO	
OFF	ott		Switch off the device with "ENTER"	

Inhalt

Seite

Si	cherł	neitshir	nweise	41
1	Einl	eitung	und bestimmungsgemäße Verwendung	42
2	War	tung u	nd Reinigung	43
3	Eleł	trische	e Anschlüsse	44
•	3.1	Hinwe	eise zur elektrischen Installation	44
	3.2	Kabe	leinführung	45
	3.3	Vorbe	ereitung der Kabel	45
	3.4	Wäge	zellenanschluss	46
	3.5	Proze	essausgänge	47
	3.6	Verso	prgungsspannung	47
	3.7	Proze	esseingänge / Analogausgang	47
	3.8	RS-2	32-Schnittstellen WE2107	48
	3.9	Serie	lle Schnittstellen RS-232 und RS-485 (2-Leiter) WE2107M	48
4	Anz	eigen-	und Bedienfunktionen	49
	4.1	WE2 ²	107_Panel	50
5	Para	ameteri	menü- und Anzeigenfunktionen	51
	5.1	Aufru	f des Parametermenüs	51
	5.2	Sperr	en / Freigabe von Menüfunktionen	51
	5.3	Das F	Hauptmenü	51
	5.4	Navig	ation im Parametermenü	52
		5.4.1	Navigation in Ebene 1 und 2	52
		5.4.2	Grundfunktion der Waagen, Auswahl Menüzugriff und	
			eichfähiger Betrieb	56
		5.4.3	Einstellung und Abgleich der Waage	57
		5.4.4	Rücksetzen auf die Werkseinstellungen	59
		5.4.5	Gerät ausschalten	60
6	Abg	leich e	iner Waage	61
	6.1	Vorau	ussetzungen für einen Abgleich der Waage	61
	6.2	Nenn	lastabgleich mit Kalibriergewicht (Standardverfahren,	
		CAP	= CAL)	61
	6.3	Teilla	stabgleich mit Kalibriergewicht	62
	6.4	Abgle	eich ohne Kalibriergewicht (mV/V Abgleich)	63
	6.5	Mehrl	bereichswaage	65
7	Eins	stellen	von Datum und Uhrzeit	66

8	Fehle	ermeldungen	67
9	Mech	anische Abmessungen und Montagehinweise	69
	9.1	WE2107	69
	9.2	WE2107M	69
	9.3	Wandmontage, WE2107	70
	9.4	Montage auf Stativ, WE2107	71
	9.5	Versiegelung / Eichfähigkeit	72
10	WE2 ⁻	107 – Komplette Menüstruktur	73

Sicherheitshinweise

Das Gerät darf ohne unsere ausdrückliche Zustimmung weder konstruktiv noch sicherheitstechnisch verändert werden. Jede Veränderung schließt eine Haftung unsererseits für daraus resultierende Schäden aus.

Insbesondere sind jegliche Reparaturen untersagt. Reparaturen dürfen nur von HBM durchgeführt werden.

Die komplette Werkseinstellung wird im Werk netzausfallsicher und nicht lösch- oder überschreibbar gespeichert und kann mit dem Befehl **TDD0** jederzeit wieder eingestellt werden.

Der Aufnehmeranschluss muss immer beschaltet sein. Schließen Sie zum Betrieb unbedingt einen Aufnehmer oder eine Brückennachbildung an.

Zum Austausch der Batterie für die Echtzeituhr ist das Gerät von der Spannungsversorgung zu trennen.

Die im Werk eingestellte Fertigungsnummer sollte nicht verändert werden.

- Im Normalfall gehen vom Produkt keine Gefahren aus, sofern die Hinweise und Anleitungen f
 ür Projektierung, Montage, bestimmungsgem
 ä
 ßen Betrieb und Instandhaltung beachtet werden.
- Die entsprechend dem Einsatzfall geltenden Sicherheits- und Unfallverhütungsvorschriften sind unbedingt zu beachten.
- Montage und Inbetriebnahme darf ausschließlich durch qualifiziertes Personal vorgenommen werden.
- Vermeiden Sie das Eindringen von Schmutz und Feuchtigkeit in das Geräteinnere beim Anschließen der Leitungen.
- Treffen Sie beim Anschluss der Leitungen Maßnahmen gegen elektrostatische Entladungen, die die Elektronik beschädigen können.
- Zur Stromversorgung des Gerätes ist eine Kleinspannung (12...30 V) mit sicherer Trennung vom Netz erforderlich.
- Beim Anschluss von Zusatzeinrichtungen sind die entsprechenden Sicherheitsbestimmungen einzuhalten.
- Beim Anschluss externer Steuerungen an die Prozesseingänge und Prozessausgänge des WE2107 sind die maximalen Spannungspegel zu beachten.
- Die Masseanschlüsse der Versorgung, der Prozesseingänge und Prozessausgänge, der Schnittstelle und der Abschirmung der Wägezellenleitung sind im Gerät miteinander verbunden. Bei Potentialunterschieden der anzuschließenden Geräte sind die Signale in geeignete Weise zu isolieren (z.B. durch Optokoppler).

- Für alle Verbindungen, außer der Versorgungsspannung (siehe folgenden Hinweis), sind geschirmte Leitungen zu verwenden. Der Schirm ist beidseitig flächig mit Masse zu verbinden.
- Die Verwendung von ungeschirmten Leitungen für die Spannungsversorgung ist nur zulässig für Leitungen von max. 30 m Länge, die innerhalb eines Gebäudes verlegt sind. Bei größeren Leitungslängen oder Installation außerhalb von Gebäuden ist hierfür ein geschirmtes Kabel zu verwenden.
- Zum Ausgleich von Potentialunterschieden ist das Metallgehäuse des WE2107M durch einen niederohmigen Ausgleichsleiter mit den Waagen-aufbauten sowie mit dem Erdpotential der angeschlossenen Geräte zu verbinden. Dies kann entfallen, wenn eine Potentialdifferenz von 35 V nicht überschritten wird.
- Die Bezugsmasse (GND) aller Signale und der Versorgungsspannung ist im Gerät direkt mit dem Schirmanschluss der Kabel verbunden, jedoch nicht mit dem Gehäuse.
- Die Frontfolie ist aus hochwertigen Materialien gefertigt und bietet eine den äußeren Umständen angemessene Lebensdauer. Die Tasten dürfen nur mit der Hand bedient werden, keinesfalls dürfen spitze Gegenstände zum Drücken der Tasten verwendet werden.

1 Einleitung und bestimmungsgemäße Verwendung

Die vorliegende Bedienungsanleitung gibt detailliert Auskunft über die Bedienung sowie über die Einstellmöglichkeiten des Wägeindikators WE2107.

Der WE2107 ist ausschließlich in industriellen Anwendungen zu verwenden, beispielsweise

- als Komponente einer nichtselbsttätigen Waage (NAWI)¹⁾
- als Komponente einer nichtselbsttätigen Zählwaage (nicht eichpflichtige Anwendung)
- als Komponente f
 ür eine Prozesssteuerungssystem mit 4 Grenzwertschaltern
- als Komponente eines Dosier-/Abfüllsteuerungssystems (Füllen, Dosieren, Entleeren)
- als Komponente einer Anwendung für Tankverwiegung (Füllen, Dosieren, Entleeren)

Jeder darüber hinausgehende Gebrauch gilt als nicht bestimmungsgemäß.

Bei eichpflichtigem Einsatz sind die länderspezifischen Rechts- und Sicherheitsvorschriften zu beachten.

1)

2 Wartung und Reinigung

Bitte setzen Sie vor der Inbetriebnahme die neue beiliegende Batterie in die WE2107 / WE2107M ein.

Der WE2107 enthält eine Batterie (Typ: CR2032, Lithium, nicht wieder ladbar), die die integrierte Echtzeituhr puffert.

Die Batterie hält für ca. 3 Jahre bei Umgebungstemperaturen von -10...+40 °C und ist bei jeder Nacheichung zu erneuern.

Der Austausch der Batterie erfolgt in folgenden Schritten:

- Trennen der WE von der Spannungsversorgung
- Öffnen des Gehäuses
- Entfernen der alten Batterie und entsprechende umweltgerechte Entsorgung
- Einsetzen der neuen Batterie (Pluspol nach oben)
- Schließen des Geräts
- Einstellen von Datum und Uhrzeit

Der WE2107 ist wartungsfrei. Beachten Sie bei der Reinigung des Gehäuses folgende Punkte:

- Trennen Sie vor der Reinigung die Verbindung zur Stromversorgung.
- Reinigen Sie das Gehäuse mit einem weichen, leicht angefeuchteten Tuch. Verwenden Sie keinesfalls Reiniger, die Scheuer- oder Lösungsmittel enthalten, da diese die Frontplattenbeschriftung und das Display angreifen könnten!

3 Elektrische Anschlüsse

3.1 Hinweise zur elektrischen Installation

Bei allen Gehäusevarianten ist die Bezugsmasse (GND) aller Signale und der Versorgungsspannung im Gerät direkt mit dem Schirmanschluss der Kabel verbunden, jedoch nicht mit dem Gehäuse.

Das Metallgehäuse des WE2107M ist nicht mit der Bezugsmasse verbunden. Zum Ausgleich von Potentialunterschieden ist das Metallgehäuse des WE2107M durch einen niederohmigen Ausgleichsleiter mit den Waagenaufbauten sowie mit dem Erdpotential der angeschlossenen Geräte zu verbinden. Dies kann entfallen, wenn eine Potentialdifferenz von 35 V nicht überschritten wird.

Zum Anschluss der Wägezellen sind nur hochwertige, flexible Leitungen mit Schirm zu verwenden. HBM empfiehlt die Verwendung dieser Leitungen für alle Anschlüsse des WE2107. Für einen EMV-gerechten Anschluss (EMV = Elektromagnetische Verträglichkeit) muss der Kabelschirm aller Leitungen einen niederohmigen Kontakt zur Gerätemasse haben, dazu muss der Schirm auf ca. 5 mm abisoliert und die Leitung mit den Zugentlastungsschellen befestigt werden.

Zur Minimierung von EMV-Problemen sollten die einzelnen Adern vom Ende der Abschirmung bis zur Klemme möglichst kurz sein. Vermeiden Sie deshalb Querverbindungen, z.B. von der Schnittstellenleitung zu einem Schalteingang und verwenden Sie stattdessen getrennte Leitungen entsprechend der Klemmenanordnung. Für Versorgung und Schalteingänge sollte eine gemeinsame Leitung verwendet werden.

Elektrische und magnetische Felder verursachen oft eine Einkopplung von Störspannungen in den Messkreis. Verwenden Sie nur abgeschirmte, kapazitätsarme Messkabel (Messkabel von HBM erfüllen diese Bedingungen). Legen Sie die Messkabel nicht parallel zu Starkstrom- und Steuerleitungen. Falls das nicht möglich ist, schützen Sie das Messkabel (z.B. durch Stahlpanzerrohre). Meiden Sie Streufelder von Trafos, Motoren und Schützen.

Beachten Sie bitte die Sicherheitshinweise am Anfang dieser Beschreibung.

Der Anschluss der Wägezelle und aller Steuer- und Versorgungsleitungen erfolgt mittels Schraubklemmen im Inneren des Gehäuses. Die Klemmen sind mit Drahtschutz ausgestattet, die Verwendung von Aderendhülsen ist insbesondere für die Wägezellenleitungen zu empfehlen.

Die Anschlussklemmen sind auf der Platine mit Kurztext bzw. Nummern bezeichnet.

HINWEIS

Alle Masseanschlüsse sind auf der Platine miteinander verbunden!

3.2 Kabeleinführung

Für die abgedichtete Einführung der Leitungen sind im Rückteil des Gehäuses vier PG-Verschraubungen vorhanden. Sie erlauben die Verwendung von Rundleitungen mit einem Durchmesser von 5 bis 7 mm. Die PG-Verschraubungen dienen allein der Abdichtung und Zugentlastung. Die Abschirmung der Leitung ist deshalb nicht (wie bei anderen HBM-Geräten) an der PG-Verschraubung zu kontaktieren, sondern an den Schraubschellen vor den Anschlussklemmen.

Dies gilt auch für die Versionen im Stahlgehäuse (WE2107M) und ist wesentlich für die EMV-Eigenschaften der Geräte.

Zur Minimierung von EMV-Problemen sollten die einzelnen Adern vom Ende der Abschirmung bis zur Klemme möglichst kurz sein. Vermeiden Sie deshalb Querverbindungen, z.B. von der Schnittstellenleitung zu einem Schalteingang, und verwenden Sie stattdessen getrennte Leitungen entsprechend der Klemmenanordnung. Für Versorgung und Schalteingänge sollte eine gemeinsame Leitung verwendet werden.

3.3 Vorbereitung der Kabel

- Außenmantel auf ca. 20 mm entfernen.
- Schirmgeflecht auf 5 mm kürzen und nach hinten umschlagen.
- Gegebenenfalls Innenmantel entfernen.
- Aderenden auf ca. 5 mm abisolieren.
- Leitung durch die PG-Verschraubung führen.
- Leitung unter die Anschlussschelle schieben und diese verschrauben, so dass der Bereich der umgeschlagenen Abschirmung festgeklemmt wird.
- Adern an die Klemmen anschließen.

Anschluss			_	
1			Ex +	Bruckenspeisespannung +
2	Wägezellenanschluss	0	Ex –	Brückenspeisespannung –
3		0	ln +	Signal +
4		\otimes	In –	Signal -
5		0	Se +	Fühlerleitung +
6	/	\oslash	Se -	Fühlerleitung –
7	/	\oslash	Out4	Prozessausgang 4
8		\oslash	Out3	Prozessausgang 3
9	Brozopoulogöngo	\oslash	Out2	Prozessausgang 2
10	FIOZESSausyanye	\oslash	Out1	Prozessausgang 1
11		\oslash	Uext	Versorgungsspannung Out 14
12		\oslash	GND	Masse, Out 14
13	Versorauna <	\oslash	GND	Masse
14	to our going	\otimes	UB	Versorgungsspannung WE
15	Stromausgang	\oslash	I –	Stromausgang, 420 mA
16	Otromadogang	\oslash	l +	Stromausgang, 420 mA
17	Prozesseingänge	\otimes	IN2	Prozesseingang 2
18	Tozesseingange	\oslash	IN1	Prozesseingang 1
10				
19		0	HX1	COM1: RXD (RS-232) oder TRb (RS-485)
20		0		COM1: TXD (RS-232) oder TRa (RS-485)
21	Schnittstelle COM1/2	0	GND	
22			Rx2	COM2 (RS-232): RxD oder DTR
23			Tx2	COM2 (RS-232): TxD
24	/	\bigcirc	GND	Masse

Abb. 3.2: Lage der Anschlüsse (offenes Gehäuse, Rückansicht)

3.4 Wägezellenanschluss

Anschluss	Platinen-Aufdruck	Funktion
1	Ex+	Brückenspeisespannung +
2	Ex-	Brückenspeisespannung –
3	ln+	Signal +
4	In-	Signal –
5	Se+	Fühlerleitung +
6	Se-	Fühlerleitung –

An den WE2107 können bis zu sechs Wägezellen à 350 Ω (= 58 Ω Belastung) angeschlossen werden. Zur Verschaltung der Leitungen sowie zum Eckenlastabgleich bei Waagen mit mehreren Wägezellen bietet HBM Klemmenkästen vom Typ **VKK...** an.

Der WE2107 ist für Sechsleiter-Anschluss der Wägezelle konzipiert. Bei Anschluss von Vierleiter-Wägezellen sind jeweils die Klemmen **1 mit 5** und **2** **mit 6** über Kabelbrücken zu verbinden. Bei fehlerhaftem Wägezellenanschluss oder Offenlassen der Fühlerleitungen (Klemme 1 und 2) erscheint die Meldung <u>Er 68</u> auf dem Display.

3.5 Prozessausgänge

Anschluss	Platinen- Aufdruck	Funktion	Anschluss-Beispiel
7	OUT4	Prozessausgang 4 ¹⁾	
8	OUT3	Prozessausgang 3 ¹⁾	
9	OUT2	Prozessausgang 2 ¹⁾	Last
10	OUT1	Prozessausgang 1 1)	<u> </u>
11	Uext	Versorgungsspannung (+1230 V _{DC}) Prozessausgänge	GND
12	GNDext	Masse, Prozessausgänge	

¹⁾ High-Side-Schalter, Hohe Spannung = aktive (Logik wahr), I_{max} = 500 mA typ. (elektronisch gesichert).

3.6 Versorgungsspannung

Anschluss	Platinen- Aufdruck	Funktion	Bemerkung
13	GND	Masse	
14	UB	Versorgungs- spannung	+1230 V _{DC} ²⁾ ohne Analogausgang (420 mA)
			+1830 V _{DC} ²⁾ mit Analogausgang (420 mA)

²⁾ Die Versorgungsspannung muss ausreichend gesiebt sein (Effektivwert abzgl. Restwelligkeit <1 V).

3.7 Prozesseingänge / Analogausgang

Anschluss	Platinen-Aufdruck	Funktion
15	 -	Analogausgang 420 mA
16	I+	Analogausgang 420 mA
17	IN2	Prozesseingang 2 3)
18	IN1	Prozesseingang 1 3)

³⁾ Betätigen durch Schalten gegen Masse, max. Spannung 30 V, Pegel: Low = 0...1 V, High = 3 V ...UB

Beschaltung Prozesseingang:

3.8 RS-232-Schnittstellen WE2107

Anschluss	Platinen- Aufdruck	Funktion		Standard-Belegung externes Gerät
				RS-232, DB9
19	Rx1	Empfänger	COM1	Pin 3
20	Tx1	Sender	COM1	Pin 2
21	GND	Masse	COM1	Pin 5
22	Rx2 / DTR 1)	Empfänger	COM2	Pin3 / Pin 4
23	Tx2	Sender	COM2	Pin 2
24	GND	Masse	COM2	Pin 5

1) definiert vom COM2-Protokoll (Parameter-Menü)

3.9 Serielle Schnittstellen RS-232 und RS-485 (2-Leiter) WE2107M

Anschluss	Platinen- Aufdruck	Funktion	
19	Rx1 / TRb	RS-485-Leitung B	COM1
20	Tx1 / TRa	RS-485-Leitung A	COM1
21	GND	Masse	COM1
22	Rx2 / DTR 1)	Empfänger	COM2
23	Tx2	Sender	COM2
24	GND	Masse	COM2

1) definiert vom COM2-Protokoll (Parameter-Menü)

4 Anzeigen- und Bedienfunktionen

Der Taster zum Kalibriermenü ist mit einem dünnen Gegenstand zugänglich. Er ist nach der Kalibrierung mit beiliegender Klebemarke bzw. bei eichpflichtiger Anwendung mit der Eichmarke zu verschließen. Im Betrieb ist die Kalibrierung des Gerätes gesichert und nur nach Betätigen dieses Tasters änderbar.

Jede der vier Bedientasten hat eine Grundfunktion für den Waagenbetrieb, die mit einem Symbol auf der Taste gekennzeichnet ist.

G/N"	Taste zum Umschalten zwischen Brutto- und Nettoanzeige.
------	---

">T<" Taste zum Tarieren und Umschalten in Nettoanzeige.

F1" Funkt.-taste, wird vom Benutzer im Param.-Menü definiert.

F2" Funktionstaste, wird vom Benutzer im Param.-Menü definiert. Die Beschriftungen über den Tasten geben die Zweitfunktion der Tasten während der Parametereingabe (Menüführung) an.

Aktivieren der Funktionen MENU:

- Gleichzeitiges Drücken der Tasten "ENTER" + "UP"
- Verdeckter Taster für den Zugang zum Abgleichmenü.

4.1 WE2107_Panel

Ein Großteil der nachfolgend beschriebenen Parameter kann auch über die PC-Schnittstelle (RS-232 / RS-485) eingegeben werden. Die als Zubehör erhältliche CD-ROM mit der Bestell-Nr. *1-WE2107-DOC* enthält neben der vollständigen Dokumentation (Bedienungsanleitung) des Gerätes auch das Setup-Programm *WE2107Panel*. Diese PC-Software dient zur Messwertdarstellung und Konfiguration der WE2107 über die serielle Schnittstelle.

5 Parametermenü- und Anzeigenfunktionen

5.1 Aufruf des Parametermenüs

Es gibt zwei Möglichkeiten zur Aktivierung des Parametermenüs:

- Gleichzeitiges Drücken der Tasten "G/N" und ">T<" oder
- Drücken des verdeckten Tasters

Der Unterschied besteht im Zugang zu den Eich- / Waagenabgleichparametern:

Wenn der verdeckte Taster gedrückt wird, ermöglicht dies den Zugriff auf die Eichparameter der ersten Menüebene ("ScALE", "AdJ" und "F_AdJ"), andernfalls werden diese Parameter nur angezeigt.

Der Aufruf des Parametermenüs ist gesperrt, wenn der Eingang IN2 entsprechend aktiviert wurde.

5.2 Sperren / Freigabe von Menüfunktionen

Das Parametermenü besitzt so genannte Zugriffsebenen (0...4). Durch dieses Merkmal kann der Benutzerzugriff auf die Parameter freigegeben oder gesperrt werden. Es werden nur die freigegebenen Menüpunkte angezeigt.

Im Menü "ScALE $\rightarrow \times$ ACCES" wird der Zugriff zum Ändern von Parametern definiert. Die unterste Ebene ist Null. Das Menü "ScALE $\rightarrow \times$ ACCES" ist durch den verdeckten Taster geschützt.

Parameter ACCES	Zugriffsebenen
0	nur 0
1	0 und 1
2	0 bis 2
3	0 bis 3
4	alle

5.3 Das Hauptmenü

Zur besseren Übersicht sind die Parameter in mehrere Untermenüs zusammengefasst, die über das Hauptmenü aufgerufen werden können. Außerdem ist darüber das manuelle Ausschalten des Gerätes (siehe Bedienungsanleitung, Kapitel 7, Bedienungsanleitung, Teil 1) und das Ausdrucken der Parameter möglich (nur mit aktiver Druckerschnittstelle). Bestimmte Parameter sind nicht in jeder Betriebsart des Gerätes zugänglich, bzw. können nur gelesen werden. Bei eichpflichtigen Geräten muss zum Abgleich ein verdeckter Taster betätigt werden, der nur bei entfernter Eichmarke zugänglich ist.

Zugriffs- ebene	Hauptmenü- ebene	Erklärung	Eichpflichtige Parameter 1)		
0	"InFo"	Information	-		
1	"Print"	Drucken	-		
2	"SEtPt"	Grenzwerte / Abfüllparameter	-		
2	"SEtuP"	Filter / Hand-Tarawert / Zählwaage	-		
3	"UArt1"	COM1 für PC-Schnittstelle	-		
3	"UArt2"	COM2 für Drucker / externe Anzeige	-		
3	"Prt_S"	Echtzeiteinstellung, Druckprotokolleinstel- –			
		lungen			
3	"inPut"	Funktion digitale Eingänge IN1/2	-		
3	"buttn"	Funktion Einstellen der Funktionstasten F1/2	-		
3	"tESt"	Testfunktionen WE2107	-		
0	"ScALE"	Grundfunktionen des Waagenbetriebs	Ja		
4	"AdJ"	Abgleichparameter	Ja		
4	"F_AdJ"	Rücksetzen auf die Werkseinstellungen Ja			
0	"oFF"	Gerät ausschalten	_		

Das Parametermenü besteht aus den folgenden Punkten:

1) Zugang nur über verdeckten Taster

5.4 Navigation im Parametermenü

Das Parametermenü hat 3 Ebenen. Die ersten beiden Ebenen dienen der Strukturierung des Menüs. In der 3. Ebene erfolgt die Anzeige / Eingabe von Parametern. Für die Navigation im Parametermenü werden alle vier Tasten verwendet.

5.4.1 Navigation in Ebene 1 und 2

Taste	Erklärung
"UP"	Vorhergehender Parameter
"NEXT"	Nächster Parameter
"ENTER"	Zum Untermenü / Parameter ändern
"CE"	Zurück zur höheren Menüebene oder zurück zur Messung

Abb. 5.1: Beispiel für die Navigation in Ebene 1 und 2

Es gibt 4 Arten des Parameterzugriffs: D / S / M / I. In den nachfolgenden Menübeschreibungen ist der jeweilige Typ angegeben.

Nur Anzeige eines Parameters oder Information (D = display):

Taste	Erklärung
" <i>CE</i> " oder " <i>ENTER</i> "	Keine Änderung → nächster Parameter

Auswählen eines Parameters (S = select):

Taste	Erklärung
"UP"	Vorhergehendes Merkmal
"NEXT"	Nächstes Merkmal
"ENTER"	Speichern des neuen Wertes → nächster Parameter
" <i>CE</i> "	Keine Änderung → nächster Parameter

Abb. 5.2: Beispiel - Auswählen eines Parameters

Messfunktion (M = measure):

Taste	Erklärung
"ENTER"	Speichern des neuen Wertes → nächster Parameter
" <i>CE</i> "	Keine Änderung → nächster Parameter

Diese Messfunktion ist nur im Menü Abgleich ("AdJ → MEAS") implementiert.

Parametereingabe (I = input):

Taste	Erklärung
"UP"	Nächste Zahl $0 \rightarrow 9 \rightarrow 0 \dots$
"NEXT"	Nächste Ziffernstelle (von rechts nach links)
"ENTER"	Speichern des neuen Wertes → nächster Parameter
"CE"	Keine Änderung → nächster Parameter

Abb. 5.3: Beispiel - Eingabe eines Parameters (aktuelle Eingabestelle blinkt)

5.4.2 Grundfunktion der Waagen, Auswahl Menüzugriff und eichfähiger Betrieb

Diese Funktion kann nur ausgeführt werden, wenn der verdeckte Taster (für den Aufruf des Parametermenüs) gedrückt wird.

Zugriffs- ebene	Haupt- menü- ebene	Zweite Menü- ebene	Dritt Menü- ebene	Тур	Erklärung Untermenü
	1	2	12		1 2 (blinkend) = Eingabe / Auswahl eines Parameters
0	"ScALE →				Grundfunktionen des Waagenbe- triebs
		Funct"		S	Auswahl der Grundfunktionen der Waage:
					StAnd – nichtselbsttätige Waage/
					FILL1 – Dosierfunktion/
					FILL2 – Behälterverwiegen /Füllen 1 /
					FILL3 – Behälterverwiegen /Füllen 2 /
		ACCES"		S	Auswahl der Menüzugriffsebene: 04
		LEGAL"		S	Eichfähiger Betrieb: OFF / OIML / NTEP
					Siehe Bedanleitung, Kapitel 12

Arten des Parameterzugriffs: D - nur Anzeige, S - Auswahl einzelner Punkte, I - Parametereingabe; M - Messung

Parameter Funct:

Standard (StAnd): nichtselbsttätige Waage (NSW) mit/ohne Grenzwertschalter, Zählwaage

FILL1,2,3: Füll- und Dosierfunktion (siehe Kapitel 20, Bedienungsanleitung, Teil 1)

Parameter ACCES:

Die verschiedenen Menüebenen besitzen so genannte Zugriffsebenen. Mit Parameter "ScALE \rightarrow ACCES" wird der Zugriff zum Ändern von Parametern definiert. Die unterste Ebene ist Null. Durch dieses Merkmal kann der Benutzerzugriff auf die Parameter definiert werden. Der Parameter "ScALE \rightarrow ACCES" ist durch den verdeckten Taster geschützt. Die erste Spalte der Parameterbeschreibung gibt die jeweilige Zugriffsebene jedes Punktes im Hauptmenü an.

Parameter ACCES	Zugriffsebenen
0	nur 0
1	0 und 1
2	0 bis 2
3	0 bis 3
4	alle (Werkseinstellung)

Parameter LEGAL:

Einstellung LEGAL	Anzeige, unterer Grenzwert	Anzeige, oberer Grenzwert
not legal for trade	-160 %	160 %
OIML	–20 d	CAP + 9 d
NTEP	-2 %	105 %

Einstellung LEGAL	Tarierbereich, untere Grenze	Tarierbereich, obere Grenze
not legal for trade	-100 %	100 %
OIML, NTEP	>0	100 %

Die %-Angaben beziehen sich auf den nominalen Wägebereich (Parameter "AdJ \rightarrow CAP")

Mit jeder Veränderung dieses Parameters wird der Eichzähler inkrementiert. Dieser wird im Untermenü Information angezeigt.

5.4.3 Einstellung und Abgleich der Waage

Diese Funktion kann nur ausgeführt werden, wenn der verdeckte Taster (für den Aufruf des Parametermenüs) gedrückt wird.

Zugriffs- ebene	Haupt- menü- ebene	Zweite Menü- ebene	Dritte Menü- ebene	Тур	Erklärung Untermenü
	1	2	12		1 2 (blinkend) = Eingabe / Auswahl
1					Abaleichnarameter Waage
	"/\u	SEtUP →			Abgielenparameter Waage
		02:01	Unlt"	S	Auswahl der Einheit: OFF / g / kg / t / lbs
			AZEro"	S	Einschaltnull: OFF / ±2 / 5 / 10 / 20
			ZtrAc"	S	Automatischer Nullnachlauf: OFF / ON (0,5 d/s)
			StiLL"	S	Stillstandsüberwachung:
					±OFF / 0,5 / 1 / 2 / 5 d/s
			rES"	S	Ziffernschritt: 1 / 2 / 5 / 10 / 20 / 50 d

Zugriffs- ebene	Haupt- menü- ebene	Zweite Menü- ebene	Dritte Menü- ebene	Тур	Erklärung Untermenü
	1	2	12		1 2 (blinkend) = Eingabe / Auswahl eines Parameters
			Point"	S	Dezimalzeichen:
					0 = xxxxx.
					1 = xxxx.x
					2 = xxx.xx
					3 = xx.xxx
					4 = x.xxxx
			CAP"	I	Nennlast (Wägebereich): 10099999
			rAnG1"	I	Umschaltpunkt für Zweibereichs- waage: 099999 des Nennwertes, 0 = Einbereichswaage
			rAnG2"	I	Umschaltpunkt für Dreibereichswaage: 099999 des Nennwertes, 0 = Ein- / Zweibereichswaage
		SEtUP →			
			CAL"	I	Kalibriergewicht: 10099999, CAL = CAP = 100 %
			EA_CL"	I	Erdbeschleunigung am Kalibrierort:
				1	9.70009.9000 Erdbosobloupigung am
			EA_OL		Aufstellort:
		la Dut			9.70009.9000
		InPut →			Eingabe einer bekannte Waagenkennlinie
			ZEro"	I	Wert bei leerer Waage, aber mit Vorlast: ±99999 (0 = Standardwert = 0 mV/V)
			SPAn"	Ι	Wert bei Kalibriergewicht: ±99999 (2.0000 = Standardwert = 2 mV/V)
		MEAS →			Messen der Waagenkennlinie
			ZEro"	М	Ist-Anzeige bei leerer Waage
					(OK mit Taste "ENTER")
			SPAn"	M	Ist-Anzeige bei Kalibriergewicht auf der Waage
					(OK mit Taste "ENTER")
		Lin →			Linearisierungskorrektur zwischen ZEro und SPAn ¹⁾
			diSP1"		Anzeigewert 1, Bedingung: 0 < diSP1 < diSP2

Zugriffs- ebene	Haupt- menü- ebene	Zweite Menü- ebene	Dritte Menü- ebene	Тур	Erklärung Untermenü
	1	2	12		1 2 (blinkend) = Eingabe / Auswahl eines Parameters
			VAL1"	I	Messwert 1 für diSP1, (0 < VAL1 < VAL2)
			diSP2"	I	Anzeigewert 2, Bedingung: diSP1 < diSP2 < Nennauflösung (CAP)
			VAL2"	I	Messwert 2 für dISP2, (0 < VAL1 < VAL2 < CAP)

Arten des Parameterzugriffs: D – nur Anzeige, S – Auswahl einzelner Punkte, I – Parametereingabe; M – Messung ¹⁾ Die Linearisierung wird AUS-geschaltet, wenn disp1=disp2=val1=val2=0, siehe Abschnitt 11 der Bedienungsanleitung (Teil1).

HINWEIS

Der WE2107 überprüft **nicht**, ob die vorgenommen Einstellungen nach OIML R76 oder NTEP zulässig sind!

Der Abgleich der Waage und die Mehrbereichs-Anzeige wird im Kapitel 10 der Bedienungsanleitung (Teil 1) beschrieben.

Die Berücksichtigung der Erdbeschleunigung wird im Kapitel 19 der Bedienungsanleitung (Teil 1) beschrieben.

Die Linearisierungsfunktion wird im Kapitel 11 der Bedienungsanleitung (Teil 1) beschrieben.

5.4.4 Rücksetzen auf die Werkseinstellungen

Diese Funktion kann nur ausgeführt werden, wenn der verdeckte Taster (für den Aufruf des Parametermenüs) gedrückt wird.

Zugriffs- ebene	Haupt- menü- ebene	Zweite Menü- ebene	Dritte Menü- ebene	Тур	Erklärung Untermenü
	1	2	12		1 2 (blinkend) = Eingabe / Aus- wahl eines Parameters
4	"F_AdJ →				Rücksetzen auf die Werksein- stellung
		dEFLt"		S	S. Kapitel 23 der Bedanleit. (T1)

Arten des Parameterzugriffs: D - nur Anzeige, S - Auswahl einzelner Punkte, I - Parametereingabe; M - Messung

Werkseinstellungen			
Parameter	Defaultwert	Erklärung	
Grenzwerte 14		ausgeschaltet	
Zeitparameter Dosieren	0	ausgeschaltet	
Filtermodus	0	Standardfilter	
Filter	3	2 Hz	
Hand-Tarawert	0	ausgeschaltet	
Referenzstückzahl	0	Zählwaage ausgeschaltet	
COM1, Adresse	31		
COM1, Baudrate	9600		
COM1, Paritätsbit	even		
COM2, Funktion	OFF	ausgeschaltet	
COM2, Baudrate	9600		
COM2 Paritätsbit	even		
Druck, ESC-Sequenzen	0	ausgeschaltet	
digitale Eingänge IN1/2	OFF	keine Funktion	
Funktionstasten F1/2	OFF	keine Funktion	
Waagengrundfunktion	Standard	nichtselbsttätige Waage	
Menüzugriff	4	alle Menüs	
Eichfähiger Betrieb	OFF	ausgeschaltet	
Einheit	OFF	keine Maßeinheit	
Einschaltnull	OFF	ausgeschaltet	
Nullnachlauf	OFF	ausgeschaltet	
Stillstandsüberwachung	OFF	ausgeschaltet	
Ziffernschritt	1d		
Dezimalpunkt	0	rechts	
Nennlast	6000		
Mehrbereichswaage	0	ausgeschaltet	
Kalibriergewicht	6000	Nennlastabgleich	
Korrektur Erdbeschleunigung	9,8102	ausgeschaltet	
Waagenkennlinie, Null	0,0000 mV/V		
Waagenkennlinie, Nennwert	2,0000 mV/V		
Linearisierung		ausgeschaltet	

Bei dem Rücksetzen auf die Werkseinstellung (Menü "F_AdJ \rightarrow dEFLt") werden die oben beschriebenen Parameter auf die Default-Werte gesetzt.

5.4.5 Gerät ausschalten

Zugriffs- ebene	Haupt- menü- ebene	Zweite Menü- ebene	Dritte Menü- ebene	Тур	Erklärung Untermenü
	1	2	12		1 2 (blinkend) = Eingabe / Aus- wahl eines Parameters
0	"oFF"				Ausschalten des WE2107

6 Abgleich einer Waage

Durch das Einstellen der Anwenderkennlinie an den WE2107 wird die Waage abgeglichen, d.h. die Waagenelektronik wird an die tatsächlichen Ausgangssignale angepasst, die die Wägezelle bei unbelasteter Waage bzw. bei Nenngewicht liefert. Hierzu sind i. d. R. Kalibriergewichte erforderlich, alternativ ist die Eingabe der Messwerte möglich, wenn diese bekannt sind.

Der WE2107 wird im Bereich von 0 und 2 mV/V als so genannte Werkskennlinie (F_AdJ) abgeglichen (Werkseinstellung).

6.1 Voraussetzungen für einen Abgleich der Waage

Vor dem Abgleich der Waage müssen der Nennbereich der Waage und andere Parameter eingestellt werden.

Voraussetzungen hierfür sind :

- Das Parametermenü wird über den verborgenen Schalter aufgerufen
- Parameter ",ScALE \rightarrow ACCES" = 4 (Zugriff auf alle Menüs)
- Parameter "ScALE → LEGAL" = oFF (eichpflichtige Anwendung ausgeschaltet)
- Parameter "AdJ → Unit...CAL" einstellen
- Parameter "EA_CL" auf den Erdbeschleunigungswert des Abgleichortes setzen
- Parameter "EA_UL" := EA_CL (Korrektur Erdbeschleunigung ausschalten)
- Linearisi. ausschalten ("AdJ \rightarrow Lin": VAL1 = VAL2 = diSP1 = diSP2 = 0)

6.2 Nennlastabgleich mit Kalibriergewicht (Standardverfahren, CAP = CAL)

Bei den meisten Waagenanwendungen erfolgt der Abgleich an zwei Punkten, d.h. bei unbelasteter Waage sowie nach Auflegen eines Kalibriergewichts. Die Kalibrierung wird wie folgt durchgeführt:

- 6. Menü "AdJ" aufrufen.
- Überprüfen, dass das Kalibriergewicht gleich der Nennlast ist (CAL == CAP).
- 8. In das Untermenü "MEAS" (Messung) gehen.

- 9. Null-Wert:
 - Die Waage unbelastet lassen
 - Das Untermenü "ZEro" aufrufen
 - Der aktuelle Messwert wird angezeigt. Der Wert wird in mV/V angezeigt (2.0000 = 2 mV/V).
 - Warten auf eine ruhige Messwertanzeige
 - Taste "ENTER" drücken, um den Wert zu speichern.
- 10. Kalibriergewicht:
 - Das Kalibriergewicht (= Nennlast der Waage) auf die Waage auflegen.
 - Das Untermenü "SPAn" aufrufen
 - Der aktuelle Messwert wird angezeigt. Der Wert wird in mV/V angezeigt (2.0000 = 2 mV/V).
 - Warten auf eine ruhige Messwertanzeige
 - Taste "ENTER" drücken, um den Wert zu speichern.

Abbruch ist jederzeit mit der Taste *"CE"* möglich. Dadurch wird der gerade aufgerufene Parameter (nur dieser!) wieder auf den bisherigen Wert gesetzt. Erst nach Speichern ist der alte Wert gelöscht.

Die beiden Werte werden intern mit der hohen Auflösung gespeichert.

Ist die Messwertanzeige zu unruhig, so ist die Filterbandbreite zu verringern (Bedienungsanleitung, Teil 1, Kapitel 9,).

Danach sind die anderen Parameter einzustellen.

6.3 Teillastabgleich mit Kalibriergewicht

Wenn kein Kalibriergewicht in der Größe der Waagennennlast, CAP zur Verfügung steht, kann eine Teillastkalibrierung vorgenommen werden. Dazu ist der Parameter CAL auf den Wert des verwendeten Kalibriergewichts einzustellen. Dieses darf im Bereich von

20 %...120 % der Waagennennlast liegen. CAL wird skaliert wie der Anzeigewert (z.B. 2 kg = 2.000, bei 3 Nachkommastellen).

Wenn noch keine Kalibrierung durchgeführt wurde, ist CAL gleich CAP.

HINWEIS

Vor der Kalibrierung muss der Parameter "AdJ \rightarrow CAP" auf die Waagennennlast eingestellt werden!

Die Kalibrierung wird wie folgt durchgeführt:

- 1. Menü "AdJ" aufrufen
- 2. Kalibriergewicht einstellen (CAL)
- 3. In das Untermenü "MEAS" (Messung) gehen
- 4. Null-Wert:
 - Die Waage unbelastet lassen
 - Das Untermenü "ZEro" aufrufen
 - Der aktuelle Messwert wird angezeigt. Der Wert wird in mV/V angezeigt (2.0000 = 2 mV/V).
 - Warten auf eine ruhige Messwertanzeige
 - Taste "ENTER" drücken, um den Wert zu speichern.
- 5. Kalibriergewicht:
 - Das Kalibriergewicht (= CAL) auf die Waage auflegen.
 - Das Untermenü "SPAn" aufrufen.
 - Der aktuelle Messwert wird angezeigt. Der Wert wird in mV/V angezeigt (2.0000 = 2 mV/V).
 - Warten auf eine ruhige Messwertanzeige
 - Taste "ENTER" drücken, um den Wert zu speichern.

Abbruch ist jederzeit mit *"CE"* möglich. Dadurch wird der gerade aufgerufene Parameter (nur dieser!) wieder auf den bisherigen Wert gesetzt. Erst nach Speichern ist der alte Wert gelöscht.

Die beiden Werte werden intern mit der hohen Auflösung gespeichert.

Ist die Messwertanzeige zu unruhig, so ist die Filterbandbreite zu verringern (Bedienungsanleitung, Teil 1, Kapitel 9).

Danach sind die anderen Parameter einzustellen.

6.4 Abgleich ohne Kalibriergewicht (mV/V Abgleich)

Wenn kein Kalibriergewicht zur Verfügung steht, kann ein Abgleich über die Eingabe von berechneten Werten vorgenommen werden.

Bei Waagen für große Nennlasten ist ein Abgleich mit Kalibriergewichten oft nicht möglich. Da der WE2107 werkseitig auf einen Eingangsbereich von 2 mV/V kalibriert ist, kann die Anwenderkennlinie auch anhand des bekannten Nennwertes der Wägezellen ermittelt werden. Dazu wird der Nullwert durch automatisches Messen, der Nennwert aber durch manuelle Eingabe festgelegt.

1. Messung des Nullwertes der Kennlinie bei unbelasteter Waage:

Menü "AdJ" aufrufen.

In das Untermenü "MEAS" (Messung) gehen.

Null-Wert:

- Die Waage unbelastet lassen.
- Das Untermenü "ZEro" aufrufen.
- Der aktuelle Messwert wird angezeigt. Der Wert wird in mV/V angezeigt (2.0000 = 2 mV/V).
- Warten auf eine ruhige Messwertanzeige
- Notieren Sie den Messwert (mw0) für die spätere Eingabe
- Taste "*CE*" drücken, um die Messwertanzeige zu verlassen.

2. Berechnen des Nennwertes der Waage:

Da der WE2107 werkseitig in mV/V abgeglichen ist kann nun der Nennwert in mV/V berechnet werden. Der Nennwert der Waagenkennlinie setzt sich aus dem Nullwert und dem Wägebereich zusammen. Da der Nullwert bereits gemessen worden ist, muss nur noch der Wägebereich bestimmt werden.

```
Wägebereich = Wägezellenkennwert [mV/V] · Wagezellennennlast
```

Der Wägezellenkennwert ist in der Regel 2mV/V (bei Wägezellen-Nennlast). Die Wägezellen-Nennlast steht auf dem Typenschild der Wägezelle. Es gilt

Waagen-Nennlast < Wägezellen-Nennlast

Somit ist das Ergebnis des Wägebereiches ein Wert in mV/V.

3. Eingabe der Kennlinie

Addiert man nun den Wert für den Wägebereich mit dem zuvor gemessenen Nullwert so erhält man den Nennwert der Waage (mw1). Nun kann die Kennlinie eingegeben werden:

- Menü "AdJ" aufrufen.
- In das Untermenü "InPut" (Eingabe) gehen.
- Null-Wert (mw0) bei ZEro eingeben
- Nennwert-Wert (mw1) bei SPAn eingeben

Waagen mit mehreren Wägezellen liefern dann das Nennausgangssignal (2 mV/V), wenn als Gewicht die Summe aller Wägezellen-Nennlasten aufliegt.

Parallelschaltung von 4 Wägezellen à 20 t, Kennwert 2 mV/V.

Nennlast der Waage 60 t.

→ Wägezellen-Nennlast := 4 * 20t = 80 t

 \rightarrow Wägebereich := 2 mV/V * 60t / 80 t = 1,5 mV/V

Der Abgleich in mV/V erreicht nicht die Genauigkeit wie beim Abgleich mit Kalibriergewichten und ist deshalb nur bei nicht eichpflichtigen Anwendungen geringerer Genauigkeit anwendbar.

6.5 Mehrbereichswaage

Der WE2107 ermöglicht den Betrieb als Ein- oder Mehrbereichswaage.

Im Parametermenü "AdJ \rightarrow SEtUP" stehen dazu zwei Parameter zur Verfügung. Vor dieser Einstellung ist der Wägebereich (CAP) einzustellen.

Waagentyp	Parameter
Einbereichswaage	rAnG1 = rAnG2 = 0
Zweibereichswaage	0 < rAnG1 < CAP und rAnG2 = 0
Dreibereichswaage	0 < rAnG1 < rAnG2 < CAP

Der Ziffernschritt für die zwei / drei Wägebereiche wird automatisch vom Parameter rES abgeleitet, wobei dieser Parameter immer den Ziffernschritt des ersten Messbereiches beschreibt:

"rES" = 1d \rightarrow Ziffernschritt Bereich 2 = 2d \rightarrow Ziffernschritt Bereich 3 = 5d

"rES" = 2d \rightarrow Ziffernschritt Bereich 2 = 5d \rightarrow Ziffernschritt Bereich 3 = 10d

7 Einstellen von Datum und Uhrzeit

Die interne Uhr des WE2107 dient der Ausgabe von Datum und Uhrzeit beim Druck und ist für die übrigen Gerätefunktionen ohne Bedeutung. Die Einstellung erfolgt im Menü "Prt_s". Bei ausgeschaltetem Gerät läuft die Uhr weiter (Batterie gepuffert).

Zugriffs- ebene	Haupt- menü- ebene	Zweite Menü- ebene	Dritte Menü- ebene	Тур	Erklärung Untermenü
	1	2	12		1 2 (blinkend) = Eingabe / Aus- wahl eines Parameters
3	"Prt_S →				Einstellung Druckprotokoll
		timE"		I	Xx:xx (Echtzeituhr Stunden : Minuten)
		modE"		S	Auswählen des Zeitmodus: 24 h/12 h
		dAtE →			Datum, Echtzeituhr
			dAY"	I	Tag: xx
			month"		Monat: xx
			YEAr"	I	Jahr: xx
		Init"			Druckprotokolleinstellungen, ESC-Sequenzen

Arten des Parameterzugriffs: D - nur Anzeige, S - Auswahl einzelner Punkte, I - Parametereingabe; M - Messung

8 Fehlermeldungen

Der Fehlercode ist in unterschiedliche Abschnitte unterteilt:

- Hardware-Fehler
- Wägezellen-Fehler
- Parameter-Fehler
- Kommunikations-Fehler

Hardware Fehler:

Fehlercode	Beschreibung	Behebung
128	mehrere Hardwarefehler gleichzeitig	
129	Interner EEPROM	→ Reparatur
130	Externer EEPROM	→ Reparatur
131	ADU overflow	→ Reparatur
132	ADU underflow	→ Reparatur
133	externe Versorgungsspannung zu niedrig	externe Spannungsversor- gung überprüfen
134	Überlastung digitale Ausgänge	Kurzschluss beseitigen
135	Interne Versorgungsspannung zu niedrig	→ Reparatur

Wägezellen Fehler:

Fehlercode	Beschreibung	Behebung
64	mehrere Wägezellen-Fehler gleichzeitig	
65	Eingangssignal > 160 % (> 3.2 mV/V)	Wägezelle / -anschluss überprüfen
66	Eingangssignal < -160 % (< -3.2 mV/V)	Wägezelle / -anschluss überprüfen
67	Brückenspeisespannung zu klein (< 3V)	Wägezelle / -anschluss überprüfen
68	offenes Wägezellensignal	Wägezelle / -anschluss überprüfen

Parameter Fehler:

Fehlercode	Beschreibung	Behebung
32	mehrere Fehler gleichzeitig	
33	SFA – SZA < 2000 d (10%), interne Werks- kennlinie zu empfindlich	→ Reparatur
34	LWT – LDW < 2000 d, Waagenkennlinie zu empfindlich	neuer Waagenabgleich
35	Linearisierungsparameter fehlerhaft, LIN1 > LIN2 oder LIM1 > LIM2	Parameter überprüfen, Kapitel 11 (Bedanl. Teil 1)
36	Bruttowert overflow	Last vermindern
37	Abgleich Linearisierung fehlerhaft	wiederholen, Kapitel 11 (Bedanl. Teil 1)
38	Bruttowert underflow	Nullstellen, Neuabgleich der Waage
39	Einschaltnull fehlerhaft (außerhalb Bereich oder kein Stillstand)	Waage nicht belasten vor dem Einschalten

Fehlercode	Beschreibung	Behebung
40	Nullstellen fehlerhaft	Messwertruhe überprüfen (evtl. höheres Filter ein- stellen), neuer Waagenab- gleich
41	Tarierung fehlerhaft	Messwertruhe überprüfen (evtl. höheres Filter ein- stellen),
42	Dosierzeitüberschreitung	Materialfluss beim Dosieren überprüfen
43	Startgewicht Dosieren zu groß	Waage vorher entleeren
44	Tankfüllung zu gering (nicht genug Material für nächste Dosierung)	Material nachfüllen
45	Summengewicht overflow	Summe löschen über Druck- funktion (Prt4 oder 6, siehe Kapitel 15.5, (Bedanl. Teil 1)
46	Multirangeparameter falsch	Parameter überprüfen, Kapitel 10.5 ((Bedanl. Teil 1)

Kommunikationsfehler:

Fehlercode	Beschreibung	Behebung
16	mehrere Fehler gleichzeitig	
17	Eingabeparameter außerhalb Eingabebereich	siehe Beschreibung Teil 2
18	Unbekannter Befehl	
19	Falsches Passwort (DPW Befehl)	siehe Beschreibung Teil 2
20	Parameter schreibgeschützt	eichpflichtige Anwendung ein- geschaltet
21	Druckzeit time out	kein Stillstand innerhalb von 5 s Druckbefehl wird gelöscht
22	Eichzähler overflow (TCR Befehl)	→ Reparatur
23	COM1 Paritäts- / Framing- Fehler	Einstellung COM-Schnittstelle überprüfen

9 Mechanische Abmessungen und Montagehinweise

9.1 WE2107

9.2 WE2107M

9.3 Wandmontage, WE2107

Benötigt werden zwei Schrauben (Senkkopfschrauben im Lieferumfang) im Abstand von 86 mm. Bei dieser Montageart ist das Gehäuse durch Einrasten der Schrauben gegen Abheben durch im täglichen Gebrauch auftretende Kräfte gesichert. Voraussetzung ist die Verwendung einer der folgenden Schraubentypen:

Zylinderkopfschrauben, Schaft ohne Gewinde mit 4 mm Durchmesser.

Senkkopfschrauben, Durchmesser unterhalb des Kopfes max. 3,5 mm. Für Montage mit Dübeln sind z.B. Spanplattenschrauben 4,0 * 50 mm geeignet, deren Gewinde ca. 10 mm unterhalb des Kopfes endet.

Die Montage des Gerätes geschieht in folgenden Schritten:

- 1. Abnehmen des Montagefußes vom Gehäuserückteil nach Lösen von zwei Schrauben.
- 2. Befestigen des Montagefußes an der Stativplatte mit vier Schrauben M4.
- 3. Leitungen durch die PG-Verschraubungen führen und an die Elektronik anschließen.
- 4. Schließen der Gehäusehälften und Verbinden mit zwei Schrauben. Dabei die Leitungen noch etwas aus den PG-Verschraubungen herausziehen.
- 5. Befestigen des geschlossenen Gehäuses am Montagefuß mit zwei Schrauben. Dabei ggf. die Leitungen ins Innere des Stativrohres führen.

9.5 Versiegelung / Eichfähigkeit

Je nach Waagen-Anwendung ist die Waagenelektronik zu beschriften und zu versiegeln. Für den Einsatz als nichtselbsttätige Waage der Klasse III und IIII liegen verschiedene Beschriftungsstreifen bei.

Auf dem Beschriftungsstreifen sind mindestens die folgenden Daten anzugeben:

Max	Höchstlast der Waage
Min	Mindestlast der Waage
е	Ziffernschritt
Тур	Name der Waage
S.N.	Individuelle Seriennummer der Waage

Bei eichfähigen Waagen ist durch eine benannte Stelle die Eichung nach den geltenden Gesetzen durchzuführen. Die Siegelmarken und Eichmarken sind gemäß der Zulassung zu befestigen.
10 WE2107 – Komplette Menüstruktur

Hauptmenü	2. Ebene	3. Ebene	Erklärung Untermenü
InFo	VAL	CALC	Eichzähler
		tArE	aktueller Tarawert
		ZEro	Null-Wert
		totAL	Gesamtgewicht
		FILL	Füllergebnis
		Sv_nb	Softwareversion (7x, $x = 09$)
		F_nb	Fertigungs-Nummer der WE2107
	Error	AdC	ADC-Overflow-Zähler
		SEnS	Sensor-Overflow-Zähler
		Error	Zuletzt aufgetretener Fehlercode: Er xxx
Print	rESLt	Prt	Druckprotokoll Prt_19 (wenn UArt2 = Pangewählt), BedAnl. S. 88
	PAr	ALL	Ausdrucken aller Parameter
SEtPt	LS_1	InPut	OFF/NET/GROSS
		LEvEL	truE / InvErt
		oFF_L	AUS-Pegel: +- 99999
		on_L	EIN-Pegel: +-99999
	LS_2	InPut	OFF/NET/GROSS
		LEvEL	truE / InvErt
		OFF_L	AUS-Pegel: +- 99999
		On_L	EIN-Pegel: +-99999
	LS_3	InPut	OFF/NET/GROSS
		LEvEL	truE / InvErt
		OFF_L	AUS-Pegel: +- 99999
		On_L	EIN-Pegel: +-99999
	LS_4	InPut	OFF/NET/GROSS
		LEvEL	truE / InvErt
		OFF_L	AUS-Pegel: +- 99999
		On_L	EIN-Pegel: +-99999
	FiLL	doS_t	Maximale Dosierzeit: 0=AUS; 1999999 x 0,1 s
		EtY_t	Entleerzeit: 0=AUS; 199999 x 0,1 s
		rES_t	Nachstromzeit: 0=AUS; 1999999 x 0,1 s
		tAr_t	Tarierzeit: 0=AUS; 1_99999 x 0,1 s
SEtuP	FILt1		0 = Standard, 1 = Schnell, 24=Tierfilter (BedAnl. S. 65)
	FILt2		0 _ 8 Grenzfrequenzen je nach Filtertyp FILt1 (BedAnl. S. 48)
	PtArE	1	Hand-Tarawert: 0=AUS; 1= 1Nennlast CAP
	count	nb	Zählwaage Referenzstückzahl: 0=AUS; 1999Stück=EIN
UArt1	Addr		Netzwerkadresse: 0_31
	bAudr		Baudrate: 1200 / 2400 / 4800 / 9600 / 19200 / 38400 Baud
	PArit		Paritätsbit: nonE (keine Parität), EvEn (gerade Parität)
UArt2	Funct		OFF / P_dtr / P_dc1 / E_no / E_dtr / E_dc1 (BedAnl. S. 50)
	bAudr		Baudrate: 1200 / 2400 / 4800 / 9600 / 19200 / 38400 Baud
	PArit		Paritatsbit: nonE (keine Paritat), EvEn (gerade Paritat)
	EdSPL	St_Ch	Ext Anzeige EIN (wenn UArt2 = E): Startzeichen 031 (0=AUS)
		Prot	Auswahlen des Protokolls: 07 (BedAnl. S. 51)
		E_Ch1	Endezeichen 1: 031 (0=AUS)
		E_Ch2	Endezeichen 2: 031 (0=AUS)
		CrC	Prüfsumme: OFF/ON (AUS/EIN)

Hauptmenü	2. Ebene	3. Ebene	Erklärung Untermenü
Prt_S	timE		Einst. Druckprotokoll: xx:xx (Echtzeituhr Stunden : Minuten)
_	modE		Auswählen des Zeitmodus: 24 h / 12 h am / 12 h pm
	dAtE	dAY	Tag: xx
		month	Monat: xx
		YEAr	Jahr: xx
	Init	ESC11	ESC-Sequenz 1, Byte 1: 0255 (0=AUS)
		ESC12	ESC-Sequenz 1, Byte 2: 0255
		ESC13	ESC-Sequenz 1, Byte 3: 0255
		ESC14	ESC-Sequenz 1, Byte 4: 0255
		ESC15	ESC-Sequenz 1, Byte 5: 0255
		ESC21	ESC-Sequenz 2, Byte 1: 0255 (0=AUS)
		ESC22	ESC-Sequenz 2, Byte 2: 0255
		ESC23	ESC-Sequenz 2, Byte 3: 0255
		ESC24	ESC-Sequenz 2, Byte 4: 0255
		ESC25	ESC-Sequenz 2, Byte 5: 0255
	idEnt	nb	Druckprotokoll Zähler: 099999 (0=AUS)
	Frt	E Ch	Anzahl der Leerzeichen in jeder Zeile: 099
		E_Ln1	Anzahl leerer Zeilen vor dem Drucken: 099
		E_Ln2	Anzahl leerer Zeilen nach dem Protokoll: 099
inPut	InP_1	, —	oFF / tArE / Prt / tilt (BedAnl. S. 54)
	InP_2		oFF / tArE / Prt / Loc_P
	t_dLY		Neigungsverzögerungszeit: (099) x 100 ms
buttn	F1		_F1_ (kurz), Belegung Funktionstasten siehe BedAnl. S. 56
	F1_L		F1_ (lang) "
	F2		_F2_ (kurz) "
	F2_L		F2_ (lang) "
tESt	diSPL		Test Anzeige, LCD-Segmente EIN/AUS (über Taste "NEXT")
	UArt		Übertragen von 55Hex (siehe BedAnl. S. 58)
	d_IO		Test Digitale Ein-/ Ausgänge (siehe BedAnl. S. 58)
	EEPro		Prüfen der Prüfsumme im EEPROM: 0 = Fehler, 1 = OK
	buttn		Test der Tasten (siehe BedAnl. S. 58)
ScALE	Funct		Waagenfunktion: StAnd / FILL1 / FILL2 / FILL3
	ACCES		Menüzugriffsebene: 04
	LEGAL		Eichfähiger Betrieb: OFF / OIML / NTEP
AdJ	SEtUP	Unlt	Physikalische Einheit: OFF / g / kg / t / lbs
		AZEro	Einschaltnull: OFF / 2 / 5 / 10 / 20 / 50 %
		ZtrAc	Automatischer Nullnachlauf: OFF / ON (0,5d/s)
		StiLL	Stillstandüberwachung: OFF / +- 0,5 / 1 / 2 / 5 d/s
		rES	Ziffernschritt: 1 / 2 / 5 / 10 / 20 / 50 d
		Point	Dezimalpkt: 0=xxxxx / 1=xxxx.x / 2=xxx.xx / 3=xx.xxx / 4=x.xxxx
		CAP	Nennlast (Wägebereich): 10099999
		rAnG1	Umschaltpunkt Zweibereichswaage (0 = Einbereichswaage)
		rAnG2	Umschaltpunkt Dreibereichswaage (0 = Ein-/Zweibereichswaage)
		CAL	Kalibriergewicht: 10099999
		EA_CL	Erdbeschleunigung am Kalibrierort: 9,70009,9000
		EA_UL	Erdbeschleunigung am Aufstellort: 9,70009,9000
	inPut	ZEro	Wert bei leerer Waage (aber mit Vorlast): 0,00002,0000 mV/V
		SPAn	Wert bei Nennlast (mit Vorlast): 0,00002,0000 mV/V
	MEAS	ZEro	Ist-Anzeige bei leerer Waage (Nullpunktabgleich mit "ENTER")
		SPAn	Ist-Anzeige bei Kalibriergewicht (Spannen-Abgleich mit "ENTER")
	Lin	diSP1	Anzeigewert 1
		VAL1	Messwert 1 für diSP1
		dISP2	Anzeigewert 2
		VAL2	Messwert 2 für diSP2
F_AdJ	dEFLt		Rucksetzen auf Werkseinstellung: YES / NO
oFF	ott		Gerat Auschalten mit "ENTER"

For further information please refer to Data sheets, Operating instructions and the complete documentation on CD: 1-WE2107-DOC. You may also download the WE2107 Panel Software from www.hbm.com -> *Support -> Software/Firmware Downloads -> Digital Load Cells and Weighing Electronics*.

Weitere Informationen entnehmen Sie bitte den Datenblättern und der kompletten Dokumentation inkl. Panel-Programm der CD 1-WE2107-DOC. Sie können die WE2107-Panel-Software auch unter www.hbm.com -> Support -> Software-/Firmware-Downloads -> Digitale Wägezellen und Wägeelektroniken herunterladen.

© Hottinger Baldwin Messtechnik GmbH.

All rights reserved.

All details describe our products in general form only. They are not to be understood as express warranty and do not constitute any liability whatsoever.

Änderungen vorbehalten.

Alle Angaben beschreiben unsere Produkte in allgemeiner Form. Sie stellen keine Beschaffenheits- oder Haltbarkeitsgarantie im Sinne des §443 BGB dar und begründen keine Haftung.

Hottinger Baldwin Messtechnik GmbH

Im Tiefen See 45 • 64293 Darmstadt • Germany Tel. +49 6151 803-0 • Fax: +49 6151 803-9100 Email: info@hbm.com • www.hbm.com 7-2001.2087

measure and predict with confidence