

CSI Programming for
GEN series

I2
6

9
8
 -

4
.0

 e
n

User Manual

English

CSI Programming user manual

2 A2698_05_E00_00 HBM: public

Document version 5.0 – March 2020

For Perception 7.40 or higher

For HBM's Terms and Conditions visit www.hbm.com/terms

HBM GmbH
Im Tiefen See 45
64293 Darmstadt

Germany
Tel: +49 6151 80 30

Fax: +49 6151 8039100
Email: info@hbm.com

www.hbm.com/highspeed

Copyright © 2019

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

http://www.hbm.com/terms

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 3

LICENSE AGREEMENT AND WARRANTY

For more information about LICENSE AGREEMENT AND WARRANTY refer to:

www.hbm.com/terms

file:///D:/Project/CSI/Releases/7_0x/Manual/www.hbm.com/terms

CSI Programming user manual

4 A2698_05_E00_00 HBM: public

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 5

Table of Contents Page

1 GETTING STARTED .. 8

1.1 INTRODUCTION ... 8
1.2 INTENDED AUDIENCE ... 8
1.3 REQUIREMENTS AND INSTALLATION ... 8

1.3.1 System requirements .. 9
1.3.2 Supported hardware ... 9
1.3.3 Installation ... 9

1.4 STARTING CSI ... 10
1.4.1 To quit the Perception CSI .. 10

1.5 WHERE DO YOU START? ... 10

2 USING PERCEPTION CSI ... 11

2.1 WHAT CAN YOU EXPECT? .. 11
2.2 USAGE OF SUPPORT FILES .. 12

2.2.1 To load the Perception CSI template .. 12
2.3 YOUR FIRST CSI PROGRAM ... 13

3 PERCEPTION CSI TEMPLATE ... 17

3.1 THE FUNDAMENTALS OF SHEET INTERFACING... 17
3.1.1 Sheet Control Information Provider .. 17
3.1.2 Sheet Control Information Retriever ... 19
3.1.3 Sheet Control .. 19
3.1.4 Members ... 19
3.1.5 ISheet Members .. 22
3.1.6 Events ... 22
3.1.7 Properties .. 25
3.1.8 Methods .. 27
3.1.9 ISerializable Members .. 31
3.1.10 Disposing .. 31

4 ACQUISITION CONTROL .. 32

4.1 BASIC ACQUISITION CONTROL .. 32
4.1.1 Getting started .. 32
4.1.2 The user interface ... 33
4.1.3 Event handling .. 35
4.1.4 Add menu commands ... 39

5 HARDWARE SETTINGS .. 40

5.1 HARDWARE ORGANIZATION ... 40
5.2 GET AND SET PARAMETERS ... 41
5.3 USER INTERFACE .. 41
5.4 GET AND SET PARAMETERS USING CAPABILITIES... 42
5.5 INITIALIZE ... 43
5.6 USER INTERFACE WITH CAPABILITIES ... 43
5.7 GET CAPABILITIES ... 44
5.8 MODIFY A HARDWARE SETTING .. 48
5.9 CREATE A CLASS .. 49

5.9.1 Modify the setting .. 50
5.10 SYNCHRONIZATION ... 53

6 DATA VISUALIZATION .. 56

6.1 DATA DISPLAY .. 56
6.1.1 User interface .. 58
6.1.2 The code ... 58

6.2 METER ... 61
6.2.1 User interface .. 61
6.2.2 The code ... 62

7 DATA ANALYSIS - PART ONE ... 66

CSI Programming user manual

6 A2698_05_E00_00 HBM: public

7.1 INTRODUCTION ... 66
7.2 THE DATA MANAGER ... 66

7.2.1 Numerical data source .. 67
7.2.2 String data source ... 68
7.2.3 Waveform data source .. 69

7.3 USER DATA SOURCES ... 69
7.3.1 User numerical data source .. 70
7.3.2 User string data source ... 71
7.3.3 User waveform data source .. 71

7.4 THE EXAMPLE ... 73
7.4.1 User interface .. 73
7.4.2 The code - Getting started .. 74
7.4.3 Manipulate measurement cursor position ... 75

7.5 DO SOME BASIC MATH ... 80
7.6 USING PERCEPTION WAVEFORM CALCULATORS.. 82

8 DATA ANALYSIS - PART TWO... 89

8.1 FORMULA DATABASE AS CALCULATOR .. 89
8.1.1 User interface .. 89
8.1.2 The code ... 90

8.2 MAKE YOUR OWN FUNCTIONS .. 93
8.2.1 Create and initialize the external class library .. 94

8.3 THE FUNCTION INFORMATION .. 94
8.3.1 Category.. 96
8.3.2 CreateFunction ... 96
8.3.3 Description .. 96
8.3.4 Example .. 96
8.3.5 MinimumParameterCount ... 97
8.3.6 Name ... 97
8.3.7 Parameters ... 97
8.3.8 ParameterDescriptions ... 97
8.3.9 ParameterNames .. 97
8.3.10 ParameterTypes ... 98

8.4 GETTING IT ALL TO WORK .. 99
8.5 IMPLEMENT THE FUNCTION .. 99

8.5.1 Using the comprehensive method .. 100
8.5.2 Using the intelligent method.. 100

8.6 SUMMARY .. 109

9 AUTOMATION .. 110

9.1 EXAMPLE: POST-ACQUISITION ANALYSIS AND REPORTING .. 110
9.1.1 Procedure ... 110
9.1.2 Before you begin ... 110
9.1.3 User interface .. 112
9.1.4 The code ... 114
9.1.5 Acquisition control ... 114
9.1.6 Print control ... 119
9.1.7 Calculations .. 128

9.2 POINTS OF CONSIDERATION .. 133

10 USER-KEY SCRIPT ACTION... 135

10.1 PERCEPTION.SCRIPTACTION ... 135
10.1.1 To load the Perception CSI template .. 135

10.2 YOUR FIRST USER KEY SCRIPT ACTION .. 136
10.2.1 IScriptActionInfo .. 139
10.2.2 IScriptAction .. 140
10.2.3 IConfigurable ... 141

10.3 EXAMPLE: CREATE A SCRIPT ACTION FOR AUTO SCALING ALL TRACES OF THE ACTIVE DISPLAY .. 141
10.4 ADD OPTION TO SELECT ALL OR ONLY ACTIVE TRACE TO BE AUTO SCALED 142

11 SUMMARY .. 145

12 APPENDIX: MULTITHREADING ... 146

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 7

CSI Programming user manual

8 A2698_05_E00_00 HBM: public

1 Getting Started

Welcome to the Perception Custom Software Interface (CSI). CSI is a powerful technology
which allows software integrators and Perception users to customize and automate (parts of)
the Perception software. As opposed to the 'standard' API technology, programs written with
CSI form an integral part of the Perception software and are fully integrated in the Perception
user interface. They act like 'plug-ins'.

1.1 Introduction

While Perception and its options offer a satisfying solution for most measuring, processing and
reporting tasks, there are still some areas where the supplied software is not tailored to your
specific requirements.

A viable solution in this situation is to extend the Perception software with your own programs,
using Perception CSI. CSI stands for Custom Software Interface. Perception CSI is your
interface to the insides of Perception.

Writing your own program has the advantage that you have total control over your extensions,
while you keep the flexibility and power of the Perception environment.

Other 'standard' interface techniques allow you to add an external program that works in
parallel with the main application, either remotely or on the same machine. Using the
Perception CSI you create plug-ins that become part of the Perception application on the same
machine. These plug-ins have a user interface that is based on the Perception concept known
as 'sheets'. You will create a DLL that is linked into the Perception software at start-up, you
will not create a stand-alone executable (*.exe)

Besides sheets it is also possible to create your own:

• Functions: these can be used in the formula database to do your own specific
calculations

• Automation Actions: used to program special actions for the automation process

• User-key script actions: used to add special functionality behind user keys

Should you require external/remote control of the Perception software, then you should
consider using the Perception Remote Control option (a.k.a. Remote API or COM-RPC).

This document describes a part of the CSI interface to Perception. It contains a command
overview and examples. Examples are written in C# using the Microsoft Visual Studio 2015
development environment.

1.2 Intended audience

CSI is designed to be used by C# ("See-Sharp") programmers. You must be proficient in this
programming language and Windows technology in order to write custom programs. This
documentation assumes you understand your HBM equipment, software, and basic acquisition
terminology.
Understanding acquisition terminology is vital to understanding digital recordings: trigger,
sample rate, pre-/post trigger, etc.

1.3 Requirements and installation

The HBM CSI is an option that is enabled through the use of the HASP®4 USB Token.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 9

This option is also listed as CSI: Custom Software Interface in the Perception menu:
Help > About Perception > More... > Options page

In addition you must install the required software modules as described below.

1.3.1 System requirements

• HBM Perception software with CSI option enabled

• Microsoft® Windows-7 or later

• Microsoft DirectX 9 or higher (included on media)

• Microsoft .NET 4.6

• 4GB of RAM memory - 4 GB or more recommended and required when working with more

than one data acquisition mainframe.

1.3.2 Supported hardware

• HBM GEN Series Modular Data Acquisition System

1.3.3 Installation

Depending how you received your copy of the CSI Software Developers Kit do one of the
following:

• For a zipped download: unzip the file in a separate folder. In that folder run setup.exe.

• When you received the CSI SDK on a CD you must install the SDK from the CD onto your
hard disk; you cannot use CSI from the CD.

To install:

CSI Programming user manual

10 A2698_05_E00_00 HBM: public

1. Start Windows and insert the CD in the CD-ROM drive.

2. In the Windows Task Bar click the Start button, point to and click Run....\

3. In the Run dialog type d:\setup (or e:\setup, depending on your CD-ROM drive

assignment) in the Open: text input field and click OK.

4. Follow the on-screen instructions.

• When you received the CSI SDK as part of the Perception installation CD, locate the CSI
folder on that CD. In that folder run setup.exe.

1.4 Starting CSI

CSI, when enabled, is part of the Perception software engine. When you start Perception you
have direct access to the CSI commands and functions.

1.4.1 To quit the Perception CSI

The Perception CSI is automatically closed when Perception is closed.

1.5 Where do you start?

Investigate the sample projects; decide which one is closest to the functionality you want to
provide. Run it in your software development environment and set breakpoints. The
documentation provided is intended as a guide with detailed explanation only where
appropriate; watching the information within the breakpoints is a good way to understand what
happens. Feel free to explore and experiment with the CSI on your own once you're familiar
with it, but please, resist the temptation to start from scratch until you're confident; you may
end up repeating other developers' mistakes, including your own.
This manual gives you only an introduction to the CSI interface; there are a lot more topics
which are not covered here e.g. Start Manager, Word Reporting, Sweep Deletion, Object
Manager, Excel Interaction, Sensor database, extending the RPC commands etc.
It is however also possible to join a Perception CSI training, for more information contact the
technical support or go to the HBM web site: HBM Perception API or HBM Perception
Although the examples are created with Visual Studio 2017 it is also possible to use the free
Visual Studio Community IDE. You can download this version for free from the Microsoft
website.

https://www.hbm.com/en/3682/perception-application-programmers-interface-api/
https://www.hbm.com/en/2279/perception-software-for-high-speed-measurement-data-acquisition/

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 11

2 Using Perception CSI

CSI is designed to give users access to the Perception internals. As opposed to standard API
programming there is no layer between the user software and Perception. Since the user
software is integrated, it is also created as a DLL instead of an executable. The user interface
provided is based on the Perception sheet concept. On a sheet, the user is free to build their
own interface. By default, a sheet comes with a proprietary menu.
One of the clear benefits of CSI is that it enables your organization to achieve a tight
integration between your knowledge and requirements and the Perception platform.
This approach also allows for customization on user request by independent software
integrators, in close cooperation with HBM.

2.1 What can you expect?

In this document we will describe a variety of functions, but not all and we will also not treat
every subject exhaustively.
The CSI SDK comprises:

• Access to all public and documented features:

o User modes

o Components and sheet manager

o Workbench:

▪ Workbook(s)

▪ File operations

▪ Sheet operations

o Perception DLL's, e.g.:

▪ Formula database

▪ Recordings

o .NET DLL's

• Starter kit: C# template for Microsoft Visual Studio

You cannot add functionality through other Perception components: you cannot modify existing
menus, graphs or displays, etc. You do have access to standard features. All this will be
explained in this document.

CSI Programming user manual

12 A2698_05_E00_00 HBM: public

2.2 Usage of support files

For use with the Microsoft Visual Studio programming environment and C# a template is
provided. Depending on how you installed your CSI SDK and your computer environment this
file might already be installed. To verify, start your Microsoft Visual Studio 2019, and select
Extension >Manage Extensions

In the dialog that comes up type Perception in the right upper search box:

In the Template section, the Perception CSI sheet should be available. If not so, proceed as
described below.

2.2.1 To load the Perception CSI template

1. Locate the file named Perception CSI Sheet Project Template.vsix

2. Double-click this file. The VSIX installer will be launched:

3. Click Install to install

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 13

4. Click Close

2.3 Your first CSI program

You now should be able to create, compile and run your first CSI program.
To do so proceed as follows:

1. Start your Microsoft Visual Studio and select Create a new project.

2. In the dialog that comes up select C# in the first selection box.

3. Perception in the second selection box.

4. All project types in third selection box

5. The Perception CSI Sheet template selection should now be visible:

CSI Programming user manual

14 A2698_05_E00_00 HBM: public

6. Select the Perception CSI Sheet template

7. Enter a name MyFirstCSI and location for this project and click OK

 The Solution Explorer will now include the following:

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 15

• A reference to the Perception Interfaces

• C# code for the SheetControl

This code is enough to create a sheet in Perception. Before we can build it, we need to add
some more information to the project itself.

Optionally give the sheet a name and icon other than default:

1. Go to Project > <Project Name> > Properties

2. Go to Resources > Strings and modify the text from IDS_USERNAME into your

 sheet name and add a descriptive text for your sheet.

3. Go to Resources > Icons and select Add Resource > Add Existing File. Browse to

 and select your own icon file.

4. Remove the default icon

5. Rename your icon into "SheetIcon"

6. Go to Debug-> Start external program and enter the full name where Perception.exe is

located, default this will be: “C:\Program Files\HBM\Perception\Perception.exe”

Mandatory:

1. Go to Project > Project Name Properties

2. Go to Build > Output > Output path

3. Verify the output path: C:\Program Files\HBM\Perception\Sheets\CSI

4. Go to Build > Configuration and select Release

5. In the main menu select Build > Build Solution

When all is OK, no error messages are generated. However, ignore warnings for the time
being.

When error messages are generated verify all of the above steps. Also make sure you have
the latest version of the template and the latest version of Perception.
Use the Windows Explorer to have a look in the output directory.

CSI Programming user manual

16 A2698_05_E00_00 HBM: public

Between the already installed sheets you will see the one we just created.
To verify the operation, start Perception.

You should now see the:

A. Default menu for your sheet

B. Empty sheet area

C. Sheet icon

D. Sheet name

Note: the output path as specified in the Build section of the Project Properties should
be the same for each Configuration: debug as well as release.

Now we know that the basics are functioning.
In the next chapter we will have a look into the code and structure of the template.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 17

3 Perception CSI Template

This chapter of the document describes the fundamentals of the provided template. The

template comprises all available functions required to communicate with Perception, as

demonstrated already in the previous chapter: without writing one line of code we were able to

create a sheet. However, the template is more: it is the starting point of complete integration of

your application specific software and Perception.

3.1 The fundamentals of Sheet interfacing

Perception uses a Sheet Manager to control Sheets. The fundamental information of a sheet is

provided by the code in SheetControlInfoProvider.cs.

3.1.1 Sheet Control Information Provider

In the SheetControlInfoProvider.cs the Perception Sheet Manager can find information like:

• Sheet descriptive name

• Sheet descriptive icon

• Preferred sheet index

• Can we create more than one instance of the sheet, automatic or manually

This information is used even before a sheet is created.

Before we create a sheet we must determine if we want the sheet to be automatically created

or not. The following options are available:

• Not manually creatable: the sheet is created automatically by Perception at startup

• Manually creatable: the sheet is not created automatically by Perception at startup,

 you need to add the sheet manually. You can create multiple instances of your sheet.

• Manually creatable only once: the sheet is not created automatically by Perception

 at startup, you need to add the sheet manually. You can create only one instance of

 your sheet.

In the SheetControlInfoProvider.cs the code is as follows:

public ManuallyCreateType ManuallyCreatable

{

 get

 {

 return ManuallyCreateType.NotManuallyCreatable;

 }

}

This is the default situation as shown in the previous chapter. Now change the return value

into:

return ManuallyCreateType.ManuallyCreatableSingleInstance;

and build the solution again. If you now Start Perception you will see that no sheet is loaded.

To load the sheet, do one of the following

CSI Programming user manual

18 A2698_05_E00_00 HBM: public

• In the File menu point to New Sheet and select the sheet in the submenu that comes up.

• In the toolbar click the New Sheet icon. In the menu that comes up select the sheet. (see

below)

• Do a right mouse-click in the tab area of the sheets. Point to New Sheet and select the

sheet in the submenu that comes up.

You can modify the position of the sheet tab in the row of sheet tabs, when the sheet is

automatically created (default). You can do this in the following code:

public int PreferredSheetIndex

{

 get

 {

 return -1;

 }

}

The first position (index = 0) is reserved for the Perception Active Sheet. Use a return value of

1 for the second position, 2 for the third position, etc. Use -1 for default.

You can modify the name and icon as shown in the New Sheet list by modifying the

corresponding code, e.g.

public string Name

{

 get

 {

 return "Creates a demo CSI sheet";

 }

}

public Icon Icon

{

 get

 {

 return null;

 }

}

Now these settings are used for the New Sheet menus.

Note that the Sheet itself still has the name and icon as defined earlier.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 19

3.1.2 Sheet Control Information Retriever

In the SheetControlInfoRetriever.cs the Perception Sheet Manager can find information like:

• Sheet description

The sheet description is used by the Sheet manager

3.1.3 Sheet Control

The file SheetControl.cs has all the fundamentals on board to communicate with the

Perception application itself. The source code provides five main regions:

• Members

• Constructor

• Sheet Members

• Serializable Members

• Disposing

We will discuss these in the following sections.

3.1.4 Members

The members region comprises the members of the sheet interface:

• m_strUserName

• m_iProgram

• m_UIState

• m_InitializeState

• m_bDisposed

CSI Programming user manual

20 A2698_05_E00_00 HBM: public

and are defined as follows:

private string m_strUserName = Properties.Resources.IDS_USERNAME;

private IProgram m_iProgram = null;

private UIState m_UIState = UIState.Invisible;

private InitializeState m_InitializeState = InitializeState.Unknown;

private bool m_bDisposed = false;

m_strUserName

This is the name we already have defined in the resources.

m_iProgram

The interface to the Perception program. This member interfaces to the ComponentManager,

Experiment, SheetManager, UserMode, Workbench and ApplicationSettings. So far we

have already used the SheetManager and in this section we will also see the use of the

UserMode.

m_UIState

This member (User Interface State) defines the "visibility" of the sheet. Initially this state is set

to invisible. When Perception loads the sheet, this state is set to visible, unless we decide not

to do so, as will be explained later.

You can see the state-change in action. To do so:

• Make sure that you have set in the project properties:

o Debug > Configuration: Active (debug)

o Debug > Start Action > Start external program: <Perception>

• And the output window available.

In the source code go to the Events region > Properties region and locate the code for the

UIState. Now modify the code as follows:

public UIState UIState

{

 get

 {

 return this.m_UIState;

 }

 set

 {

 this.m_UIState = value;

 System.Diagnostics.Debug.WriteLine("UIState is now " +

 this.m_UIState.ToString());

 }

}

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 21

When Perception changes the UIState of the sheet, program execution will enter the UIState-

set. Here we enter code to display the UIState in the debug output window.

Start debugging and see the various state-changes.

You can use this entry point for various functions. E.g. when you are running a video on your

sheet, you can pause the video when the sheet becomes invisible and resume playing when

the sheet becomes active again. (active = running + visible)

m_InitializeState

One of the first things Perception will do when it creates a sheet is verifying the initialization

state. This is done before the sheet is created. The following states are currently supported:

• InstalledIncorrectly: currently not used

• NotAllowed: do not create the sheet

• Succeeded: all initialization is OK, create sheet

• Unknown: unknown

As an example, you could create a sheet that is always visible unless the user mode is 'review

only', i.e. no control allowed.

In the source code go to the Events region > Methods region and locate the code for the

InitializeState. Now modify the code as follows:

public InitializeState Initialize(IProgram iProgram)

{

 this.m_iProgram = iProgram;

 if (iProgram.UserMode == UserMode.Review)

 {

 this.m_InitializeState = InitializeState.NotAllowed;

 MessageBox.Show(this,"You cannot use this sheet in review mode.",

 "CSI Demo 1", MessageBoxButtons.OK, MessageBoxIcon.

 Exclamation);

 }

 else

 {

 this.m_InitializeState = InitializeState.Succeeded;

 }

 return this.m_InitializeState;

}

In this section you can also do other tests and initializations before the sheet is created.

CSI Programming user manual

22 A2698_05_E00_00 HBM: public

Combine this with message boxes for user feedback. Note that the Initialize code is only

executed once: the first time the sheet is created. When you hide and restore the sheet this

code will not be executed.

Make sure that the sheet is ManuallyCreatableSingleInstance and do all the things we have

done before, but now start Perception in Review mode. When you want to add the sheet the

messagebox will come up

and the sheet will not be created.

m_bDisposed

This variable is used during the CleanUp() procedure to prevent you repeat the cleanup again.

Constructor

There is only one constructor that is required for Designer support and creates a sheet control

object.

3.1.5 ISheet Members

These are the most widely used functions to interact between the sheet and the Perception

application. These members are divided into the three main categories:

• Events provide a way for a class or object to notify other classes or objects when

something of interest happens. The class that sends (or raises) the event is called the

publisher and the classes that receive (or handle) the event are called subscribers.

• Properties are members that provide a flexible mechanism to read, write, or compute the

values of private fields. Properties enable a class to expose a public way of getting and

setting values, while hiding implementation or verification code.

• Methods are a code block containing a series of statements. In C#, every executed

instruction is done so in the context of a method.

3.1.6 Events

Each sheet has its own menu and optional toolbar. When you go from one sheet to another,

the corresponding menu/toolbar comes up. These are called dynamic menu and dynamic

toolbar as opposed to the standard (static) menus and toolbars that are available within

Perception. There are three events defined that are related to this dynamic behaviour:

• UserNameChanged Use this event when you modified within your 'application' the name

of the current sheet.

• ToolItemsUpdated Use this event to notify Perception that something has happened to

the dynamic toolbar.

• RebuildDynamicMenuRequested Notify Perception that you want to rebuild the menu.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 23

In the next example we will demonstrate the use of UserNameChanged and

RebuildDynamicMenuRequested.

In this example we will start with adding some user interface to our sheet. To do so, start the

SheetControl.cs in Design mode and add two common controls: a TextBox and a Button,

grouped in a GroupBox container as follows:

A GroupBox

B TextBox "textBox1"

C Button "button1"

The operation will be as follows: initially the TextBox is disabled and contains the sheet name.

When you click on the Button the TextBox is enabled for editing and the text of the Button

changes into "Enter". Now you can modify the sheet name. Click the Button again to conclude

the modification.

The initialization code is placed in SheetControl_Load, the other code is placed in the

button1_click event. The complete code could look like this:

CSI Programming user manual

24 A2698_05_E00_00 HBM: public

private void SheetControl_Load(object sender, EventArgs e)

{

 m_bEditFlag = false;

 textBox1.Text = m_strUserName;

 textBox1.Enabled = false;

}

private void button1_Click(object sender, EventArgs e)

{

 if (m_bEditFlag == false)

 {

 button1.Text = "En&ter";

 textBox1.Enabled = true;

 m_bEditFlag = true;

 }

 else

 {

 UserName = textBox1.Text;

 button1.Text = "Edi&t";

 textBox1.Enabled = false;

 m_bEditFlag = false;

 // Fire the RebuildDynamicMenuRequested event to update the

 // dynamic menu name and toolbar

 if (this.RebuildDynamicMenuRequested != null)

 this.RebuildDynamicMenuRequested(this, new EventArgs());

 }

}

In the SheetControl_Load we initialize a state flag that has been defined as member in the

Members > ISheet region as :

private Boolean m_bEditFlag = false;

The textbox is initialized as defined with user name and disabled. Note that the

SheetControl_Load code is only executed once: the first time the sheet is loaded after

creation. When you hide and restore the sheet this code will not be executed.

When you click on the button, initially the textbox is enabled, the button text changes and the

flag is set to true.

Now you can edit the text.

When you click on the button for the second time, the text from the textbox is passed to

"UserName" as argument.

UserName is defined in the Events > Properties region. It gets and sets the sheet name.

When the sheet name is modified, it fires the UserNameChanged event. This allows

Perception to react on this event and modify the sheet name in the tab of the sheet.

After this the button text is modified, the textbox is disabled and the flag is set to false again.

Although Perception will update the sheet name in the tab of the sheet, it will not automatically

update the name of the dynamic menu at once. In order to do this, we need also to fire the

RebuildDynamicMenuRequested event. To do this test if a change is made and if so, fire the

event.

To test this piece of software set the sheet to be ManuallyCreatable in the

SheetControlInfoProvider. This allows for multiple instances of the sheet.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 25

Now you can start debugging.

When Perception is launched in any user mode - except Review only - you can add this sheet.

Modify the name as described earlier.

A Dynamic menu

B Sheet tab

C Text box with new name entered

D Edit / Enter button

You can add multiple sheets and give each sheet its own name.

3.1.7 Properties

A sheet has several properties. Perception uses these properties. Therefore these properties

must be available to Perception. Some of the properties are read-only, others are read-write

properties.

These properties are defined in the ISheet > Properties region. Currently the following

properties are available:

• UserName (R/W) The sheet name

• MenuName (R) The name of the dynamic menu, usually the same as the sheet name

• Icon (R) Sheet icon

• DeleteActiveItemSupported (R) When an object on a sheet is active it can be deleted or

not (default = no)

• UIState (R/W) User interface state, e.g. visibility

• InitializeState (R) Gets the initialization state of the sheet

UserName

The User name / sheet name already has been discussed in detail in the ISheet Members >

Events section.

MenuName

The menu name is a read only property. By default it is set to the user name. However, you

CSI Programming user manual

26 A2698_05_E00_00 HBM: public

can modify it to be any other name. E.g. when you own a company that manufactures

everything, called ACME, you would like the menu header to be ACME also. This has

advantages when:

• You want your name to be on top of the menu, regardless of the name of the sheet

• You want your name to be on top of the menu, even if you have multiple instances of a

sheet with different names

• You want your name to be on top of the menu, even if you have multiple types of sheets

Please not that although the name remains the same, the dynamic menu contents depends on

the selected sheet.

You could modify the MenuName properties as follows:

public string MenuName

{

 get

 {

 if (String.IsNullOrEmpty(this.m_strUserName))

 {

 // Return a string from the resource table when no current

 // User Name is available

 return Properties.Resources.IDS_USERNAME;

 }

 else

 {

 // Return the current User Name or selected name

 return "ACME Company";

 }

 }

}

If you run the previous example (modify user name of sheet) with these modifications and

make two instances of the same sheet, you will notice that the menu name remains the same

and that the contents of the dynamic menu is related to the selected sheet.

Icon

The Icon property is read only. You could choose to modify it, although there is no valid reason

to do so.

DeleteActiveItemSupported

When you want to have the possibility to Delete items on your sheet, you must inform

Perception to do so. This is done through the DeleteActiveItemSupported property. By

default this is set to 'false'. When you want to have this option, you need to set this property to

true. When the menu is pulled down, Perception interrogates this property and once the option

is set to true, the Delete command in the Perception Edit menu comes available.

As an example add a listbox with some items to your sheet:

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 27

Enter some items and modify the property code as follows:

public bool DeleteActiveItemSupported

{

 get

 {

 return ((listBox1.SelectedIndex >= 0) &&

 (m_bEditFlag == false));

 }

}

When nothing is selected in the listbox, it will return false, otherwise true, i.e. when nothing is

selected there is nothing to delete, so the command is not available. This is combined with the

textbox edit: when the textbox edit is (also) active, the command is not available since a

textbox has its own edit-handling.

Note that keyboard handling must be done by yourself. The Delete command in the Edit menu

is merely a 'goodie' to get you started.

When a delete command is issued, Perception enters the DeleteActiveItem code that is

defined in the ISheet Members > Methods region. Modify as follows:

public void DeleteActiveItem()

{

 listBox1.Items.Remove(listBox1.SelectedItem);

}

Here you will need to implement the code required to perform the delete action, i.e. you need

to find out which object is selected and perform an adequate delete action. In the above

example the selected item will be deleted from the listbox.

UIState

The UIState has been described extensively in the section on the sheet control members:

m_UIState.

InitializeState

The InitializeState has been described extensively in the section on the sheet control

members: m_InitializeState.

3.1.8 Methods

A sheet provides a number of methods. Perception uses these methods. Therefore these

CSI Programming user manual

28 A2698_05_E00_00 HBM: public

methods must be available to Perception.

These methods are defined in the ISheet > Methods region. Currently the following methods

are available:

• UpdateMenuItems Update the contents of the dynamic menu

• DeleteActiveItem Code executed when a delete command from the Edit menu is issued

• AutoConfig Code for the auto-configuration feature

• Initialize Code executed when Perception initializes the sheet

• PostLoad Executes code when a new settings file has been loaded

• GetDynamicMenu Here comes the code that takes care of the creation of a dynamic

menu

• GetDynamicToolbar Here comes the code that takes care of the creation of a dynamic

toolbar

This section describes these methods in a different order than provided in the template.

DeleteActiveItem

This method already has been discussed in the section on the ISheet Members > Properties

> DeleteActiveItemSupported.

AutoConfig

When you start Perception or select File > New, you have the option to let Perception create a

"default" layout based on the hardware it finds.

You can also use this auto-configuration feature. E.g. you can load the drop-down list in the

previous example with values based on preferences or any other reason. Currently this only

works for sheets that are automatically created, i.e. not manually creatable.

Assume you want to fill the list with all available recorders within the mainframe that was

selected during auto-configuration:

public void AutoConfig()

{

 listBox1.Items.Clear();

 CtrlAcquisitionSystem AcqSys = CtrlAcquisitionSystemFactory.Create();

 CtrlGroup GroupAll = AcqSys.Groups.GroupAll;

 foreach (CtrlRecorder Recorder in GroupAll.Recorders)

 {

 listBox1.Items.Add(Recorder.Name);

 }

}

First we clear the listbox contents. The next two lines will be explained in more detail in

another section of this manual. For now: we create a group of recorders based on the group

"All" of the acquisition system. This is the same group as you will find in the Perception

Hardware Navigator.

Once we have this group we loop through all available recorders and display their name.

To test this piece of software set the sheet to be NotManuallyCreatable in the

SheetControlInfoProvider.cs. This will create the sheet automatically.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 29

First start Perception and do not use the auto configuration mode. Then select File > New...

and select auto-configuration. In the Select Mainframe dialog that comes up select a

mainframe.

Now the contents of the listbox will be updated. An example is shown in the diagram above:

left is the situation before the auto-configuration, right you see the situation after the auto-

configuration.

Initialize

This has been discussed in detail in the section on Members > m_InitializeState.

PostLoad

When Perception loads a new settings file it also executes the sheet code PostLoad. Here

you can enter your code. This could be the same kind of code as you would do after an auto-

configuration, e.g. loading a list with the available recorders.

GetDynamicMenu

This method is called when Perception want to display the dynamic menu. By default the

dynamic menu has already two entries: move and delete sheet. The other entries are defined

by the sheet.

To add items to the dynamic menu you must create a context menu strip in the sheet user

interface. This menu is not actually deployed but used as a piece of menu transferred to the

dynamic menu.

 To add items to the dynamic menu

1. In the programming environment add a tool strip menu to your user interface: Toolbox
>Menus & Toolbars > ContextMenuStrip

2. Use Edit Items ... to add/modify menu items

3. Add the following code:

public ToolStripItem[] GetDynamicMenu()

{

 ContextMenuStrip strip = contextMenuStrip1;

 if (this.IsDisposed || this.Disposing || (strip == null))

 return null;

 ToolStripItem[] aToolArray = new ToolStripItem[

 strip.Items.Count];

 strip.Items.CopyTo(aToolArray, 0);

 return aToolArray;

}

CSI Programming user manual

30 A2698_05_E00_00 HBM: public

Here we create a ‘toolstrip’ item called aMyItems based on the size of the designed

contextMenuStrip. After this we copy the contents of the contextMenuStrip to our toolstrip

and return this toolstrip.

4. Run the program

 You will see that the new commands are added. In a next chapter we will go into more detail in

using the menu.

UpdateMenuItems

Menu items can be modified during program execution. E.g. when a start acquisition command

is part of your menu, this command should be disabled while acquisition is active. A good

moment to update your menu information is just before the menu becomes active, i.e. drops

down. Now you are sure you have the latest information.

This function is provided through the UpdatMenuItems method.

Example:

public void UpdateMenuItems()

{

 menuItem1ToolStripMenuItem.Enabled = !m_bEditFlag;

 toolStripButton1.Enabled = !m_bEditFlag;

}

Depending on the edit state of the sheet name as we have used so far, the second menu entry

is disabled or enabled.

GetDynamicToolBar

In very much the same way as we created a dynamic menu, you can also create a toolbar

related to your sheet. Instead of creating a context menu strip, you now create a toolstrip and

modify its contents. Once created you can use the following code:

public ToolStripItem[] GetDynamicToolBar()

{

 ToolStrip strip = this toolStrip1;

 if (this.IsDisposed || this.Disposing || (strip == null))

 return null;

 ToolStripItem[] Result = new ToolStripItem[

 strip.Items.Count];

 strip.Items.CopyTo(Result, 0);

 return Result;

}

Make sure you have set the visibility to false.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 31

3.1.9 ISerializable Members

This region contains the GetObjectData and SheetControl procedure that allows you to

save/load sheet specific information when the vwb is saved/loaded. For each item that you

want to save, choose a unique name and create an entry in the data stream to be saved as

follows:

public void GetObjectData(SerializationInfo info, StreamingContext context)

{

 info.AddValue("ModifiedSheetName", m_strUserName, typeof(string));

}

For each item add a line. In the above example the current sheet name m_strUserName is

saved in the string variable named ModifiedSheetName.

Once saved you can restore the data when the same vwb is loaded as follows:

public SheetControl(SerializationInfo info, StreamingContext context): this()

{

 m_strUserName = Tools.GetValue<string>(info, "ModifiedSheetName",

 m_strUserName);

}

Here the saved string in variable ModifiedSheetName is restored into m_strUserName.

When no data is available, the third parameter in GetValue is used as default. Typically this is

the initialized version of the variable to be restored.

3.1.10 Disposing

This region contains the code where you can add your own dispose code. It contains the

following generated lines:

private void SheetDisposed(object sender, EventArgs e)

{

 if (IsDisposed) return;

 if (m_bDisposed) return;

 try

 {

 // Add your clean up code

 }

 catch

 {

 }

 m_bDisposed = true;

}

Use this function if you want to release (e.g.) objects you are using.

private void SheetDisposed(object sender, EventArgs e)

{

 if (IsDisposed) return;

 if (m_bDisposed) return;

 m_Datamanager = null;

 m_bDisposed = true;

}

Later on in this manual we will come back to the meaning of the DataManager

CSI Programming user manual

32 A2698_05_E00_00 HBM: public

4 Acquisition Control

One of the first actions when creating your own software is usually to see if you can control

acquisition. In this chapter we will demonstrate the fundamentals of acquisition within the

Perception software. Not only will we demonstrate how to create your own acquisition control,

but also how to read acquisition status and how to implement a good user interface that

complies with Perception as well as common guidelines for user interfaces.

4.1 Basic acquisition control

In this section we will describe the implementation of basic acquisition control as well as the

steps required to implement hardware interfacing.

4.1.1 Getting started

Create a new project as described earlier with the correct name, icon and “creatability”. To get

started we will:

• add a 'using' directive

• create an acquisition control object

• initialize program and object

Acquisition control is 'hosted' by the Perception.ILO. ILO stands for Intermediate Layer

Objects, these layer objects are used to interface with the connected mainframe(s). Since we

will be using the ILO multiple times, we will add a Using Directive at the beginning of the

source code where already other directives are placed. Add this directive below the other CSI

directives:

using Perception.Sheets;

using Perception;

using Perception.ILO;

Since we want to control an acquisition system, we will need to create an acquisition system

object:

In the Members region add a region below the ISheet region as follows:

#region -> MyMembers

private CtrlAcquisitionSystem m_MyDemoSystem = null;

private CtrlGroup m_GroupAll = null;

#endregion

We now have a member that is a control of an acquisition system. The other member is

m_GroupAll, the type of this member is CtrlGroup. This member variable will point to the

GroupAll, this group is always available and contains all available recorders in the system.

Initialization will be done in the Initialize method as follows:

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 33

public InitializeState Initialize(IProgram iProgram)

{

 if (iProgram.UserMode == UserMode.Review)

 {

 m_InitializeState = InitializeState.NotAllowed;

 }

 else

 {

 try

 {

 m_iProgram = iProgram;

 m_MyDemoSystem = CtrlAcquisitionSystemFactory.Create();

 m_GroupAll = m_MyDemoSystem.Groups.GroupAll;

 m_InitializeState = InitializeState.Succeeded;

 }

 catch

 {

 m_InitializeState = InitializeState.NotAllowed;

 PerceptionMessageBox.Show(this, "Could not initialize sheet",

 "CSI: Catch", MessageBoxButtons.OK, MessageBoxIcon.Error);

 }

 }

 return this.m_InitializeState;

}

We start again with a simple test: when in review mode the sheet cannot be loaded.

In the following section we perform a basic test: when an error occurs within the try section,

the catch code is executed, i.e. when the connection to Perception fails or when we cannot

create an instance of the acquisition control object, the sheet is not loaded.

We can now start with the user interface.

4.1.2 The user interface

We will start with a very basic user interface. Also the code behind this user interface will be

very elementary. Create a design as follows:

A. GroupBox

B. Button "StartCmd"

C. Button "StopCmd"

For the time being we will initialize the buttons when the sheet becomes active: when no

acquisition system is found, the buttons are disabled, otherwise the Start button is enabled.

CSI Programming user manual

34 A2698_05_E00_00 HBM: public

public UIState UIState

{

 get

 {

 return this.m_UIState;

 }

 set

 {

 this.m_UIState = value;

 if (this.m_UIState == UIState.Active)

 // sheet becomes active

 {

 if (m_GroupAll.Recorders.Count == 0)

 // no hardware -> no control

 {

 StartCmd.Enabled = false;

 StopCmd.Enabled = false;

 }

 else

 {

 StartCmd.Enabled = true;

 StopCmd.Enabled = false;

 }

 }

 }

}

The Start button is used to start an acquisition for all recorders. Also some acquisition

parameters are set as example.

Enter the code for the Start button:

private void StartCmd_Click(object sender, EventArgs e)

{

 // for demo purposes -> set some acquisition parameters here

 // 10 kSamples at 10 kHz with trigger position at 50%

 foreach (CtrlGroup myGroup in m_MyDemoSystem.Groups)

 {

 if (myGroup.SupportsTimebase)

 {

 myGroup.SweepLength = 10000;

 myGroup.TriggerPosition = 50;

 myGroup.HighSamplingFrequency = 99990.0;

 }

 }

 m_GroupAll.Run();

 StartCmd.Enabled = false;

 StopCmd.Enabled = true;

}

For ease of use we start all recorders within all recorder groups at the same time with the

same settings.

To do this we loop through the recorders collection within the GroupAll group of our

acquisition system m_MyDemoSystem.

For each recorder we find we set the sweep length, trigger position and sample rate.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 35

When done, the acquisition is started and the buttons are enabled or disabled as appropriate.

The Stop command is easier:

private void StopCmd_Click(object sender, EventArgs e)

{

 m_GroupAll.Stop();

 StartCmd.Enabled = true;

 StopCmd.Enabled = false;

}

When you run this program, you will notice some issues with respect to the update of the

buttons. E.g. when you trigger an acquisition, the recording will stop but the buttons will not be

modified. This is because we do not 'respond' to changes in the acquisition status. To do this

properly we need an event handler that responds to the various event changes.

4.1.3 Event handling

As in real life it is sometimes not a bad idea to respond to events that happen instead of having

to look all the time to a status.

In our environment we will do that by creating an event handler that responds to events fired

by an object. In our situation we will respond to events fired by the GroupAll object. The

GroupAll object is defined as follows in the MyMembers section:

private CtrlGroup m_GroupAll = null;

and initialized in the Initialize method:

this.m_GroupAll = m_MyDemoSystem.Groups.GroupAll;

after the initialization of m_MyDemoSystem.

We will always try to use hook and unhook functions to manage the event procedures in our

program.

Therefore, you should create the following functions:

private void HookToGroupAll()

{

 UnHookFromGroupAll();

 if (m_GroupAll != null)

 {

 m_GroupAll.AcquisitionStateChanged +=

 GroupAllAcquisitionStateChanged;

 }

}

private void UnHookFromGroupAll()

{

 if (m_GroupAll != null)

 {

 try

 {

 m_GroupAll.AcquisitionStateChanged -=

 GroupAllAcquisitionStateChanged;

 }

 catch

CSI Programming user manual

36 A2698_05_E00_00 HBM: public

 {

 }

 }

}

The complete code segment will now look as follows:

public InitializeState Initialize(IProgram iProgram)

{

 if (iProgram.UserMode == UserMode.Review)

 {

 this.m_InitializeState = InitializeState.NotAllowed;

 }

 else

 {

 try

 {

 this.m_iProgram = iProgram;

 this.m_MyDemoSystem = CtrlAcquisitionSystemFactory.Create();

 this.m_GroupAll = m_MyDemoSystem.Groups.GroupAll;

 HookToGroupAll();

 this.m_InitializeState = InitializeState.Succeeded;

 }

 catch

 {

 this.m_InitializeState = InitializeState.NotAllowed;

 PerceptionMessageBox.Show(this, "Could not initialize sheet",

 "CSI:Catch", MessageBoxButtons.OK, MessageBoxIcon.Error);

 }

 }

 return this.m_InitializeState;

}

void GroupAllAcquisitionStateChanged(object sender, int Running,

 int OneShot, int Stopping, int Paused, int Idle)

{

 throw new Exception("The method or operation is not implemented.");

}

It is good habit to clean up the code during the dispose of the sheet, therefore add the

following code:

private void SheetDisposed(object sender, EventArgs e)

{

 if (IsDisposed) return;

 if (m_bDisposed) return;

 try

 {

 // Add your clean up code

 UnHookFromGroupAll();

 m_GroupAll = null;

 m_MyDemoSystem = null;

 }

 catch

 {

 }

 m_bDisposed = true;

}

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 37

Since the fundamentals are in place, we can modify the user interface to include a text label.

The label named AcqStatus is used to show the status of the acquisition.

The event handler can now be programmed:

void GroupAllAcquisitionStateChanged(object sender, int Running,

 int OneShot, int Stopping, int Paused, int Idle)

{

 this.InvokeOnUI(() => DoGroupAllAcquisitionStateChanged(sender,

 Running, OneShot, Stopping, Paused, Idle));

}

void DoGroupAllAcquisitionStateChanged(object sender, int Running,

 int OneShot, int Stopping, int Paused, int Idle)

{

 if (Running > 0)

 {

 AcqStatus.Text = "Active";

 StartCmd.Enabled = false;

 StopCmd.Enabled = true;

 }

 else if (Paused > 0)

 {

 AcqStatus.Text = "Paused";

 StartCmd.Enabled = true;

 StopCmd.Enabled = true;

 }

 else if (OneShot > 0)

 {

 AcqStatus.Text = "Single shot mode";

 StartCmd.Enabled = false;

 StopCmd.Enabled = true;

 }

 else if (Stopping > 0)

 {

 AcqStatus.Text = "Stopping";

 StartCmd.Enabled = false;

 StopCmd.Enabled = false;

 }

 else if (Idle > 0)

 {

 AcqStatus.Text = "Idle";

 StartCmd.Enabled = true;

 StopCmd.Enabled = false;

 }

 else

 {

 AcqStatus.Text = "****";

 StartCmd.Enabled = false;

CSI Programming user manual

38 A2698_05_E00_00 HBM: public

 StopCmd.Enabled = false;

 }

}

The event handler calls the InvokeOnUI() for support multi-threading. This function takes care

that the event request possibly coming from a background thread will be handled in the main

UI thread. The DoGroupAllAcquisitionStateChanged() method updates the UI: for each

state the text in the label is adapted and the command buttons are enabled/ disabled

according the possibilities each state has. E.g. when the acquisition status is active you can

only stop the acquisition, not start it.

The complete acquisition status and control handling is now event driven. Therefore we can

omit the code we introduced in the UIState property.

For initialization purposes we still can add code in the SheetControl load:

private void SheetControl_Load(object sender, EventArgs e)

{

 AcqStatus.Text = "****";

 StartCmd.Enabled = false;

 StopCmd.Enabled = false;

}

Also the key handling in the button click routines can be removed, leaving:

private void StartCmd_Click(object sender, EventArgs e)

{

 // for demo purposes -> set some acquisition parameters here

 // 10 kSamples at 10 kHz with trigger position at 50%

 foreach (CtrlGroup myGroup in m_MyDemoSystem.Groups)

 {

 myGroup.SweepLength = 10000;

 myGroup.TriggerPosition = 50;

 myGroup.HighSamplingFrequency = 99990.0;

 }

 m_GroupAll.Run();

}

private void StopCmd_Click(object sender, EventArgs e)

{

 m_GroupAll.Stop();

}

You can of course also add a button to trigger or set the system in pause mode.

Run the software and play with the commands on the sheet as well as the command buttons of

the acquisition control in Perception.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 39

4.1.4 Add menu commands

As discussed earlier you can also add menu commands to allow for an improved user interface

and better keyboard support. Start with the implementation of the basic menu commands and

add an image when available:

Once done two more things need to be done:

• Connect the commands to the correct functions

• Add code to make the behaviour of the menu commands identical to the behaviour of the

buttons.

To connect the commands to the correct functions you need to modify the events of the

contextMenuStrip we created.

For ease of reference name the menu commands "MenuStartCmd" and "MenuStopCmd". In

the Properties dialog of the contextMenuStrip go to the Events section. In the menu select a

command and modify the Click event:

• For the MenuStartCmd select "StartCmd_Click"

• For the MenuStopCmd select "StopCmd_Click"

Now add code in the event handler and the SheetControl_Load to control the behaviour of

the menu commands, e.g.:

if (Running > 0)

{

 AcqStatus.Text = "Active";

 StartCmd.Enabled = false;

 StopCmd.Enabled = true;

 MenuStartCmd.Enabled = false;

 MenuStopCmd.Enabled = true;

}

You can also add a toolbar with the same functionality to finalize this chapter. When you do so

do not forget to include a call to " RebuildDynamicMenuRequested" or "ToolItemsUpdated" at

the end of the event handler to make sure that the toolbar is updated correctly.

CSI Programming user manual

40 A2698_05_E00_00 HBM: public

5 Hardware Settings

In the previous chapter we already have seen a small attempt to modify hardware settings. In

this chapter we will demonstrate how to access hardware settings in general and how to read

the capabilities of a specific channel and recorder. But first we will need to understand how

hardware is organized in Perception.

5.1 Hardware organization

Data acquisition hardware within Perception is based on the concept of a recorder. A recorder

consists of a number of acquisition channels that share the same basic recording parameters

sample rate, sweep length and pre- and post-trigger length. Usually a single recorder is

physically identical to a single acquisition card.

Multiple recorders can be placed in a single mainframe. The mainframe is the housing for the

recorders, provides the power and includes the interface for the local area network. A

mainframe has its own network address (IP address).

Within the Perception software recorders can be combined into logical groups for easy

reference. Recorders within a group are not bound by mainframe.

Therefore the basic ways to access hardware is either through groups or through mainframes.

There can be one or more groups. The number of groups is defined by a count. You can use

this count to index a specific group. All groups together are referenced by the GroupAll

concept.

There can be one or more mainframes. The number of mainframes is defined by a count. You

can use this count as an index to address a specific mainframe.

Each group and mainframe has one or more recorders. A recorder is part of both a group and

a mainframe.

Recorders and channels also use a count to find out how many objects are available. Use

these counts to index a specific recorder or channel.

The general method to access groups, recorders or channels is by using the foreach

statement:

Here you see an actual example of accessing a specific channel setting. In this example the

group concept is used. You could, however, also loop through the mainframes:

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 41

5.2 Get and set parameters

We will start with a simple example to show how to get and set the span of a channel. A

channel is a member of a recorder and every recorder is a member of the GroupAll; therefore

we can use the following line of code to get access to the first channel of the first recorder:

CtrlChannel myChannel = m_GroupAll.Recorders[1].Channels[1];

Attention: the recorder and channel collection indexes are 1 based.

5.3 User interface

The user interface is based on two list boxes with labels and grouped in a groupbox:

Put the following code behind the on-click events of the Get and Set buttons:

private void btnGetSpan_Click(object sender, EventArgs e)

{

 // Check if there are recorders available

 if (m_GroupAll.Recorders.Count < 1)

 {

 PerceptionMessageBox.Show(this, "No Channels connected", "CSI: Demo",

 MessageBoxButtons.OK, MessageBoxIcon.Error);

 return;

 }

 // Check if the first recorder contains channels

 if (m_GroupAll.Recorders[1].Channels.Count < 1)

 {

CSI Programming user manual

42 A2698_05_E00_00 HBM: public

 PerceptionMessageBox.Show(this, "No Channels connected",

 "CSI: Demo", MessageBoxButtons.OK, MessageBoxIcon.Error);

 return;

 }

 CtrlChannel myChannel = m_GroupAll.Recorders[1].Channels[1];

 TextBoxSpan.Text = myChannel.Span.ToString();

}

private void btnSetSpan_Click(object sender, EventArgs e)

{

 // Check if there are recorders available

 if (m_GroupAll.Recorders.Count < 1)

 {

 PerceptionMessageBox.Show(this, "No Channels connected",

 "CSI: Demo", MessageBoxButtons.OK, MessageBoxIcon.Error);

 return;

 }

 // Check if the first recorder contains channels

 if (m_GroupAll.Recorders[1].Channels.Count < 1)

 {

 PerceptionMessageBox.Show(this, "No Channels connected",

 "CSI: Demo", MessageBoxButtons.OK, MessageBoxIcon.Error);

 return;

 }

 CtrlChannel myChannel = m_GroupAll.Recorders[1].Channels[1];

 double dSpan = FloatingPoint.ConvertStringToDouble(TextBoxSpan.Text);

 // Try to convert the text box string input into a double

 if (double.IsNaN(dSpan))

 {

 string cMsg = string.Format(

 "Error setting the Span of the channel: {0} to {1}",

 myChannel.Name, TextBoxSpan.Text);

 PerceptionMessageBox.Show(this, cMsg, "CSI: Demo",

 MessageBoxButtons.OK, MessageBoxIcon.Error);

 }

 else

 {

 myChannel.Span = dSpan;

 }

 // Read back the Span and show it in the text box

 TextBoxSpan.Text = myChannel.Span.ToString();

}

5.4 Get and set parameters using capabilities

The Perception software is based on the concept that it has no knowledge of the hardware it

therefore has to interrogate the hardware for its capabilities on a specific feature. Depending

on the feature this can be either a list of possible settings, or minimum and maximum values

including a step size.

In addition there are settings in hardware that go automatically to the nearest available value

when a different value is entered. Therefore you should always verify these settings

afterwards.

First we need to define when we can get hardware capabilities from a system. When no

hardware is available we cannot interrogate settings. When recorders are added or removed

we might need to take action. In order to do so we will "hook" onto the RecorderAdded (and

RecorderRemoved) of the GroupAll event. I.e. when somewhere in the system a recorder is

added or removed we can start interrogating its capabilities.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 43

5.5 Initialize

Add the following line of code in the HookToGroupAll function of our program:

m_GroupAll.RecorderAdded += GroupAllRecorderAdded;

Add the following line of code in the UnHookFromGroupAll function of our program:

m_GroupAll.RecorderAdded -= GroupAllRecorderAdded;

Add the following method to the program:

void GroupAllRecorderAdded(object sender, CtrlRecorder Recorder)

{

}

As an example we will create two drop down lists that allow us to get and set the signal and

input coupling of the first channel of the first recorder. When done you can verify correct

operation by looking at the settings sheet in Perception. In our example we will use a very

straightforward approach. In real programming life you should be more object-oriented.

5.6 User interface with Capabilities

The user interface is based on two list boxes with labels and grouped in a groupbox:

A

B

CSI Programming user manual

44 A2698_05_E00_00 HBM: public

A. ComboBox for signal coupling: listSignalCoupling, with DropDownStyle set to DropDownList

B. ComboBox for input coupling: listInputCoupling, with DropDownStyle set to DropDownList

5.7 Get capabilities

You can get the capabilities of a specific settings using the GetCapabilities procedure. This

procedure requires as input the requested item and returns a structure of type Capabilities.

This structure has the following fields:

public struct Capabilities

{

public CtrlEntryType EntryType;

public object LowerBound;

public CtrlSettingType SettingsType;

public CtrlSettingUsage SettingUsage;

public object StepSize;

public object UpperBound;

public Array ValueListItems;

public Array ValueListItemsEnabled;

}

• CtrlSettingsEntryType Indicates the type of entry. E.g. CtrlSettingsEntry_List indicates a

list.

• LowerBound Lowest value when the entry type is not a list, e.g. an edit or a list edit.

• CtrlSettingsType Defines the type of values for the upper and lower values, e.g. a

CtrlSettingsType_I4 indicates a four-byte integer.

• CtrlSettingsUsage Are you allowed to modify it? E.g. CtrlSettingsUsage_Selectable

indicates yes.

• StepSize Stepsize when entry type is a step edit.

• UpperBound Highest value when the entry type is not a list, e.g. an edit or a list edit.

• ValueListItems When entry type is a list, these are the possible 'values'.

• ValueListItemsEnabled For each list entry there is a value that indicates if a value is

enabled or not, or only when acquisition is idle.

In the RecorderAdded event handler a possible scenario could be as follows:

243 void GroupAllRecorderAdded(object sender, CtrlRecorder Recorder)

244 {

 // Make user interface update thread safe by using InvokeOnUI()

245 this.InvokeOnUI(() => DoGroupAllRecorderAdded(sender, Recorder));

246 }

248 void DoGroupAllRecorderAdded(object sender, CtrlRecorder Recorder)

249 {

250 // this should be > 0, but you never know

251 if (m_GroupAll.Recorders.Count == 0)

252 return;

253

254 // now we have at least one recorder, but does it have channels?

255 if (m_GroupAll.Recorders[1].Channels.Count == 0)

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 45

256 return;

257

258 // did we already fill this list?

259 if (listSignalCoupling.Items.Count > 0)

260 return;

261

262 // Create variables

263 CtrlChannelSignalCoupling CCSC;

264 CtrlChannelInputCoupling CCIC;

265 string sResult;

266

267 // fetch signal coupling capabilities

268 Capabilities args;

269 m_GroupAll.Recorders[1].Channels[1].GetCapabilities(

 CtrlChannelCapabilities.CtrlChannelCaps_SignalCoupling, out args);

271

272 // are we allowed to use this setting?

273 if (args.SettingUsage != CtrlSettingUsage.CtrlSettingUsage_Selectable)

274 return;

275

276 // is it a list?

277 if (args.EntryType == CtrlEntryType.CtrlEntryType_List)

278 {

279 // yes to all -> fetch values that we are allowed to use

280 listSignalCoupling.Enabled = true;

281 int vLB = args.ValueListItems.GetLowerBound(0);

282 int vUB = args.ValueListItems.GetUpperBound(0);

283 for (int nItem = vLB; nItem <= vUB; nItem++)

284 {

285 CCSC =

 (CtrlChannelSignalCoupling)args.ValueListItems.GetValue(nItem);

286

287 if (CtrlEntryEnabled.CtrlEntryEnabled_Never ==

 (CtrlEntryEnabled)args.ValueListItemsEnabled.GetValue(nItem))

288 continue;

289

291 sResult = GetEnumSigConString(CCSC);

292

293 listSignalCoupling.Items.Add(Item);

294 }

295 // fetch the actual setting

296 CCSC = m_GroupAll.Recorders[1].Channels[1].SignalCoupling;

297 sResult = GetEnumSigConString(CCSC);

298 // show actual setting

299 listSignalCoupling.SelectedIndex =

 listSignalCoupling.FindStringExact(sResult);

300 }

301

302

303 // continue with second list if not already done

304 if (listInputCoupling.Items.Count == 0)

305 {

306 // fetch input coupling capabilities

307 m_GroupAll.Recorders[1].Channels[1].GetCapabilities(

 CtrlChannelCapabilities.CtrlChannelCaps_InputCoupling, out args);

308

309 // are we allowed to use this setting?

310 if (args.SettingUsage != CtrlSettingUsage.CtrlSettingUsage_Selectable)

311 return;

312

313 // is it a list?

314 if (args.EntryType == CtrlEntryType.CtrlEntryType_List)

315 {

316 // yes to all -> fetch values that we are allowed to use

317 listInputCoupling.Enabled = true;

CSI Programming user manual

46 A2698_05_E00_00 HBM: public

318 int vLB = args.ValueListItems.GetLowerBound(0);

319 int vUB = args.ValueListItems.GetUpperBound(0);

320 for (int nItem = vLB; nItem <= vUB; nItem++)

321 {

322 CCIC =

 (CtrlChannelInputCoupling)args.ValueListItems.GetValue(nItem);

323

324 if (CtrlEntryEnabled.CtrlEntryEnabled_Never ==

 (CtrlEntryEnabled)args.ValueListItemsEnabled.GetValue(nItem))

325 continue;

326

327 sResult = GetEnumInpConString(CCIC);

328

329 listInputCoupling.Items.Add(Item);

330 }

331 // fetch the actual setting

332 CCIC = m_GroupAll.Recorders[1].Channels[1].InputCoupling;

333 sResult = GetEnumInpConString(CCIC);

334 // show actual setting

335 listInputCoupling.SelectedIndex =

 listInputCoupling.FindStringExact(sResult);

336 }

337 }

338 }

In the above example we fill the signal and input coupling lists. The code is not optimized for

demonstration purposes.

In lines 243 - 246 we do our multi-threading support by calling the InvokeOnUI() function

The actual event handler starts with some tests: are recorders added (line 250 - 256), if so,

are there any channels available in the first recorder (line 255 - 256)?

Since this event probably is called multiple times (each recorder added fires this event), we

must check one way or another if we already have filled the list or not. Here a test is done to

verify if the list is filled in line 259 - 260.

The lines 263 - 269 are used to declare and initialize variables we need in the rest of the code.

In line 269 we make the actual call to the procedure that provides us with information about

the signal coupling capabilities of the selected channel of the selected recorder.

Now we need to investigate these settings: line 273 - 274 verifies if we are allowed to use this

setting or not.

We continue if it is a list (line 277).

There are two arrays provided: ValueListItems, a list of values and ValueListItemsEnabled,

a list of corresponding settings. For each entry in ValueListItems there is an entry in

ValueListItemsEnabled that defines the behaviour of the value in ValueListItems.

In line 283 - 295 we step through the ValueListItems and the ValueListItemsEnabled. For each

ValueListItems item that we may use we add an entry in the signal coupling list. The entry in

the list is a string. Therefore we make use of a procedure that converts the enumeration into

an actual string.

Visual studio can provide a helping hand in the creation of such a procedure. The result can

look like this:

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 47

504

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

private string GetEnumSigConString(CtrlChannelSignalCoupling sc)

{

 switch (sc)

 {

 case CtrlChannelSignalCoupling.CtrlChannelSC_AC:

 return "AC";

 case CtrlChannelSignalCoupling.CtrlChannelSC_AC_ExternalProbe:

 return "AC-External";

 case CtrlChannelSignalCoupling.CtrlChannelSC_AC_Frequency:

 return "AC-Freq";

 case CtrlChannelSignalCoupling.CtrlChannelSC_AC_RMS:

 return "AC-RMS";

 case CtrlChannelSignalCoupling.CtrlChannelSC_AC_TrueRMS:

 return "AC-TrueRMS";

 case CtrlChannelSignalCoupling.CtrlChannelSC_DC:

 return "DC";

 case CtrlChannelSignalCoupling.CtrlChannelSC_DC_ExternalProbe:

 return "DC-External";

 case CtrlChannelSignalCoupling.CtrlChannelSC_DC_Frequency:

 return "DC-Freq";

 case CtrlChannelSignalCoupling.CtrlChannelSC_DC_RMS:

 return "DC-RMS";

 case CtrlChannelSignalCoupling.CtrlChannelSC_DC_TrueRMS:

 return "DC-TrueRMS";

 case CtrlChannelSignalCoupling.CtrlChannelSC_GND:

 return "GND";

 default:

 return "----";

 }

 return "****";

}

When the list is filled, the last thing we need to do is to find out the actual setting and show it.

To do this we get the signal coupling property, convert it again to a string and use this as a

pointer to set the index of our list. Below is an example of the user interface when the code is

executed.

In lines 305 – 335 the input coupling list will be filed using similar steps.

CSI Programming user manual

48 A2698_05_E00_00 HBM: public

Items are added to the list when the corresponding setting is not equal to

CtrlEntryEnabled_Never (line 324). However, some items can only be enabled when

acquisition is idle. This means that they are in the list by default but should be 'disabled' when

acquisition is not idle. We will discuss this issue in the next section where we will show you

how to send a setting to the hardware.

5.8 Modify a hardware setting

As mentioned in the previous section, some hardware settings are only allowed when

acquisition is idle. However, after we have used a GetCapabilities function, this information is

lost, unless we save this information.

One way to save this information is to create a class that contains all this information. We will

do this for our signal coupling and input coupling items.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 49

5.9 Create a class

To create a class in Visual Studio select Project > Add Class ... and add a class named

ComboItem.

Go to the class view to see classes.

Initially this class should have the following code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

using System;

using System.Collections.Generic;

using System.Text;

using Perception.ILO.Engine;

namespace CSI_Acquisition

{

 class ComboItem

 {

 public string m_Text;

 public int m_Value;

 public CtrlEntryEnabled m_Enabled;

 public ComboItem(string Text, int Value, CtrlEntryEnabled

 Enabled)

 {

 m_Text = Text;

 m_Value = Value;

 m_Enabled = Enabled;

 }

 public override string ToString()

 {

 return m_Text;

 }

 }

}

This code creates three public class members: one for the string that we use in our list, one for

the enumerator and one for the 'enabled'-value.

The constructor fills these members with the values it gets.

The ToString() method returns the string.

CSI Programming user manual

50 A2698_05_E00_00 HBM: public

Now we also need to adjust the code from the previous section a little bit. Once an item was

found that could be added to the list we had the following code:

sResult = GetEnumSigConString(CCSC);

listSignalCoupling.Items.Add(sResult);

Now we also have to create the new object:

sResult = GetEnumInpConString(CCIC);

ComboItem Item = new ComboItem(sResult, (int) CCIC,

(CtrlEntryEnabled) args.ValueListItemsEnabled.GetValue (nItem));

listInputCoupling.Items.Add(Item);

The line where we show the actual setting should read:

listSignalCoupling.SelectedIndex = listSignalCoupling.

FindStringExact(sResult);

We need to do this because an object is added to the list, not a text string. So far operation of

our drop-down lists will remain the same.

We repeat this also for the second list the signal input coupling:

sResult = GetEnumSigConString(CCSC);

listSignalCoupling.Items.Add(sResult);

Now we also have to create the new object:

sResult = GetEnumInpConString(CCIC);

ComboItem Item = new ComboItem(sResult, (int) CCIC,

(CtrlEntryEnabled) args.ValueListItemsEnabled.GetValue (nItem));

listInputCoupling.Items.Add(Item);

5.9.1 Modify the setting

Modification of the actual hardware setting is simple. However, we need to keep in mind that

we cannot change every setting always. Therefore additional code is required. We will react on

the SelectionChangeCommitted event of the list. This event is generated when "an item is

chosen from the drop-down list and the drop-down list is closed".

Here we need to verify if the selected option is allowed and, if so, modify the hardware setting.

Initially we will start with the following code:

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 51

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

private void listSignalCoupling_SelectionChangeCommitted(

 object sender, EventArgs e)

{

 ComboItem Item = listSignalCoupling.SelectedItem as ComboItem;

 if (Item.m_Enabled == CtrlEntryEnabled.CtrlEntryEnabled_WhenIdle)

 {

 // Check acquisition status

 int Live;

 int Pause;

 int HoldNext;

 int HoldLast;

 int Idle;

 m_GroupAll.GetAcquisitionState(out Live, out HoldNext,

 out HoldLast, out Pause, out Idle);

 if (Idle != m_GroupAll.Recorders.Count)

 {

 listSignalCoupling.SelectedText = GetEnumSigConString

 (m_GroupAll.Recorders[1].Channels[1].SignalCoupling);

 return;

 }

 }

 m_GroupAll.Recorders[1].Channels[1].SignalCoupling =

 (CtrlChannelSignalCoupling) Item.m_Value;

}

Since we are working with ComboItem objects we first need to define a new object for this

routine and at the same time copy the selected object values into it (line 302).

In line 621 verify the enabled setting. If this setting is enabled when idle we need to test,

otherwise it is ok

Note: only items that are enabled are in the list

Check the acquisition status. When the acquisition status is not idle replace the selected item

text with the text that represents the actual current situation, do nothing and return.

Otherwise send the new setting.

This should do the job.

When you are using the Genesis Firmware Simulator, or depending on your actual hardware,

you might see another phenomenon:

Depending on the acquisition state the capabilities displayed in the settings sheet differ from

the capabilities we have seen so far.

This is because some capabilities are listed differently when the system is idle or not.

To cope with this issue we should have written our code better structured to make it easier to

respond to various events, e.g. the m_GroupAll.Recorders[1].CapabilitiesChanged() event.

For the time being we will solve this issue with a 'trick': when our list drops down, we clear the

list and fill it again. To fill it we call the RecorderAdded event handler, because there is where

our code is:

CSI Programming user manual

52 A2698_05_E00_00 HBM: public

private void listSignalCoupling_DropDown(object sender, EventArgs e)

{

 listSignalCoupling.Items.Clear();

 m_GroupAll_RecorderAdded(null);

}

When using the Genesis Firmware Simulator you can see these effects. First make sure you

are idle and display the list:

Here you will see 5 items, the last two are only available when the system is idle.

Now start an acquisition.

And display the list: only the top 3 items are available.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 53

Now there is only one thing remaining: full synchronization between our sheet and Perception.

When we modify a setting, this is reflected in the Perception software. However, when

Perception modifies a setting, this is not reflected in our sheet. So we need another event

handler.

5.10 Synchronization

We need to get notified when a setting has changed and react on this event. For this we need

to create an object for a channel that generates events when something has changed. As a

rule of thumb: create an object for each 'unit' that you want to modify. E.g. if you want to modify

channel settings, create a channel object. This object then has properties, methods and events

that we can use.

Example: create a channel member variable in the Members region:

#region -> MyMembers

private CtrlAcquisitionSystem m_MyDemoSystem = null;

private CtrlGroup m_GroupAll = null;

private CtrlChannel m_Channel = null;

#endregion

Before we can use this member variable we need to initialize it. This can be done the first time

we access the channel setting: in the RecorderAdded event handler, just before we fetch the

signal coupling capabilities.

// Connect the object and hook it to the correct event

if (m_Channel == null)

{

 m_Channel = m_GroupAll.Recorders[1].Channels[1];

 m_Channel.ScCouplingSettingsChanged +=

 m_Channel_ScCouplingSettingsChanged;

}

First we check if the object is already initialized, if not it is connected to the first channel of the

first recorder and a corresponding event handler is defined.

The event handler itself can have the following code:

CSI Programming user manual

54 A2698_05_E00_00 HBM: public

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

void DoChannelScCouplingSettingsChanged(object Sender,

CtrlCouplingSettingItem Mask, CtrlChannelInputCoupling InCoupling,

CtrlChannelSignalCoupling SigCoupling, double MeasuringPeriod, double

ReferenceLevel, double Impedance, double InputCapacityLow, double

InputCapacityHigh)

{

this.InvokeOnUI(() => DoChannelScCouplingChanged(sender, Mask, InCoupling,

SigCoupling, MeasuringPeriod, ReferenceLevel, Impedance, InputCapacityLow,

InputCapacityHigh));

}

void DoChannelScCouplingSettingsChanged(object Sender,

CtrlCouplingSettingItem Mask, CtrlChannelInputCoupling InCoupling,

CtrlChannelSignalCoupling SigCoupling, double MeasuringPeriod, double

ReferenceLevel, double Impedance, double InputCapacityLow, double

InputCapacityHigh)

{

 // event handler. we only do the signal coupling changed here

 // although we could also do the input coupling here

 if (Mask != CtrlCouplingSettingItem.CtrlCouplingSettingItem_

 SignalCoupling)

 return;

 string sResult = GetEnumSigConString(SigCoupling);

 int scIndex = listSignalCoupling.FindStringExact(sResult);

 if (scIndex < 0)

 {

 // item could not be found -> list is incorrect

 // so rebuild and reset index

 listSignalCoupling.Items.Clear();

 m_GroupAll_RecorderAdded(null);

 scIndex = listSignalCoupling.FindStringExact(sResult);

 }

 listSignalCoupling.SelectedIndex = scIndex;

}

As a starter: Use the InvokeOnUI() to for the multi-threading support.

After this we check which parameter fired this changed event. To keep it simple we only test

for the signal coupling: when it is not the signal coupling we return (line 382).

As we have done earlier we fetch the text string that corresponds to the enumeration and find

the index in the list that corresponds to this text.

Now we stumble into a typical behaviour. As mentioned earlier, capabilities can change

depending on the acquisition state. This is what we try to catch in lines 384 - 391: if we cannot

find the correct string, the index returns -1 and therefore we need to rebuild the list with a trick

as we have done before. Should we have dealt with this situation better in the first place, then

this would have not been necessary.

As an example remove the test and proceed as follows with the Genesis Firmware Simulator

'connected':

• Make sure that the system is idle.

• Set the signal coupling to 'external'

• Start an acquisition.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 55

• The drop-down list will now only show the two 'external' options.

• Stop the acquisition and switch to AC, DC, or GND in the settings sheet.

• The text entry field in 'our' list will be empty.

• Drop down the list and the list will be initialized by the drop-down event handler of the

combo-box.

If you have the multiple workbook option in Perception and a dual-monitor system you can do

your testing more easily: move the test sheet to a new workbook and place this on the second

monitor. Now you can have both sheets active: the settings sheet and the test sheet and verify

the correct interaction.

CSI Programming user manual

56 A2698_05_E00_00 HBM: public

6 Data Visualization

Data acquisition is all about data: the acquisition, display, analysis, reporting and archiving of

data. So far we have been occupied with sheet interfacing, acquisition control and modifying

settings. So now it is time to do some visualization of recorded data and basic measurements

within that data. Using the Perception CSI has the advantage that you have access to a variety

of functions that you do not need to program yourself. One of them is the data display.

Note that when you use an "off-the-shelf" Perception component you also get all the additional

stuff for free. E.g. the display also gives you zooming, cursors, measurements, drag-and-drop,

etc.

6.1 Data display

The data display is part of a range of standard Perception components that can be added to

your project. In the past (32-bit version of Perception) you could directly use the Perception

Display component in the Visual Studio designer of your CSI project. However for the 64-bit

version of Perception this is not possible anymore because Visual Studio is 32 bit and does not

support 64-bit native code components in design mode. The Perception Display and Meter

core is build using native code. To solve this problem there are two wrapper components

added to Perception called PerceptionDisplay and PerceptionMeter, these components are

in Perception.CSI.Support.dll. They do not show the meter or display in the visual studio

designer but show a blue or green area with a yellow text like you see in the picture below.

During runtime this looks like:

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 57

To add the Perception components

1. Go to the SheetControl Design layout.

2. In the Toolbox select one of the tab headers and do a right mouse click.

3. In the context menu that comes up select Add Tab and give it a relevant name like

"Perception Components".

4. With this tab selected do a right mouse click.

5. In the context menu that come up select Choose Items ...

6. In the dialog that comes up select Browse...

7. Navigate to the Perception folder. Typically: C:\Program Files\HBM\Perception.

8. Select the file Perception.Components.dll and click Open.

9. Click OK in the Choose Toolbox Items dialog.

Now the components are added to the toolbox.

To add the Perception wrapper components

1. Go to the SheetControl Design layout.

2. In the Toolbox select one of the tab headers and do a right mouse click.

3. In the context menu that comes up select Add Tab and give it a relevant name like

"Perception CSI Support".

CSI Programming user manual

58 A2698_05_E00_00 HBM: public

4. With this tab selected do a right mouse click.

5. In the context menu that come up select Choose Items ...

6. In the dialog that comes up select Browse...

7. Navigate to the Perception folder. Typically: C:\Program Files\HBM\Perception.

8. Select the file Perception.CSI.Support.dll and click Open.

9. Click OK in the Choose Toolbox Items dialog.

Now the components PerceptionDisplay and PerceptionMeter are added to the toolbox.

6.1.1 User interface

The user interface for this example is simple: a display and a command button. The command

button is used to 'fill' the display with data sources.

When combined with our previous example the layout could look like this:

A. Command button FillCmd

B. Placeholder for the data display display1

6.1.2 The code

To gain access to the data sources for display we need to have access to the data manager.

The data manager is the central part of the software that manages all data: waveforms

B

A

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 59

(analogue, digital), numerical values, system variables, etc. So we will start with the obvious:

#region -> MyMembers

private CtrlAcquisitionSystem m_MyDemoSystem = null;

private CtrlGroup m_GroupAll = null;

private CtrlChannel m_Channel = null;

private DataManager m_DataManager = null;

#endregion

All the required code is placed within the FillCmd_Click routine as follows:

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

private void FillCmd_Click(object sender, EventArgs e)

{

 if (m_DataManager == null)

 {

 m_DataManager = new DataManager();

 }

 // clear display

 for (int j = display1.pDisplay.TimeDisplay.CtlLayout.Pages.Count;

 j > 0;j--)

 {

 display1.pDisplay.TimeDisplay.CtlLayout.Pages[j].Delete();

 }

 display1.pDisplay.TimeDisplay.Pages.InitPages();

 int TraceCount = 1;

 foreach (PoolEntry PE in m_DataManager.PoolEntries)

 {

 if (PE.DataSource == null)

 continue;

 if (PE.DataSource.DataType !=

 RecordingInterface.DataSourceDataType.

 DataSourceDataType_AnalogWaveform)

 continue;

 string[] aPoolEntry = new string[] { PE.Name };

 if (TraceCount > 4)

 {

 display1.pDisplay.TimeDisplay.AddPage().Activate();

 TraceCount = 1;

 }

 else

 {

 if (TraceCount != 1)

 {

 display1.pDisplay.TimeDisplay.CtlLayout.Pages.

 ActivePage.Panes.AddPane().Activate();

 }

 }

 display1.pDisplay.AddDataSources(aPoolEntry);

 TraceCount++;

 }

 display1.pDisplay.TimeDisplay.CtlLayout.Pages[1].Activate();

}

We start with some housekeeping:

CSI Programming user manual

60 A2698_05_E00_00 HBM: public

• 714 - 717: Create a new data manager object.

• 719 - 722: Delete all pages that exist.

• 723: Create a single new page and make it the active page.

The main loop is used to step through all available data sources (pool entries). When an

analogue waveform is found this waveform is added to the display. In this example we use a

maximum of 4 traces per page, each trace in its own pane.

• 728 - 731: Skip empty data sources and all data sources that are not analogue waveforms.

• 732: A string array is created (with only one entry) that contains the identifier of an

analogue waveform.

• 733 - 736: Create a new page when number of traces on this page exceeds 4 and activate

it.

• 738 - 743: Add a new pane for a trace when it is not the first trace of a page and activate it.

• 745 - 746: Add the data source to the display on the active page in the active pane.

Increment the trace counter.

When all is said and done activate the first page to show it.

Now run the code.

Note: that the display is fully integrated in the Perception software: you can zoom and

pan, modify the properties, drag and drop data sources from the navigator into the

display, do cursor measurements, etc.

For better performance when looking for pool entries we recommend the use of the

PoolEntries function GetNames(). This function returns an array of pool entry strings. As an

input parameter you enter a string to define where to look in the pool, you can use the “*”

character as a wildcard. The second parameter defines the type of the pool entry you want.

The last parameter gives you back an array containing the found pool entries.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 61

Code example:

Array aNames;

m_DataManager.PoolEntries.GetNames("Active.*",

 PoolEntryType.PoolEntryType_Waveform, out aNames);

foreach (string cName in aNames)

{

 string[] aPoolEntry = new string[] { cName };

 if (TraceCount > 4)

 {

 display1.pDisplay.TimeDisplay.AddPage().Activate();

 TraceCount = 1;

 }

 else

 {

 if (TraceCount != 1)

 {

 display1.pDisplay.TimeDisplay.CtlLayout.

 Pages.ActivePage.Panes.AddPane().Activate();

 }

 }

 display1.pDisplay.AddDataSources(aPoolEntry);

 TraceCount++;

}

6.2 Meter

As standard the 'digital' meter is accessible. You can add a numerical meter the same way as

a display. In the next example we will add a meter and 'connect' it to the measurement cursor

Y-value. At the same time we will 'hook' to the event when the measurement cursor value

changes and modify a text label to show the corresponding X-value.

6.2.1 User interface

The user interface consists of a meter and a text label. We need to make a little bit more room

to make everything fit.

CSI Programming user manual

62 A2698_05_E00_00 HBM: public

A. Text label XValueLbl

B. Placeholder for meter meter1

6.2.2 The code

As a starter add a new member:

private PoolEntry m_ActiveCursor = null;

Modify the SheetControl_Load to include some initialization. By now it could look like this:

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

private void SheetControl_Load(object sender, EventArgs e)

{

 AcqStatus.Text = "****";

 StartCmd.Enabled = false;

 StopCmd.Enabled = false;

 FillCmd.Enabled = false;

 MenuStartCmd.Enabled = false; ToolStartCmd.Enabled = false;

 MenuStopCmd.Enabled = false; ToolStopCmd.Enabled = false;

 listSignalCoupling.Enabled = false;

 listInputCoupling.Enabled = false;

 display1.UserName = "CSIDisplay";

 // set meter name ans connect meter to the correct pool entry

 meter1.UserName = "CSIMeter";

 string[] aPoolEntry = new string[] { "Display.CSIDisplay.

 ActiveCursor.YValue" };

 meter1.pMeter.LDSMeter.AddDataSources(aPoolEntry);

}

A

B

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 63

The new information starts at line 571.

In lines 571 and 572 the name of the display and the meter are set. It is imperative that you

use unique names throughout the Perception application, otherwise the navigators cannot

make a distinction and use the first available object only.

In lines 573 and 574 the data source is 'connected' to the display in the same way as you

would connect to a display.

Again we want to connect to an event. Therefore we need to create an event handler. At the

same time move some code to a better location.

We will start using the constructor section:

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

public SheetControl()

{

 InitializeComponent();

 if (m_DataManager == null)

 {

 m_DataManager = new DataManager();

 }

 if (m_DataManager != null)

 {

 m_ActiveCursor = m_DataManager.PoolEntries[

 "Display.CSIDisplay.ActiveCursor.XPosition"];

 }

 HookToActiveCursor();

 Disposed += SheetDisposed;

}

Line 61 - 64 is the moved code.

In line 66 - 69 a new member is created: the x-position of the active cursor of our named

display.

In line 71 hook to the active cursor changed event.

Note that you need to create an event handler for each object that you want to use this way.

Also note that a pool entry with a name (line 68) always returns an object. This allows us to

hook to events even before the actual variable is initialized.

 private void HookToActiveCursor()

 {

 UnHookFromActiveCursor();

 if (m_ActiveCursor != null)

 {

 m_ActiveCursor.DataChanged += ActiveCursor_DataChanged;

 }

 }

CSI Programming user manual

64 A2698_05_E00_00 HBM: public

 private void UnHookFromActiveCursor()

 {

 if (m_ActiveCursor != null)

 {

 m_ActiveCursor.DataChanged -= ActiveCursor_DataChanged;

 }

 }

Our last action for this example is to create the corresponding event handler:

796

797

798

799

800

801

802

803

804

805

void ActiveCursor_DataChanged()

{

 this.InvokeOnUI(()=>

 {

 if (m_ActiveCursor != null)

 {

 double dXVal = (double) m_ActiveCursor.DataSource.Value;

 XValueLbl.Text = dXVal.ToString("##0.000");

 }

 }

}

Of course we start with theInvokeOnUI() to make it possible to update the UI from a possible

call coming from a sub thread

In line 801 the actual value is fetched. Since an object is returned we need to convert it to a

double before we can format the output. If no formatting was required we could have used the

one-liner:

XValueLbl.Text = m_ActiveCursor.DataSource.Value.ToString();

Do not forget to call the UnhookFromActiveCursor() in the SheetDisposed method.

Also set the private member variable m_ActiveCursor to null in the SheetDisposed method.

Run the code to see it in action.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 65

The meter shows the Y-value of the active trace at the position of the active (red)

measurement cursor. The text label shows the X-position. Moving the cursor will update the

values. Also selecting another trace will update the values.

CSI Programming user manual

66 A2698_05_E00_00 HBM: public

7 Data Analysis - Part One

After discussing acquisition and visualization in the previous chapters it is now time to start

working on the analysis of data. This topic is so extensive that we split it into two parts. In this

first part we will describe the concepts of the data manager, data sources and user variables.

In our examples we will demonstrate how you can use the measurement cursors to define a

part of interest within a waveform, cut out that part of a waveform, do some basic operation on

this data and put it back into the system and display it. We also will show how to use the

internal Perception calculators to do some basic calculations on data. Display markers will be

used to show the calculation results into a display.

7.1 Introduction

In this first part we will give an introduction on relevant concepts: data manager, data source

and user variables.

7.2 The data manager

In previous chapters and examples we already have seen the data manager. The data

manager was defined as:

protected DataManager m_DataManager = null;

...

if (m_DataManager == null)

{

 m_DataManager = new DataManager();

}

The data manager is the central part of the software that manages all data: waveforms

(analog, digital), numerical values, system variables, etc.

To do so the data manager:

• keeps a list of ALL variables available in the system,

• maintains a list of event listeners for each variable,

• takes care of creating the link between data originators (data sources) and data

consumers

Variables within the system:

• are of a specific type:

o number

o string (literal text)

o waveform analog or digital

o formula, i.e. the result of a calculation through the formula database,

o etc.

• have a unique name, e.g.:

o System.Constants.Pi

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 67

o Active.Group1.Recorder_A.Ch_A1

• have a reference to their data source (the IDataSrc interface)

• have a list of event subscribers. Events can be:

o data added

o data changed

o etc.

All variables are controlled by the data manager and stored in the data pool. To gain access

to a variable you need to fetch the variable out of the data pool through the data manager, i.e.

you request from the data manager an entry out of the datapool, the pool entry. Using the

aforementioned definition:

PoolEntry PE = m_DataManager.PoolEntries["System.Time"];

if (PE.EntryType == PoolEntryType.PoolEntryType_String)

{

}

Note that PoolEntries[<name>] always returns a PoolEntry object. This allows you to hook to

events even before the variable is initialized.

At this point you have the pool entry, i.e. the gateway to the actual data source, but not yet the

data itself!

For this we need to go one step further: the IDataSrc interface. This interface is the most

important interface in Perception. It is the interface between the data originator and data

consumer.

Typical data sources include numerical, string and waveform data sources.

7.2.1 Numerical data source

For the numerical data source the following 'settings' are in effect (there are more):

• Type = DataSourceDataType_Numerical

• Name is the user name of the variable, e.g. "Mean"

• Value is the actual value, returned as an object

• YUnits contains the technical unit string for this value

CSI Programming user manual

68 A2698_05_E00_00 HBM: public

As an example have a look at the following code:

using RecordingInterface;

...

PoolEntry PE =

m_DataManager.PoolEntries["Display.CSIDisplay.ActiveCursor.Yvalue"];

if (PE.EntryType == PoolEntryType.PoolEntryType_Number)

{

 if (PE.DataSource.DataType == DataSourceDataType.

 DataSourceDataType_Numerical)

 {

 if (PE.DataSource.Value != null)

 {

 double dValue = (double)PE.DataSource.Value;

 string sUnits = PE.DataSource.YUnit.ToString();

 string sName = PE.DataSource.Name.ToString();

 }

 }

}

The result can be:

• dValue = -0.31596969696967947

• sUnits = "Volt"

• sName = "Active Cursor YValue"

First we test the pool entry type. Then we test the actual data source type. Usually these are

the same. However, there are situations with waveforms where the pool entry type returns an

analogue waveform, while the data source type returns a more detailed description.

As mentioned the value itself is an object. When null it does not exist. In our example the

active cursor could be outside the waveform range and return null. The value could also return

an invalid number (NaN).

7.2.2 String data source

For the string data source the following 'settings' are in effect:

• Type = DataSourceDataType_String

• Name is the user name of the variable, e.g. "Local Time"

• Value is the actual string value, returned as an object

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 69

Example:

PoolEntry PE = m_DataManager.PoolEntries["System.Time"];

if (PE.EntryType == PoolEntryType.PoolEntryType_String)

{

 if (PE.DataSource.DataType == DataSourceDataType.

 DataSourceDataType_String)

 {

 if (PE.DataSource.Value != null)

 {

 string sTime = PE.DataSource.Value.ToString();

 string sName = PE.DataSource.Name.ToString();

 }

 }

}

The result can be:

• sTime = "11:55:50"

• sName = "Local Time"

In the above example the same procedure is followed as in the numerical data source

example.

7.2.3 Waveform data source

Waveforms are more complex than the relatively simple numerical and string data sources.

Important parameters / settings are:

• Status:

o Static: the data has been recorded. No new data will be added to this waveform.

o Dynamic: data is being recorded and DataAdded events will be fired.

• Sweeps: a collection of DataSweep objects that can be used to determine start and end

times of sweeps in multi-sweep acquisitions.

• GetValueAtTime: a method to get a value at a specified time - even if that time is between

two consecutive samples - using linear interpolation.

An important feature of waveforms is that they consist of one or more segments. When you

retrieve the data, you will get initially a list of segments. Each segment is a piece of data with

its own X- and Y- information as well as begin and end time. Data may be segmented due to

timebase changes as well as amplifier range changes. Also gaps (e.g. caused by a temporarily

pause of the acquisition) create segments.

For more detailed information on recordings, segments, etc. refer to the HBM PNRF SDK

User Manual that is separately available.

7.3 User data sources

As opposed to the data sources described earlier there are also user variables. These user

variables form a single collection of user data sources.

CSI Programming user manual

70 A2698_05_E00_00 HBM: public

The user data sources are created and modified by the user, i.e. for specific types of variables

the user can define its own content. You cannot do this with standard data sources, e.g. you

cannot modify the value of string or the value of a cursor position or the contents of waveform.

Three types of user data sources can be created:

• Numerical data

• String data

• Waveform data

In order to create a user data source you will need to add a reference to the

Perception.UserVariables.

To add the Perception UserVariables reference

1. Go to Project > Add Reference...

2. In the dialog that comes up select Browse...

3. Navigate to the Perception folder. Typically C:\Program Files\HBM\Perception.

4. Select the file Perception.UserVariables.dll and click OK.

Now the reference is added.

Add a using statement as follows:

using Perception.UserVariables;

7.3.1 User numerical data source

The user numerical data source requires two parameters to be created:

• Path name

• User name

Once created it has multiple properties, e.g.:

• Numerical value

• Units string

To create a user numerical data source see the following code:

NumericalDataSource MyNum;

UserDataSources MySources = UserDataSources.Instance;

MyNum = MySources.CreateNumber("CSIDemo.MyNumber", "CSI Numerical");

MyNum.Value = 10;

MyNum.Units = "Volt";

This code will create a user numerical data source and the required collection.

You can find the your newly created variable in the data sources navigator.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 71

The variable has been created with the name MyNumber in the branch CSIDemo.

7.3.2 User string data source

Very much the same as we created a user numerical variable, we can create a user string

variable. Assuming we already have created an instance of the UserDataSources collection:

StringDataSource MyString;

MyString = MySources.CreateString("CSIDemo.UserData.MyString", "CSI

String");

MyString.Value = "Hello World";

Here we also have expanded the navigator tree.

When you modify the variable name string from the user numerical value also gives you the

above result.

7.3.3 User waveform data source

More complex is the user waveform data source.

The main parameters include:

• Name

• Both horizontal and vertical units

• Display range

• The use of blocks: a waveform is composed of blocks, each block with his own start time,

X-Step value (sample rate) and number of samples.

CSI Programming user manual

72 A2698_05_E00_00 HBM: public

Have a look at the following code, assuming we already have created an instance of the

UserDataSources collection:

WaveformDataSource MyWaveData;

WaveformDataBlock WfBlock;

// fill a buffer with a double sinewave

// array is zero-based

double[] Buffer = new double[720];

double angle;

for (int i = 1; i <= 720; i++)

{

 angle = i * (Math.PI / 180);

 Buffer[i-1] = (double) (5 * Math.Sin(angle));

}

// create the waveform

MyWaveData = MySources.CreateWaveForm("CSIDemo.UserData.MyWave",

 "SineWave");

// set display range and units

MyWaveData.DisplayRangeFrom = 8;

MyWaveData.DisplayRangeTo = -8;

MyWaveData.YUnits = "Volt";

MyWaveData.XUnits = "s";

// add the data block and fill with buffer data

// data starts at t=0 and uses an XStep of 0.001 s

WfBlock = MyWaveData.AddDataBlock(0, 0.001);

WfBlock.WriteWaveform(0, Buffer);

Start with the creation of a waveform data source and data block. For this example we fill an

array with a dual sine wave, ranging from - 5 to + 5.

The waveform is added to the pool and the display range and units are set.

Then the block is added to the waveform, starting at t=0 and with a delta-t of 0.001 seconds

between the samples, i.e. A sample rate of 1 kHz.

The block itself is filled with the buffer contents and an offset within the block of 0 samples.

You can add (append) more data afterwards by using a different offset.

If you run this example you can drag the newly created waveform into a display to get the

following result:

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 73

Here you see the waveform with the user name, the corresponding X- and Y-units and values.

Note: That at this point the user data source is still a user data source and not an

IDataSrc as described earlier. E.g. the waveform is based on blocks and not on

segments.

To convert a user data source into a general purpose data source use the following code:

IDataSrc NewWaveform = MyWave as IDataSrc;

m_DataManager.PoolEntries["CSIDemo.NewWaveform"].DataSource = NewWaveform;

m_DataManager.PoolEntries["CSIDemo.NewWaveform"].EntryType =

PoolEntryType.PoolEntryType_Waveform;

The NewWaveform is an alias for the MyWave, but behaves and can be treated as a 'regular'

IDataSrc waveform pool entry.

7.4 The example

In the following example we will learn how to:

• position the measurement cursors automatically

• use the cursor positions to cut out a piece of the active trace and copy this data

• do some operations on the copied data

• put the result back in a new trace / data source

We will use a number of techniques discussed earlier in this chapter.

7.4.1 User interface

The user interface is based on our previous examples. The following modifications will be

made:

• The Fill Display command button will be used to as a Clear Display command button: from now

on we will use the navigators to fill the display. Hit the Clear Display button to empty the

display.

• A new a area is created with a command button that will start our "analysis". A text label is

temporarily used to show the number of segments we are working on.

CSI Programming user manual

74 A2698_05_E00_00 HBM: public

Below you see the layout.

A. Clear display command button “FillCmd”

B. Go! analysis command button “AnalysisCmd”

C. Output label to show number of segments “SegmentsCnt”

7.4.2 The code - Getting started

We will start with some coding that needs to be done before we can actually start.

Make sure you have added the reference to the Perception.UserVariables as discussed

earlier.

Our part of the using directives region should look as follows:

using Perception.Sheets;

using Perception;

using Perception.ILO.Engine;

using DataSrcManager;

using RecordingInterface;

using Perception.UserVariables;

The region MyMembers should look like this:

A

B C

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 75

protected CtrlAcquisitionSystem m_MyDemoSystem = null;

protected CtrlGroup m_GroupAll = null;

protected CtrlChannel m_Channel = null;

protected DataManager m_DataManager = null;

protected PoolEntry m_ActiveCursor = null;

protected IDataSrc m_MySource = null;

The FillCmd_Click routine is now used only to clear the display and should be stripped down

to:

private void FillCmd_Click(object sender, EventArgs e)

{

 // clear the display

 DisplayHelper.ClearDisplay(display1.pDisplay);

}

In this code we have used the DisplayHelper class, this class can be found in the

Perception.UserKeys reference file. It contains some useful functions related to the Perception

display.

Now we can start with the code behind the AnalysisCmd command button.

7.4.3 Manipulate measurement cursor position

In this example we will manually position a cursor on a point of interest. When the command

button is pressed a region will be created by the two measurement cursors that occupies 40%

of the horizontal display range: 20% before and 20% after the initial position of the active

cursor.

To do so create the following code:

CSI Programming user manual

76 A2698_05_E00_00 HBM: public

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

private void AnalysisCmd_Click(object sender, EventArgs e)

{

 // start with defining the area of interest:

 // +/- 20% of display range around active cursor

 // get active cursor time position

 double dActTime =

 display1.pDisplay.TimeDisplay.Cursors.ActiveItem.time;

 // centre display around this time

 display1. pDisplay.TimeDisplay.CtlLayout.TimeController.CentralTime =

 dActTime;

 // fetch start and endtime = range

 double dStartTime =

 display1. pDisplay.TimeDisplay.CtlLayout.TimeController.StartTime;

 double dEndTime =

 display1.pDisplay.TimeDisplay.CtlLayout.TimeController.EndTime;

 double dRange = dEndTime - dStartTime;

 // set interval to +/- 20% of range around active cursor time

 double dStep = 0.2 * dRange;

 // set cursors

 dStartTime = dActTime - dStep;

 dEndTime = dActTime + dStep;

 display1.pDisplay.TimeDisplay.Cursors[1].time = dStartTime;

 display1.pDisplay.TimeDisplay.Cursors[2].time = dEndTime;

}

The code itself is very straightforward. You only need to know where to find the required

information.

• 697: get the time position of the active cursor.

• 700: centre the display around this point. Actually the time position is moved to the centre

of the display. By doing so we will not end up somewhere outside the display.

• 703 - 705: calculate the total time span of the display.

• 708: set the required measurement interval to ± 20% of display range.

• 711 - 714: set the measurement cursors to the calculated position.

To verify this code you do not need any data: just grab a cursor, position it anywhere in your

display and hit the command button.

When this code runs well we can continue:

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 77

716

717

718

719

720

721

722

723

724

 // locate data source of active trace

 string sActDataSource =

 display1.pDisplay.TimeDisplay.ActiveTrace.TraceProp.DataSourceName;

 if (sActDataSource == null)

 return;

 // use only analog waveforms for the this example

 m_MySource = m_DataManager.PoolEntries[sActDataSource].DataSource;

 if (m_MySource.DataType !=

 DataSourceDataType.DataSourceDataType_AnalogWaveform)

 return;

Here we start with finding the data source of the active trace. This data source name can be

found as a trace property from the active trace. Use the returned string as pool entry.

Verify if the data source type (not the pool entry) is an analogue waveform. When all is OK

continue:

726

727

728

729

730

731

732

733

734

735

736

737

738

739

 // initialize variables

 object Result;

 IDataSegments Segments;

 // fetch data

 m_MySource.Data(dStartTime, dEndTime, out Result);

 // fetch segments within this data

 Segments = Result as IDataSegments;

 SegmentsCnt.Text = Segments.Count.ToString();

 // no segments

 if (Segments.Count == 0)

 return;

• 727 - 728: we need a Result object that is used to return the segment information from the

data source. This information is placed in Segments.

• 731: we fetch the data from the data source. Actually we fetch the segment information.

Start and end time are the values we calculated earlier.

• 734 -735: place the segment information in Segments and put the number of segments as

text in our label.

• 738 -739: when no segments are available we quit, otherwise we continue.

Typically when we request data from a continuous recording, a single segment will be

returned. When we request data from a sweeped/transient recording, multiple segments can

be returned.

In our example we will make a copy of the active trace between the two cursor positions and

create a new waveform from this. We will also display the result.

Create the (user) waveform:

CSI Programming user manual

78 A2698_05_E00_00 HBM: public

741

742

743

744

745

746

 // create waveform in the user data sources

 WaveformDataBlock Block = null;

 WaveformDataSource MyWave = null;

 UserDataSources MySources = UserDataSources.Instance;

 MySources.RemoveDatasource(MySources["CSIDemo.MyResult"]);

 MyWave = MySources.CreateWaveForm("CSIDemo.MyResult","My Waveform");

• 742 -743: initialize required variables.

• 744: create an instance of the user data sources collection.

• 745: for the purpose of this example: delete the waveform if it exists.

• 746: create the waveform

Once created, we need to initialize the various properties of the waveform. In this situation we

can copy various information from the original data source.

748

749

750

751

752

 // set initial parameters

 MyWave.XUnits = m_MySource.XUnit;

 MyWave.YUnits = m_MySource.YUnit;

 MyWave.DisplayRangeFrom = Segments[1].DisplayFrom;

 MyWave.DisplayRangeTo = Segments[1].DisplayTo;

We copy the X- and Y-units from the data source, the display range is copied from the first

segment. Usually the display range is the same for all segments. If you are not sure you will

have to loop through all the segments to find the maximum display range.

We can now copy the data. We loop through all segments. For each segment we will add a

block to the waveform and fill it with the relevant parameters and data.

754

755

756

757

758

759

760

761

762

763

// loop through all returned segments

 for (int i = 1; i <= Segments.Count; i++)

 {

 int dSampleCount = Segments[i].NumberOfSamples;

 Segments[i].Waveform(

 DataSourceResultType.DataSourceResultType_Double64, 1,

 dSampleCount, 1,

 out Result);

 double dXStep = Segments[i].SampleInterval;

 Block = MyWave.AddDataBlock(Segments[i].StartTime, dXStep);

 Block.WriteWaveform(0, (double[])Result);

 }

• 755: start the loop for all segments

• 758: fetch the data: the data becomes available in Result. We request floating point data,

starting at the first sample, all samples without reduction.

• 759: get the sample interval.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 79

• 761: add the data block with the correct start time and sample interval.

• 762: fill the data block with the data starting at the first position.

Note that in line 761 we use the start time of the segment. We do this because this is the exact

time of the first available sample.

Once we have added all the available information we can display the data:

765

766

767

display1.pDisplay.TimeDisplay.CtlLayout.Pages.ActivePage.Panes.

 AddPane().Activate();

string[] aPoolEntry = new string[] { "CSIDemo.MyResult" };

display1.pDisplay.AddDataSources(aPoolEntry);

To do so: add a pane, activate it and add our new waveform data as a trace to the active pane.

As a test: clear the display and drag waveform data into the display. Click the command

button.

CSI Programming user manual

80 A2698_05_E00_00 HBM: public

Clear the display and use some other data. See what happens when an event trace is the

active trace. Try to find a trace with multiple segments.

7.5 Do some basic math

At the same time we can already perform some basic manipulation on the data. As a very

straightforward example we will create an additional waveform that is a straight line. Its DC

value is the average value (mean) of the waveform interval we have just extracted.

To do so add the additional code on the appropriate places to create a second waveform:

// initialize also for calculated average value

WaveformDataBlock BlockAve = null;

WaveformDataSource MyWaveAve = null;

...

// create waveform also for calculated average value

MySources.RemoveDatasource(MySources["CSIDemo.MyResultAve"]);

MyWaveAve = MySources.CreateWaveForm("CSIDemo.MyResultAve",

 "My Average Waveform");

...

// set initial parameters also for average waveform

MyWaveAve.XUnits = m_MySource.XUnit;

MyWaveAve.YUnits = m_MySource.YUnit;

MyWaveAve.DisplayRangeFrom = Segments[1].DisplayFrom;

MyWaveAve.DisplayRangeTo = Segments[1].DisplayTo;

To find the average value you must add all sample values from all segments and divide this

result by the total number of sample of all segments.

We should do this before the data is copied into our new waveform.

The following section does this calculation.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 81

// loop through all segments to find out the average value

double dAverage = 0;

int iTotalCnt = 0;

// for all segments

for (int j = 1; j <= Segments.Count; j++)

{

 // fetch the data

 int dCnt = Segments[j].NumberOfSamples;

 Segments[j].Waveform(

 DataSourceResultType.DataSourceResultType_Double64,

 1, dCnt, 1, out Result);

 double[] Buffer = (double[])Result;

 // sum all sample values

 for (int m = 0; m < Buffer.Length; m++)

 {

 dAverage = dAverage + Buffer[m];

 }

 // sum the total number of samples

 iTotalCnt = iTotalCnt + dCnt;

}

// calculate the average

dAverage = dAverage / iTotalCnt;

Within the loop that does the copying of the original waveform section into our new waveform

we also create the second waveform.

// create a block to waveform with average value

BlockAve = MyWaveAve.AddDataBlock(Segments[i].StartTime, dXStep);

double[] ResultAve = new double[dSampleCount];

for (int k = 1; k <= dSampleCount; k++)

{

 ResultAve[k - 1] = Convert.ToSingle(dAverage);

}

BlockAve.WriteWaveform(0, ResultAve);

And after we have added the trace to the display we will also add the second trace to the

display, overlaid on the first trace with a different color.

// add also - overlaid - the average value

aPoolEntry = new string[] { "CSIDemo.MyResultAve" };

display1.pDisplay.AddDataSources(aPoolEntry);

display1.pDisplay.TimeDisplay.CtlLayout.ActiveTrace.TraceProp.PrimaryColor

= 0x00FFFF; // yellow

CSI Programming user manual

82 A2698_05_E00_00 HBM: public

When you run the code the result could look like this:

Here you see a situation in which there are two segments, the left-most with a lower sample

rate.

For verification a formula in the formula database was created with the same calculation:

CalcAvg = @Mean(CSIDemo.MyResultAve)

This result is shown in a second meter that was dragged into the meter area we already had.

7.6 Using Perception waveform calculators

Perception has some built in calculators which are accessible via CSI. The calculators work on

a single waveform, they can work on the complete waveform from beginning to end or you can

define the interval for calculation.

The following calculators are available:

• WavMinMax - Finds Min, Max, MinPos and MaxPos

• WavFastMinMax - Finds only Min and Max

• WavAreaEnergy - Finds Area and Energy under curve

• WavPeriodandCounter - Finds Period, Frequency and number of Cycles

• WavPulse - Finds pulse characteristics like Rise Time, Fall Time and Pulse Width

• WavStatistics - Finds Mean, RMS and Sigma

• WavHistogram – Returns histogram array

• WavFindLevelCrossing - Finds the position of a level crossing

• WavFindLocalExtreme - Finds the local extremes

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 83

For our example we will calculate the maximum and minimum values and their positions. You

can have a look in the HBM – Perception Interfaces help file to get detailed information on the

WavMinMax class.

After the maximum, minimum, maximum position and minimum position are found the vertical

and horizontal cursors will be set. We also label the two points with two Perception trace

markers.

Extend the last example with a groupbox called Calculations see picture below.

CSI Programming user manual

84 A2698_05_E00_00 HBM: public

In order to create a calculator you will need to add a reference to the Perception.WavCalc dll

Also add a reference to the Perception.Common dll because this dll contains the conversion

routines.

Add the following code behind the button Calculate event click:

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 85

private void btnCalc_Click(object sender, EventArgs e)

{

 // Get Active Trace

 DTrace myTrace = display1.pDisplay.TimeDisplay.ActiveTrace;

 if (myTrace == null)

 {

 PerceptionMessageBox.Show(this, "No active trace found",

 "CSI Display Demo", MessageBoxButtons.OK, MessageBoxIcon.Error);

 return;

 }

 // Get datasource from active trace

 IDataSrc iActiveTrace = myTrace.TraceProp.DataSrc;

 if (iActiveTrace == null)

 {

 PerceptionMessageBox.Show(this, "Active trace has no datasource",

 "CSI Display Demo", MessageBoxButtons.OK, MessageBoxIcon.Error);

 return;

 }

 // Create a new Min Max calculator

 WavMinMax Calculator = new WavMinMax(iActiveTrace,

 double.MinValue, double.MaxValue);

 // Execute the calculator

 WavCalcResult CalcResult = Calculator.Exec();

 // Check if result is OK

 if (CalcResult != WavCalcResult.OK)

 {

 PerceptionMessageBox.Show(this, "Can not calculate Max/Min\r\n\r\n" +

 Calculator.ErrorCode, "CSI Display Demo", MessageBoxButtons.OK,

 MessageBoxIcon.Error);

 return;

 }

 // Get the results from the calculator

 double dMin; double dMax; double dMinPos; double dMaxPos;

 Calculator.Result(out dMin, out dMax, out dMinPos, out dMaxPos);

 // Show the results using Perception conversion functions

 lblMax.Text = Conversion.ConvertDoubleToString(dMax, 4,

 iActiveTrace.YUnit) + iActiveTrace.YUnit;

 lblMin.Text = Conversion.ConvertDoubleToString(dMin, 4,

 iActiveTrace.YUnit) + iActiveTrace.YUnit;

 lblMaxPos.Text = Conversion.ConvertDoubleToString(dMaxPos, 4,

 iActiveTrace.YUnit) + iActiveTrace.XUnit;

 lblMinPos.Text = Conversion.ConvertDoubleToString(dMinPos, 4,

 iActiveTrace.YUnit) + iActiveTrace.XUnit;

 // Position the vertical cursors at the maximum and minimum position

 display1.pDisplay.TimeDisplay.Cursors[1].time = dMaxPos;

 display1.pDisplay.TimeDisplay.Cursors[2].time = dMinPos;

 // Set the Horizontal cursors to the maximim and minimum levels.

 display1.pDisplay.TimeDisplay.CtlLayout.HorizontalCursors.Visible = true;

 // Get the high and low display range values from the active trace

 double dHigh, dLow;

 myTrace.TraceProp.GetRange(out dHigh, out dLow);

 // Use these values to get the relative levels via a lineair

 //conversion

 double dLevel1 = (dMax - dLow) / (dHigh - dLow);

 double dLevel2 = (dMin - dLow) / (dHigh - dLow);

 // We also need to know the position of the active pane.

 double dTop = 1;

 double dBottom = 0;

 myTrace.Pane.GetPositions(ref dTop, ref dBottom);

 dLevel1 = (dTop - dBottom) * dLevel1 + dBottom;

 dLevel2 = (dTop - dBottom) * dLevel2 + dBottom;

CSI Programming user manual

86 A2698_05_E00_00 HBM: public

 // Now we can set the relative level values

 display1.pDisplay.TimeDisplay.CtlLayout.HorizontalCursors[1].Location =

 dLevel1;

 display1.pDisplay.TimeDisplay.CtlLayout.HorizontalCursors[2].Location =

 dLevel2;

 // Set a display marker for the maximum value.

 // First clear all existing markers

 ClearAllMarkers();

 // Create a new display marker to indicate the maximum position

 DisplayMarker myTraceMarkerMax = myTrace.DisplayMarkers.AddMarker(

 DisplayModeType.DisplayModeType_Review);

 myTraceMarkerMax.DrawingType =

 MarkerDrawingType.MarkerDrawingType_TraceMarker;

 myTraceMarkerMax.MarkerStartSourceX = dMaxPos;

 myTraceMarkerMax.MarkerStartSourceY = dMax;

 myTraceMarkerMax.UnformattedText = "Max";

 myTraceMarkerMax.SetLabelPosition(DisplayModeType.DisplayModeType_Review,

 LabelAlignment.LabelAlignment_Left, -0.1, -0.1);

 // Create a new display marker to indicate the minimum position

 DisplayMarker myTraceMarkerMin = myTrace.DisplayMarkers.AddMarker(

 DisplayModeType.DisplayModeType_Review);

 myTraceMarkerMin.DrawingType =

 MarkerDrawingType.MarkerDrawingType_TraceMarker;

 myTraceMarkerMin.MarkerStartSourceX = dMinPos;

 myTraceMarkerMin.MarkerStartSourceY = dMin;

 myTraceMarkerMin.UnformattedText = "Min";

 myTraceMarkerMin.SetLabelPosition(DisplayModeType.DisplayModeType_Review,

 LabelAlignment.LabelAlignment_Left, 0.1, 0.1);

}

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 87

The following code is used to clear all display markers.

// Clears all existing markers

private void ClearAllMarkers()

{

 // get the number of display pages

 int NumberOfPages = display1.pDisplay.TimeDisplay.CtlLayout.Pages.Count;

 // Remove the markers per page

 for (int i = 1; i <= NumberOfPages; i++)

 {

 DPage myPage = display1.pDisplay.TimeDisplay.CtlLayout.Pages[i];

 // Get the display markers collection from the page

 DisplayMarkers myDisplayMarkers = myPage.DisplayMarkers;

 // Keep on deleting the markers until the collection is empty

 while (myDisplayMarkers.Count > 0)

 {

 DisplayMarker myPageDisplayMarker = myDisplayMarkers[1];

 myPageDisplayMarker.Delete();

 }

 // Now we will delete the display markers connected to the individual

 // traces. Therefore we have to loop through the panes

 for (int n = 1; n <= myPage.Panes.Count; n++)

 {

 DPane myPane = myPage.Panes[n];

 // Go through all the traces from this pane

 for (int m = 1; m <= myPane.Traces.Count; m++)

 {

 DTrace myTrace = myPane.Traces[m];

 // Get the display markers collection from this trace

 DisplayMarkers myTraceDisplayMarkers = myTrace.DisplayMarkers;

 // Keep on deleting the markers until the collection is empty

 while (myTraceDisplayMarkers.Count > 0)

 {

 DisplayMarker myTraceDisplayMarker =

 myTraceDisplayMarkers[1];

 myTraceDisplayMarker.Delete();

 }

 }

 }

 }

}

If you compile and run the code then drag and drop a trace into the display you can click the

Calculate button. The vertical and horizontal cursors will be set, two trace markers will be

added and the numerical data is displayed into the calculation groupbox.

CSI Programming user manual

88 A2698_05_E00_00 HBM: public

The two display markers are also added automatically to the pool of Data Sources, you can

find them with the Data Sources navigator as show in the picture below.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 89

8 Data Analysis - Part Two

Within Perception the advanced analysis option allows you to define your own formulas so as

to compute results in seconds rather than hours.

A "formula database" is used to enter math expressions like CH1*CH2 or MAX@CH1 to

compute results immediately when new data arrives. The formula results can be re-used in

other formulas to get even more advanced answers.

With Perception CSI you have access to the formula database. The formula database is a

powerful tool to quickly evaluate complex expressions in your application, simply by inserting a

formula into the database, and evaluating the function.

In addition you can also create your own functions, functions that are not already part of the

formula database.

In this chapter we will discuss both implementations.

8.1 Formula database as calculator

It is not difficult to use the formula database in your code to perform calculations. Simply add a

reference to the formula database functions in your project and add the required formula "as

text" to the database. Perception will do the math and update for you.

We will continue with our example from the previous chapter and do the following:

• add the formula database reference to our project

• add a formula to calculate the minimum of the waveform segment we created

• add a formula that returns the time position of this minimum

• position the cursor on this point

Please note that when the Advanced Analysis option is not installed in Perception, the code

will 'install' correctly, but no results will become available from the formula database.

8.1.1 User interface

The only thing we want to do is to display the minimum value. You can do this either by

dragging the result into the meter area (or create an additional meter in the user interface) or

use new text labels. In this example we will go with this last option. We will add a new group

box called “Using Formula Database” see next picture.

CSI Programming user manual

90 A2698_05_E00_00 HBM: public

8.1.2 The code

Start with adding the correct reference to the project.

To add the Perception Formula Database reference

1 Go to Project > Add Reference...

2 In the dialog that comes up select Browse...

3 Navigate to the Perception folder. Typically C:\Program Files\HBM\Perception.

4 Select the file Perception.FormulaDatabase.dll and click OK.

Now the reference is added.

Add a using statement as follows:

using Perception.FormulaDatabase;

 The following code has to be added in the new button event click

1082 private void btnCalcUsingForDB_Click(object sender, EventArgs e)

1083 {

1084 // Get Active Trace

1085 DTrace myTrace = display1.pDisplay.TimeDisplay.ActiveTrace;

1086 if (myTrace == null)

1087 {

1088 PerceptionMessageBox.Show(this, "No active trace found",

1089 "CSI Display Demo", MessageBoxButtons.OK, MessageBoxIcon.Error);

1090 return;

1091 }

1092 // Get datasource from active trace

1093 IDataSrc iActiveTrace = myTrace.TraceProp.DataSrc;

1094 if (iActiveTrace == null)

1095 {

1096 PerceptionMessageBox.Show(this, "Active trace has no datasource",

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 91

1097 "CSI Display Demo", MessageBoxButtons.OK, MessageBoxIcon.Error);

1098 return;

1099 }

1100

1101 // Get Data source name from trace

1102 // e.g.: "Active.Group1.Recorder_B.Burst"

1103 string cDSName = myTrace.TraceProp.DataSourceName;

1104

1105 // create required formulas in formula database

1106

1107 // create instance of formula database

1108 FormulaDB ForDB = FormulaDB.Instance;

1109

1110 // check if formula already exist

1111 if (ForDB.Formulas["CSI:MinVal"] == null)

1112 {

1113 // search for an empty line

1114 foreach (Formula frml in ForDB.Formulas)

1115 {

1116 if (frml.IsEmpty())

1117 {

1118 // Define Name, Formula and Units

1119 // (See columns formula database sheet)

1120 frml.Name = "CSI:MinVal";

1121 // Expression can be: "@Min(Active.Group1.Recorder_B.Burst)"

1122 frml.Expression = string.Format("@Min({0})", cDSName);

1123 ForDB.Formulas[frml.LineNumber + 1].Name = "CSI:MinPos";

1124 // Expression can be: "@MinPos(Active.Group1.Recorder_B.Burst)"

1125 ForDB.Formulas[frml.LineNumber + 1].Expression =

1126 string.Format("@MinPos({0})", cDSName);

1127

1128 // fetch units from source

1129 m_MySource = m_DataManager.PoolEntries[cDSName].DataSource;

1130 frml.Units = iActiveTrace.YUnit;

1131 ForDB.Formulas[frml.LineNumber + 1].Units = iActiveTrace.XUnit;

1132 break;

1133 }

1134 }

1135 }

1136

• 1108: Create the single instance of the formula database.

• 1111: check if formula with that name already exists. Here we perform a very simple test.

In reality this should be better.

• 1114 - 1116: we scan through the complete formula database in search of the first empty

line.

• 1118 - 1122: enter the formula name and the formula itself. Here we use the loop variable.

• 1123 - 1123: next formula. Here we use the exact line number, which is the variable's line

number + 1

• 1139 - 1131: enter the units. These are the same units as from the original data source.

At this point the correct formulas are created. We now use these calculated values that are in

the data pool. After use we clean it up. When you do not remove them, they will show up in the

Data Sources Navigator and the formulas sheet.

CSI Programming user manual

92 A2698_05_E00_00 HBM: public

1137 // display formatted value

1138 m_MySource =

 m_DataManager.PoolEntries["Formula.CSI:MinVal"].DataSource;

1139 double dMinVal = (double)m_MySource.Value;

1140 lblMinForDB.Text = Conversion.ConvertDoubleToString(dMinVal, 4,

1141 iActiveTrace.YUnit) + iActiveTrace.YUnit;

1142

1143 // place cursor

1144 m_MySource =

 m_DataManager.PoolEntries["Formula.CSI:MinPos"].DataSource;

1145 if (m_MySource == null) return;

1146 double dMinPos = (double)m_MySource.Value;

1147 display1.pDisplay.TimeDisplay.Cursors[1].time = dMinPos;

1148 lblMinPosForDB.Text = Conversion.ConvertDoubleToString(dMinPos, 4,

1149 iActiveTrace.XUnit) + iActiveTrace.XUnit;

1150

1151 // once done: clean up the mess

1152 ForDB.Formulas["CSI:MinVal"].Clear();

1153 ForDB.Formulas["CSI:MinPos"].Clear();

1154 }

• 1137 - 1139: fetch value and cast it to a double.

• 1140: use the ConvertDoubleToString() function to display the minimum value.

• 1144 - 1149: fetch position of value and place cursor on it.

• 1152 - 1153: remove the formulas.

Of course the formulas can be as extensive as required. Also you may leave them in the

formula database when required.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 93

If you have compiled and run your code the following information can be shown after a

calculate button click:

8.2 Make your own functions

In the previous section we have seen how you can use the formula database to create 'volatile'

calculations. In this section we will discuss how you can create 'non-volatile' functions that

become an integral part of the formula database.

You can create such a function in your CSI sheet. It then becomes part of the Perception

software when this sheet is loaded.

There is also a second - more general - option. You can build your function in a Windows

Class Library, this dll has to be saved into the Perception subfolder Functions. When

Perception starts and it finds such a "dll" it will load this code and - assuming the advanced

analysis option as well as the CSI option are installed - add the function to the formula

database. I.e. you will have access to your very own built function any time you start

Perception.

In this section we will explain the second option: create an external file that comprises your

own functions that are always available whenever you run Perception.

As an example we will create a function that we have done already once: create a waveform

that is a straight line. Its DC value is the average value (mean) of a selected waveform or part

of the waveform.

CSI Programming user manual

94 A2698_05_E00_00 HBM: public

8.2.1 Create and initialize the external class library

To create the class library in Visual Studio: select File > New > Project....

In the dialog that comes up select a Visual C# Windows project. Select as template the Class

Library. Give the project a name and click OK.

Add the required references:

1 Go to Project > Add Reference...

2 In the dialog that comes up select Browse...

3 Navigate to the Perception folder. Typically: C:\Program Files\HBM\Perception.

4 Multi-select the files Perception.FormulaDatabase.dll,

Perception FormulaDatabase.FunctionSupport.dll, Perception.Interops.dll and click

OK.

Now the references are added.

Add the following using clauses:

using Perception.FormulaDatabase.Functions;

using Perception.FormulaDatabase.FunctionSupport;

using RecordingInterface;

Now we can start with the initial code.

8.3 The function information

When you want to create your own functions to be used in Perception, you first need to create

a "function information" module for that function. This module is implemented as a class which

implements the IFunctionInfo interface.

The formula database engine searches for classes implementing the IFunctionInfo and creates

instances of these classes to get the relevant information.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 95

When a function is used in a formula, the IFunctionInfo interface is used to create an instance

of that function.

To create the IFunctionInfo interface proceed as follows:

Type the line of code:

public class CSIFunctionInfo : IFunctionInfo

Now you should see below the "I" from IFunctionInfo a small rectangle. Click on the rectangle:

and select Implement Interface 'IFunctionInfo'.

A complete code block will be implemented:

public class CSIFunctionInfo : IFunctionInfo

{

 #region IFunctionInfo Members

 public string Category

 {

 get { throw new Exception(

 "The method or operation is not implemented."); }

 }

 ...

 public nicDataManager.PoolEntryType[] ParameterTypes

 {

 get { throw new Exception(

 "The method or operation is not implemented."); }

 }

 #endregion

}

We must now fill all these 'entries' with the correct information.

CSI Programming user manual

96 A2698_05_E00_00 HBM: public

8.3.1 Category

This entry is used by the function wizard (when implemented in your version of the software) to

place the function within a specific category.

public string Category

{

 get

 {

 return "CSI Functions";

 }

}

8.3.2 CreateFunction

This entry creates the new function. For this example we use the internal name

"CreateWaveformFromAverage".

public IFunction CreateFunction()

{

 // for testing purposes as long as the function

 // is not implemented: return null;

 return new CreateWaveformFromAverage();

}

As long as the actual function is not yet implemented we return "null".

8.3.3 Description

A literal description of the function.

public string Description

{

 get

 {

 return "Creates a DC waveform with value of average of the

 waveform to process (InWave).";

 }

}

8.3.4 Example

Provides an example on how to use the function.

public string Example

{

 get

 {

 return "@CSI_MeanWave(Active.Group1.Recorder1.Ch_A2)";

 }

}

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 97

8.3.5 MinimumParameterCount

This value indicates the minimum number of parameters required by the function. Must be at

least one (1).

public int MinimumParameterCount

{

 get

 {

 return 1;

 }

}

8.3.6 Name

The name of the function exactly as it will appear in the function list without the "@" character

in front.

public string Name

{

 get

 {

 return "CSI_MeanWave";

 }

}

8.3.7 Parameters

Each parameter has a name, type and description. The name and description are strings, the

type is a PoolEntryType. Multiple parameters can be required. Therefore these values are all

returned as arrays.

8.3.8 ParameterDescriptions

These are literal descriptions of each parameter. For the purpose of our example only one

parameter, and therefore one description, is required.

public string[] ParameterDescriptions

{

 get

 {

 string[] ParamDescriptions = {"The waveform to process"};

 return ParamDescriptions;

 }

}

8.3.9 ParameterNames

These are the names of each parameter. For the purpose of our example only one parameter,

and therefore one name, is required.

public string[] ParameterNames

{

 get

 {

CSI Programming user manual

98 A2698_05_E00_00 HBM: public

 string[] ParamNames = {"InWave"};

 return ParamNames;

 }

}

8.3.10 ParameterTypes

These are the parameter types as they are known in the data pool: the data pool entries.

public nicDataManager.PoolEntryType[] ParameterTypes

{

 get

 {

 nicDataManager.PoolEntryType[] PETypes =

 {nicDataManager.PoolEntryType.PoolEntryType_Waveform};

 return PETypes;

 }

}

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 99

8.4 Getting it all to work

At this point we should be able to test the IFunctionInfo interface.

The most important part is to create this dll and put it in the correct folder.

The file must be placed in the Perception program folder, typically C:\Program

Files\HBM\Perception\Functions.

To get this done we need to modify the properties of the project.

1 Go to Project > <projectname> Properties...

2 In the Build tab locate the Output section and set the Output path to the Perception

program path, typically C:\Program Files\HBM\Perception\Functions.

Run the code and when Perception starts go to the Formula sheet.

When you type an "@" on a formula command line, the drop-down list should list the new

function and when you select that function the provided information must be available.

Have a close look to the output and modify some parameters in your code to see the various

results.

8.5 Implement the function

To actually implement the function there are two options:

• The comprehensive method

• The intelligent method

Both methods have their advantages. The intelligent method uses code that has already been

defined and tested in Perception. This will cover 90% of the applications. For very specific

CSI Programming user manual

100 A2698_05_E00_00 HBM: public

requirements you might need to use the comprehensive method. We will explore the intelligent

method, but before we start give an idea of the comprehensive method.

8.5.1 Using the comprehensive method

Once we have defined the IFunctionInfo we need to implement the IFunction function that is

returned by the CreateFunction entry of the IFunctionInfo.

The IFunction requires three methods:

• Init Initialize: an array of datasource interfaces is passed in and a resulting datasource

should be returned.

• Reset The method that is called by the calculation engine to reset the function when a

DataChanged or DataSourceChanged event is processed.

• OnDataAdded Tells the calculation engine which type of event should be fired when a

DataAdded event is being processed.

As a general example have a look at the following code:

class ExampleFunction : IFunction, IDataSrc

{

 protected IDataSrc[] m_Arguments;

 public void Init(IDataSrc[] Parameters, out IDataSrc Result)

 {

 m_Arguments = Parameters;

 Result = this;

 }

 public PoolEventType OnDataAdded(double StartTime,

 double EndTime)

 {

 return PoolEventType.DataChanged;

 }

 public void Reset()

 {

 }

 // IDataSrc implementation

}

The difficult part starts at the last line: IDataSrc implementation. Here you will need to

implement the complete IDataSource interface for your routine. This includes Data, DataType,

GetUTCTime, GetValueAtTime, Name, Properties, Status, etc. To see a complete list follow

the procedure described to quickly implement the IFunctionInfo.

As mentioned earlier this method may be useful for very special situations where the intelligent

method fails, or when you only need to perform a very basic calculation that returns a single

value.

For the purpose of this manual we will continue with the intelligent method.

8.5.2 Using the intelligent method

The intelligent method is based on inheritance and the override method that provides a new

implementation of a member inherited from a base class. We will build the function code based

on well-tested, existing classes from Perception.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 101

Without going into details we start by using the SampleBySampleOrNumericalFunction

class. When you start typing your entry for the class, Visual Studio will assist you in a correct

inheritance of the base class. Your first result should look like this:

public class MyExample : SampleBySampleOrNumericalFunction

{

 protected override SampleBySampleDataSegment CreateWrapperSegment

 IDataSegment OriginalSegment)

 {

 throw new Exception(

 "The method or operation is not implemented.");

 }

 protected override object ProcessValue(object Value)

 {

 throw new Exception(

 "The method or operation is not implemented.");

 }

}

As you can see this inheritance requires two method overrides:

• CreateWrapperSegment

• ProcessValue

The last one is the easiest one for us. ProcessValue is a method that is called when

'somebody' needs to have a single value processed using our function. E.g. when the result of

our function is displayed, a cursor movement would request a single value at the cursor

position. It therefore passes the value of the original data to this method and expects a result

back. This is true since we perform a 'sample-by-sample' function.

A more detailed example: assume our function divides a waveform by 10 and puts the result

back in a result: result waveform = (original waveform) / 10. Each sample of the result is one-

tenth of the value of the original value.

What happens when a measurement cursor is between two samples? It (the cursor engine)

will do a calculation of the Y-value based on linear interpolation between the two samples and

pass that value to our function. Our function does its trick (divides the value by 10) and returns

the result. E.g. a sample with value 10 and a sample with value 12. The cursor is exactly in the

middle: it passes 11 to our function and the return value should be 1.1, which is exactly

between 1.0 and 1.2.

In our programming example it is even simpler: we always return the calculated average.

The CreateWrapperSegment is a little bit more complicated to understand. Basically what

happens is the following: the SampleBySampleOrNumerical class takes care of the complete

handling of a waveform and therefore also supports the segments as we know them from the

IDataSrc interface. Since we are performing analysis on a waveform on a sample by sample

basis we need to process each original segment individually and return a processed segment.

That is where the CreateWrapperSegment comes in.

The CreateWrapperSegment provides an original segment and should return a processed

segment. These segments are of type SampleBySampleDatasegment. Therefore the

override must:

• Get the average value of the complete waveform

• Create a new segment based on the calculation

CSI Programming user manual

102 A2698_05_E00_00 HBM: public

To calculate the average value of the complete waveform is not difficult as we will demonstrate

later in this section.

Processing the segment will be done in a separate class based on the

SampleBySampleDataSegment. When we start defining this class the initial result will look like

this:

public class MyWrapper : SampleBySampleDataSegment

{

 public override void ProcessSamples(double[] fSamples)

 {

 throw new Exception(

 "The method or operation is not implemented.");

 }

}

The only required override is the ProcessSamples, i.e. we must process all samples which is a

valid requirement.

Summarized we need to perform the following main actions:

• create a class based on the SampleBySampleOr Numerical class

• create a class based on the SampleBySampleDataSegment

• find a way to calculate the average value of the original data source

If we assume that we have our average value we can start with coding the SegmentWrapper

class for our purpose.

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

class AverageWrapperSegment : SampleBySampleDataSegment

{

 // this class uses the "SampleBySampleDataSegment"

 // as base class. Creates a waveform segment that is a DC value

 // DC = a calculated average value

 // internal member

 double m_DeAverageValue;

 // constructor, requires a data segment, the average value

 // and uses base class for "difficult" stuff

 public AverageWrapperSegment(IDataSegment OriginalSegment,

 double DeAverageValue) : base(OriginalSegment)

 {

 // copy average value to internal

 m_DeAverageValue = DeAverageValue;

 }

 public override void ProcessSamples(double[] fSamples)

 {

 // override the process samples method.

 // This one gets a segment of samples in a double array

 for (int nSample = 0; nSample < fSamples.Length; nSample++)

 {

 // replace each sample with the average value

 fSamples[nSample] = m_DeAverageValue;

 }

 }

}

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 103

• 98 - 99: create a local variable for storage of the average value

• 101 - 103: the class expects as input the original data segment and the calculated average

value. Uses the OriginalSegment class as base.

• 104 - 107: in the constructor we copy the average value to our internal variable

• 109 - 118: the ProcessSamples gives us an array of flaoting point samples that we may

use to create our own data. We do this by simply replacing each sample by the average

value.

At this point we can start implementing our formula database function "CSI_MeanWave". The

function internally is CreateWaveformFromAverage.

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

public class CreateWaveformFromAverage :

 SampleBySampleOrNumericalFunction

{

 // this class uses the "SampleBySampleOrNumericalFunction"

 // it creates a complete waveform that is a DC value

 // The DC value = a calculated average value

 double m_Average = double.NaN;

 // override the CreateWrapperSegment

 // it creates an interim data segment, calculates the average

 // and passes it to the interim data segment

 protected override SampleBySampleDataSegment CreateWrapperSegment

 IDataSegment OriginalSegment)

 {

 CalculateAverageOfSource();

 return new AverageWrapperSegment(OriginalSegment, m_Average);

 }

 private void CalculateAverageOfSource()

 {

 if (!double.IsNaN(m_Average))

 return;

 IDataSrc myDS = m_Parameters[0];

 // calculate average here, for testing now = 1

 m_Average = 1;

 }

 protected override object ProcessValue(object Value)

 {

 // override the ProcessValue method and perform calculation

 CalculateAverageOfSource();

 return m_Average;

 }

}

• 137: define the internal variable for the average value and initialize as Not a Number (NaN)

• 142 - 146: here is the override of the CreateWrapperSegment method

• 144: a call to calculate the average value

• 145: return the result of the segment calculation. This is a SampleBySampleDataSegment

CSI Programming user manual

104 A2698_05_E00_00 HBM: public

created by a new AverageWrapperSegment object. Our AverageWrapperSegment uses

the OriginalSegment and the average value as input.

• 148 - 155: calculate the average value

• 150 - 151: if our average value is a number, then we're done

• 152 - 154: for testing purposes so far: fetch the original data source, do nothing and give

the average value a temporary value, e.g. 1

• 157 - 162: implement the ProcessValue override as discussed earlier.

We are now ready for another test. We can start using the function. The result is again a

straight line, now with a value of "1" and the length is equal to the length of the waveform we

use as input.

When you move a cursor, the reading should also be available through the ProcessValue

implementation (try another value as proof of concept!).

Depending on your data source you might run into trouble with this particular example: when

you have a data source that has all values below "1" you will not see the straight line on your

display. Therefore you must 'set' the correct display range. This is also true for other

calculations. E.g. when you multiply a source with 10, the scaling must also be set to 10 times

higher.

As we have seen already in a previous chapter segments provide display range information.

When we go to the definition of SampleBySampleDataSegment we will find nothing that relates

to a display range. However, we see that it is based on DataSegmentWrapper. Go to that

definition and you will see an override possibility for the display range. (use the Go To

Definition function of Visual Studio to see the definition or meta data).

A basic implementation could now be - in the AverageWrapperSegment class:

public override void DisplayRange(out double DisplayFrom,

 out double DisplayTo)

{

 base.DisplayRange(out DisplayFrom, out DisplayTo);

 DisplayFrom = base.DisplayFrom;

 DisplayTo = base.DisplayTo;

}

First we fetch the DisplayFrom and DisplayTo values from our base segment (the original

segment). After this we copy these values onto our own DisplayFrom and DisplayTo properties

of the newly created segment.

For the purpose of our example we could implement the following code:

public override void DisplayRange(out double DisplayFrom,

 out double DisplayTo)

{

 base.DisplayRange(out DisplayFrom, out DisplayTo);

 if (DisplayFrom < m_DeAverageValue)

 DisplayFrom = 2 * m_DeAverageValue;

 if (DisplayTo > m_DeAverageValue)

 DisplayTo = -2 * m_DeAverageValue;

}

For the calculation of the average value we can use (part of) the code we already have

implemented.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 105

188

189

190

191

192

193

194

195

196

197

198

199

200

201

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

private void CalculateAverageOfSource()

{

 if (!double.IsNaN(m_Average))

 return;

 // m_Parameters array is part of the inherited Functionbase

 // m_Parameters[0] is the data source

 IDataSrc myDS = m_Parameters[0];

 // calculate average

 // use only analog waveforms for the this example

 if (myDS.DataType != DataSourceDataType.DataSourceDataType_

 AnalogWaveform)

 return;

 // initialize variables

 object Result;

 IDataSegments Segments;

 // fetch data

 myDS.Data(myDS.Sweeps.StartTime, myDS.Sweeps.EndTime,

 out Result);

 // fetch segments within this data

 Segments = Result as IDataSegments;

 // no segments

 if (Segments.Count == 0)

 return;

 // loop through all segments to find out the average value

 m_Average = 0;

 int iTotalCnt = 0;

 // for all segments

 for (int j = 1; j <= Segments.Count; j++)

 {

 // fetch the data

 int dCnt = Segments[j].NumberOfSamples;

 Segments[j].Waveform(DataSourceResultType.

 DataSourceResultType_Double64, 1, dCnt, 1, out Result);

 double[] Buffer = (double[])Result;

 // sum all sample values

 for (int m = 0; m < Buffer.Length; m++)

 {

 m_Average = m_Average + Buffer[m];

 }

 // sum the total number of samples

 iTotalCnt = iTotalCnt + dCnt;

 }

 // calculate the average

 m_Average = m_Average / iTotalCnt;

}

CSI Programming user manual

106 A2698_05_E00_00 HBM: public

For a detailed comment refer to the initial code. Apart from some naming differences, the main

parts of interest are:

• 150 - 151: if our average value is a number, then we're done

• 155: fetch the data source. Our CreateWaveformFromAverage class is derived from the

SampleBySampleOrNumericalFunction class that is derived from the

FirstArgumentFunction which is derived from the base class FunctionBase. Within this

base class there is a m_Parameters[] array that comprises all passed data sources. Since

we only have one parameter we need to address the first one which is m_Parameters[0].

• 168: fetch all data. For this we need to know the start time and end time of the complete

waveform. This information is available through the Sweeps property of the data source.

Now we are done with our function implementation.

You could test it by creating a formula in the formula database and compare it with the initial

method:

 test = @CSI_MeanWave(CSIDemo.MyResult)

Compare test with MyResultAve. They should be identical.

The last step would be to verify the new formula by extending our example sheet. To do this

we add a new group box with a single button see picture below;

The code behind the button click looks like:

1149 private void btnCreateMeanWave_Click(object sender, EventArgs e)

1150 {

1151 // Get Active Trace

1152 DTrace myTrace = display1.pDisplay.TimeDisplay.ActiveTrace;

1153 if (myTrace == null)

1154 {

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 107

1155 PerceptionMessageBox.Show(this, "No active trace found",

 "CSI Display Demo", MessageBoxButtons.OK, MessageBoxIcon.Error);

1156 return;

1157 }

1158 // Get datasource from active trace

1159 IDataSrc iActiveTrace = myTrace.TraceProp.DataSrc;

1160 if (iActiveTrace == null)

1161 {

1162 PerceptionMessageBox.Show(this, "Active trace has no datasource",

 "CSI Display Demo", MessageBoxButtons.OK, MessageBoxIcon.Error);

1163 return;

1164 }

1165

1166 // Get Data source name from trace e.g.:

 // "Active.Group1.Recorder_B.Burst"

1167 string cDSName = myTrace.TraceProp.DataSourceName;

1168

1169 // create required formulas in formula database

1170

1171 // create instance of formula database

1172 FormulaDB ForDB = FormulaDB.Instance;

1173

1174 // check if formula already exist

1175 if (ForDB.Formulas["poc"] == null)

1176 {

1177 // search for an empty line

1178 foreach (Formula frml in ForDB.Formulas)

1179 {

1180 if (frml.IsEmpty())

1181 {

1182 // Define Name, Formula and Units (See columns formula

 // database sheet)

1183 frml.Name = "poc";

1184 frml.Expression = string.Format("@Cut({0};

 Display.CSIDisplay.Cursor1.XPosition;

 Display.CSIDisplay.Cursor2.XPosition)", cDSName);

1185 ForDB.Formulas[frml.LineNumber + 1].Name = "test";

1186 ForDB.Formulas[frml.LineNumber + 1].Expression =

 "@CSI_MeanWave(Formula.poc)";

1187

1188 // fetch units from source

1189 ForDB.Formulas[frml.LineNumber + 1].Units =

 iActiveTrace.YUnit;

1190 break;

1191 }

1192 }

1193 }

1194

1195 // Add the trace to the display

1196 DTrace TestTrace;

1197 display1.pDisplay.TimeDisplay.CtlLayout.ActivePane.Traces.AddDataSource(

 out TestTrace, "Formula.test");

1198 }

If you compile and run the code you will see the same average trace as before. See picture

below.

CSI Programming user manual

108 A2698_05_E00_00 HBM: public

If you look into the formula sheet then you will see the following formulas:

Note: since we are using the cursor position in the formulas, moving the cursors will

rebuild the cut out segment. When we would have used the actual numbers the result

would have been fixed.

In addition: although the cut out segment updates, the average value will not since we use a

test:

if (!double.IsNaN(m_Average))

 return;

I.e. when the average value is already calculated we quit. We could omit this test, but then we

run into trouble with our multi-tasking, multi-threading software. To overcome this we need a

few more lines of code.

In the CreateWavefromFromAverage we need to override the Reset method. This method is

called whenever the function needs to 'restart', e.g. when new data arrives, or data is modified.

In this method we must reset our average value:

m_Average = double.NaN;

However, when doing so, we may not be interrupted. Therefore:

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 109

public override void Reset()

{

 lock (this)

 {

 m_Average = double.NaN;

 }

}

Also we do not want interruptions when we do the actual calculations. So:

protected override SampleBySampleDataSegment CreateWrapperSegment

(IDataSegment OriginalSegment)

{

 lock (this)

 {

 CalculateAverageOfSource();

 return new AverageWrapperSegment(OriginalSegment, m_Average);

 }

}

By "locking" pieces of code we are sure that no other thread can interrupt our work while

making sensitive calculations.

8.6 Summary

In these last two chapters we have seen a variety of functionality required to implement your

own analysis:

• The datamanager as central point of information on all (types of) data.

• Fetch and use existing waveforms, numerical values and strings.

• Create your own waveforms, numerical values and strings and perform some basic math

while creating them.

• Measurement cursors manipulation.

• Use the formula database as a waveform calculator.

• Create your own functions to be used within the formula database.

One important choice you will need to make when doing your own analysis: do you want to

create new results that become available as "non-volatile" data or are "volatile" formula

database interim results acceptable?

The Perception CSI offers both: the choice is yours. And you can always combine both

options.

CSI Programming user manual

110 A2698_05_E00_00 HBM: public

9 Automation

With everything said and done so far only two issues remain to be discussed: reporting and

automation. Since reporting by itself is something that cannot be controlled from within the CSI

we will discuss in this chapter some automation issues and include command to print out a

predefined report.

As an example we will discuss a typical type of application: set the acquisition parameters,

start acquisition. After the acquisition do some analysis and print a report.

9.1 Example: post-acquisition analysis and reporting

Our example is based on a real application where an object is tested by dropping a weight on

it. Forces on the three axis are measured and the resultant force is calculated. The value of

interest is the time the resultant force is above a certain level.

9.1.1 Procedure

The signals of X-, Y- and Z-transducers are each fed to a separate input channel. The

recording is made with a sample rate of 10000 samples per second.

The recording has two sweeps: the first one is used as calibration data and triggered just

before the actual impact is recorded in the second sweep.

The required calculations can be done in the formula database:

• for each channel subtract the mean value of the first sweep from the second sweep to

compensate for any offset,

• calculate the result as the square root of the sum of squares of the three channels,

• measure the time above two predefined levels.

In our example we will also position the cursors on the points of interest.

We will start with this example from scratch. To minimize the work involved by an operator and

to reduce the chance on errors we will do as much as possible in our code. We also want to

make sure that test information (e.g. a Device Under Test serial number) has been entered

before the actual print out is made.

We assume that we are working in a fixed environment with a single recorder with four

channels with predefined names.

9.1.2 Before you begin

Before you begin create a new project as described earlier. For your convenience here is the

procedure with some modifications.

To start you new project proceed as follows:

1 Start your Microsoft Visual Studio, and select File > New > Project.

2 In the dialog that comes up select a Visual C# Windows project.

3 Select the Perception CSI Sheet template

4 Enter a name and location for this project and click OK

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 111

 The Solution Explorer will now include the following:

 A reference to the Perception.Interfaces

• C# code for the SheetControl

This code is sufficient to create a sheet in Perception. Before we can actually build it we need

to add some more information to the project itself.

Optionally give the sheet a name and icon other than default:

1 Go to Project > Project Name Properties

2 Go to Resources > Strings and modify the text from IDS_USERNAME into your sheet

name

3 Go to Resources > Icons and select Add Resource > Add Existing File. Browse to and

select your own icon file.

4 Remove the default icon

5 Rename your icon into "SheetIcon"

Mandatory:

1 Go to Project > Project Name Properties

2 Go to Build > Output > Output path

3 Verify the output path: C:\Program Files\HBM\Perception\Sheets\

4 Go to Build > Configuration and select Release or Active (debug). When you want to

debug include in Debug > Start Action the Start external program: C:\Program

Files\HBM\Perception\Perception.exe.

5 In the main menu select Build > Build Solution

When all is OK, no error messages are generated. Ignore warnings for the time being.

When error messages are generated verify all of the above steps. Also make sure you have

the latest version of the template and the latest version of Perception.

CSI Programming user manual

112 A2698_05_E00_00 HBM: public

9.1.3 User interface

For the user interface we need a Start button, a Print Report button (could be done also

automatically), a display that shows the three compensated signals as well as the resultant

and two meters, one for each level. In addition a status field can be used for various

messages. Look in the Data Visualization section how you can add a Display and Meter to the

sheet.

A. Start button StartCmd

B. Print Report button ReportCmd

C. Status messages text label StatusArea

D. Perception display component ResultDisplay (Perception.CSI.Support.PerceptionDisplay)

E. Perception meter component ResultMeters (Perception.CSI.Support.PerceptionMeter)

The Perception components should be available in the Toolbox of the Designer. If not so,

reload them.

To add the Perception components

1 Go to the SheetControl Design layout.

2 In the Toolbox select one of the tab headers and do a right mouse click.

3 In the context menu that comes up select Add Tab and give it a relevant name like

"Perception Components".

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 113

4 With this tab selected do a right mouse click.

5 In the context menu that come up select Choose Items ...

6 In the dialog that comes up select Browse...

7 Navigate to the Perception folder. Typically: C:\Program Files\HBM\Perception.

8 Select the file Perception.Components.dll and click Open.

9 Click OK in the Choose Toolbox Items dialog.

Now the components are added to the toolbox.

Since we are still doing the user interface we can also add at this point the menu entries and

the toolbar.

To add items to the dynamic menu you must create a context menu strip in the sheet user

interface. This menu is not actually deployed, but used as a piece of menu transferred to the

dynamic menu.

To add items to the dynamic menu

1 In the programming environment add a tool strip menu to your user interface: Toolbox >

Menus & Toolbars > ContextMenuStrip

2 Use Edit Items ... to add/modify menu items

3 Modify the GetDynamicmenu method that is located in the Method region of the template

(you can copy this from your previous project):

public ToolStripItem[] GetDynamicMenu()

{

 ContextMenuStrip strip = contextMenuStrip1;

 if (this.IsDisposed || this.Disposing || strip == null)

 return null;

 ToolStripItem[] Result = new ToolStripItem[strip.Items.Count];

 strip.Items.CopyTo(Result, 0);

 return Result;

}

Here we create a toolstrip item called aMyItems based on the size of the designed

CSI Programming user manual

114 A2698_05_E00_00 HBM: public

contextMenuStrip. After this we copy the contents of the contextMenuStrip to our toolstrip

and return this toolstrip.

4 Run the program

 You will see that the new commands are added.

 In very much the same way as we created a dynamic menu, you can also create a toolbar

related to your sheet. Instead of creating a context menu strip, you now create a toolstrip and

modify its contents. Once created you can use the following code:

public ToolStripItem[] GetDynamicToolBar()

{

 ToolStrip strip = toolStrip1;

 if (this.IsDisposed || this.Disposing || strip == null)

 return null;

 ToolStripItem[] Result = new ToolStripItem[strip.Items.Count];

 strip.Items.CopyTo(Result, 0);

 return Result;

}

Make sure you have set the visibility to false.

9.1.4 The code

At this point the user interface is ready and we can start implementing the code. We start with

the acquisition control stuff. As described in one of the earlier chapters acquisition control will

be event driven.

9.1.5 Acquisition control

Acquisition control is 'hosted' by the Engine. Since we will be using the Engine multiple times

we will add a Using Directive at the beginning of the source code where already other

directives are placed. Add this directive below the other CSI directives:

using Perception.Sheets;

using Perception;

using Engine;

Since we want to control an acquisition system we will need to create an acquisition system

object:

In the Members region add a region below the ISheet region as follows:

#region -> MyMembers

protected CtrlAcquisitionSystem m_MyDemoSystem = null;

protected CtrlGroup m_GroupAll = null;

#endregion

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 115

We now have a member that is a control of an acquisition system and a control group.

Do some initialization and create the eventhandler that reacts on changes of the acquisition

state. This will be done in the Initialization method as follows:

public InitializeState Initialize(IProgram iProgram)

{

 if (iProgram.UserMode == UserMode.Review)

 {

 this.m_InitializeState = InitializeState.NotAllowed;

 }

 else

 {

 try

 {

 this.m_iProgram = iProgram;

 RegisterComponents();

 this.m_MyDemoSystem = CtrlAcquisitionSystemFactory.Create();

 this.m_GroupAll = m_MyDemoSystem.Groups.GroupAll;

 HookToGroupAll();

 this.m_InitializeState = InitializeState.Succeeded;

 }

 catch

 {

 this.m_InitializeState = InitializeState.NotAllowed;

 PerceptionMessageBox.Show("Could not initialize sheet",

 "CSI: Catch", MessageBoxButtons.OK, MessageBoxIcon.Error);

 }

 }

 return this.m_InitializeState;

}

The Hook and Unhook to group all functions look like:

private void HookToGroupAll()

{

 UnHookFromGroupAll();

 if (m_GroupAll != null)

 m_GroupAll.AcquisitionStateChanged +=

 GroupAllAcquisitionStateChanged;

}

private void UnHookFromGroupAll()

{

 if (m_GroupAll != null)

 {

 try

 {

 m_GroupAll.AcquisitionStateChanged -=

 GroupAllAcquisitionStateChanged;

 }

 catch

 {

 }

 }

}

Tip: you can copy various pieces of code from the previous project(s).

Now start with the event handler to include the basic code for the start button behaviour and

the status text:

CSI Programming user manual

116 A2698_05_E00_00 HBM: public

void GroupAllAcquisitionStateChanged(object sender, int Running, int

OneShot, int Stopping, int Paused, int Idle)

{

 this.InvokeOnUI(() => DoGroupAllAcquisitionStateChanged(sender, Running,

 OneShot, Stopping, Paused, Idle));

}

void GroupAllAcquisitionStateChanged(object sender, int Running, int

OneShot, int Stopping, int Paused, int Idle)

{

 if (Running > 0)

 {

 StatusArea.Text = "Acquisition: running";

 StartCmd.Enabled = false;

 StartCmd_MenuItem.Enabled = false;

 StartCmd_ToolStripItem.Enabled = false;

 }

 else if (OneShot > 0)

 {

 StatusArea.Text = "Acquisition: single shot";

 StartCmd.Enabled = false;

 StartCmd_MenuItem.Enabled = false;

 StartCmd_ToolStripItem.Enabled = false;

 }

 else if (Stopping > 0)

 {

 StatusArea.Text = "Acquisition: stopping";

 StartCmd.Enabled = false;

 StartCmd_MenuItem.Enabled = false;

 StartCmd_ToolStripItem.Enabled = false;

 }

 else if (Paused > 0)

 {

 StatusArea.Text = "Acquisition: pause";

 StartCmd.Enabled = true;

 StartCmd_MenuItem.Enabled = true;

 StartCmd_ToolStripItem.Enabled = true;

 }

 else if (Idle > 0)

 {

 StatusArea.Text = "Acquisition: idle";

 StartCmd.Enabled = true;

 StartCmd_MenuItem.Enabled = true;

 StartCmd_ToolStripItem.Enabled = true;

 }

 else

 {

 StatusArea.Text = "****";

 StartCmd.Enabled = false;

 StartCmd_MenuItem.Enabled = false;

 StartCmd_ToolStripItem.Enabled = false;

 }

 // Fire the ToolItemsUpdated event to update the toolbar

 if (this.ToolItemsUpdated != null)

 this.ToolItemsUpdated(this, new EventArgs());

}

And add some initialization in the SheetControl_Load:

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 117

private void SheetControl_Load(object sender, EventArgs e)

{

 StatusArea.Text = "****";

 StartCmd.Enabled = false;

 StartCmd_MenuItem.Enabled = false;

 StartCmd_ToolStripItem.Enabled = false;

 ResultMeters.UserName = "No Values";

}

Do not forget to Unhook from the group all in the SheetDisposed() procedure:

private void SheetDisposed(object sender, EventArgs e)

{

 if (IsDisposed) return;

 if (m_bDisposed) return;

 try

 {

 UnRegisterComponents();

 UnHookFromGroupAll();

 m_GroupAll = null;

 m_MyDemoSystem = null;

 }

 catch

 {

 }

 m_bDisposed = true;

}

To incorporate the display in our report we must add it to the list of available components in

Perception. We will do this in the RegisterComponents() procedure:

private void RegisterComponents()

{

 if (m_iPorogram == null) return;

 {

 if (ResultDisplay != null)

 {

 if (ResultDisplay.pDisplay != null)

 {

 m_iProgram.ComponentManager.Add(ResultDisplay);

 }

 }

 }

}

When the sheet is removed then call the UnRegisterComponents() procedure

private void UnRegisterComponents()

{

 if (m_iPorogram == null) return;

 {

 if (ResultDisplay != null)

 {

 if (ResultDisplay.pDisplay != null)

 {

 m_iProgram.ComponentManager.Remove(ResultDisplay);

 }

 }

 }

}

Try this to see if everything works as expected: use the acquisition commands from the

acquisition control palette in Perception to scroll through the various acquisition states.

CSI Programming user manual

118 A2698_05_E00_00 HBM: public

At this point we can implement some more acquisition control:

• when a recorder is added we check if it is 'our' recorder and copy the object

• when the start command button is clicked we set acquisition parameters and start

recording.

Add a recorder member to the user member section:

#region -> MyMembers

private CtrlAcquisitionSystem m_MyDemoSystem = null;

private CtrlGroup m_GroupAll = null;

private CtrlRecorder m_TheRecorder = null;

#endregion

Add the following hooking code the HookToGroupAll procedure:

m_GroupAll.RecorderAdded += GroupAllRecorderAdded;

And the unhook code in the procedure UnHookFromGroupAll::

m_GroupAll.RecorderAdded -= GroupAllRecorderAdded;

For the event handler itself start with something like this:

void GroupAllRecorderAdded(object sender, CtrlRecorder Recorder)

{

 this.InvokeOnUI(() => DoGroupAllRecorderAdded(sender, Recorder));

}

void DoGroupAllRecorderAdded(object sender, CtrlRecorder Recorder)

{

 // is this the recorder we want ?

 if (Recorder.Name != "Recorder A")

 return;

 m_TheRecorder = Recorder;

 // this should be > 0, but you never know

 if (m_TheRecorder.Channels.Count == 0)

 {

 // error handling here

 }

}

An event is generated for each recorder added. E.g. when a system is connected with four

acquisition cards (recorders), this event is fired is four times, each time with the recorder object

that is added.

We test here for 'our' recorder and copy the object to our local recorder object.

In the StartCmd_Click routine we can do now something like:

private void StartCmd_Click(object sender, EventArgs e)

{

 // set all required acquisition parameters - example

 StatusArea.Text = "Setting test parameters";

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 119

 if (m_TheRecorder != null)

 {

 m_TheRecorder.Group.SweepCountEnabled = true;

 m_TheRecorder.Group.SweepCount = 2;

 m_TheRecorder.Group.SweepLength = 4000;

 m_TheRecorder.Group.TriggerPosition = 50;

 m_TheRecorder.Group.HighSamplingFrequency = 10000;

 }

 // start acquisition

 m_TheRecorder.Group.Run();

}

We start by displaying a status message. This message will be cleared automatically when

acquisition actually starts.

Some parameters are set as an example. When done, the acquisition is started.

There also other places and methods to set the acquisition parameters.

Please note the following: in our example we set the various parameters without checking if

these are valid settings. E.g. valid sample rates are typically 5000 and 10000 samples per

second. If we set the sample rate to 8000 samples per second it may either be clipped to a

valid value by the firmware in the acquisition system when the value is entered, or when the

acquisition starts.

Fundamentally the only correct option is to interrogate the system's capabilities. This is

especially true:

• When we do not know what system will be connected / used

• When we want to support future differences in hardware

You also have to note that some capabilities can change over time. We have seen one

example with the signal coupling. Not all signal coupling capabilities are available when an

acquisition is active.

Also the sample rate capabilities can change while a system is connected. By default a

decimal sequence is used, e.g. 100, 125, 200, 250. However, when you switch the central

timebase to binary (power of two), the available sample rates change into 102.4, 128, 204.8,

256.

Therefore it is also wise to implement a "capabilities changed" event handler when you expect

this kind of behaviour.

We will keep it as it is for our example.

9.1.6 Print control

The second button we need to implement is the print report command button. For this button

we could define the following behaviour:

• The Print Report button is enabled when:

o an acquisition is finished that was started through 'our' Start command and

o the relevant experiment information is entered in the data pool

• The Print Report button initiates a print command for the loaded report

CSI Programming user manual

120 A2698_05_E00_00 HBM: public

We will start with implementing a synchronization mechanism through a simple 'flag' called

m_MyTest.

Define and initialize this flag in the MyMembers region:

private bool m_MyTest = false;

Reset this flag in the SheetControl_Load routine where we also disable the Print button:

PrintCmd.Enabled = false;

PrintCmd_MenuItem.Enabled = false;

PrintCmd_ToolStripItem.Enabled = false;

m_MyTest = false;

When we start an acquisition through our Start button we set the flag to true, but disable the

Print command:

// start acquisition

m_TheRecorder.Group.Run();

PrintCmd.Enabled = false;

PrintCmd_MenuItem.Enabled = false;

PrintCmd_ToolStripItem.Enabled = false;

m_MyTest = true;

m_Retry = false;

ResultDisplay.pDisplay.TimeDisplay.CtlLayout.HorizontalCursors.Visi

ble = false;

The rest of the synchronization is done in the acquisition state changed event handler. For

every change in acquisition state the print button is disabled, unless the state is idle with

m_MyTest true:

// for any acquisition state change disable print

// unless correctly finished

PrintCmd.Enabled = false;

PrintCmd_MenuItem.Enabled = false;

PrintCmd_ToolStripItem.Enabled = false;

if (Running > 0)

(

 ...

else if (Idle > 0)

{

 if (m_MyTest == true)

 {

 StatusArea.Text = "Test completed";

 PrintCmd.Enabled = true;

 PrintCmd_MenuItem.Enabled = true;

 PrintCmd_ToolStripItem.Enabled = true;

 m_MyTest = false;

 }

 else

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 121

 {

 StatusArea.Text = "Acquisition: idle";

 }

 StartCmd.Enabled = true;

 StartCmd_MenuItem.Enabled = true;

 StartCmd_ToolStripItem.Enabled = true;

}

For the actual implementation of the Print Report command we need to add a reference to the

Perception.CSI.Support.dll. Add this reference as usual.

Once done add a "using" clause in the Using directives region:

using Perception.CSI.Support.Sheets;

This will add additional support for sheets.

The PrintCmd_Click routine now becomes very simple:

private void PrintCmd_Click(object sender, EventArgs e)

{

 Reporting.Print();

}

What's on the report we print? Typically some standard text, company logo, table with results

and data from the display.

To incorporate the display in our report we must add it to the list of available components in

Perception.

To do this, add the following two lines to the SheetControl_Load routine:

ResultDisplay.UserName = "Impact Result";

m_iProgram.ComponentManager.Add(ResultDisplay);

First make sure that the display has a unique name, then add the display object/component to

the component manager.

Now the display is selectable from within the Report sheet.

To complete the user interface of our automation we still need to verify if user information is

present before we print.

In general the Information Sheet is used to enter information into the system. For our example

we will be satisfied with a single variable called DUTSerial, the serial number of the device

Under Test, entered as a string.

To be able to investigate a pool entry we must perform the following steps as we have done

before.

Add a using statement:

using DataSrcManager;

CSI Programming user manual

122 A2698_05_E00_00 HBM: public

Add a member in the MyMembers region:

protected DataManager m_ThisDataManager = null;

Initialize in the constructor of the SheetControl:

public SheetControl()

{

 InitializeComponent();

 if (m_ThisDataManager == null)

 {

 m_ThisDataManager = new DataManager();

 }

}

Now we can test. The test will be performed in the AcquisitionStateChanged where we already

did some additional programming in the "idle" section.

else if (Idle > 0)

{

 if (m_MyTest == true)

 {

 // correctly finished, but serial number?

 if (m_ThisDataManager.PoolEntries[

 "Active.Information.DUTSerial"].DataSource == null)

 {

 StatusArea.Text =

 "Please create serial number entry DUTSerial";

 m_Retry = true;

 }

 else

 {

 // variable exists

 string sDUT = m_ThisDataManager.PoolEntries[

 "Active.Information.DUTSerial"].DataSource.Value.ToString();

 // some example testing, make your own

 if (sDUT.Length < 8)

 {

 StatusArea.Text = "Please enter a correct serial number";

 m_Retry = true;

 }

 else

 {

 StatusArea.Text = "Test completed for device: " + sDUT;

 PrintCmd.Enabled = true;

 PrintCmd_MenuItem.Enabled = true;

 PrintCmd_ToolStripItem.Enabled = true;

 }

 }

 m_MyTest = false;

 }

 else

 {

 StatusArea.Text = "Acquisition: idle";

 }

 StartCmd.Enabled = true;

 StartCmd_MenuItem.Enabled = true;

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 123

 StartCmd_ToolStripItem.Enabled = true;

}

For the time being forget about the m_Retry flag. What happens is:

Test 1: if m_MyTest is not true we have an 'illegal' situation, enable the Start buttons only and

place the text "Acquisition : idle".

Test 2: if it is a legal situation test if there is a serial number. If not, display a message and

raise a flag.

Test 3: there is a serial number. When not correct, display a message and raise a flag.

When all tests are passed correctly, a message is displayed including the serial number and

the Print report command button is enabled.

What should we do when no serial number or an incorrect serial number was available? The

experiment itself may be a success and doing it all over is not an option.

In both situations we need to go to the Info sheet in Perception and resolve this issue. But then

we also need to have a means to 'inform' our sheet that the value has been added or modified

and the Print command may be enabled after all.

For this we use a hook to an event: when the data source in question has been changed, an

event will be fired and an event handler is used to cope with the new situation.

We have done this already a number of times, so it should be not to difficult.

Add some members to the MyMembers region. This region now should like this:

#region -> MyMembers

protected CtrlAcquisitionSystem m_MyDemoSystem = null;

protected CtrlGroup m_GroupAll = null;

protected CtrlRecorder m_TheRecorder = null;

protected DataManager m_ThisDataManager = null;

protected bool m_MyTest = false;

protected bool m_Retry = false;

protected PoolEntry m_DUTSerialPEntry = null;

#endregion

The flag m_Retry is used to synchronise retry options. The m_DUTSerialPEntry is used to

make a sticky pool entry that we use for the event handler.

In the initialize routine add support for the DUTSerialPEntry:

// support pool entry

m_DUTSerialPEntry =

 m_ThisDataManager.PoolEntries["Active.Information.DUTSerial"];

HookToPoolEntries();

The hooking and unhooking procedures for the pool entries look like:

private void HookToPoolEntries()

{

 UnHookFromPoolEntries();

 if (m_DUTSerialPEntry != null)

 {

 m_DUTSerialPEntry.DataSourceChanged +=

CSI Programming user manual

124 A2698_05_E00_00 HBM: public

 DUTSerialPEntry_DataSourceChanged;

 m_DUTSerialPEntry.DataChanged += DUTSerialPEntry_DataChanged;

 }

}

private void UnHookFromPoolEntries()

{

 if (m_DUTSerialPEntry != null)

 {

 try

 {

 m_DUTSerialPEntry.DataSourceChanged -=

 DUTSerialPEntry_DataSourceChanged;

 m_DUTSerialPEntry.DataChanged -= DUTSerialPEntry_DataChanged;

 }

 catch

 {

 }

 }

}

First we initialize the member. Then we create two event handlers: one for the "data source

changed" and one for the "data changed". The first one will be fired when the variable is

created, the second one if data changes.

The event handlers themselves are very straightforward.

void DUTSerialPEntry_DataSourceChanged()

{

 this.InvokeOnUI(() => DoDUTSerialPEntry_DataSourceChanged());

}

void DoDUTSerialPEntry_DataSourceChanged()

{

 // the pool entry for the DUTSerial has been changed

 // was there a request that we should handle?

 if (m_Retry == false)

 return;

 // yes, do the standard test

 // correctly finished, but serial number?

 if ((m_DUTSerialPEntry.DataSource == null) ||

 (m_DUTSerialPEntry.DataSource.Value == null))

 {

 StatusArea.Text =

 "Please create serial number entry DUTSerial";

 m_Retry = true;

 }

 else

 {

 // variable exists

 string sDUT = m_DUTSerialPEntry.DataSource.Value.ToString();

 // some example testing, make your own

 if (sDUT.Length < 8)

 {

 StatusArea.Text = "Please enter a correct serial number";

 m_Retry = true;

 }

 else

 {

 StatusArea.Text = "Test completed for device: " + sDUT;

 PrintCmd.Enabled = true;

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 125

 PrintCmd_MenuItem.Enabled = true;

 PrintCmd_ToolStripItem.Enabled = true;

 m_Retry = false;

 }

 }

 m_MyTest = false;

}

When the data source is changed do the complete test as usual, only when the m_Retry flag is

set.

The "data changed" event is even simpler since we now already know that the data source

itself exists.

void DUTSerialPEntry_DataChanged()

{

 this.InvokeOnUI(() => DoDUTSerialPEntry_DataChanged());

}

void DoDUTSerialPEntry_DataChanged()

{

 // the data in the pool entry DUTSerial has been changed

 // this value is always transferred to our status

 // we know the entry exists, so only verify value

 string sDUT = m_DUTSerialPEntry.DataSource.Value.ToString();

 // some example testing, make your own

 if (sDUT.Length < 8)

 {

 StatusArea.Text = "Please enter a correct serial number";

 m_Retry = true;

 }

 else

 {

 StatusArea.Text = "Test completed for device: " + sDUT;

 PrintCmd.Enabled = true;

 PrintCmd_MenuItem.Enabled = true;

 PrintCmd_ToolStripItem.Enabled = true;

 m_Retry = false;

 }

 m_MyTest = false;

}

We’re almost done. One last issue: when you switch from one sheet to another the StatusArea

is not updated.

Go to the UIState properties and modify the "set" as follows:

set

{

 this.m_UIState = value;

 if (this.m_UIState == UIState.Active)

 {

 StatusArea.Refresh();

 }

}

When the sheet becomes active, the StatusArea will be refreshed.

CSI Programming user manual

126 A2698_05_E00_00 HBM: public

To test start your project in debug mode and Perception. Go to your sheet and connect real

hardware or the simulator. Press the start command button and initiate two triggers. The

acquisition will stop and the top of your sheet will look like this:

Now go to the information sheet and add a line. On that line add a string Field. The

corresponding properties dialog will come up. Enter the required information, but make sure

that you enter less than 8 characters in the default value text box:

Go to the Impact Testing sheet. You will now see:

Return to the information sheet and enter a serial number of at least 8 digits and return to the

Impact Testing sheet:

The test is now completed and you can print your report.

So far for the sequence of the automation. In the next section we will deal with the calculations.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 127

To make sure you clean up the event hooking and other housekeeping activities we

recommend you to look at the following SheetDisposed() code:

#region Disposing

/// <summary>

/// Procedure to do your cleanup, this function is called from within the

/// Dispose() method.

/// </summary>

private void SheetDisposed(object sender, EventArgs e)

{

 if (IsDisposed) return;

 if (m_bDisposed) return;

 try

 {

 UnHookFromPoolEntries();

 UnRegisterComponents();

 m_DUTSerialPEntry = null;

 UnHookFromGroupAll();

 m_GroupAll = null;

 m_T1PEntry = null;

 m_T2PEntry = null;

 m_deltaT80 = null;

 m_MyDemoSystem = null;

 m_TheRecorder = null;

 m_ThisDataManager = null;

 }

 catch

 {

 }

 m_bDisposed = true;

}

#endregion

CSI Programming user manual

128 A2698_05_E00_00 HBM: public

9.1.7 Calculations

The calculations themselves will be done by using the formula database functions. These

functions provide all the power we need. Should you need extra functions you can design and

use them as described earlier. The end result within the formula database will look like this:

We will "load" the functions from within our code.

Lines 10, 11 and 12 are used to correct for any offset that might be available.

In line 14 the resultant is calculated as the square root of the sum of squares.

Lines 16 through 18 are defined here to calculate two levels: 60% and 80% of the maximum

value.

In line 20 the first crossing of the resultant with the 80% level is searched, starting from the

beginning. The crossing should go in the positive direction.

In line 21 the second level crossing is searched, starting at the position of the first crossing

and should go in the negative direction.

Line 22 calculates the difference.

In lines 23 through 25 the same is done for the 60% level crossing.

In our code we need to implement this. We can do it on several locations. For this example we

will do it when our recorder is connected.

The code itself is very straightforward. Before you start make sure you have added a reference

to the Perception.FormulaDatabase.dll in the project references.

Also make sure when entering the formula text that you use a semicolon as separator, not a

comma.

// create required formulas in formula database

// create instance of formula database

FormulaDB ForDB = FormulaDB.Instance;

// add formulas at fixed location

// compensate X, Y and Z with mean of first sweep

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 129

ForDB.Formulas[10].Name = "X";

ForDB.Formulas[11].Name = "Y";

ForDB.Formulas[12].Name = "Z";

ForDB.Formulas[10].Expression = "@Sweep(Active.Group1.Recorder_A.Ch_A1; 2)

- @Mean(@Sweep(Active.Group1.Recorder_A.Ch_A1; 1))";

ForDB.Formulas[11].Expression = "@Sweep(Active.Group1.Recorder_A.Ch_A2; 2)

- @Mean(@Sweep(Active.Group1.Recorder_A.Ch_A2; 1))";

ForDB.Formulas[12].Expression = "@Sweep(Active.Group1.Recorder_A.Ch_A3; 2)

- @Mean(@Sweep(Active.Group1.Recorder_A.Ch_A3; 1))";

// calculate the result

ForDB.Formulas[14].Name = "Resultant";

ForDB.Formulas[14].Expression = "@Sqrt(@Pow(Formula.X; 2) +

 @Pow(Formula.Y; 2) + @Pow(Formula.Z; 2))";

// for the time being use these values as the reference values

ForDB.Formulas[16].Name = "ResultMax";

ForDB.Formulas[16].Expression = "@Max(Formula.Resultant)";

ForDB.Formulas[17].Name = "Ref80";

ForDB.Formulas[17].Expression = "0.8 * Formula.ResultMax";

ForDB.Formulas[18].Name = "Ref60";

ForDB.Formulas[18].Expression = "0.6 * Formula.ResultMax";

// calculate time parameters

ForDB.Formulas[20].Name = "T1";

ForDB.Formulas[20].Expression = "@NextLvlCross(Formula.Resultant; 0;

Formula.Ref80; 1)";

ForDB.Formulas[21].Name = "T2";

ForDB.Formulas[21].Expression = "@NextLvlCross(Formula.Resultant;

 Formula.T1; Formula.Ref80; -1)";

ForDB.Formulas[22].Name = "deltaT_80";

ForDB.Formulas[22].Expression = "Formula.T2 - Formula.T1";

ForDB.Formulas[22].Units = "s";

ForDB.Formulas[23].Name = "T3";

ForDB.Formulas[23].Expression =

 "@NextLvlCross(Formula.Resultant; 0; Formula.Ref60; 1)";

ForDB.Formulas[24].Name = "T4";

ForDB.Formulas[24].Expression = "@NextLvlCross(Formula.Resultant;

 Formula.T3; Formula.Ref60; -1)";

ForDB.Formulas[25].Name = "deltaT_60";

ForDB.Formulas[25].Expression = "Formula.T4 - Formula.T3";

ForDB.Formulas[25].Units = "s";

We can now connect the calculated waveforms to the display. First we will clear the display.

// clear display

for (int j = ResultDisplay.TimeDisplay.CtlLayout.Pages.Count;

 j > 0; j--)

{

 ResultDisplay.pDisplay.TimeDisplay.CtlLayout.Pages[j].Delete();

CSI Programming user manual

130 A2698_05_E00_00 HBM: public

}

ResultDisplay.pDisplay.TimeDisplay.AddPage().Activate();

Connect the results:

// connect these waveforms to the display

ResultDisplay.pDisplay.TimeDisplay.CtlLayout.Pages.

 ActivePage.Panes[1].Activate();

string[] aPoolEntry = new string[] { "Formula.X" };

ResultDisplay.pDisplay.AddDataSources(aPoolEntry);

ResultDisplay.pDisplay.TimeDisplay.CtlLayout.ActiveTrace.

 TraceProp.PrimaryColor = 0x0000FF; // red

ResultDisplay.pDisplay.TimeDisplay.CtlLayout.Pages.ActivePage.

 Panes.AddPane().Activate();

aPoolEntry[0] = "Formula.Y";

ResultDisplay.pDisplay.AddDataSources(aPoolEntry);

ResultDisplay.pDisplay.TimeDisplay.CtlLayout.ActiveTrace.

 TraceProp.PrimaryColor = 0xFFFFFF; // white

ResultDisplay.pDisplay.TimeDisplay.CtlLayout.Pages.ActivePage.

 Panes.AddPane().Activate();

aPoolEntry[0] = "Formula.Z";

ResultDisplay.pDisplay.AddDataSources(aPoolEntry);

ResultDisplay.pDisplay.TimeDisplay.CtlLayout.ActiveTrace.

 TraceProp.PrimaryColor = 0xFFFF00; // blue

ResultDisplay.pDisplay.TimeDisplay.CtlLayout.Pages.ActivePage.

 Panes.AddPane().Activate();

aPoolEntry[0] = "Formula.Resultant";

ResultDisplay.pDisplay.AddDataSources(aPoolEntry);

ResultDisplay.pDisplay.TimeDisplay.CtlLayout.ActiveTrace.

 TraceProp.PrimaryColor = 0x00FFFF; // yellow

Set some display properties:

// set display

ResultDisplay.ReviewType =

TimeView.ReviewModeType.ReviewModeType_Recording;

// set pane height

double[] PaneArray = new double[4] { 0.2, 0.2, 0.2, 0.4 };

object PaneParams = PaneArray;

ResultDisplay.pDisplay.TimeDisplay.CtlLayout.ActivePage.Panes.SetPaneHeighs

(

 ref PaneParams);

First we set the review type, then we modify the pane height. To modify the pane height you

must create an array that sets the height of all panes. The pane height ranges from 0 (0%) to 1

(100%) of total display size.

Then an object is created from that array and passed to the SetPaneHeights method by

reference.

We are done now with our calculations. However, there is more that we want to do:

• Set the two measurement cursors on the points of interest

• Set the two horizontal cursors on the 60% and 80% levels as reference

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 131

We can set the cursors when correct data is available. To verify this we need to create event

handlers for the T1 and T2 variables. Follow the standard procedure to create these event

handlers.

Create the members:

protected PoolEntry m_T1PEntry = null;

protected PoolEntry m_T2PEntry = null;

protected PoolEntry m_deltaT80 = null;

Create the event handlers:

m_T1PEntry = m_ThisDataManager.PoolEntries["Formula.T1"];

m_T1PEntry.DataChanged += new

 _IPoolEntryEvents_DataChangedEventHandler(m_T1PEntry_DataChanged);

m_T2PEntry = m_ThisDataManager.PoolEntries["Formula.T2"];

m_T2PEntry.DataChanged += new

 _IPoolEntryEvents_DataChangedEventHandler(m_T2PEntry_DataChanged);

m_deltaT80 = m_ThisDataManager.PoolEntries["Formula.deltaT_80"];

m_deltaT80.DataChanged += new

 _IPoolEntryEvents_DataChangedEventHandler(m_deltaT80_DataChanged);

The code of the event handler for T and T2 are basically the same. Therefore only the T1 will

be described.

In the routine the following actions will de done:

• Verify if there is a valid value.

• If so, position the cursor.

• When also the other cursor position is valid, expand the time view to show more of the

point of interest.

• Set the Y-range for optimal expansion

• Position both horizontal cursors

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

void T1PEntry_DataChanged()

{

 this.InvokeOnUI(() => DoT1PEntry_DataChanged());

}

void DoT1PEntry_DataChanged()

{

 if (m_T1PEntry == null)

 return;

 double dTP1Time = (double) m_T1PEntry.DataSource.Value;

 double dTP2Time = (double) m_T2PEntry.DataSource.Value;

 if (double.IsNaN(dTP1Time))

 return;

 // position cursor

 ResultDisplay.pDisplay.TimeDisplay.Cursors[1].time = dTP1Time;

 // if also TP2 is true: move visible window

CSI Programming user manual

132 A2698_05_E00_00 HBM: public

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

 if (double.IsNaN(dTP2Time))

 return;

 double delta = dTP2Time - dTP1Time;

 ResultDisplay.pDisplay.TimeDisplay.CtlLayout.TimeController.CentralTime =

 dTP1Time + (delta / 2.0);

 ResultDisplay.pDisplay.TimeDisplay.CtlLayout.TimeController.StartTime =

 dTP1Time - (delta / 3.0);

 ResultDisplay.pDisplay.TimeDisplay.CtlLayout.TimeController.EndTime =

 dTP2Time + (delta / 3.0);

 double dMaxVal = (double) m_ThisDataManager.PoolEntries

 ["Formula.ResultMax"].DataSource.Value * 1.2;

 ResultDisplay.pDisplay.TimeDisplay.CtlLayout.ActiveTrace.TraceProp.

 SetRangeFromTo(dMaxVal, 0.0);

 double dHorCurPos = (double) m_ThisDataManager.

 PoolEntries["Formula.Ref80"].DataSource.Value * (0.4 / dMaxVal);

 ResultDisplay.pDisplay.TimeDisplay.CtlLayout.HorizontalCursors.Visible

 = true;

 ResultDisplay.pDisplay.TimeDisplay.CtlLayout.HorizontalCursors[1].Location

 = dHorCurPos;

 ResultDisplay.pDisplay.TimeDisplay.CtlLayout.HorizontalCursors[2].Location

 = dHorCurPos * 0.75;

}

• 330 - 334: standard for these event handlers

• 334 - 335: check if entry is valid

• 337 - 338: fetch values

• 340 - 341: check if value is valid

• 343 - 344: position the cursor

• 346 - 348: check if other value is also valid

• 351 - 353: modify and position time window. Center between the two cursors and make

window approximately 1.6 times difference between cursors.

• 355 - 356: set Y-range of trace from 0 to 1.2 times maximum value

• 358 - 361: position the horizontal cursors. The pane size is 0.4 times the display size and

has a range of 0 - dMaxval. The first horizontal cursor is at 80% (0.8) of the maximum of

the resultant. The position of the horizontal cursor is in range 0 (0% = bottom) to 1 (100%

= top) of total display size.

Therefore the position is Y-value in display range times pane height:

(Ref80 / dMaxVal) * 0.4

The second cursor is Ref60 = Ref80 * 75%

To test all this you will need to improvise a little bit. You could use a microphone connected to

three channels and tap on it to simulate an impact. For this you might need to modify sample

rate, sweep length and filter settings. Also you might need to modify in software the test levels

and display positioning for the best results.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 133

In the above image you see an actual recording made as described with a microphone.

9.2 Points of consideration

In this example we have used the formula database for our calculations. Unfortunately the

formula database updates the results each time new data arrives and a result is requested,

e.g. by a display. Therefore our application will respond very slowly. After each sweep the

complete calculations must be done. To overcome this problem we could plan to add the

formulas to the database after the recording has been made. Since this application uses only

two sweeps with fixed sample rate, i.e. there are no segments, the calculations could also be

done internally in the code to speed things up. Numerous schemes exist.

In addition it would also a possibility to create a user waveform from the Resultant and save it

with the complete experiment. With multiple results you could do statistical analysis.

So far we did not discuss the meters. Currently the meter support in CSI is limited therefore

automation is not easy. You could drag the results after the test into the meters.

Or you can add the sources when the results are valid. For this you need again an event

handler, e.g. hooked to the deltaT80_changed. Example:

void DeltaT80_DataChanged()

{

 this.InvokeOnUI(() => DoDeltaT80_DataChanged());

}

void DoDeltaT80_DataChanged()

{

 if (m_deltaT80 == null)

 return;

 double ddelta = (double)m_deltaT80.DataSource.Value;

CSI Programming user manual

134 A2698_05_E00_00 HBM: public

 if (double.IsNaN(ddelta))

 return;

 // set meter name and connect meter to the correct pool entry

 if (ResultMeters.UserName == "Impact Values")

 return;

 ResultMeters.UserName = "Impact Values";

 string[] sPoolEntry = new string[] { "Formula.deltaT_60",

 "Formula.deltaT_80", "Formula.ResultMax" };

 ResultMeters.pMeter.LDSMeter.AddDataSources(sPoolEntry);

}

As mentioned earlier this would slow down the overall test progress when the meters are

connected and displayed. Removing the meters automatically, however, is not possible. You

will need to this manually.

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 135

10 User-key script action

Perception comes with many pre-defined script actions which can be used by defining the

functionality of a user-key. However there might be situations where you want to add new

functionality behind a user key. This can be done via CSI. You can program a new script

action. This paragraph will show you how this can be done.

10.1 Perception.ScriptAction

Just like for the CSI user-sheet a Perception.ScriptAction template is available to make it

easy to create your own user-key script action.

To verify this you should start your Microsoft Visual Studio and create a new project.
The selection criteria should be:

• c#

• Perception

• Perception Script Action

The screen should now look like:

In the Template section, the Perception.ScriptAction should be available. If not so, proceed
as described below.

10.1.1 To load the Perception CSI template

1. Locate the file named Perception.ScriptAction.Template.vsix

2. Double-click this file. The VSIX installer will be launched

CSI Programming user manual

136 A2698_05_E00_00 HBM: public

3. Click Install to install

4. Click Close

10.2 Your first User key Script action

You now should be able to create, compile and run your first user-key script action.
To do so proceed as follows:

1. Start your Microsoft Visual Studio and select File > New > Project.

2. In the dialog that comes up select a Visual C# Perception project.

3. Select the Perception.ScriptAction template

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 137

4. Enter a name Perception.ScriptAction.Training and location for this project

5. Click OK

The Solution Explorer will now include the following:

• References to Perception interfaces

CSI Programming user manual

138 A2698_05_E00_00 HBM: public

• C# code for the script action

This code is enough to create a script action.

• Compile the generated code without any modification

• A dll called Perception.ScriptAction.Training.dll is created and saved in the folder

 C:\Program Files\HBM\Perception\ScriptActions\

Note: This is an example location; however Perception will look during start-up in the

..\HBM\Perception folder and all its subfolders if it can find dll’s which implement the

IScriptActionInfo and IScriptAction interfaces. All the dll’s found will then be loaded.

Continue reading to get more information on those interfaces.

• Check if Perception.exe is used to debug the script dll:

• Run Perception, create a new user key and link the new script action to this user key

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 139

• Test and debug the new script action.

Now we will go into the details of the generated code.

A file called UserScriptAction.cs has been generated. This file contains the class called

UserScriptAction. This class implements the interfaces IScriptAction, IScriptActionInfo and

IConfigurable.

10.2.1 IScriptActionInfo

This interface gives information about the script action:

Where:

• Category: The name of the category to which the script belongs.

• Text: The name which is shown in the scrip selection and in the Action field

CSI Programming user manual

140 A2698_05_E00_00 HBM: public

• HelpText: The text shown in the Description field

• Image: The default used picture

10.2.2 IScriptAction

This interface is used by Perception to actually run the action after for example a user button

click:

The RunAction parameter context has implemented the IScriptContext interface:

Where:

OwnerWindow: Window handle to be used when you want to show your own dialogs.

When the window handle is null then the action script is executed from the Perception

automation and not from a user key click, in those cases we advise that the script action do not

stop on modal dialogs, because there might not be an operator to close such a dialog

NotifyUser: Method to be used to interact with Perception

Examples:

• context.NotifyUser(this, "Notify user message",

ScriptActionResult.ErrorAbort);

• context.NotifyUser(this, "Notify user message",

ScriptActionResult.ErrorContinue);

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 141

10.2.3 IConfigurable

This interface is used to configure the script action

10.3 Example: Create a script action for auto scaling all traces of the active
display

We now will use the above framework to create a script action which can be used to auto scale

all traces of the active display

• Rename the file UserScriptAction.cs to TraceAutoScaleAction.cs

• Modify the HandleError method:

private ScriptActionResult HandleError(IScriptContext context,

 string message, ScriptActionResult actionResult)

{

 if (context != null)

 actionResult = context.NotifyUser(this, message, actionResult);

 else

 actionResult = ScriptActionResult.ErrorAbort;

 return actionResult;

}

• Modify the ExecuteAction():

private bool ExecuteAction(IWin32Window owner, out string cError)

{

 Display activeDisplay = DisplayHelper.GetActiveDisplay();

 if (activeDisplay == null)

 {

 cError =

 "Can not perform this action because no active display isfound";

 return false;

 }

 ActionResultType aResult = DisplayHelper.DoAction(activeDisplay,

 TimeView.ActionType.ActionType_TraceAutoScale);

CSI Programming user manual

142 A2698_05_E00_00 HBM: public

 if (aResult == ActionResultType.ActionResultType_OK)

 {

 cError = "";

 return true;

 }

 cError = string.Format(

 "Auto trace scale failed: Action result code: {0}" , aResult);

 return false;

}

• Set the following resources:

• Compile the project and check if the new script action works

10.4 Add option to select all or only active trace to be auto scaled

We will now modify the above script action by adding an option which is used to define if the

auto scale should be done for all traces or only the active trace.

• Add new class to the project called ScriptDisplayHelper

• The code of this helper class looks like:

using TimeView;

using Perception.Components;

using TimeDisplayLib;

namespace Perception.ScriptAction.Training

{

 public static class ScriptDisplayHelper

 {

 internal delegate ActionResultType ActionTypeDelegate(

 Display aDisplay, DTrace aTrace, ActionTraceType action);

 public static ActionResultType DoTraceAction(Display aDisplay,

 DTrace aTrace, ActionTraceType action)

 {

 if (aDisplay.InvokeRequired)

 {

 aDisplay.BeginInvoke(new ActionTypeDelegate(DoTraceAction),

 aDisplay, aTrace, action);

 return ActionResultType.ActionResultType_Failed;

 }

 object aOcx = aDisplay.ComInterface;

 return DoDisplayTraceAction(aTrace, aOcx as ITimeDisplay, action);

 }

 internal static ActionResultType DoDisplayTraceAction(DTrace aTrace,

 ITimeDisplay itfDisplay, ActionTraceType action)

 {

 if (aTrace == null)

 return ActionResultType.ActionResultType_Failed;

 if (itfDisplay == null)

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 143

 return ActionResultType.ActionResultType_Failed;

 IDView itfActiveView = null;

 itfDisplay.GetView(DisplayModeType.DisplayModeType_ActiveView,

 out itfActiveView);

 if (itfActiveView == null)

 return ActionResultType.ActionResultType_Failed;

 ActionResultType result;

 itfActiveView.InvokeTraceCommand(aTrace, action, out result);

 return result;

 }

 }

}

• Rename FIELDNAME_VARIABLE_1 to FIELDNAME_SCALE_ALL in the

TraceAutoScaleAction.cs file

• Rename m_strVariable1 to m_bScaleAll

• The code should look like:

private const string FIELDNAME_SCALE_ALL = "ScaleAll";

private bool m_bScaleAll = true;

• Modify the serialization constructor to

public TraceAutoScaleAction(SerializationInfo info,

 StreamingContext context)

{

 m_bScaleAll = Tools.GetValue<bool>(info, FIELDNAME_SCALE_ALL, true);

}

• Modify the GetObjectData() method

public void GetObjectData(SerializationInfo info, StreamingContext context)

{

 info.AddValue(FIELDNAME_SCALE_ALL, m_bScaleAll);

}

• Modify the ExecuteAction() to:

ActionResultType aResult;

if (m_bScaleAll)

 aResult = DisplayHelper.DoAction(activeDisplay,

 TimeView.ActionType.ActionType_TraceAutoScale);

else

 aResult = ScriptDisplayHelper.DoTraceAction(activeDisplay,

 activeDisplay.TimeDisplay.ActiveTrace,

 ActionTraceType.ActionTraceType_AutoScale);

• Change the HelpText property:

• Rename the file UserScriptActionConfigurationDialog.cs to
TraceAutoScaleConfigurationDialog.cs

• Modify the configuration dialog as below:

CSI Programming user manual

144 A2698_05_E00_00 HBM: public

• Set the property Modifiers of the group-box and the radio buttons to Internal. By doing
this these components are available from the TraceAutoScaleAction class.

• Modify the Configure method in the TraceAutoScaleAction class:

public DialogResult Configure(IWin32Window owner)

{

 using (TraceAutoScaleConfigurationDialog Dialog = new

 TraceAutoScaleConfigurationDialog())

 {

 Dialog.radioAll.Checked = m_bScaleAll;

 Dialog.radioSingleTrace.Checked = !m_bScaleAll;

 DialogResult result = Dialog.ShowDialog(owner);

 if (result == DialogResult.OK)

 {

 m_bScaleAll = Dialog.radioAll.Checked;

 }

 }

 return DialogResult.OK;

}

• Compile and debug the program

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 145

11 Summary

Within this document we have tried to give you a basic understanding of the capabilities and

the concepts of the Perception Custom Software Interface CSI. By itself the CSI is so

extensive that is not possible to describe all functions and features in a single document. Also

a reference document is beyond the scope of the CSI.

The information provided in this manual should get you started. In addition to this manual you

could follow a course provided by HBM. Also additional personal support is a possibility.

Contact HBM directly or through your distributor/agent to get more information on these topics.

CSI Programming user manual

146 A2698_05_E00_00 HBM: public

12 Appendix: Multithreading

Multithreading, or free threading, refers to the ability of a program to execute multiple threads

of operation simultaneously. An example of a multithreaded application might be a program

that receives user input on one thread, performs a variety of complex calculations on a second

thread, and updates a database on a third thread. In a single-threaded application, a user

might spend idle time waiting for the calculations or database updates to finish. In a

multithreaded application, these processes can proceed in the background so user time is not

wasted.

Perception is a multithreading application with the user interface UI on one thread. As a result,

accessing the UI from another thread is 'forbidden': you may not operate on a window from

other than its creating thread.

In most of our examples we use the UI. When this use is invoked by a control that is already

on the user interface, we are on the same thread. However, on various occasions we use

event handlers to perform actions on the UI. Since we do not know - usually - from which

thread this event is generated, we need to synchronize with the UI thread.

Synchronizing is done with Invoke, BeginInvoke and EndInvoke. Refer to the Microsoft

documentation for full details.

The use of Invoke gives a safe use of multithreading in the application. The UI thread spawns

a worker thread to do our operation, and the worker thread passes control back to the UI

thread when the UI needs updating. In addition we need to verify if Invoke is required.

BeginInvoke is always preferred if you don't need the return of a function call because it

sends the worker thread to its work immediately and avoids the possibility of deadlock.

Summary: when event handling code affects the user interface, a marshal of the event to the

user interface thread is required. A common example for this is:

private void EventHandler(object sender, EventArgs e)

{

 if (this.InvokeRequired)

 {

 this.BeginInvoke(new EventHandler(EventHandler), sender, e);

 return;

 }

 this.SetFinished();

}

This is what we have seen multiple times. This code will work fine, as long as the "this" is

already created and has a handle, if not the call this.InvokeRequired will throw an exception

and may cause your application to exit.

There are two ways around this problem:

• add a check in your event handler code to see if the handle is already created, or

• hook to an event in the OnHandleCreated function (advanced)

CSI Programming and user manual

 A2698_05_E00_00 HBM: public 147

1 Check if the handle is created in the event handler, before using the InvokeRequired

property. Your code will look like this:

private void EventHandler(object sender, EventArgs e)

{

 if (!this.IsHandleCreated)

 return;

 if (this.InvokeRequired)

 {

 this.BeginInvoke(new EventHandler(EventHandler), sender, e);

 return;

 }

 this.SetFinished();

}

2 Do not hook to the event(s) until the handle is created. You can do this by hooking to an

event in the OnHandleCreated function. Your code will look like this:

protected override void OnHandleCreated(EventArgs e)

{

 base.OnHandleCreated(e);

 //

 // Hook to events.

 Hook();

}

Create a function Hook() that contains all the required hooks.

For a better performance Perception supports a method called InvokeOnUI() which can be

used to update the GUI from an event handler fired from any possible thread and replaces the

above InvokeRequired and BeginInvoke code.

private void EventHandler(object sender, EventArgs e)

{

 this.InvokeOnUI(() => DoEventHandler(sender, e));

}

private void DoEventHandler(object sender, EventArgs e)

{

 this.SetFinished();

}

CSI Programming user manual

148 A2698_05_E00_00 HBM: public

Head Office
HBM
Im Tiefen See 45
64293 Darmstadt
Germany
Tel: +49 6151 8030
Email: info@hbm.com

France
HBM France SAS
46 rue du Champoreux
BP76
91542 Mennecy Cedex
Tél:+33 (0)1 69 90 63 70
Fax: +33 (0) 1 69 90 63 80
Email: info@fr.hbm.com

UK
HBM United Kingdom
1 Churchill Court, 58 Station Road
North Harrow, Middlesex, HA2 7SA
Tel: +44 (0) 208 515 6100
Email: info@uk.hbm.com

USA
HBM, Inc.
19 Bartlett Street
Marlborough, MA 01752, USA
Tel : +1 (800) 578-4260
Email: info@usa.hbm.com

PR China
HBM Sales Office
Room 2912, Jing Guang Centre
Beijing, China 100020
Tel: +86 10 6597 4006
Email: hbmchina@hbm.com.cn

© Hottinger Baldwin Messtechnik GmbH. All rights reserved.
All details describe our products in general form only.
They are not to be understood as express warranty and do
not constitute any liability whatsoever.

measure and predict with confidence A

2
6
9

8
_

0
5
_
E

0
0

_
0

0

