

ENGLISH DEUTSCH

Operating Manual Bedienungsanleitung

Scout 55

Hottinger Brüel & Kjaer GmbH Im Tiefen See 45 D-64293 Darmstadt Tel. +49 6151 803-0 Fax +49 6151 803-9100 info@hbkworld.com www.hbkworld.com

Mat.: DVS: A05956 01 X00 00 04.2023

© Hottinger Brüel & Kjaer GmbH

Subject to modifications. All product descriptions are for general information only. They are not to be understood as a guarantee of quality or durability.

Änderungen vorbehalten. Alle Angaben beschreiben unsere Produkte in allgemeiner Form. Sie stellen keine Beschaffenheits- oder Haltbarkeitsgarantie dar.

ENGLISH DEUTSCH

Operating Manual

Scout 55

TABLE OF CONTENTS

1	Documentation and safety instructions	4
2	Markings used	7
2.1	Markings used in this document	7
2.2	Symbols on the device	7
3	Introduction	9
3.1	Scope of supply	9
3.2	General	9
3.3	Block diagram	10
4	Connection	11
4.1	Factory settings	11
4.2	Changing the factory settings	11
4.2.1	Setting the analog output signal	12
4.2.2	Selecting the operating mode for synchronization	12
4.3	Connecting the power supply	12
4.3.1	Changing the mains voltage selection/Replacing fuses	13
4.3.2	Setting up the device	14
4.4	Connecting transducers	14
4.5	Analog output	16
4.6	Control inputs/outputs	18
4.7	Synchronization	19
4.8	Connecting the serial interface	20
5	Setup and operation	21
5.1	Starting up and factory settings	21
5.2	Operating concept and function overview	25
5.3	Key functions in measuring mode	27
5.3.1	Querying and setting limit value levels in measuring mode	27
5.4	Key functions in programming mode	29
5.4.1	Changing from "Measuring" to "Programming" mode	29
5.4.2	Programming	30
5.4.3	Changing from "Programming" to "Measuring" mode	31
5.4.4	Dialog	31
5.4.5	Loading/Saving to parameter set (PARAM.SET)	31
5.4.6	Adaptation	32
5.4.7	Calibration (CALIBR.)	35
5.4.8	Limit values 14 (LIMITVAL 14)	37

5.4.9	Setting peak value memory (PV.MEMORY)	38
5.4.10	Inputs and outputs (INP/OUTP)	40
5.4.11	Add.funct. (Additional functions)	43
5.5	Overview of all groups and parameters	46
5.5.1	Setting all parameters	47
6	Serial interface, RS232	50
6.1	General points about the interface	50
6.2	Characteristic data of the serial interface	51
7	Communication with the Scout 55	52
7.1	Connecting the Scout 55 to a computer	52
7.2	Activating the RS232 interface	53
8	Command set of the HBM Interpreter	54
8.1	Important conventions	54
8.1.1	Command structure	55
8.1.2	Data output structure	56
8.2	Individual command descriptions	56
8.2.1	Setting the functions of the Additional Functions group	58
8.2.5	Setting the Parameter Sets group	61
8.2.6	Specifying output format, measured value output	64
8.2.9	Setting the functions of the Adaptation group	69
8.2.13	Setting the functions of the Calibration group	76
8.2.19	Setting the functions of the Limit Value 1 4 group	82
8.2.20	Setting the functions of the Peak Value Memory group	85
8.2.21	Setting the functions of the Inputs/Outputs group	87
9	Example	94
10	Error messages	102
Index .		103

1 DOCUMENTATION AND SAFETY INSTRUCTIONS

Documentation

Modifications in the documentation are reserved. The latest documentation is available for download at: <u>https://www.hbm.com/en/2314/scout55-mobile-amplifier-in-desktop-housing/?product_type_no=SCOUT55</u>

Intended use

The Scout 55 with connected transducers is to be used exclusively for measurement tasks and directly related control tasks. Use for any purpose other than the above is deemed improper use. In the interests of safety, the device should only be operated as described in the operating manuals.

Each time before starting up the equipment, you must first run a project planning and risk analysis that takes into account all the safety aspects of automation technology. This particularly concerns personal and machine protection.

Additional safety precautions to establish safe operating conditions in the event of a fault must be taken in plants where malfunctions could cause major damage, loss of data or even personal injury.

This can be done, for example, by error signaling, limit value switches, mechanical interlocking, etc.

During use, compliance with the legal and safety requirements for the relevant application is also essential. The same applies to the use of accessories.

Safety requirements

Before starting up, make sure that the mains voltage and type of current stated on the type plate match the mains voltage and type of current at the place of operation, and that the circuit being used is adequately protected.

The device complies with the safety requirements of DIN EN 61010 Part 1 (VDE 0411 Part 1); protection class I. The device has a power switch. Make sure that it is freely accessible at all times.

The Scout 55 can optionally be operated with a mains voltage of 230 VAC or 110 VAC, 48...60 Hz.

For details on how to adapt the device to the mains voltage, refer to section 2.3.1 of the operating manual.

The supply connection, as well as signal and sense leads, must be installed in such a way that electromagnetic interference does not impair the instrument functions (HBM recommends the Greenline shielding design, available to download from http://www.hbm.com/Greenline).

Automation equipment and devices must be covered over in such a way that adequate protection or locking against unintentional actuation is provided (e.g. access checks, password protection, etc.).

When devices are working in a network, the network must be configured in such a way that malfunctions in individual nodes can be detected and shut down.

Safety precautions must be taken both in terms of hardware and software, so that a line break or other interruption to signal transmission, such as via the bus interfaces, does not cause undefined states or loss of data in the automation equipment.

General dangers of failing to follow the safety instructions

The Scout 55 corresponds to the state of the art, and is safe to operate. The device may pose residual dangers if it is installed or operated by untrained personnel.

Any person involved in setting up, starting up, operating or repairing the device must have read and understood the operating manual and, in particular, the technical safety instructions.

Residual dangers

The scope of supply and performance of the Scout 55 covers only a small area of the measurement technology field. In addition, planners, installers and operators should plan, implement and manage the safety features of the test and measuring equipment in such a way as to minimize residual dangers. Existing regulations must be complied with at all times. The residual dangers associated with test and measuring equipment must be indicated.

After making settings and carrying out activities that are password-protected, you must make sure that any controls that may be connected remain in a safe condition until the switching performance of the Scout 55 has been tested.

Working safely

Error messages may only be acknowledged once the cause of the error is removed and there is no further danger.

Conditions at the place of installation

Protect the devices from moisture, and weather conditions such as rain, snow, etc.

Do not expose the device to direct sunlight. Ensure that there is adequate ventilation.

Conversions and modifications

The Scout 55 must not be modified in its design or safety features except with our express consent. Any modification shall exclude all liability on our part for any resulting damage.

In particular, any repair or soldering on motherboards is prohibited. When exchanging complete modules, use only genuine parts from HBM.

The device is shipped from the factory with a fixed hardware and software configuration. Changes can only be made within the scope documented in the manuals.

Qualified personnel

This device is only to be installed and used by qualified personnel, strictly in accordance with the specifications and with the safety rules and regulations which follow.

This includes people who meet at least one of the three following requirements:

- As project personnel, you are familiar with the safety design features of the automation equipment, and are accustomed to applying them.
- As automation plant operating personnel, you have been instructed on how to use the equipment. You are familiar with the operation of the equipment and technologies described in this documentation.
- As a commissioning or service engineer, you have successfully completed training in the repair of automation plants. You are also authorized to operate, ground and mark circuits and equipment in accordance with safety engineering standards.

2 MARKINGS USED

2.1 Markings used in this document

Important instructions for your safety are highlighted. Following these instructions is essential in order to prevent accidents and damage to property.

Icon	Meaning
	This marking warns of a <i>potentially</i> dangerous situa- tion in which failure to comply with safety require- ments <i>could</i> result in death or serious physical injury.
	This marking warns of a <i>potentially</i> dangerous situation in which failure to comply with safety requirements <i>could</i> result in slight or moderate physical injury.
Notice	This marking draws your attention to a situation in which failure to comply with safety requirements <i>could</i> lead to property damage.
Important	This marking draws your attention to <i>important</i> information about the product or about handling the product.
Тір	This marking indicates tips for use or other information that is useful to you.
I nformation	This marking draws your attention to information about the product or about handling the product.
Emphasis See	Italics are used to emphasize and highlight text and identify references to sections of the manual, diagrams, or external documents and files.
	This symbol indicates an action step.

2.2 Symbols on the device

CE mark

CE

With the CE mark, the manufacturer guarantees that the product complies with the requirements of the relevant EC directives (the Declaration of Conformity can be found on the HBM website (www.hbm.com) under HBMdoc).

Statutory waste disposal marking

In accordance with national and local environmental protection and material recovery and recycling regulations, old devices that can no longer be used must be disposed of separately and not with normal household garbage.

3 INTRODUCTION

3.1 Scope of supply

- Device with stand/carrying handle
- 1 cable plug DB-15P, ordering no.: 3.3312-0182
- 1 mains cable
- 1 terminal strip connector 3-pin (interface)
- 2 terminal strip connectors 9-pin (control inputs/outputs)
- 1 operating manual, part 1; 1 operating manual, part 2
- 1 cable Kab3-3301.0104

3.2 General

The Scout 55 measuring amplifier is suitable for the acquisition and processing of measured values from passive transducers.

Key features:

- Transducers that can be connected: Strain gage full and half bridges, inductive full and half bridges, piezoresistive and potentiometric transducers, LVDTs
- 10-digit alphanumeric display
- Operation via membrane keypad
- 2 peak value memories for maximum and minimum value, as well as envelope curve and instantaneous value
- 4 limit value switches
- RS232 serial interface for connecting a computer or printer
- Parameter memory for storing up to 8 data sets
- Control inputs and outputs (galvanically isolated via optocouplers)
- · Convenient housing design with stand/carrying handle

All necessary commands for setting up the device via the serial interface and querying measured values are listed and described in a separate part of the operating manual: "**Operating the Scout 55 with a computer**".

Fig. 3.1 Scout 55 block diagram

4 CONNECTION

Comply with the safety instructions before starting up the device.

4.1 Factory settings

Before using the device, check the factory-set parameters, and that the components for selecting the analog output signal (current/voltage output) and synchronization setting are on the motherboard.

The factory settings are:

- Mains voltage: 230 V / 50...60 Hz or 115 V / 50..60 Hz depending on order
- Analog output: Output voltage ±10 V
- Synchronization: Master

Fig. 4.1 Positions of the jumpers on the motherboard

4.2 Changing the factory settings

To change the factory settings, do the following:

- Switch off the device and unplug the mains cable. Remove all plug connections on the rear panel.
- Loosen the four screws of the housing cover and remove the cover.
- Change the setting you need using the jumpers as shown in Fig. 4.1.
- Screw the housing cover back on.

4.2.1 Setting the analog output signal

The analog output (voltage or current) is selected by replugging jumpers ST11 (see Fig. 4.1). The selection of ± 20 mA or 4...20 mA is made on the user interface.

4.2.2 Selecting the operating mode for synchronization

To synchronize multiple devices, one device is set as the master. All other devices must be set as slaves. The master and slave selections are made with jumpers ST13, ST14 and ST15 (see *Fig. 4.1*).

4.3 Connecting the power supply

Check that the mains voltage of the device (indicated on the back) matches the supply voltage. If it does not, change the device setting as described in *section 4.3.1*.

Fig. 4.2 Back of device

An IEC 320 plug (65°C) is provided for the mains cable connection. The necessary power supply cable is included.

Country-specific versions are available as accessories.

4.3.1 Changing the mains voltage selection/Replacing fuses

Fig. 4.3 Back of device: Selecting mains voltage, replacing fuses

The currently selected mains voltage (e.g. 230 V) is indicated in the window.

Adapting to mains voltage

- Switch off the device and unplug the mains cable.
- Lift the cover and swing it aside.
- Remove the fuse holder.
 - Insert the fuse holder according to the required mains voltage (observe the rated current of the fine-wire fuse).
 - Close the cover.

The selected mains voltage is indicated in the window (selection here: (2): 230 V).

Replacing fuses

- Switch off the device and unplug the mains cable.
- Lift the cover and tilt it forward.
- Remove the fuse holder.
- Replace the fuses.
 - Insert the fuse holder, making sure that the mains voltage is correct (the selected value is indicated in the window).

4.3.2 Setting up the device

Fig. 4.4 Setting up the Scout 55

4.4 Connecting transducers

The following transducer types can be connected to the Scout 55:

- Strain gage full and half bridge transducers
- Inductive half and full bridge transducers
- Potentiometric and piezoresistive transducers
- LVDTs (linear variable differential transformers)

The connection is made via a 15-pin socket on the housing rear panel designated BU1.

Fig. 4.5 Connecting various transducers

When connecting a transducer by a four-wire cable, you must connect the sense leads in the cable connector to the corresponding bridge excitation circuit (pin 5 to pin 12, and pin 6 to pin 13).

Fig. 4.6 Transducer connection in a four-wire configuration

Information

Use standard HBM cables for connecting the transducers. When using other shielded, lowcapacitance measuring cables, place the shield of the transducer cable on the connector housing according to the HBM Greenline guidance (see http://www.hbm.com/Greenline). This ensures EMC protection.

4.5 Analog output

The analog output signal is available as voltage (± 10 V) or current (± 20 mA or 4.. 20 mA) at terminals 1 and 2. The output voltage is additionally available at the BNC socket on the front panel (see Fig. 4.8.)

The current/voltage selection is made by means of jumpers on the amplifier board, and is described in *section 2.1*.

Pin	Function	Pin	Function
1	Output signal (V/I)	10	Not assigned
2	Output signal (ground)	11	Synchronization (+)
3	Limit value 1	12	Synchronization (-)
4	Limit value 2	13	Remote control 1 ()
5	Limit value 3	14	Remote control 2 ()
6	Limit value 4	15	Remote control 3 ()
7	Warning	16	Remote control 4 ()
8	Ground	17	Remote control 5 ()
9	External supply voltage 24 V=	18	Remote control 6 ()

Fig. 4.7 Assignment of outputs

4.6 Control inputs/outputs

Input/ output	Terminal	Function		
-	3	Limit value 1 output	With positive logic accordingly	
-	4	Limit value 2 output	V _{ext} . 24 V	
-	5	Limit value 3 output		
-	6	Limit value 4 output		
•	7	Warning output (Overflow)	Warning active in case of Overflow, Autocal and STILL OUTP 24 V = OK 0 V = Warning	
-	13-17	Input remote controls 1-6 (function selectable)	See table on page 41	
->	8	Ground	V _{ext.} 0 V	
->	9	External supply voltage	V _{ext.} 24 V	

Fig. 4.9 Wiring of the outputs

Notice

If the mains voltage is switched off or fails, or if the mains fuse blows, all control outputs are set to 0 V (Vext.).

4.7 Synchronization

If multiple devices are used in close proximity to each other, or with cables routed in parallel, the devices must be synchronized. For this purpose, one device must be set as the master, and all others (max. seven) as slaves. Setting by jumpers on the amplifier board is described in *section 4.2.2*. In addition to these settings, the devices must be interconnected in order to be synchronized.

Fig. 4.10 Connections for synchronization

4.8 Connecting the serial interface

On the back of the device there is an RS232 serial interface for connecting a computer or terminal.

When connecting a printer, a simple line printer that takes no more than 4 seconds per line to print is sufficient. The printout is generated in 12 columns. This corresponds to a 132-character line length. Select the measured values to be printed as described in *section 5.4.11*.

When connecting a computer, dialog with the Scout 55 is possible.

You can use control commands to make all device settings and query measured values. An overview of the interface commands is provided in a separate part of the operating manual: "Scout 55, part 2: Operation with computer or terminal".

5 SETUP AND OPERATION

5.1 Starting up and factory settings

Listed below are some operating steps enabling you to run an initial function test of all components when first starting up your measurement chain (measuring amplifier and transducer). This essentially describes how to adapt the Scout 55 to the transducer type you are using. It also sets out some typical errors that can occur during initial start-up.

Connect the mains cable and the transducer to the measuring amplifier as set out in the previous sections.

Follow the safety instructions

- Turn the power switch on.
- The device performs a functional test, and is then in measuring mode. The factory settings are active.
- Check the output signal selection indicated on the display. Use () to select the

gross signal (not indicated on the display).

Information

If the error message "CALERR." appears here, it may be due to the following causes:

- No six-wire feedback connected
- Transducer/sensor incorrectly connected
- No transducer/sensor connected

Remedy

Switch off the device. Connect the transducer correctly. Switch the device on again. If the error message "**OVFL B, OVFL N**" appears, you must adapt the measuring amplifier to your transducer type. The transducer-specific steps are then described.

- To switch from measuring mode to device setting mode, press and hold SET for about 2 seconds. The display indicates "DIALOG".
- Set the device to the connected transducer type according to the following examples.

Transducer types

•	Strain gage force transducers		
Ad	Adaptation:		
	Transducer type: Bridge excitation: Input:	Full bridge 2.5 V 4 mV/V	
Са	libration:		
	Unit, nominal (rated) value/decimal Measuring range:	point:	20.000 kN 2 mV/V
•	Inductive displacement transducer	s	
Ad	laptation:		
	Transducer type: Bridge excitation: Input:	Half bridge 1.0 V 10 mV/V	
Са	libration:		
	Unit, nominal (rated) value/decimal Measuring range:	point:	20.000 mm 10 mV/V
•	Piezoresistive transducers		
• Ad	Piezoresistive transducers aptation:		
Ad	Piezoresistive transducers laptation: Transducer type: Bridge excitation: Input:	Half bridge 2.5 V 400 mV/V	
• Ad	Piezoresistive transducers laptation: Transducer type: Bridge excitation: Input: libration:	Half bridge 2.5 V 400 mV/V	
Ad Ca	Piezoresistive transducers laptation: Transducer type: Bridge excitation: Input: libration: Unit, nominal (rated) value/decimal Measuring range:	Half bridge 2.5 V 400 mV/V point:	30.000 bar 200 mV/V
Ad Ca	Piezoresistive transducers laptation: Transducer type: Bridge excitation: Input: libration: Unit, nominal (rated) value/decimal Measuring range: Potentiometric transducers	Half bridge 2.5 V 400 mV/V point:	30.000 bar 200 mV/V
Ad Ca Ad	Piezoresistive transducers laptation: Transducer type: Bridge excitation: Input: libration: Unit, nominal (rated) value/decimal Measuring range: Potentiometric transducers laptation:	Half bridge 2.5 V 400 mV/V point:	30.000 bar 200 mV/V
Ad Ca Ad	Piezoresistive transducers laptation: Transducer type: Bridge excitation: Input: libration: Unit, nominal (rated) value/decimal Measuring range: Potentiometric transducers laptation: Transducer type: Bridge excitation: Input:	Half bridge 2.5 V 400 mV/V point: Half bridge 1 V 1000 mV/V	30.000 bar 200 mV/V
Ad Ca Ad	Piezoresistive transducers laptation: Transducer type: Bridge excitation: Input: libration: Unit, nominal (rated) value/decimal Measuring range: Potentiometric transducers laptation: Transducer type: Bridge excitation: Input: libration:	Half bridge 2.5 V 400 mV/V point: Half bridge 1 V 1000 mV/V	30.000 bar 200 mV/V

Explanation of symbols

Switch to measuring mode:

The settings are stored in parameter set 1, and the device switches to measuring mode. You can now perform an initial functional test.

Information

The settings are only stored power-failsafe if they have been saved to one of the parameter sets.

5.2 Operating concept and function overview

The operating concept distinguishes between two categories of key function:

- Keys active in measuring mode.
- Keys active in programming mode.

5.3 Key functions in measuring mode

Кеу	Meaning	
SET	To change from measuring mode to programming mode (and vice versa), press for approx. 2 s .	
Set limit value levels LV14 (see from page 37).		om page 37).
	The other limit value parameters, si remain unchanged. The limit value LIMIT VALUE 14 menu (see page	uch as hysteresis, direction etc., function can be activated in the 37).
	Zero balance measurement chain (also possible by remote control).	
+0+	The signal at the input is applied as	the zero point.
Tare measured value (also possible by remote contr		e by remote control).
→T*	The current measured value is stor	ed as the tare value.
	Clear the content of the peak value control). This function applies to al peak-to-peak).	memories (also possible by remote peak value memories (min, max,
	Output measured values and paran (also possible by remote control).	neters via the RS-232 interface
	For possible print parameters see " page 43.	Additional functions" starting on
	Only the parameters (PRINT xxx) selected in the additional functions an printed.	
	Switch the measured value display	between:
	Gross value	not indicated on display
	Net value (= gross minus tare) Minimum value	"NET" is displayed "MIN" is displayed
	Maximum value	"MAX" is displayed
	Peak-to-peak value	"MAXMIN" is displayed

5.3.1 Querying and setting limit value levels in measuring mode

You have several options for selecting the limit level (in measuring mode):

- Enter numerical values for the limit levels.
- Apply input signal as limit value level.
- Quick search (press and hold arrow keys for several seconds).

5.4 Key functions in programming mode

In this operating mode you can make all the settings for using the measuring amplifier in your application. The parameters are organized in groups.

Meanings of keys

Кеу	Meaning
SET	Change mode (press for 2 sec), select group (e.g. CALIBR.).
PAR	Select parameter (e.g. NOMINAL).
	Display the last set value.
	Select the desired digit.
	Change the digit in ascending order.
	Change the digit in descending order.
MEAS	Apply measured value.
	Confirm the entry/change.

5.4.1 Changing from "Measuring" to "Programming" mode

5.4.2 Programming

Examples of operation in programming mode

* Only possible when setting the zero value, measuring range and limit value levels.

** See page 31

5.4.3 Changing from "Programming" to "Measuring" mode

When you change parameters, you are prompted to save the changed parameters **power-failsafe**.

Information

The settings are only stored power-failsafe if they have been saved to one of the parameter sets.

5.4.4 Dialog

Select language (LANGUAGE)

Factory setting: German

The following languages can be selected:

German (DEUTSCH), English (ENGLISH), French (FRANCAIS), Italian (ITALIANO), Spanish (ESPANOL)

5.4.5 Loading/Saving to parameter set (PARAM.SET)

The current amplifier settings of the device can be stored power-failsafe in eight parameter sets and retrieved later.

All settings are saved in parameter sets 1...8.

On switching from programming to measuring mode, you will be prompted whether or not to save your changes. This is shown in section 5.4.3. Parameter sets can also be activated/loaded via remote controls (PARACODE1...2, see section 5.4.10).

LOAD: Parameter set 1 (parameter set 1...8) and factory setting (FACTSET) are loaded

SAVE: Save as parameter set 1...8

5.4.6 Adaptation

TRAN.TYP

You can choose between the following bridge types depending on the transducer type:

	Selectable bridge types	Full bridge*)	Half bridge ¹⁾	LVDT
--	-------------------------	---------------	---------------------------	------

¹⁾ Transducers with strain gages and inductive transducers are not differentiated here.

BRIDGE EXCITATION

The transducer's bridge excitation voltage is selected:

Selectable bridge excitation voltages	1 V	2.5 V

INPUT

Depending on the selected bridge excitation voltage, the input range (measuring range - coarse) can be selected according to the transducer type:

Input range	UB = 2.5 V	UB = 1 V
I	$\pm 4 \text{ mV/V}$	\pm 10 mV/V
П	\pm 40 mV/V	$\pm 100 \text{ mV/V}$
Ш	±400 mV/V	$\pm 1000 \text{ mV/V}$

AUTOCAL

Depending on the application and the stability requirement, an autocalibration cycle can be activated. This enables you to correct zero point and full scale value drift, as well as the long-term constancy of the measuring amplifier.

Possible settings:

ON	Autocalibration cycle on
OFF	Autocalibration cycle off
ONCE	Autocalibration runs once when you confirm with . The autocalibration cycle remains on or off depending on the previously selected state.

If you need the analog output signal for continuous monitoring, autocalibration must be switched off.

Reason: No measured values are recorded during the autocalibration cycle. This creates a "monitoring gap" (time interval approx. 5 min., duration approx. 1 s), which is undesirable or even dangerous in manufacturing processes.

FILTER

Different low-pass filters (characteristics and cut-off frequencies) can be selected:

Characteristic					
Bessel (BE) (Hz)	Sample rate ¹⁾ (measured values per sec.)	Butterworth (BU) (Hz)	Sample rate ¹⁾ (measured values per sec.)		
0.05	18.75	5.0	1200		
0.1	37.5	10	2400		
0.2	75	20	2400		
0.5	300	40	2400		
1.25	600	80	2400		
2.5	1200	200	2400		
5.0	2400	500	2400		
10	2400	1000	2400		
20	2400				
40	2400				
100	2400				
200	2400				

Characteristic					
Bessel (BE) (Hz)	Sample rate ¹⁾ (measured values per sec.)	Butterworth (BU) (Hz)	Sample rate ¹⁾ (measured values per sec.)		
400	2400				
900	2400				

1) See Standstill indicator (STILL IND)

STILL IND (standstill indicator)

To activate the standstill indicator, set the number of measurements. During these measurements, the measured value must be within the specified tolerance so that "Standstill" is signaled. (Sample rate, see table on page 33).

Settings	+000 MEAS	Standstill indicator off
	+255 MEAS	Maximum possible number of measurements

STILL DIG

Input of the tolerance band in digit units of indication.

STILL OUT

Output of the standstill indicator status (control output terminal 7; warning).

Possible settings	OFF	The standstill indicator status is not outputted via WARNING
	ON	WARNING active if no standstill or device error

Fig. 5.1 Effect of the standstill indicator

5.4.7 Calibration (CALIBR.)

UNIT

You can select the following units:

Selectable unit			
Ν	S	cm	
OZ	PPM	mm	
LB	‰	μm	
TON	%	PSI	
KT	M/SS	KPAS	
Т	M/S	HPAS	
KG	μm/m	PAS	
G	INLB	PA	
V	FTLB	mBAR	
mV/V	KNm	BAR	
MN	Nm	KN	
MP	INCH	А	
	m	mA	

NOMINAL

The nominal (rated) value can be set. **Enter the nominal value including the desired decimal places**.

Examples:

a: You want to measure in a pressure range from 0 to 1000.00 bar. Enter the nominal value: 100000

b: With a 50 kg load cell, you want to display the measured value with 3 decimal places.

Enter the nominal value: 50000

DEC.POINT

The position of the decimal point is changed.

able positions .0000 0.000 00.00 000.0 0000

For above example a: .00

For above example b: .000

DIG.JUMP

The step size or digit jump can be selected.

Selectable step sizes	1	2	5	10	20	50	100	200	500	1000
-----------------------	---	---	---	----	----	----	-----	-----	-----	------

ZERO VALUE

The maximum zero balance range corresponds to the respective maximum measuring range in the following table.

MEASRAN.

A full scale value (unit mV/V) is set. If this value is outside the input range, the minimum or maximum possible value is applied.

Input range	Measuring range at UB = 2.5 V	Measuring range at UB = 1 V
1	±0.24 mV/V	±0.510 mV/V
П	±240 mV/V	±5100 mV/V
111	±20400 mV/V	±501000 mV/V

TARE VALUE

A tare value (in units of indication) can be specified (net value = gross value minus tare value).

5.4.8 Limit values 1...4 (LIMITVAL 1...4)

The parameters for setting the limit values are grouped together for each limit value. The status of the limit values is shown on the display, and outputted via control outputs.

The functions of the limit values and their parameters are shown in the following diagram:

Fig. 5.2 Functions and parameters of the limit values

ENABLE

OFF	Disable limit values individually
ON	Enable limit values individually

SOURCE

Limit value evaluated.

GROSS VALUE	Gross
NET VALUE	Net
STORE1 MAX	Memory for maximum values
STORE2 MIN	Memory for minimum values
STORE3 PTP	Memory for peak-to-peak value

DIRECTION

Here you specify the switching/operating direction (see Fig. 5.2).

OVER	Switch-on level higher than switch-off level with increasing measured value
UNDER	Switch-off level higher than switch-on level with decreasing measured value

LEVEL

The level is set in units of indication (e.g. 2,000 kg).

HYSTERESIS

The hysteresis value prevents the limit value switch from "flickering" when the switching threshold is reached. The hysteresis is the difference between the switch-on and switch-off thresholds.

A value is set in units of indication, e.g. 0.200 kg.

LOGIC

You can change the output logic of the remote controls as you want. The following convention has been set:

ACTIVE ON	On = High Off = Low
ACTIVE OFF	Off = High On = Low

5.4.9 Setting peak value memory (PV.MEMORY)

Two peak value memories are available for monitoring processes. The following assignments have been set for them:

STORE1	Memory for maximum values
STORE2	Memory for minimum values

Display max/min values in measuring mode with key:

Another value is determined arithmetically.

STORE3	Memory for peak-to-peak value
--------	-------------------------------

Link to STORE1 relating to control functions and envelope curve.

Both can be operated as peak or instantaneous value memories. The operating mode is selected with remote controls (see page 41).

STORE1/Ins	Instantaneous/peakvalue for PV1	
STORE1/Hold	Run/Hold mode for PV1	
STORE2/Ins	Instantaneous/peak value for PV2	
STORE2/Hold	Run/Hold mode for PV2	

The following diagram shows the function of the remote controls:

Fig. 5.3 Function of the remote controls based on the example of STORE1, peak and instantaneous value storage (also applies to STORE2 and STORE3).

If the memories are operated as peak value memories, an envelope function is possible by enabling and setting a discharge rate. This discharge rate affects all peak value memories.

The following parameters can be set:

ENABLE

The peak value memories can be enabled or disabled.

STORE ON	Peak value memory enabled
STORE OFF	Peak value memory disabled

STORE1 IN.

Select input signal of peak value memory STORE1.

GROSS VALUE	NET VALUE
-------------	-----------

STORE2 IN.

Select input signal of peak value memory STORE2.

GROSS VALUE	NET VALUE

ENVELOPE CURVE

The discharge rate of the envelope function for both peak value memories can be selected. The entry corresponds to a time in ms:

00000 s	Envelope function off
000,100 to 060,000 s	Envelope function on

5.4.10 Inputs and outputs (INP/OUTP)

In this menu you can make the necessary settings for the input signal of the Scout 55, the analog output, and the remote controls.

SOURCE Vo

The following signals can be specified as the source of the analog signal:

GROSS VALUE	Gross
NET VALUE	Net
STORE1 MAX	Memory for maximum values
STORE2 MIN	Memory for minimum values
STORE3 PTP	Memory for peak-to-peak value

MODE Vo

The following options are possible depending on the selected analog signal:

Display	Meaning
Vo OFF	-
0 to 20 mA	Output ±20 mA
4 to 20 mA	Output +4 20 mA
Vo OFF	-
10 VOLT	Output +/- 10 V

Information

The current or voltage output is selected by means of jumpers on the amplifier board. The procedure is described on page 11.

INP.SIGNAL

For test purposes, a calibration signal and zero signal can also be displayed instead of the measurement signal. The following input signals can be selected:

MEAS.SIGNAL	Measuring mode
CAL.SIGNAL ¹⁾	The display corresponds to 50% of the current full scale value
ZERO SIGNAL ¹⁾	Internal zero point

¹⁾ You must return to measuring mode to display the measurement signal.

CONTACT 1...6

Contacts are provided on the connector strip for remote control of Scout 55 functions. The assignment of the remote control contacts is freely configurable. No function is factory-set for the contacts.

Functions	Level 0V	Level 24V
NO FCT.	No function (factory setting)	
AUTOCAL	Autocalibration On	Autocalibration Off
TARE	Tare value is applied on 0 V - 24	V transition
STORE1/INS	Peak value mode for PV1	Instantaneous value mode for PV1
STORE1/HOLD	PV1 and PV3 memory content is updated	PV1 and PV3 memory content is frozen

Functions	Level 0V	Level 24V
STORE2/INS	Peak value mode for PV2	Instantaneous value mode for PV2
STORE2/HOLD	PV2 memory content is updated	PV2 memory content is frozen
ZERO	Current instantaneous input sigr 24 V transition	nal applied as zero value on 0 V -
PRINT		A printout via the interface is triggered
GROSS/NET	Gross at analog output	Net at analog output
PARACODE 1	External selection of parameter	sets and binary-coded inputs
PARACODE 2	(see following table)	
PARACODE 3		
KEYLOCK	Unlocked	Locked

PARAM.SET		PARACODE	
	3	2	1
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1

REMOTE

Remote control of the device via contacts can be disabled or enabled.

ON	No display	Operation via keyboard and contacts
OFF	LOCAL	Operation only via keyboard

5.4.11 Add.funct. (Additional functions)

P__

In order to better support you in case of possible technical problems, the firmware version can be read under this parameter. If you have any queries, indicating the firmware version will enable our Service department or HBM branch office to provide you with effective support.

Example: P34 Software version P34

SERIAL NO.

Indicates the device's serial number.

BAUD RATE

The baud rate of the serial interface can be selected from the following values:

Selectable baud rates	300	600	1200	2400	4800	9600

PARITY

The following settings are possible:

Selectable parity EVEN PAR. ODD PAR. NO PAR.
--

STOP BIT

The following settings are possible:

1 STOP BIT	
2 STOP BITS	

COMM.ADR¹⁾

Enter device address.

Selectable device addresses	00 to 31
-----------------------------	----------

1) Address selectable only for RS485 version; for RS232 set address to 0

PRINT GRO.

Output gross value via serial interface.

OFF/ON

PRINT NET.

Output net value via serial interface.

OFF/ON

PRINT MAX.

Output maximum value via serial interface.

OFF/ON

PRINT MIN.

Output minimum value via serial interface.

OFF/ON

PRINT MIMA.

Output MIN/MAX value via serial interface.

OFF/ON

PRINT LVS

Output states of limit value switches via serial interface.

OFF/ON

PRINT HEAD

Set repetition rate. Heading consisting of the source of the measured value and the unit.

0	=	No heading (measured value only)
1	=	Heading every time
10	=	Heading every 10 times etc.

PRINT PAR.

Output all parameters.

START

The selected print functions (except PRINT PAR) are executed in measuring mode

(by pressing \bigcirc or via remote control contact).

ZERO/TARE.

A change of tare or zero value using the and keys or the remote control contacts is automatically stored power-failsafe in the current parameter set (EEPROM). This failsafe storage operation can be turned on or off.

SAVE.OFF	
SAVE.ON	

Information

The EEPROM is limited to about 10,000 write cycles.

5.5 Overview of all groups and parameters

				SET	Groups			
	DIALOG	PARAM.SET	ADAPTATION	CALIBR.	LIMIT VALUE 1-4	PV.MEMORY	INP/OUTP.	ADD.FUNC.
	LANGUAGE	LOAD	TRAN.TYP	UNIT	ENABLE	ENABLE	SOURCE VO	P34
	PASSWORD	SAVE?	BRIDGE EXCITATION	NOMINAL VALUE	SOURCE	STORE1	MODE VO	SERIAL NO.
	LV KEY	SET	INPUT	DEC.POINT	DIRECTION	STORE2	INP.SIGNAL	BAUD RATE
	ZERO KEY		AUTOCAL	DIG.JUMP	LEVEL	ENVELOPE	CONTACT 1	PARITY
PARAM	TARE KEY		FILTER	ZERO VALUE	HYSTERESIS	SET	CONTACT 2	STOP BIT
•	STORE KEY		STILL IND	MEASRAN.	LOGIC		CONTACT 3	COMM. ADR
'	PRINT KEY		STILL DIG	TARE VALUE	LV KEY		CONTACT 4	PRINT GRO.
	SIGN KEY		STILL OUT	SET	SET		CONTACT 5	PRINT NET
ers	SET ¹⁾		SET				CONTACT 6	PRINT MAX
neto							REMOTE	PRINT MIN
aran							SET	PRINT MIMA
f pa								PRINT LVS
sto								PRINT OVER
Ë								PRINT PAR.
								ZERO/TARE
								SET

for next group

5.5.1 Setting all parameters

6 SERIAL INTERFACE, RS232

6.1 General points about the interface

The data is transferred bit by bit in sequence via this serial interface. General features:

- Transfer speed relatively low
- In the simplest case, requires a 3-wire cable for duplex or bidirectional transfer
- Only one device can be connected (point-to-point connection)

Fig. 6.1 Line level of the Y character with negative logic

A START bit is set before each character (data byte). It is followed by the data bits and a STOP bit. As the data is transferred serially, the speed of transmission must match the speed of reception.

The number of bits per second is called the baud rate. The exact baud rate of the receiver is synchronized with the START bit for each byte transferred. Next come the data bits, each with the same length. When the STOP bit is reached, the receiver goes to the wait state, until it is reactivated by the next START bit.

The data transfer is controlled by the software handshake X-ON (DC1) and X-OFF (DC3).

When the device is ready to transfer data, it sends the control character X-ON (DC1) over the data line. If it cannot receive any data, for example if the memory is full, the control character X-OFF (DC3) is sent.

6.2 Characteristic data of the serial interface

Sample rate	10 meas/s
Word length	8 bits
Stop bit	1*; 2
Parity	Odd, even ¹⁾ and none
Baud rate	300; 600; 1200; 2400; 4800; 9600*

1) Factory settings

7 COMMUNICATION WITH THE SCOUT 55

7.1 Connecting the Scout 55 to a computer

On the back of the device there is an RS232 serial interface for connecting a computer or terminal. For the RS232 connection, a cable (1.5 m long) with free ends and a 9-pin subminiature socket^{1)*} is supplied (ordering no.: 3-3301.0104). The wiring and pin assignment are shown in the following diagram.

Fig. 7.1 Computer/Scout 55 connection

To connect the Scout 55 to a computer, do the following:

- Connect both systems to the mains, leaving them switched off for the time being.
- Connect the interface as shown in the diagram.
- The interface configuration (baud rate, data format) of the computer must match the basic setting of the Scout 55. If it does not, change the interface configuration using the keyboard (see Scout 55 operating manual, part 1).
- Finally, turn on both systems.

When connecting a printer, a simple line printer that takes no more than 4 seconds per line to print is sufficient. The printout is generated in 12 columns. This corresponds to a 132-character line length.

1) Accessory

7.2 Activating the RS232 interface

The HBM Interpreter is activated by the following character: * CTRL R (DC2) - computer operation with no echo

Entering the control character puts the device into the remote control state so that, apart from the display functions, it can no longer be operated.

Computer operation with no echo means that only the data generated is sent back to the Scout 55, no command characters. When using the RS232 interface, any information generated is outputted immediately when entirely in the output buffer.

You can disable the remote control state with the following command: CTRL A (SOH); see also command DCL on *page 57*.

8 COMMAND SET OF THE HBM INTERPRETER

8.1 Important conventions

These conventions and general guidance notes will facilitate your work with the HBM Interpreter commands.

Notation

• You can enter all commands in lower or upper case.

Command shortform

• The command shortform consists of 3 to 5 characters and, depending on the command, a list of parameters separated by commas.

e.g. BDR 6,2,1 (x)

Space

Preceding and following blanks in parameters are suppressed.

Command types

• Query commands: Used to retrieve information, and suffixed by a question mark (?).

e.g. BDR?

Responses

The device responses shown in the examples are displayed in italics.

Command end

Input commands:

• The command end character is indicated by (x). Permitted command end characters are:

";", LF, LFCR, CRLF

Output commands:

• The command end character is indicated by (y). The command end character is always CRLF.

Inputting/outputting numbers

- The entered numbers are converted into the number type of the parameter concerned.
- Numbers are always outputted with a fixed number of decimal places.

Serial interface

• Communication with the computer via the RS232 interface starts with the permitted control characters.

CTRL R' or 'CTRL B' and ends with 'CTRL A' or the command DCL

• All commands over serial interfaces generate an output (response).

Acknowledgment behavior

- Output commands: Indicated by a ? Always generate output data.
- Changing parameters.
- If parameters which affect the measurement itself are changed, a calibration is carried out after the entry is made, and can take between 1 and 3 seconds.

Standards

All commands used are structured according to a specific format. There are basically two command types:

Setting commands

The Scout 55 is set via the computer.

Example: **BDR6,2,1** (x) 0 (y)

The interface is set to 9600 baud, even parity, and 1 stop bit.

Query commands

Measured values or device settings are read out from the Scout 55 and displayed on the screen.

Example: **BDR?** (x) 6,2,1 (y)

The interface is set to 9600 baud, even parity, and 1 stop bit.

8.1.1 Command structure

Command shortform	Parameter	End character
TTT?	p1,p2,p n	(x)

Example

BDR? (x)	
BDR	Command shortform as alphabetic character (az)
?	Only after query commands

p1,p2pn	Parameter values consisting of the sign (+/-) and digits (09) or strings (always in quote marks " "). A positive sign can also be omitted.
,	Separator
(x)	Comm.end:
	Line Feed (LF), Semicolon (;) Carriage Return/Line Feed (CRLF) or Line Feed/Carriage Return (LFCR)
CR	ASCII character: Carriage Return = decimal 13
LF	ASCII character: Line Feed = decimal 10
;	ASCII character: Semicolon = decimal 59
16 1.1999 1	

If an additional parameter - e.g. parameter 2 - is omitted, at least the separator must be entered, e.g. **ASA 1,,0(x)**.

If all additional parameters are omitted as from a specific position, entry can be terminated by the command end character.

8.1.2 Data output structure

q1,q2..qn (y)

Example 1:

IDN? (x)

HBM,Scout 55,0,P10 (y)

The responses sent by the Scout 55 are indicated in *italics* in this documentation (second line in examples).

q1,q2qn	Numerical values with sign, strings (always in quote marks " or '?'
	as error message
;	Separator
(y)	End sequence (CRLF)

8.2 Individual command descriptions

Each command is listed, the structure decoded and explained with an example in the following pages.

Command	The string that must be entered to operate the device, e.g.: BDR
Syntax	Notation of a command to be followed, e.g.: BDR p1,p2,p3 (x) BDR p1,p3 (x)

Parameter	The meanings of any parameters are explained: For example, if parameter p1=1 in command ASA, this means 1V bridge excitation voltage.
Effect	e.g. Explanation of how to set the device.
Response	The device responds to your input. This response appears on the screen when in terminal mode (always in response to output commands).
Example	The example shows the entered command and the device's response. The response is always shown in <i>italics</i> . Below you will find the commands listed in alphabetical order.

DCL	Device Clear		
	End communication		
Syntax:	DCL (x) or with RS232/RS485 control character CTRL A (ASCII code 01 decimal).		
Parameter:	None		
Effect:	Remote control is terminated.		
Response:	None		
Example:	DCL(x) Interpreter is no longer active.		

Information

After this command, you can only enter a new command again after about 3 seconds.

ESD2	Standard Event Status Register
LON:	Output error status register
Syntax:	ESR? (x)
Parameter:	None
Effect:	Output the content of the Standard Event Status Register (ESR) in decimal equivalent.
	The Standard Event Status Register (ESR) is set when errors occur in communication. Different error causes set different bits, so that errors can be specified exactly.
Response:	q1(y) q1 8, 16 or 32

8.2.1 Setting the functions of the Additional Functions group

8.2.2 Setting the parameters of the RS232 interface

BDR

Baud Rate

Set RS232 parameters

BDR p1,p2,p3 (x)

Syntax:

D۵	ram	oto	۰r
гa	Idli	iete	н.

р1	Baud rate
1	300
2	600
3	1200
4	2400
5	4800
6	9600
p2	Parity
0	None
1	Odd
2	Even
р3	Stop bits
1	1 stop bit
2	2 stop bits

The transfer is always executed with 8-bit character length.

Effect:	Baud rate, parity b interfaces are rese	it and number of stop bits for the serial et.
Response:		
	Acknowledg- ment	Meaning
	0	Command executed
	?	Error
Example:	The Scout 55 is op BDR6,2,1 (x) <i>0 (y)</i> The RS232 interfa bit.	perated via the RS232 interface: ce is set to 9600 baud, even parity, and 1 stop
BDR?	Baud Rate Query Output serial inter	face parameters
Syntax:	BDR?(x)	
Parameter:	None	
Effect:	The set baud rate, parity bit, number of stop bits, and the ID of the serial interface are outputted.	
Response:	q1,q2,q3 (y)	
	q1	Baud rate
	q2	Parity
	q3	Stop bits
Example:	BDR? (x) 6,2,1 (y) The interface is se	et to 9600 baud, even parity, and 1 stop bit.

8.2.3 Query of device identifier/firmware status

SND2	Serial Number		
SINK:	Output device's serial number		
Syntax:	SNR?		
Parameter:	None		
Effect:	Output of the device's serial number.		
Response:	String (10 characters)		

Example: SNR? (x) 4021837410 **Amplifier Identification Query** AID? Output device identification Syntax: AID?(x)Parameter: None Effect: Output of amplifier identification (firmware version). Response: String (20 characters) Example: AID? (x) HBM,Scout 55,0,P12 (y) Company, device designation, 0, software version number

8.2.4 Print functions

Print Format Select

Specify print format PFS p1 (x)

Syntax:

Parameter:

Signal to be printed
Value shown on display
Gross value
Net value
Peak value 1 (maximum value)
Peak value 2 (minimum value)
Peak value 3 (peak-to-peak value)
All signals and limit value states

You can set all signal combinations by adding up the code numbers.

Effect:

Signal to be printed is specified.

The setting affects the print output via the print trigger action (key, remote control).

Response:

	Acknowledg- ment	Meaning	
	0	Command executed	
	?	Error	
Example:	Gross, net are to b p1 = 1+2 PFS 3 (x) <i>0 (y)</i>	be printed	
PFS?	Print Format Sele	Print Format Select Query	
	Query print format	Query print format	
Syntax:	PFS?(x)		
Parameter:	None		
Effect:	Printed signal is o	utputted.	
Response:	q1 (y) Signal, or signal co (for coding see co	ombination, set with PFS command. mmand PFS)	
Example:	PFS? (x) 1 (y) The gross signal is control).	s printed out (triggered via key or remote	

8.2.5 Setting the Parameter Sets group

МПП	Memory Device Data
	Enter amplifier setting data
Syntax:	MDD p1 (x)
Parameter:	p1 Amplifier setting data retrieved from amplifier with MDD command (as hexadecimal string " ", approx. 100 bytes = 200 characters).
Effect:	The command is used to save and load complete settings. To change individual parameters, use the relevant command (e.g. IMR).

Response:

	Acknowledg- ment	Meaning	
	0	Command executed	
	?	Error	
Example:	MDD "(hexade 0 (y) The amplifier is se	ecimal string)" (x) et.	
MDD?	Memory Device D Output amplifier s	Memory Device Data Query Output amplifier setting data	
Syntax:	MDD? (x)		
Parameter:	None	None	
Effect:	Amplifier setting p	Amplifier setting parameters are outputted.	
Response:	" <u> (hexadecimal</u> s 200 characters	"(<i>hexadecimal string)" (y) "</i> " approx. 100 bytes = 200 characters	
Example:	MDD? (x) "0a00ff" (y) All setting parame	MDD? (x) <i>"0a00ff" (y)</i> All setting parameters are outputted.	
TDD	Transmit Device	Data	
	Save amplifier settings		
Syntax:	TDD p1,p2 (x)	TDD p1,p2 (x)	
Parameter:			
	р1	Amplifier settings	
	0	Factory settings (Setup)	
	1	RECALL from parameter set 1 8	
	2	SAVE from parameter set 1 8	
	3	Automatic zero/tare value storage	

If p1=0 (factory setting); p2 no effect

If p1=1 or p1=2; p2= parameter set number

p2	Parameter set number (if p1=1 or p1=2)
1 8	Parameter set 1 to 8

If p1=3: p2=1, auto. zero/tare value storage status

p2	Automatic zero/tare value storage status (if p1=3)
0	Off
1	On

The amplifier settings are backed-up or saved. Automatic zero/ Effect: tare value storage to the EEPROM can be turned on or off.

Response:

Acknowledg- ment	Meaning
0	Command executed
?	Error

Example 1:

TDD2,4 (x)

0(y)

TDD?p1 (x)

The current amplifier settings are stored in parameter set 8.

Information

This command triggers a calibration , which only allows further communication after 1 to 3 s.

Example 2:	TDD3,1 (x) 0 (y) Automatic zero/tare value storage is on. On each zero setting, the zero setting value is stored in the current parameter set. Each time taring is performed, the tare value is stored in the current parameter set.
TDD?	Transmit Device Data Query

Device Data Query

Query for source of amplifier settings

Syntax:

Parameter:

p1	
0	Source of amplifier setting
3	Auto. zero/tare value storage status

Effect:

The source of the current effective amplifier setting is outputted, or the status of zero/tare value storage is indicated.

Response:

If p1 = 0; q1 shows the source of the amplifier settings

q1	Source of amplifier settings	
1 8	Parameter set 1 8	
?	Error	

If p1 = 3; q1 corresponds to status of tare/zero value storage

If p1 = 3; q1 corresponds to status of tare/zero value storage

q1	Auto. zero/tare value storage status
0	Off
1	On

Example 1:	TDD?0 (x) 2 (y)
	The source of the current effective amplifier setting is parameter set 2.
Example 2:	TDD?3 (x) 1 (y) Automatic zero/tare value storage is on.

8.2.6 Specifying output format, measured value output

8.2.7 Specifying output format

COF

Change Output Format

Change measured value output format

Syntax:

COF p1 (x)

Parameter:

р1	Measured value output format
0	Measured value, status (ASCII format)
1	Measured value (ASCII format)
2	Binary measured value output 4 bytes (MSB XXXX LSB)
3	Binary measured value output 4 bytes (LSB XXXX MSB)
4	Binary measured value output 2 bytes (MSB LSB)
5	Binary measured value output 2 bytes (LSB MSB)
6	BCD measured value output

Binary 4-byte output:

3 bytes measured value 1 1 byte status

Binary 2-byte output: 1=MSB, 2=LSB

2 bytes measured value

BCD output:

1 byte sign

3 bytes measured value byte status

The measured values are scaled to the final display value. When outputting in ASCII format, the decimal point is included. In binary/BCD format, the decimal point must be included in measured value processing by the user.

Effect: The measured values are outputted in the required format with the following MSV commands.

Response:

	Acknowledg- ment	Meaning
	0	Command executed
	?	Error
Example:	COF0 (x) <i>0 (y)</i> Measured values a	and status are outputted in ASCII format.
COF?	Change Output Fo Query measured v	o rmat Query alue output format
Syntax:	COF?(x)	
Parameter:	None	
Effect:	Output format ide	ntifier is outputted.
Response:	q1 (y)	
Example:	COF?(x) 0 (y) ASCII is set as the status.	output format for measured values and

8.2.8 Specifying measured value output

MSV?

Measuring Signal Value Query

Output measured value MSV p1,p2 (x)

Syntax:

Parameter:

р1	Signal	
1	GRO	Gross (with display filtering)
2	NET	Net (with display filtering)
3	STORE1	Peak value 1 (maximum)
4	STORE2	Peak value 2 (minimum)
5	STORE3	Peak value 3 (peak-to-peak)
6	LV1	Level
7	LV1	Hysteresis
8	LV2	Level
9	LV2	Hysteresis
10	LV3	Level
11	LV3	Hysteresis
12	LV4	Level
13	LV4	Hysteresis
14	GRO	Gross (dyn., without filtering)
15	NET	Net (dyn., without filtering)

p2	Number of measured values	
0	Send continuously	
1 65535	Default = 1	

Effect:

The measured value of the required signal p1 is outputted. Format dependent on the last COF command.

Response:

Example 1:

Measured value (for output format see COF command).

Output in ASCII full format

COF0 (x) 0 (y) Get one gross measured value.

	MSV?1 (x) 9,998.0 (y) \Box Status byte Measured value = 9,998 kN Get three measured values. MSV?2,3 (x) 9,998.0 CRLF 9,998.0 CRLF 9,998.0 CRLF 9,998.0 CRLF (y) \Box Status byte \Box Measured value = 9,998 kN	
Example 2:	Output in 4-byte binary format Binary 4-byte format COF2 (x) 0 (y) Get one gross measured value. MSV?1 (x) #0ffeedd00CRLF(y) 1 status byte * 3 bytes measured value Identifier for binary output	
Example 3:	Endless output Gross measured values are outputted endlessly. MSV?1,0 (x) #0ffeedd00CRLF #0ffeedd00CRLF #0ffeedd00CRLF STP(x) Cancel output	
STP	Stop Stop measured value output	
Syntax:	STP (x)	
Parameter:	None	
Effect:	The measured value output started with MSV?1,0 is stopped.	
Response:	None	
Example:	STP (x)	

8.2.9 Setting the functions of the Adaptation group

8.2.10 Setting the amplifier input

Amplifier Sensor Adaption

Enter bridge excitation voltage, transducer type, and input range ASA p1,p2,p3 (x)

Syntax:

Parameter:

p1	Bridge excitation voltage	
1	1 V	
2	2.5 V	
p2	Transducer type	

p2	I ransducer type	
1	Full bridge	
2	Half bridge	
3	LVDT	

р3	Input signal range (at Ub)	
1	4 mV/V (Ub=2.5 V) / 10 mV/V (Ub=1 V)	
2	40 mV/V / 100 mV/V	
3	400 mV/V / 1000 mV/V	

Effect: Bridge excitation voltage, transducer type, and input signal range are set.

Response:

Acknowledg- ment	Meaning
0	Command executed
?	Error

Example:

The Scout 55 is set: ASA1,2,2 (x) 0 (y) The Scout 55 is set to 1 V bridge excitation voltage, half bridge, and input signal range 100 mV/V.

ASA?

Amplifier Sensor Adaption Query

Output bridge excitation voltage, transducer type, and input range

Syntax:

ASA?p1(x)

Parameter:

	p1			
	0	Output setting of bridge excitation voltage, transducer type, and input signal range		
	1	Output table of possible settings for bridge excitation voltage, transducer type, and input signal range		
Effect:	The amplifier out type, and input sig	The amplifier outputs the bridge excitation voltage, transducer type, and input signal ranges.		
Response:	ASA?0 (x) q1,q2,q3 (y)			
	q1	Bridge excitation voltage		
	q2	Transducer type		
	q3	Input signal ranges		
Example:	ASA?0 (x) 1,2,2 (y) The Scout 55 is currently set to 1 V bridge excitation voltage, half bridge, and input signal range 100 mV/V.			
Response:	ASA?1 (x) q1,q2,q3 (y)	ASA?1 (x) q1,q2,q3 (y)		
	Table of possible	Table of possible settings		
	q1	Bridge excitation voltage		
	q2	Transducer type		
	q3	Input signal ranges		
	See table on page	9 69		
Example:	ASA?1 (x) Amplifier respons "01.002.50", "123"	se: , "123"(y)		
8.2.11 Selecting filter settings

Amplifier Signal Filtering

Enter cut-off frequency and filter characteristic

ASF p1,p2(x)

Syntax:

Parameter	:
-----------	---

р1	Filter frequency	
1 n	Identifier for frequency value	
	(corresponds to the index in the frequency table that can be outputted with command ASF?0); see page 72	

p2	Filter characteristic	
1	Bessel	
2	Butterworth	

The low-pass filter is set to a frequency value and filter characteristic.

Response:

Effect:

Acknowledg- ment	Meaning	
0	Command executed	
?	Error	

Example:

Entry of cut-off frequency and filter characteristic: ASF 10,1(x) 0 (y)The filter is set to 40 Hz cut-off frequency and Bessel characteristic.

Amplifier Signal Filtering Query

ASF?p1(x)

Output cut-off frequency and filter characteristic

Syntax:

Parameter:

р1	Filter code number	
0	Instantaneous filter settings	
1	Frequency table (Bessel and Butterworth)	

Effect:

Output of the parameters of the low-pass filter, i.e. set cut-off frequency and filter characteristics.

Response:

lf p1 =0 q1,q2 (y)

q1	Identifier of filter frequency
q2	Filter characteristic (1=Bessel, 0= Butterworth)

Table of possible filter frequencies (Bessel/Butterworth)

Example:

Table of possible filter frequencies ASF?1 (x) "0.050 0.100 0.200 0.500 1.250 2.500 5.000 10.00 20.00 40.00 100.0 200.0 400.0", "5.000 10.00 20.00 40.00 80.00 200.0 500.0" (y)

The following table sets out the possible cut-off frequencies, and the index of the frequency to be set (each element is 5 characters long).

р1	Bessel frequencies (Hz)	Butterworth frequencies (Hz)
1	0.050	5.000
2	0.100	10.00
3	0.200	20.00
4	0.500	40.00
5	1.250	80.00
6	2.500	200.0
7	5.000	500.0
8	10.00	
9	20.00	
10	40.00	
11	100.0	
12	200.0	
13	400.0	

MTC

Motion Control

MTC p1,p2,p3 (x)

Specify standstill indicator (measured values/tolerance band/output)

Syntax:

Parameter:

Effect: Example:

P -	Number of measured values	
0	Standstill indicator off	
1 255	Number of measurements; in conjunctior with the selected filter frequency produce the corresponding time span	
p2	Tolerance band	
	In digits, referred to the units of indication (full scale value)	
р3	Standstill indicator output status	
0	No output of status via "WARNING"	
1	Output of status via "WARNING"	
MTC 200,10,1 (x) 0 (y) Assumption: Filter setting: f<2.5 Hz = sample rate 1200 values/sec Final display value: 100.00 N The standstill indicator is set: If 200 measured values are within a tolerance band of 0.1 N (10 digits from 10,000), the standstill indicator is activated. The status is additionally outputted via "WARNING". Motion Control Query Standstill indicator output		
(10 digits from 10 The status is addi Motion Control Q	,000), the standstill indicator is activated. tionally outputted via "WARNING". uery r output	

р1	
0	Standstill indicator settings
1	Standstill indicator status

Effect: *Response*:

MTC?

Syntax: Parameter:

Output of the standstill indicator settings.

If p1=0; output of the standstill indicator settings q1,q2,q3 (y)

q1	Number of measured values	
q2	Tolerance band in units of indication	
q3	"WARNING" output status	

If p1=1; q1 shows the status of the standstill indicator

q1	Standstill indicator status	
q2	No standstill; conditions not met	
q3	Standstill; conditions met	

Example:

MTC?0 (x)

0,0,0 (y)

The standstill indicator is not activated. The standstill indicator status is not outputted via "WARNING".

8.2.12 Setting autocalibration

ACL	Autocal Switch autocalibration on/off		
Syntax:	ACL p1 (x)		
Parameter:			
	р1	Automatic calibration	
	0	Switch off	
	1	Switch on	

Autocalibration switched.

Response:

Effect:

Acknowledg- ment	Meaning
0	Command executed
?	Error

Example:

ACL1 (x) 0 (y)

i ı

Information

A calibration is triggered and cyclic autocalibration is switched on. This interrupts measurement approximately every 5 minutes, and calibrates the amplifier. If such an interruption is a problem during measurement, autocalibration must be switched off.

ACL?

Autocal Query

Switch autocalibration on and off

Status of autocalibration is outputted.

Syntax:

ACL ? (x) None

Parameter:

Effect:

Response:

q1	State
0	Autocalibration is Off
1	Autocalibration is On

Example:

ACL? (x) 1 (y) Autocalibration is on.

Calibrate

Calibration CAL (x)

None

Syntax:

Parameter:

Effect:

Response:

Acknowledg- ment	Meaning
0	Command executed
?	Error

Example:

CAL (x) 0 (y) A calibration is performed.

A one-time calibration is triggered.

Information

This command triggers a one-time calibration, which only allows further communication after 1 to 3 s.

8.2.13 Setting the functions of the Calibration group

8.2.14 Selecting the unit of measurement

FNII	Engineering Unit			
	Enter unit			
Syntax:	ENU p1(x)			
Parameter:				
	р1	Input of unit		
	1 n	Code number of required unit (see table)		
Effect:	The unit of measu	rement is set.		
Response:				
	Acknowledg- ment	Meaning		
	0	Command executed		
	?	Error		
Example:	ENU11(x) <i>0 (y)</i> The unit set is kN.			
	Engineering Unit Query			
ENU?	Output unit	-		
Syntax:	ENU?p1(x)			
Parameter:				
	p1	Output of unit		
	0	Output of the current set unit		
	1	Output of all possible settings		
Effect:	The current selected	ed unit is outputted		
Response:	q1 (y)			
Example 1:	ENU?0 (x) 11 (y) The unit kN is sele	cted.		

Example 2: ENU?1 (x) " mV/V, V, g, kg, T, kT, TON, LB, oz, N, kN, bar, mbar, Pa, PAS, HPas, Kpas PSI, μm, mm, cm, m, Inch, Nm, kNm, FTLB, INLB, μm/m, m/s, m/ss, %, ‰, PPM s, MP, MN, A, mA " (y)

Overview of all possible units and code numbers.

Index		Index		Index		Index	
1	mV/V	13	mbar	25	kNm	37	MN
2	V	14	Pa	26	FTLB	38	А
3	g	15	PAS	27	INLB	39	mA
4	kg	16	HPas	28	μm/m		
5	Т	17	kPas	29	m/s		
6	kT	18	PSI	30	m/ss		
7	TON	19	μm	31	%		
8	LB	20	mm	32	‰		
9	oz	21	cm	33	PPM		
10	Ν	22	m	34	S		
11	kN	23	Inch	35	"blank"		
12	bar	24	Nm	36	MP		

8.2.15 Selecting the final display value

IAD

Indication Adaption

Entry, final display value, decimal point, step size

Syntax:

IAD p1,p2,p3 (x)

р1	Final display value without decimal point (max. 200000)
p2	Decimal point (number of decimal places 0 5)
р3	Step size (see table)

Parameter:

р3	Step size
1	1
2	2
3	5
4	10
5	20
6	50
7	100
8	200
9	500
10	1000

Effect:

The display adaptation values are entered using this command.

Information

For "V" and "mV/V" the scaling is fixed.

Response:

	Acknowledg- ment	Meaning		
	0	Command executed		
	?	Error		
Example:	IAD 10000,3,4 (x) <i>0 (y)</i> The display adaptation is set to: Final display value 10.000 with step size 10			
IAD?	Indication Adaption Query Output entry, final display value, decimal point, step size			
Syntax:	IAD?(x)			
Parameter:	None			
Effect:	Output of the current final display value setting, decimal point, step size.			
Response:	q1,q2,q3 (y)			

Parameter:	see IAD command
Example:	IAD? (x) 10000,3,4 (y) The display adaptation is set to: Final display value 10.000 with step size 10

8.2.16 Setting the zero value

CDW	DW Calibration Dead Weight					
	Start zeroing/ente	Start zeroing/enter zero value (balance)				
Syntax:	CDW (x) or CDW p1(x)					
Parameter:	p1 (optional)	p1 (optional)				
	р1	Zero value in mV/V				
		Value is entered in mV/V; within the input signal range				
Effect:	The entered value	is stored in the amplifier zero memory.				
Response:						
	Acknowledg- ment	Meaning				
	0	Command executed				
	?	Error				
Example 1:	Start zeroing					
	CDW (x)					
	0 (y)					
	The signal at the a	amplifier input is applied as the zero value.				
Example 2:	Enter zero value 2.0000 mV/V (selected input range 4 mV/V)					
	CDW 2.0000(x)					
	0 (y)					
	If the value read o applied measuren	ut with CDW?1 is sent for p1, the currently nent signal is set to zero.				
CDW/2	Calibration Dead	Weight Query				
CDW:	Output zero value	Output zero value				
Syntax:	CDW?p1(x)					

Parameter:

	р1	Zero value
	0	Current set zero value (mV/V)
	1	Instantaneous measured value (mV/V)
Effect:	This command ou currently applied r	Itputs the currently set zero value or the neasured value.
Response:	q1 (y)	
Example 1:	CDW?0 (x) 3.256 (y) Current set zero v	alue is 3.256 mV/V.
Example 2:	CDW?1 (x) 2.001 (y) Currently applied this signal.	measured value is outputted. CDW2.001 zeros

8.2.17 Setting the measuring range

IMD	Input Measuring Range
	Enter full scale values
Syntax:	IMR p1(x)
Parameter:	

р1	Full scale value in mV/V
	Value is entered in mV/V; within the input
	signal range

Effect:

The measuring range is set.

Response:

Acknowledg- ment	Meaning
0	Command executed
?	Error

Example:

IMR 2.0 (x) 0 (y) The measuring range is set to 2.0 mV/V.

IMR?

Input Measuring Range Query

Output full scale value

Syntax:

IMR?p1(x)

Parameter:

	р1	Full scale value
	0	Current measuring range in mV/V
	1	Instantaneous measurement signal in mV/V
	2	Maximum and minimum settable full scale values in mV/V
Effect:	Output of the set r	neasuring range.
Response:	q1,q2 (y)	
Example 1:	IMR?0 (x) 1.987 (y) The current set ful	ll scale value is 1.987 mV/V.
Example 2:	IMR?2 (x) 4.0,0.2 (y) With a selected inj outputted as the m value.	put signal range of 4 mV/V, 4.0 mV/V is naximum value and 0.2 mV/V as the minimum

8.2.18 Taring

TAR	Tare Instruction		
	Start taring/Enter tare value		
Syntax:	TAR (x) or TAR p1	(x)	
Parameter:	p1 (optional) or ta	re value in units of indication	
Effect:	This command tar	es the signal, and sets a tare value.	
Response:			
	Acknowledg- ment	Meaning	

ment	Meaning
0	Command executed
?	Error

Example 1:

Start taring TAR (x) 0 (y)

The current measured value is applied as the tare value.

i Information

Taring is performed arithmetically, not by balancing the input signal.

Example 2:	TAR200.0 (x) <i>0 (y)</i> Input value is written to tare memory.
TAR?	Tare Value Query
	Output tare value
Syntax:	TAR?(x)
Parameter:	None
Effect:	The tare value is outputted in units of indication.
Response:	q1 (y) Tare value in units of indication
Example:	TAR? (x) 200.0 (y) A full scale value of 2000.0 kN, for example, is set. The tare value is 200.0 kN.

8.2.19 Setting the functions of the Limit Value 1 ... 4 group

Limit Value

Enter limit value switch settings

Syntax:

LIV p1,p2,p3,p4,p5,p6,p7 (x)

Parameter:

р1	Limit value switches
1	1
2	2
3	3
4	4

p2	Limit value monitoring
0	OFF
1	ON

р3	Source of limit values
1	Gross value
2	Net value
3	Peak value memory 1 (maximum value)
4	Peak value memory 2 (minimum value)
5	Peak value memory 3 (peak-to-peak value)

p4	Switching direction
1	Switches when the level is overshot
2	Switches when the level is undershot

р5	Limit value level in units of indication
	Value is given in units of indication (e.g. kN)

р6	Hysteresis value in units of indication
	Value is given in units of indication (e.g. 100 kN); always positive

р7	Output logic of the limit value switches
1	Active corresponds to On
2	Active corresponds to Off

Effect: With this command the limit value switch p1 is set to limit value monitoring, input signal p3, switching direction p4, switching level p5, hysteresis p6, and output logic p7.

Response:

Acknowledg- ment	Meaning
0	Command executed
?	Error

Example:

LIV1,1,3,1,100,10,1 (x)

0 (y)

Limit value switch 1 is activated, and the input signal STORE1/Max (maximum value) is assigned. The limit value switches when the switch-on level of 100 kN and a hysteresis of 10 kN are exceeded (switch-off level 90 kN). The control output when the level was exceeded is active.

Limit Value Query

Output limit value switch settings

Syntax:

LIV? p1,p2 (x)

Parameter:

LIV?

р1	Limit value switches
0	Query signal value of p2 (output in units of indication)
1	Current LV1 settings
2	Current LV2 setting
3	Current LV3 setting
4	Current LV4 setting

p2	Signal identifier, if p1=0
1	Instantaneous gross signal in units of indication
2	Instantaneous net signal in units of indication
3	Instantaneous maximum value in units of indication
4	Instantaneous minimum value in units of indication
5	Instantaneous peak-to-peak value in units of indication

Effect:

This command outputs the setting of limit value switch p1.

Response:

q1,q2,q3,q4,q5,q6,q7 (y)

q1	Number of limit value switch
q2	Limit value monitoring ON/OFF
q3	Input signal of limit value switch
q4	Switching direction positive/negative
q5	Switching level of limit value switch
q6	Hysteresis value
q7	Logic of the control output

Example 1: LIV?2 (x) 2,1,3,1,100,10,1 (y) Limit value switch 2 is activated, and the input signal STORE1/Max (maximum value) is assigned. The limit value

switches when the 100 kN switch-on level is exceeded.

	The hysteresis is 10 kN (switch-off level 90 kN). The control output is active.
Example 2:	LIV?0,3 (x) 200 (y) The stored value in STORE1/Max is 200 kN.

Enter peak value memory settings

8.2.20 Setting the functions of the Peak Value Memory group

Peak Value Select

Syntax:

PVS p1,p2,p3,p4 (x)

Parameter:

р1	Peak value memory
1	Maximum value
2	Minimum value
3	Peak-to-peak value

p2	Peak value determination (applies to all memories)
0	OFF
1	ON

р3	Storage source
1	Gross value
2	Net value

р4	Envelope curves (applies to all memories)
0	Envelope function is off
00100 60000	Time constant in ms

Effect:

This command is used to set the function of peak value memory p1.

Response:

	Acknowledg- ment	Meaning	
	0	Command executed	
	?	Error	
Example:	PVS1,1,1,0 (x) 0 (y) Peak value memo signal. All peak va function is switche	ry 1 (maximum value) is assigned the gross lue memories are switched on; the envelope ed off.	
PVS?	Peak Value Selec	t Query	
	Output peak value	memory settings	
Syntax:	PVS?p1(x)		
Parameter:	p1		
	Identifier of the pe	eak value memory (see command PVS)	
Effect:	This command outputs the setting of peak value memory p1.		
Response:	q1,q2,q3,q4 (y)		
	q1	Identifier of peak value memory	
	q2	Peak value determination ON/OFF	
	q3	Storage source	
	q4	Time constant for envelope function in ms	
Example:	PVS?1 (x) 1,1,1,0 (y) Peak value memory 1 (maximum value) is assigned the gross signal. All peak value memories are on; the envelope function is off.		
CPV	Clear Peak Value		
	Clear peak value r	nemory	
Syntax:	CPV (x)		
Parameter:	None		
Effect:	This command clears the peak value memories.		

Response:

Acknowledg- ment	Meaning
0	Command executed
?	Error

Example:

CPV (x)

0 (y)

Peak value memory 1 (Max), peak value memory 2 (Min) and peak value memory 3 (Min Max) are cleared.

Information

After clearing the peak value memory, the output signal of memories 1 and 2 corresponds to the applied measured value. Memory 3 (Min Max) has the value zero.

8.2.21 Setting the functions of the Inputs/Outputs group

ASS p1(x)

8.2.22 Selecting the amplifier input signal

ASS	

Amplifier Signal Select Select amplifier input signal

Syntax:

Parameter:

р1	Input source
0	Internal zero signal
1	Internal calibration signal
2	Measurement signal

Effect:

Amplifier input signal selected.

Response:

Acknowledg- ment	Meaning
0	Command executed
?	Error

Example:

The Scout 55 is set: ASS 0(x) 0 (y) The amplifier input is switched to internal zero signal.

Information

This command triggers a calibration, which only allows further communication after 1 to 3 s.

To continue measuring: enter p1=2

ASS?	Amplifier Signal Output amplifier	Amplifier Signal Select Output amplifier input signal	
Syntax:	ASS?(x)	ASS?(x)	
Parameter:	None		
Effect:	Type of amplifier	Type of amplifier input signal is outputted.	
Response:	q1 (y)	q1 (y)	
	q1	Input signal source of the amplifier	
	0	Internal zero signal	
	1	Internal calibration signal	
	2	Measurement signal	
Example:	ASS? (x) 2 (y)		

Amplifier input is switched to measurement signal.

8.2.23 Setting the analog output

Output Path Select

Assign signal to analog output and select operating mode OPS p1,p2(x)

Syntax:

Parameter:

р1	Signal
1	Gross signal at analog output
2	Net signal at analog output
3	STORE1 (maximum value) at analog output
4	STORE2 (minimum value) at analog output
5	STORE3 (peak-to-peak value) at analog output

p2	Analog output mode (U/I)
0	Analog output OFF
1	±- 10 V (U) / ±- 20 mA (I)
2	No fct. (U) / 4 20 mA (I)

Effect:

Γ

A signal is assigned to the analog output, and the operating mode is set.

Information

The analog output (voltage or current) is selected by changing jumpers on the board. The setting is described in part 1 of the operating manual on page 9.

Response:

Acknowledg- ment	Meaning
0	Command executed
?	Error

Example:

OPS1,1 (x) 0 (y) The analog output is assigned the gross signal. The operating mode is set to \pm 10 V. (Assumption: Voltage set as the analog output signal by jumpers.)

OPS?

Output Path Select Query

Output input signal of analog output and operating mode OPS?p1(x)

Syntax:

Parameter:

	p1	Analog output: Signal and operating mode
	0	Currently assigned input signal
	1	Voltage or current mode jumper-plugged
Effect:	The currently assigned selected operating	gned input signal of the analog output or the g mode is outputted.
Response:	q1,q2 (y) q2 corresponds to parameter p2 (see command OPS)	
	q1	Operating mode (plugged)
	1	Voltage
	2	Current
Example:	OPS?0 (x) 2 (y) The analog output	is assigned the net signal.
Example:	OPS?1 (x) 2,2 (y) Current output plu	gged; mode 4 20 mA selected

8.2.24 Setting remote control

	Local / Remote
LOK	Local/remote switching
Syntax:	LOR p1 (x)

Parameter:

р1	State	
0	Remote control via contact outputs	
1	Local, no remote control	

Effect:

Switch to remote control of specific amplifier functions via remote control inputs.

Response:

Acknowledgme- nt	Meaning	
0	Command executed	
?	Error	

Example:	LOR1 (x) 0 (y) Local control is active, meaning all setting functions for amplifier parameters via the remote control inputs are disabled.
	Local / Remote Query
LON:	Query local/remote state
Syntax:	LOR? (x)
Parameter:	None
Effect:	Local/remote state is outputted.
Response:	q1 (y) corresponds to parameter p1 (see command LOR)
Example:	LOR? (x)
	0 (y)
	Remote control is active, meaning all setting functions for amplifier parameters via the remote control inputs are enabled.

8.2.25 Assigning the remote control contacts

RFP	Remote Function Programming
	Assign remote functions
Syntax:	RFPp1,p2 (x)
Parameter:	p1 corresponds to the number of the contact $(1 \dots 6)$.
	p2 corresponds to the code number of the function (see table).

p2		Function
0	NOP	No function
1	ACAL	Autocalibrate
2	TARE	Tare
3	CPV1	STORE1/Ins
4	HLD1	STORE1/Hold
5	CPV2	STORE2/Ins
6	HLD2	STORE2/Hold
7	ZERO	Zero
8	PRNT	Print
9	PAR1	Bit to query param.set 1 4
10	PAR2	Bit to query param.set 1 4

The default setting after a device "SETUP" is "No function" for all contacts. The four parameter sets can be called up in binary format (00 to 11) via the PAR1 and PAR2 functions.

Effect: The effect of the remote control on the selected amplifier functions is set.

Response:

Acknowledgment	Meaning	
0	Command executed	
?	Error	

Example:

RFP 2,1 (x) 0 (y)

Remote control contact 2 is assigned the Autocal (ACAL) function.

Information

Remote/local switching is always possible, even when the device is in local mode.

Remote Function Programming Query

Query assignment of remote functions RFP?p1(x)

Syntax:

Parameter:

	р1		
	0 Output table of possible functions		
	1 6	Output assignment of remote functions	
Effect:	Assignment of remote functions outputted at the connector plug.		
Response:	q1 (y)		
Example 1:	RFP?2 (x) 1 (y) Remote control contact 2 is assigned the Autocal (ACAL) function.		
Example 2:	RFP?0 (x) "NOPACALTARACPV1HLD1CPV2HLD2NULLPRNTPAR1PAR2" (y)		

9 EXAMPLE

The following example illustrates the device's functionality and required settings based on a measurement task.

Task

The forming process in a press is to be monitored, in order to achieve uniform product quality. The maximum force exerted by the press in each cycle is to be recorded. To safeguard the production process, this maximum force must lie between the lower (F1) and the upper (F2) force limit values.

Solution

The force response measured by a strain gage force transducer (such as the C9B/10kN; 1mV/V) is amplified and assessed by the Scout 55. The maximum force is recorded with the aid of the (maximum) peak value memory and evaluated for the upper and lower limits by two limit value switches. Another limit value switch is provided for overload protection (emergency shutdown) of the machine.

A PLC handles the process control. In addition to the control commands for the press, it gives the Scout 55 a start signal at the beginning of the press cycle and, after the process has been completed, makes the logical link of the limit value outputs for OK/NOK evaluation.

The PLC start signal clears the content of the peak value memory via a Scout 55 control input. To avoid unwanted changes, only the "Display signal selection" key is enabled for the machine operator locally in measuring mode.

The parameter settings must be protected by a password against unauthorized changes.

Control of the device via the remote control contacts must be enabled.

Wiring diagram

Timing diagram

PLC evaluation of the limit value signal

	ОК	Reject	
LV1	1	0	1
LV2	1	1	0

The following settings must be selected:

- LV1 Checks whether the lower force limit has been reached. The input signal is the output of the peak value memory (maximum value). If limit LV1 is exceeded, a High signal is generated. A positive switching direction with positive output logic must be set for this.
- LV2 Checks whether the upper force limit has been reached. The input signal is the output of the peak value memory (maximum value). If limit LV2 is exceeded, a Low signal is generated. A positive switching direction with positive output logic must be set for this.
- LV3 Checks whether the maximum load limit for the machine is exceeded (emergency stop function). The input signal is the gross measured value. If limit LV3 is exceeded, a High signal is generated. A positive switching direction with positive output logic must be set for this.

STORE1 Records the maximum peak value of the force response. Must be enabled; the envelope function must be disabled. The input signal is the gross measured value. STORE1 is cleared with remote control contact 1 by switching to Instantaneous value.

Remote control contact 1 Clears the content of the peak value memory. The STORE1/Ins function must be selected. **Remote control must be activated.**

10 ERROR MESSAGES

Error message	Cause	Remedy	
FIXED	The given value cannot be adjusted.		
	Example: For the units V and mV/V, the nominal value setting is fixed at 10,000.		
OVFL B	Gross value overflow.		
OVFL N	Net value overflow.		
CAL.ERR	Transducer/sensor incorrectly connected:	Connect the trans- ducer correctly.	
	- No transducer/sensor connected.	Switch the device off	
	- No six-wire feedback connected.	and on again.	
	 Measuring bridge incorrectly connected (e.g. full bridge set, but half bridge connected. 		
OVER	The selected value for measuring range, zeroing value, nominal (rated) value or tare value cannot be set because it exceeds the allowed limits.	The device automatically sets the maximum or minimum value as soon as the error message has been acknowledged with "ENTER".	
DATA ERR.	A transfer error occurred when saving the parameters.		

INDEX

4

4-wire configuration, 15

A

- ACL? Autocal Query/Switch autocalibration on/off, 75
- ACL?Autocal Query/Switch autocalibration on/off, 74
- Adaptation, 32
- Additional functions, 43
- AID?Amplifier Identification Query/Output device identifier, 60
- Amplifier input signal, 87
- Amplifier setting data, 61
- Amplifier settings, 63
- Analog output, 89
- ASA Amplifier Sensor Adaption Enter bridge excitation voltage, transducer type, and input range, 69
- ASA?Amplifier Sensor Adaption Query Output bridge excitation voltage, transducer type, and input range, 70
- ASF Amplifier Signal Filtering/ Enter cut-off frequency and filter characteristic, 71
- ASF?Amplifier Signal Filtering Query/Output cut-off frequency and filter characteristic., 71
- ASS Amplifier Signal Select/Select amplifier input signal, 87
- ASS? Amplifier Signal Select/Output amplifier input signal., 88
- Autocalibration, 33, 41, 74, 92

В

Baud rate, 43, 51, 59 BDR Baud Rate/Set RS232 parameters, 58 BDR? Baud Rate Query Output serial interface parameters, 59 BNC socket, 18

Bridge excitation voltage, 69

С

CAL Calibrate, 75

Calibration, 35, 75

- CDW Calibration Dead Weight/Start zeroing/enter zero value (balance), 79
- CDW? Calibration Dead Weight Query/Output zero value, 79
- COF Change Output Format Change measured value output format, 64
- COF? Change Output Format Query/Query measured value output format, 66
- Connecting transducers, Strain gage full and half bridges, Inductive full and half bridges, Potentiometric transducers, Piezoresistive transducers, LVDT, 14
- Control inputs and outputs, 19
- CPV Clear Peak Value/Clear peak value memory, 86
- Cut-off frequencies, 72
- Cut-off frequency, 71

D

DCL Device Clear End communication, 57

Decimal point, 36, 77 Digit jump, 36 Display adaptation, 78

E

Echo, 53 Entry, 77 ENU Engineering Unit/Enter unit, 76 ENU?Engineering Unit Query/Output unit., 76 Envelope curves, 85 Envelope function, 40 Error message, 102 ESR? Standard Event Status

Register-Output error status register, 57

F

Factory settings, 11, 21, 51 loading/saving, 32 Filter, 33 Filter characteristic, 71 Final display value, 77 Full bridge circuit, 69 Full scale value, 36, 80 Fuses, 14

G

Gross, 27 Gross signal, 21 Gross value, 37

Н

Half bridge circuit, 69 Hysteresis, 37, 38, 83

I

- IAD Indication Adaption/Entry, final display value, decimal point, step size, 77
- IAD? Indication Adaption Query/Output entry, final display value, decimal point, step size, 78
- IMR Input Measuring Range/Enter full scale value, 80
- IMR? Input Measuring Range Query/Output full scale value, 81

Inductive transducers, 14

Input signal, 40, 41

Inputs/Outputs, 40

Interface configuration, of computer, of Scout 55, 52

J

Jumpers, 11

L

Limit value, enabling/disabling, 37 Limit value level, 27, 83 setting in measuring mode, 27 Limit value monitoring, 82 Limit value switch, 82 Limit value switch settings, 82 Limit values, 27 LIV Limit Value/Enter limit value switch settings, 82 LIV? Limit Value Query/Output limit value switch settings, 84 Local, 91 Logic, 18 LOR Local/Remote switching, 90 LOR? Local/Remote Query, 91

Μ

Mains voltage selection, 13

Master/Slave, 11

MDD Memory Device Data/Enter amplifier setting data, 61

MDD? Memory Device Data Query/Output amplifier setting data, 62

Measured value/output/format, 64

Measured values, outputting, 66

Measurement example, 94

Measuring mode, 25, 29, 31

MSV? Measuring Signal Value Query/Output measured value, 66

MTC, 72

MTC Motion Control Specify standstill indicator (measured values/tolerance band/output), 73

Ν

Net, 27 Net value, 37 Nominal value, 36

0

OPS Output Path Select/Assign signal to analog output and select operating mode, 88

OPS? Output Path Select Query/Output input signal of analog output and operating mode, 89

Output logic of the remote controls, 38

Output signal, 40

Ρ

Parameter set, 42 loading/saving, 31 Parameter setting, 47 Parameters, 46 adjust, 47 saving, 31 Parity, 43, 51, 59 Peak value memory, 27, 38, 85 enabling/disabling, 40 PFS Print Format Select/Specify print format. 60 PFS? Print Format Select Query/Query print format, 61 Piezoresistive transducers, 14 Pin assignment, 52 Potentiometric transducers, 14 Print format, 60 Printer. 52 Programming, 30 Programming mode, 25, 29, 30, 31 PVS Peak Value Select/Enter peak value memory settings, 85 PVS? Peak Value Select Query/Output

R

Remote, 91 Remote control, 42, 53 Remote controls, 39, 41 Replacing fuses, 13 RFP Remote Function Programming/Assign remote functions, 91

peak value memory settings, 86

RFP? Remote Function Programming Query/Query assignment of remote functions, 92 RS-232 interface, 27

RS232, 52, 53

S

Selecting language, 31 Selecting voltage output, 16 Serial interface. 20. 50 SET. 27 SNR?Output device serial number, 59 Standstill indication, Tolerance band, Status, 34 START bit. 50 Status byte, 65, 68 Step size, 36, 77 STOP bit, 43, 50, 59 STP Stop/Stop measured value output, 68 Strain gage transducers, 14 Sub-miniature socket, 52 Switching direction, 37, 83

Synchronization, 12, 19

Т

TAR Tare Instruction/Start taring/Enter tare value, 81
TAR? Tare Value Query/Output tare value, 82
Tare, 27, 81, 92
Tare value, 36, 81
Taring, 81
TDD Transmit Device Data Save amplifier settings, 62 TDD? Transmit Device Data Query Query for source of amplifier settings, 63

Transducer type, 69

Transducer types, Strain gage force transducers, Inductive displacement transducers, Piezoresistive transducers, Potentiometric transducers, 22

U

Unit, 76

V

Voltage supply, 12

Ζ

Zero balance, 27 Zero value, 79 Zeroing, 79

ENGLISH DEUTSCH

Bedienungsanleitung

Scout 55

INHALTSVERZEICHNIS

1	Dokumentation und Sicherheitshinweise	4
2	Verwendete Kennzeichnungen	7
2.1	In dieser Anleitung verwendete Kennzeichnungen	7
2.2	Auf dem Gerät angebrachte Symbole	7
3	Einführung	9
3.1	Lieferumfang	9
3.2	Allgemeines	9
3.3	Blockschaltbild	10
4	Anschließen	11
4.1	Werkseinstellungen	11
4.2	Ändern der Werkseinstellungen	11
4.2.1	Analoges Ausgangssignal einstellen	12
4.2.2	Betriebsart für Synchronisation wählen	12
4.3	Spannungsversorgung anschließen	12
4.3.1	Ändern der Netzspannungswahl/Sicherungstausch	13
4.3.2	Aufstellen des Gerätes	14
4.4	Aufnehmer anschließen	14
4.5	Analogausgang	16
4.6	Steuerein-/Steuerausgänge	18
4.7	Synchronisation	19
4.8	Serielle Schnittstelle anschließen	20
5	Einstellen und Bedienen	21
5.1	Inbetriebnahme und Werkseinstellungen	21
5.2	Bedienkonzept und Funktionsübersicht	25
5.3	Tastenfunktionen im Messbetrieb	27
5.3.1	Grenzwertpegel im Messbetrieb abfragen und einstellen	27
5.4	Tastenfunktionen im Programmierbetrieb	29
5.4.1	Wechseln von Betriebsart "Messen" zu "Programmieren"	29
5.4.2	Programmieren	30
5.4.3	Wechseln von Betriebsart "Programmieren" zu Betriebsart "Messen"	31
5.4.4	Dialog	31
5.4.5	Laden/Speichern im Parametersatz (PARAM.SATZ)	31
5.4.6	Anpassung	32
5.4.7	Kalibrieren (KALIBR.)	34
5.4.8	Grenzwerte 14 (GRENZWERT 14)	36

5.4.9 5.4.10 5.4.11 5.5 5.5.1	Spitzenwertspeicher einstellen (SP.SPEICHER) Eingänge und Ausgänge (EING/AUSG.) Zusatzfunkt. (Zusatzfunktionen) Übersicht aller Gruppen und Parameter Einstellen aller Parameter	38 40 42 45 46
6	Serielle Schnittstelle RS232	49
6.1	Allgemeines zur Schnittstelle	49
6.2	Kenndaten der seriellen Schnittstelle	50
7	Kommunikation mit dem Scout 55	51
7.1	Scout 55 und Rechner verbinden	51
7.2	Aktivieren der Schnittstelle RS232	52
8	Befehlssatz des HBM-Interpreters	53
8.1	Wichtige Vereinbarungen	53
8.1.1	Befehlsstruktur	54
8.1.2	Struktur der Datenausgabe	55
8.2	Einzelbeschreibung der Befehle	55
8.2.1	Einstellen der Funktionen der Gruppe Zusatzfunktionen	57
8.2.2	Einstellen der Gruppe Parametersätze	61
8.2.3	Ausgabeformat, Messwertausgabe festlegen	64
8.2.4	Einstellen der Funktionen der Gruppe Anpassung	68
8.2.5	Einstellen der Funktionen der Gruppe Kalibrieren	75
8.2.6	Einstellen der Funktionen der Gruppe Grenzwert 14	81
8.2.7	Einstellen der Funktionen der Gruppe Spitzenwertspeicher	84
8.2.8	Einstellen der Funktionen der Gruppe Eingänge/Ausgänge	86
9	Beispiel	92
10	Fehlermeldungen	100
Stichwo	rtverzeichnis	101

Dokumentation

Änderungen in der Dokumentation sind vorbehalten. Die jeweils aktuellsten Dokumentationen stehen zum Download unter: <u>https://www.hbm.com/de/2314/scout55-mobiler</u>traegerfrequenz-messverstaerker-fuer-serviceaufgaben/.

Bestimmungsgemäße Verwendung

Der Scout 55 mit den angeschlossenen Aufnehmern ist ausschließlich für Messaufgaben und direkt damit verbundene Steuerungsaufgaben zu verwenden. Jeder darüber hinausgehende Gebrauch gilt als nicht bestimmungsgemäß. Zur Gewährleistung eines sicheren Betriebes darf das Gerät nur nach den Angaben in den Bedienungsanleitungen betrieben werden.

Vor jeder Inbetriebnahme der Geräte ist eine Projektierung und Risikoanalyse vorzunehmen die alle Sicherheitsaspekte der Automatisierungstechnik berücksichtigt. Insbesondere betrifft dies den Personen- und Anlagenschutz.

Bei Anlagen, die aufgrund einer Fehlfunktion größere Schäden, Datenverlust oder sogar Personenschäden verursachen können, müssen zusätzliche Sicherheitsvorkehrungen getroffen werden, die im Fehlerfall einen sicheren Betriebszustand herstellen.

Dies kann z.B. durch Fehlersignalisierung, Grenzwertschalter, mechanische Verriegelungen usw. erfolgen.

Bei der Verwendung sind zusätzlich die für den jeweiligen Anwendungsfall erforderlichen Rechts- und Sicherheitsvorschriften zu beachten. Sinngemäß gilt dies auch bei Verwendung von Zubehör.

Sicherheitsbestimmungen

Vergewissern Sie sich vor der Inbetriebnahme, ob die auf dem Typenschild angegebene Netzspannung und Stromart mit Netzspannung und Stromart am Benutzungsort übereinstimmen und ob der benutzte Stromkreis genügend abgesichert ist.

Das Gerät entspricht den Sicherheitsanforderungen der DIN EN 61010-Teil1 (VDE 0411-Teil1); Schutzklasse I. Das Gerät verfügt über einen Netzschalter. Stellen Sie sicher, dass dieser jederzeit frei zugänglich ist.

Der Scout 55 kann wahlweise mit einer Netzspannung 230 VAC oder 110VAC, 48...60 Hz betrieben werden.

Zum Anpassen des Gerätes an die Netzspannung gehen Sie bitte nach Kapitel 2.3.1 in der Bedienungsanleitung vor.

Der Versorgungsanschluss, sowie Signal- und Fühlerleitungen müssen so installiert werden, daß elektromagnetische Einstreuungen keine Beeinträchtigung der Gerätefunktionen hervorrufen; (Empfehlung HBM "Greenline-Schirmungskonzept", Internetdownload http://www.hbm.com/Greenline). Geräte und Einrichtungen der Automatisierungstechnik müssen so verbaut werden, daß sie gegen unbeabsichtigte Betätigung ausreichend geschützt bzw. verriegelt sind (z.B. Zugangskontrolle, Passwortschutz o.ä.).

Bei Geräten die in einem Netzwerk arbeiten, sind diese Netzwerke so auszulegen, daß Störungen einzelner Teilnehmer erkannt und abgestellt werden können.

Es müssen hard- und softwareseitig Sicherheitsvorkehrungen getroffen werden, damit Leitungsbruch oder anderweitige Unterbrechung der Signalübertragung, z.B. über Busschnittstellen, nicht zu undefinierten Zuständen oder Datenverlust in der Automatisierungseinrichtung führen.

Allgemeine Gefahren bei Nichtbeachten der Sicherheitshinweise

Der Scout 55 entspricht dem Stand der Technik und ist betriebssicher. Von dem Gerät können Restgefahren ausgehen, wenn es von ungeschultem Personal unsachgemäß eingesetzt und bedient wird.

Jede Person, die mit Aufstellung, Inbetriebnahme, Wartung oder Reparatur des Gerätes beauftragt ist, muss die Bedienungsanleitung und insbesondere die sicherheitstechnischen Hinweise gelesen und verstanden haben.

Restgefahren

Der Leistungs- und Lieferumfang des Scout 55 deckt nur einen Teilbereich der Messtechnik ab. Sicherheitstechnische Belange der Messtechnik sind zusätzlich vom Anlagenplaner/Ausrüster/Betreiber so zu planen, zu realisieren und zu verantworten, dass Restgefahren minimiert werden. Jeweils existierende Vorschriften sind zu beachten. Auf Restgefahren im Zusammenhang mit der Messtechnik ist hinzuweisen.

Nach Einstellungen und Tätigkeiten, die mit Passworten geschützt sind, ist sicherzustellen, dass evtl. angeschlossene Steuerungen in einem sicheren Zustand verbleiben, bis das Schaltverhalten des Scout 55 geprüft ist.

Sicherheitsbewusstes Arbeiten

Fehlermeldungen dürfen nur quittiert werden, wenn die Ursache des Fehlers beseitigt ist und keine Gefahr mehr existiert.

Bedingungen am Aufstellungsort

Schützen Sie die Geräte vor Feuchtigkeit oder Witterungseinflüssen wie beispielsweise Regen, Schnee usw.

Schützen Sie das Gerät vor direkter Sonneneinstrahlung. Sorgen Sie für ausreichende Belüftung.

Umbauten und Veränderungen

Der Scout 55 darf ohne unsere ausdrückliche Zustimmung weder konstruktiv noch sicherheitstechnisch verändert werden. Jede Veränderung schließt eine Haftung unsererseits für daraus resultierende Schäden aus.

Insbesondere sind jegliche Reparaturen, Lötarbeiten an den Platinen untersagt. Bei Austausch gesamter Baugruppen sind nur Originalteile von HBM zu verwenden.

Das Gerät wurde ab Werk mit fester Hard- und Softwarekonfiguration ausgeliefert. Änderungen sind nur im Rahmen der in den Handbüchern dokumentierten Möglichkeiten zulässig.

Qualifiziertes Personal

Dieses Gerät ist nur von qualifiziertem Personal ausschließlich entsprechend der technischen Daten in Zusammenhang mit den nachstehend ausgeführten Sicherheitsbestimmungen und Vorschriften einzusetzen bzw. zu verwenden.

Dazu zählen Personen, die mindestes eine der drei folgenden Voraussetzungen erfüllen:

- Ihnen sind die Sicherheitskonzepte der Automatisierungstechnik bekannt und sie sind als Projektpersonal damit vertraut.
- Sie sind Bedienungspersonal der Automatisierungsanlagen und im Umgang mit den Anlagen unterwiesen. Sie sind mit der Bedienung der in dieser Dokumentation beschriebenen Geräten und Technologien vertraut.
- Sie sind Inbetriebnehmer oder für den Service eingesetzt und haben eine Ausbildung absolviert, die Sie zur Reparatur der Automatisierungsanlagen befähigt. Außerdem haben Sie eine Berechtigung, Stromkreise und Geräte gemäß den Normen der Sicherheitstechnik in Betrieb zu nehmen, zu erden und zu kennzeichnen.

2 VERWENDETE KENNZEICHNUNGEN

2.1 In dieser Anleitung verwendete Kennzeichnungen

Wichtige Hinweise für Ihre Sicherheit sind besonders gekennzeichnet. Beachten Sie diese Hinweise unbedingt, um Unfälle und Sachschäden zu vermeiden.

Symbol	Bedeutung	
	Diese Kennzeichnung weist auf eine <i>mögliche</i> gefähr- liche Situation hin, die – wenn die Sicherheitsbestim- mungen nicht beachtet werden – Tod oder schwere Körperverletzung zur Folge <i>haben kann</i> .	
	Diese Kennzeichnung weist auf eine <i>mögliche</i> gefähr- liche Situation hin, die – wenn die Sicherheitsbestim- mungen nicht beachtet werden – leichte oder mittlere Körperverletzung zur Folge <i>haben kann</i> .	
Hinweis	Diese Kennzeichnung weist auf eine Situation hin, die – wenn die Sicherheitsbestimmungen nicht beachtet werden – Sachschäden zur Folge <i>haben kann</i> .	
Wichtig	Diese Kennzeichnung weist auf <i>wichtige</i> Informa- tionen zum Produkt oder zur Handhabung des Produk- tes hin.	
Тірр	Diese Kennzeichnung weist auf Anwendungstipps oder andere für Sie nützliche Informationen hin.	
Information	Diese Kennzeichnung weist auf Informationen zum Produkt oder zur Handhabung des Produktes hin.	
Hervorhebung Siehe	Kursive Schrift kennzeichnet Hervorhebungen im Text und kennzeichnet Verweise auf Kapitel, Bilder oder externe Dokumente und Dateien.	
	Dieses Symbol kennzeichnet einen Handlungsschritt.	

2.2 Auf dem Gerät angebrachte Symbole

CE-Kennzeichnung

CE

Mit der CE-Kennzeichnung garantiert der Hersteller, dass sein Produkt den Anforderungen der relevanten EG-Richtlinien entspricht (die Konformitätserklärung finden Sie auf der Website von HBM (www.hbm.com) unter HBMdoc).

Gesetzlich vorgeschriebene Kennzeichnung zur Entsorgung

Nicht mehr gebrauchsfähige Altgeräte sind gemäß den nationalen und örtlichen Vorschriften für Umweltschutz und Rohstoffrückgewinnung getrennt von regulärem Hausmüll zu entsorgen.

3 EINFÜHRUNG

3.1 Lieferumfang

- Gerät mit Aufstell- /Tragebügel
- 1 Kabelstecker DB-15P, Bestell-Nr.: 3.3312-0182
- 1 Netzanschlusskabel
- 1 Klemmleistenstecker 3polig (Schnittstelle)
- 2 Klemmleistenstecker 9polig (Steuerein-/ausgänge)
- 1 Bedienungsanleitung Teil1; 1 Bedienungsanleitung Teil2
- 1 Kabel Kab3-3301.0104

3.2 Allgemeines

Der Messverstärker Scout 55 ist für die Erfassung und Weiterverarbeitung von Messwerten von passiven Aufnehmern geeignet.

Die wesentlichen Merkmale:

- Anschließbare Aufnehmer: DMS-Voll- und Halbbrücken, induktive Voll- und Halbbrükken, piezoresistive und potentiometrische Aufnehmer, LVDT
- 10-stellige alphanumerische Anzeige
- Bedienung über Folientastatur
- 2 Spitzenwertspeicher für Maximal- und Minimalwert , sowie Hüllkurve und Momentanwert
- 4 Grenzwertschalter
- Serielle Schnittstelle RS232 zum Anschluss eines Rechners oder Druckers
- Parameterspeicher zum Speichern von bis zu 8 kompletten Datensätzen
- Steuerein- und Steuerausgänge (über Optokoppler potentialgetrennt)
- Handliches Gehäuse mit Aufstell-/ Tragebügel

Alle notwendigen Befehle zur Einstellung des Gerätes über die serielle Schnittstelle und Messwertabfrage sind in einer getrennten Unterlage der Bedienungsanleitung "**Betrieb des Scout 55 mit Rechner**" aufgeführt und beschrieben.

Abb. 3.1 Blockschaltbild des Scout 55

4 ANSCHLIEßEN

Beachten Sie vor der Inbetriebnahme des Gerätes die Sicherheitshinweise.

4.1 Werkseinstellungen

Überprüfen Sie vor dem Einsatz des Gerätes die ab Werk eingestellten Parameter und beachten Sie, dass sich die Elemente zur Wahl des analogen Ausgangssignals (Strom-/Spannungsausgang) und zur Einstellung für die Synchronisation auf der Platine befinden.

Eingestellt ab Werk ist:

- Netzspannung: 230 V / 50...60 Hz oder 115 V / 50..60 Hz je nach Bestellung
- Analogausgang: Ausgangsspannung ±10 V
- Synchronisation: Master

Abb. 4.1 Lage der Steckbrücken auf der Platine

4.2 Ändern der Werkseinstellungen

Zum Ändern der Werkseinstellung gehen Sie bitte wie folgt vor:

- Schalten Sie das Gerät aus und ziehen Sie das Netzkabel ab. Entfernen Sie sämtliche Steckverbindungen an der Rückwand.
- Lösen Sie die vier Schrauben des Gehäusedeckels und nehmen Sie den Deckel ab.
- Ändern Sie die für Sie relevante Einstellung mit Hilfe der Steckbrücken entsprechend Abb. 4.1.
- Gehäusedeckel wieder festschrauben.

4.2.1 Analoges Ausgangssignal einstellen

Das analoge Ausgangssignals (Spannung bzw. Strom) wählen Sie durch Umstecken der Steckbrücken ST11 (*siehe Abb. 4.1*). Die Wahl \pm 20 mA bzw. 4...20 mA erfolgt im Bediendialog.

4.2.2 Betriebsart für Synchronisation wählen

Zur Synchronisation mehrerer Geräte wird ein Gerät als Master eingestellt. Alle weiteren Geräte sind auf Slave einzustellen. Die Wahl "Master" und "Slave" erfolgt mit den Steckbrücken ST13, ST14 und ST15 (*siehe Abb. 4.1*).

4.3 Spannungsversorgung anschließen

Kontrollieren Sie, ob die Netzspannung des Gerätes (Angabe auf der Geräterückseite) mit der Versorgungsspannung übereinstimmt. Ist dies nicht der Fall, so ändern Sie die Einstellung des Gerätes wie in *Kapitel 4.3.1* beschrieben.

Abb. 4.2 Geräterückseite

Für den Anschluss des Netzkabels ist ein Kaltgerätestecker vorgesehen. Das notwendige Netzversorgungskabel ist im Lieferumfang enthalten.

Länderspezifische Ausführungen sind als Zubehör erhältlich.

4.3.1 Ändern der Netzspannungswahl/Sicherungstausch

Abb. 4.3 Geräterückseite: Netzspannung wählen, Sicherungen tauschen

Die aktuell gewählte Netzspannung (z.B. 230 V) ist im "Fenster" zu sehen.

Anpassen an Netzspannung

- Schalten Sie das Gerät aus und ziehen Sie das Netzkabel ab.
- Deckel aufhebeln und zur Seite klappen
- Sicherungshalter entnehmen
 - Sicherungshalter entsprechend der gewünschten Netzspannung einschieben (Nennstrom der Feinsicherung beachten)
 - Deckel schließen

Die gewählte Netzspannung ist im "Fenster" sichtbar (hier gewählt 2:230 V).

Sicherungen tauschen

- Schalten Sie das Gerät aus und ziehen Sie das Netzkabel ab.
- Deckel aufhebeln und nach vorne klappen
- Sicherungshalter herausziehen
- Sicherungen tauschen
 - Sicherungshalter einschieben, dabei auf richtige Netzspannung achten (gewählter Wert ist im "Fenster" sichtbar).

4.3.2 Aufstellen des Gerätes

Abb. 4.4 Aufstellen des Scout 55

4.4 Aufnehmer anschließen

An den Scout 55 können folgende Aufnehmertypen angeschlossen werden:

- DMS- Voll- und Halbbrückenaufnehmer
- Induktive Halb- und Vollbrückenaufnehmer
- Potentiometrische und piezoresistive Aufnehmer
- LVDT (Linear Variabler Differential-Transformator)

Der Anschluss erfolgt über eine 15polige Buchse auf der Gehäuserückwand mit der Bezeichnung BU1.

Abb. 4.5 Anschluss verschiedener Aufnehmer

Bei Anschluss eines Aufnehmers mit Vierleiter-Kabel müssen Sie im Kabelstecker die Fühlerleitungen mit der entsprechenden Brückenspeiseleitung (Pin 5 mit Pin 12, sowie Pin 6 mit Pin 13) verbinden.

Information

Verwenden Sie zum Anschluss der Aufnehmer Standardkabel von HBM. Bei Verwendung anderer geschirmter, kapazitätsarmer Messkabel legen Sie den Schirm des Aufnehmerkabels entsprechend den HBM-Greenline-Informationen (siehe http://www.hbm.com/Greenline) auf das Steckergehäuse. Damit ist der EMV-Schutz gewährleistet.

4.5 Analogausgang

Das analoge Ausgangssignal steht als Spannung (±10 V) oder als Strom (±20 mA bzw. 4.. 20 mA) an den Klemmen 1 und 2 zur Verfügung. Zusätzlich steht die Ausgangsspannung an der BNC-Buchse auf der Gerätefront zur Verfügung (*siehe Abb. 4.8.*)

Die Wahl Strom / Spannung erfolgt mit Hilfe von Steckbrücken auf der Messverstärkerplatine und ist in *Kapitel 2.1* beschrieben.

Pin	Funktion	Pin	Funktion
1	Ausgangssignal (V/I)	10	nicht belegt
2	Ausgangssignal (Masse)	11	Synchronisation (+)
3	Grenzwert1	12	Synchronisation (-)
4	Grenzwert2	13	Steuerkontakt1 ()
5	Grenzwert3	14	Steuerkontakt2 ()
6	Grenzwert4	15	Steuerkontakt3 ()
7	Warnung	16	Steuerkontakt4 ()
8	Masse	17	Steuerkontakt5 ()
9	externe Versorgungsspannung 24 V=	18	Steuerkontakt6 ()

Abb. 4.7 Belegung der Ausgänge

4.6 Steuerein-/Steuerausgänge

Eingang/ Ausgang	Klemme	Funktion	
-	3	Ausgang Grenzwert 1	Bei positiver Logik entsprechend
-	4	Ausgang Grenzwert 2	V _{ext} . 24 V
-	5	Ausgang Grenzwert 3	
-	6	Ausgang Grenzwert 4	
•	7	Ausgang Warnung (Overflow)	Warnung aktiv bei Overflow, Autocal und STILL AUSG 24 V = OK 0V = Warnung
-	13-17	Eingang Steuerkon- takt1-6 (Funktion wähl- bar)	siehe Tabelle Seite 41
-	8	Masse	V _{ext.} 0 V
-	9	externe Versorgungs- spannung	V _{ext.} 24 V

Hinweis

Bei Abschalten oder Ausfall der Netzspannung sowie bei Ausfall der Netzsicherung werden alle Steuerausgänge auf 0 V (Vext.) gesetzt.

4.7 Synchronisation

Werden mehrere Geräte in unmittelbarer Nähe zueinander oder mit parallel geführten Kabeln eingesetzt, so sind die Geräte zu synchronisieren. Dazu muss ein Gerät auf Master und alle weiteren (max. sieben) auf Slave eingestellt werden. Das Einstellen mit Jumpern auf der Verstärkerplatine ist in *Kapitel 4.2.2* beschrieben. Neben diesen Einstellungen müssen die Geräte zur Synchronisation miteinander verbunden werden.

Abb. 4.10 Anschlussverbindungen zur Synchronisation

4.8 Serielle Schnittstelle anschließen

Auf der Geräterückseite befindet sich eine serielle Schnittstelle RS232 zum Anschluss eines Rechners oder Terminals.

Beim Anschluss eines Druckers genügt ein einfacher Zeilendrukker, der für den Ausdruck nicht mehr als 4 Sekunden/pro Zeile benötigt. Ausgedruckt wird in 12 Spalten. Dies entspricht einer Zeilenlänge von 132 Zeichen. Die zu druckenden Messwerte wählen Sie wie unter *Kapitel 5.4.11* beschrieben aus.

Beim Anschluss eines Rechners ist ein Dialog mit dem Scout 55 möglich.

Sie können mit Hilfe von Steuerbefehlen alle Geräteeinstellungen durchführen und Messwerte abfragen. Eine Übersicht über die Schnittstellenbefehle ist in einem weiteren Teil der Bedienungsanleitung " **Scout 55, Teil2: Betrieb mit Rechner oder Terminal** " zusammengestellt.

5 EINSTELLEN UND BEDIENEN

5.1 Inbetriebnahme und Werkseinstellungen

Für die Inbetriebnahme Ihrer Messkette (Messverstärker und Aufnehmer) sind im folgenden einige Bedienschritte aufgeführt, so dass Sie einen ersten Funktionstest aller Komponenten durchführen können. Beschrieben wird im wesentlichen die Anpassung des Scout 55 an den verwendeten Aufnehmertyp. Außerdem wird auf einige typische Fehler hingewiesen, die bei der Inbetriebnahme auftreten können.

Schließen Sie entsprechend den in den vorhergehenden Kapitel beschriebenen Schritten das Netzkabel und den Aufnehmer an den Messverstärker an.

Beachten Sie hierbei die Sicherheitshinweise

- Schalten Sie den Netzschalter ein.
- Das Gerät führt einen Funktionstest durch und befindet sich dann im Messbetrieb. Die Werkseinstellungen sind aktiv.
- Überprüfen Sie die Wahl des im Display angezeigten Ausgangssignals. Wählen Sie mit

🔈 🛛 das Bruttosignal aus (keine Kennzeichnung im Display)

Information

Erscheint hier die Fehlermeldung KALERR., kann dies folgende Ursachen haben:

- Keine Sechsleiter-Rückführung angeschlossen
- Aufnehmer/Sensor falsch angeschlossen
- Kein Aufnehmer/Sensor angeschlossen

Abhilfe

Gerät ausschalten. Den Aufnehmer richtig anschließen. Gerät wieder einschalten. Erscheint die Fehlermeldung **OVFL B, OVFL N** müssen Sie eine Anpassung des Messverstärkers an Ihren Aufnehmertyp vornehmen. Die aufnehmerspezifischen Schritte sind anschließend beschrieben.

Um vom Messbetrieb in den Einstellmodus des Gerätes zu gelangen, drücken Sie

für ca. 2s. In der Anzeige erscheint "DIALOG".

Stellen Sie entsprechend der folgenden Beispiele das Gerät je nach angeschlossenem Aufnehmertyp ein.

Aufnehmertypen

• DMS-Kraftaufnehmer

Anpassung:

	Aufnehmertyp: Speisung: Eingang:	Vollbrücke 2,5 V 4 mV/V
Ka	librieren:	
	Einheit, Nennwert/Dezimalpunkt: Messbereich:	20.000 kN 2 mV/V
•	Induktive Wegaufnehmer	
An	passung:	
	Aufnehmertyp: Speisung: Eingang:	Halbbrücke 1,0 V 10 mV/V
Ka	librieren:	
	Einheit, Nennwert/Dezimalpunkt: Messbereich:	20.000 mm 10 mV/V
•	Piezoresistive Aufnehmer	
An	passung:	
	Aufnehmertyp: Speisung: Eingang:	Halbbrücke 2,5 V 400 mV/V
Ka	librieren:	
	Einheit, Nennwert/Dez.punkt: Messbereich:	30.000 bar 200 mV/V
•	Potentiometrische Aufnehmer	
An	passung:	
	Aufnehmertyp: Speisespannung: Eingang:	Halbbrücke 1 V 1000 mV/V
Ka	lile of a manage	
	librieren:	

Erklärung der Symbole

Wechsel in den Messbetrieb

Die Einstellungen sind im Parametersatz 1 gespeichert und das Gerät wechselt in den Messbetrieb.

Sie können nun einen ersten Funktionstest durchführen.

Information

Die Einstellungen sind nur dann netzausfallsicher abgelegt, wenn sie unter einem der Parametersätze gespeichert wurden.

5.2 Bedienkonzept und Funktionsübersicht

Das Bedienkonzept unterscheidet zwei Arten von Tastenfunktionen:

- Tasten, die während des Messbetriebes wirksam sind und
- Tasten, die im Programmierbetrieb wirken.

5.3 Tastenfunktionen im Messbetrieb

Taste	Bedeutung		
SET	Wechseln von der Betriebsart Messen in die Betriebsart Programmieren (und umgekehrt) durch Betätigen für ca. 2s .		
	Einstellen der Grenzwertpegel GW	14 (siehe ab Seite 36)	
	Die weiteren Parameter der Grenzw bleiben unverändert. Die Grenzwert WERT 14 aktiviert werden (<i>siehe</i>	verte wie Hysterese, Richtung etc. funktion kann im Menü GRENZ- Seite 36).	
	Nullabgleich der Messkette (auch r	nit Steuerkontakt möglich).	
+0+	Das am Eingang liegende Signal wird als Nullpunkt übernommen.		
	Tarieren des Messwertes (auch mit Steuerkontakt möglich).		
→⊺	Es wird der momentan anliegende Messwert als Tarawert übernomn		
	Löscht den Inhalt der Spitzenwertspeicher (auch mit Steuerkontakt mög- lich). Diese Funktion gilt für alle Spitzenwertspeicher (Min, Max, Spitze- Spitze).		
\bigcirc	Ausgabe der Messwerte und Parameter über die RS-232-Schnittstelle (auch mit Steuerkontakt möglich).		
	Mögliche Druckparameter siehe "Zusatzfunktion" ab Seite 42.		
Es werden nur diejenigen Parameter (DRUCK xxx) gedruckt, o Zusatzfunktionen angewählt wurden.		er (DRUCK xxx) gedruckt, die in den en.	
	Schaltet die Messwertanzeige um :	zwischen:	
	Bruttowert	keine Kennzeichnung im Display	
	Nettowert (= Brutto minus Tara) Minimalwert	NET WIRD angezeigt "MIN" wird angezeigt	
	Maximalwert	"MAX" wird angezeigt	
	Spitze-Spitze-Wert	"MAXMIN" wird angezeigt	

5.3.1 Grenzwertpegel im Messbetrieb abfragen und einstellen

Für die Wahl des Grenzwertpegels (im Messbetrieb) haben Sie mehrere Möglichkeiten:

- Zahlenwerteingabe der Grenzwertpegel
- Anliegendes Eingangssignal als Grenzwertpegel übernehmen
- Schneller Suchlauf (Pfeiltasten mehrere Sekunden drücken)

5.4 Tastenfunktionen im Programmierbetrieb

In dieser Betriebsart können Sie alle Einstellungen für den Einsatz des Messverstärkers in Ihrer Anwendung durchführen. Die Parameter sind in Gruppen zusammengefasst.

Bedeutung der Tasten

Taste	Bedeutung
SET	Wechsel der Betriebsart (2sec drücken), Gruppe anwählen (z.B. KALIBR.)
PAR	Parameteranwahl (z.B. NENNWERT)
	Zeigt den zuletzt eingestellten Wert an.
	Die gewünschte Ziffer anwählen.
	Ändert die Ziffer aufsteigend.
	Ändert die Ziffer absteigend.
MEAS	Messwert übernehmen.
	Bestätigt die Eingabe/Änderung

5.4.1 Wechseln von Betriebsart "Messen" zu "Programmieren"

5.4.2 Programmieren

Beispiele für das Bedienen im Programmierbetrieb

* Nur möglich beim einstellen des Nullwertes, des Messbereiches und der Grenzwertpegel

^{**} Siehe Seite 31

5.4.3 Wechseln von Betriebsart "Programmieren" zu Betriebsart "Messen"

Bei Änderung von Parametern wird abgefragt, ob die geänderten Parameter **netzausfall**sicher gespeichert werden sollen.

Information

Die Einstellungen sind nur dann netzausfallsicher abgelegt, wenn sie unter einem der Parametersätze gespeichert wurden.

5.4.4 Dialog

Sprache auswählen (SPRACHE)

Werkseinstellung: Deutsch

Folgende Sprachen können gewählt werden:

```
Deutsch, Englisch (ENGLISH), Französisch (FRANCAIS), Italienisch (ITALIANO), Spanisch (ESPANOL)
```

5.4.5 Laden/Speichern im Parametersatz (PARAM.SATZ)

Die aktuellen Verstärkereinstellungen des Gerätes können in acht Parametersätzen netzausfallsicher gespeichert und später abgefragt werden.

In den Parametersätzen 1...8 werden alle Einstellungen gesichert.

Bei einem Wechsel von der Betriebsart Programmieren in Messbetrieb erfolgt eine Abfrage, ob die Änderung gespeichert werden soll oder nicht. Dies ist unter Kapitel 5.4.3dargestellt. Das Aktivieren/Laden von Parametersätzen kann auch über Steuerkontakte (PA-RACODE1...2, siehe Kapitel 5.4.10) erfolgen.

LADEN	Parametersatz 1 (Parametersatz 18) sowie
	Werkseinstellung (WERKSEINST) wird geladen

SPEICHERN Speichern als Parametersatz 1...8

5.4.6 Anpassung

AUFN.TYP

Je nach Aufnehmertyp kann zwischen folgenden Brückenarten gewählt werden:

Wählbare Brückenarten Vo	′ollbrücke ^{*)}	Halbbrücke ¹⁾	LVDT
--------------------------	--------------------------	--------------------------	------

¹⁾ Aufnehmer mit Dehnungsmessstreifen und induktive Aufnehmer werden hier nicht unterschieden

SPEISUNG

Die Brückenspeisespannung des Aufnehmers wird gewählt:

|--|

EINGANG

In Abhängigkeit von der gewählten Brückenspeisespannung kann der Eingangsbereich (Messbereich grob) je nach Aufnehmertyp gewählt werden:

Eingangsbereich	UB = 2,5 V	UB = 1 V
1	$\pm 4 \text{ mV/V}$	$\pm 10 \text{ mV/V}$
П	\pm 40 mV/V	±100 mV/V
III	±400 mV/V	\pm 1000 mV/V

AUTOKAL

Je nach Anwendung und Anforderung an die Stabilität kann ein Autokalibrierzyklus eingeschaltet werden. Sie korrigieren damit Driften von Nullpunkt und Messbereichsendwert und die Langzeitkonstanz des Messverstärkers.

Mögliche Einstellungen:

EIN	Autokalibrierzyklus eingeschaltet
AUS	Autokalibrierzyklus ausgeschaltet
EINMALIG	Die Autokalibrierung wird einmalig durchgeführt, sobald mit bestätigt wird. Je nach bisher gewähltem Zustand bleibt der Autokali- brierzyklus ein- /bzw. ausgeschaltet.

Wichtig

Wenn Sie das analoge Ausgangssignal für eine kontinuierliche Überwachung benötigen, muss die Autokalibrierung ausgeschaltet sein.

Grund: Während des Autokalibrierzyklus werden keine Messwerte erfaßt. Damit entsteht eine "Überwachungslücke" (Zeitabstand ca. 5 min., Dauer ca. 1 s), die bei Fertigungsprozessen unerwünscht bzw. gefährlich ist.

FILTER

Es können unterschiedliche Tiefpaßfilter (Charakteristik und Grenzfrequenz) ausgewählt werden:

Charakteristik			
Bessel (BE) (Hz)	Abtastrate ¹⁾ (Messwerte pro Sek)	Butterworth (BU) (Hz)	Abtastrate ¹⁾ (Messwerte pro Sek)
0,05	18,75	5,0	1200
0,1	37,5	10	2400
0,2	75	20	2400
0,5	300	40	2400
1,25	600	80	2400
2,5	1200	200	2400
5,0	2400	500	2400
10	2400	1000	2400
20	2400		
40	2400		
100	2400		
200	2400		
400	2400		
900	2400		

¹⁾ Siehe Stillstandsanzeige (STILL ANZ)

STILL ANZ (Stillstands-Anzeige)

Zum Aktivieren der Stillstands-Anzeige ist die Anzahl der Messungen einzustellen. Während dieser Messungen muss der Messwert innerhalb der vorgegebenen Toleranz liegen, damit "Stillstand" gemeldet wird. (Abtastrate, siehe Tabelle auf Seite 33).

Einstellungen	+000 MESS	Stillstandsanzeige ausgeschaltet
	+255 MESS	Maximal mögliche Anzahl der Messungen

STILL DIG

Eingabe des Toleranzfeldes in Digits in Anzeigeeinheiten.

000110	kN
--------	----

STILL AUSG

Ausgabe des Status der Stillstandsanzeige (Steuerausgang Klemme 7; Warnung).

Mögliche Einstellungen	AUS	Der Zustand der Stillstandsanzeige wird nicht über WARNUNG ausgegeben
	EIN	WARNUNG aktiv, wenn kein Stillstand oder Geräte- fehler

Abb. 5.1 Wirkung der Stillstandsanzeige

5.4.7 Kalibrieren (KALIBR.)

EINHEIT

Folgende Einheiten können Sie wählen:

Wählbare Einheit			
Ν	S	cm	
OZ	PPM	mm	
LB	‰	μm	
TON	%	PSI	
KT	M/SS	KPAS	
Т	M/S	HPAS	
KG	μm/m	PAS	
G	INLB	PA	
V	FTLB	mBAR	
mV/V	KNm	BAR	
MN	Nm	KN	
MP	INCH	А	
	m	mA	

NENNWERT

Es kann der Nennwert eingestellt werden. Geben Sie den Nennwert inklusive der gewünschten Nachkommastellen an.

Beispiele:

a: Sie wollen in einem Druckbereich von 0 bis 1000.00 Bar messen. Geben Sie als Nennwert ein: 100000

b: Mit einer 50 kg-Wägezelle möchten Sie den Messwert mit 3 Nachkommastellen anzeigen.

Geben Sie als Nennwert ein: 50000

DEZ.PUNKT

Die Position des Dezimalpunktes wird verändert.

|--|

Für obiges Beispiel a: .00

Für obiges Beispiel b: .000

ZIFF.SPRUNG

Die Schrittweite bzw. der Ziffernsprung kann gewählt werden.

NULLWERT

Der maximale Nullabgleichbereich entspricht dem jeweiligen maximalen Messbereich in der folgenden Tabelle.

MESSBER.

Es wird ein Messbereichsendwert (Einheit mV/V) eingestellt. Liegt dieser Wert außerhalb des Eingangsbereiches, wird der minimal bzw. maximal mögliche Wert übernommen.

Eingangsbereich	Messbereich bei UB = 2,5 V	Messbereich bei UB = 1 V
I	±0,24 mV/V	±0,510 mV/V
Ш	±240 mV/V	±5100 mV/V
III	±20400 mV/V	±501000 mV/V

TARAWERT

Es kann ein Tarawert (in Anzeigeeinheiten) vorgegeben werden (Nettowert = Bruttowert minus Tarawert).

5.4.8 Grenzwerte 1...4 (GRENZWERT 1...4)

Die Parameter für das Einstellen der Grenzwerte sind für jeden Grenzwert in einer Gruppe zusammengefaßt. Der Status der Grenzwerte wird über das Display angezeigt und über Steuerausgänge nach außen geführt.

Die Funktion der Grenzwerte und deren Parameter sind im folgenden Bild dargestellt:

Abb. 5.2 Funktionen und Parameter der Grenzwerte
FREIGABE

AUS	Grenzwerte einzeln sperren
Eln	Grenzwerte einzeln freigeben

QUELLE

Grenzwert bewertet.

BRUTTOWERT	Brutto
NETTOWERT	Netto
SPWT1 MAX	Speicher für Maximalwerte
SPWT2 MIN	Speicher für Minimalwerte
SPWT3 SPSP	Speicher für Spitze-Spitze-Wert

RICHTUNG

Hier geben Sie die Schaltrichtung bzw. die Arbeitsrichtung vor (siehe Abb. 5.2).

UEBERSCHR.	Einschaltpegel höher als Ausschaltpegel bei steigendem Mess- wert
UNTERSCHR.	Ausschaltpegel höher als Einschaltpegel bei fallendem Messwert

PEGEL

Der Pegel wird in Anzeigeeinheiten (z.B. 2.000 kg) eingestellt.

HYSTERESE

Der Hysteresewert verhindert, dass es bei Erreichen der Schaltschwelle zu einem "Flattern" des Grenzwertschalters kommt. Die Hysterese ist die Differenz zwischen Ein-und Ausschaltschwelle.

Eingestellt wird ein Wert in Anzeigeeinheiten z.B. 0.200 kg.

LOGIK

Sie können die Ausgangslogik der Steuerkontakte beliebig ändern. Folgende Festlegung wurde getroffen:

AKTIV EIN	Eingeschaltet = High Ausgeschaltet = Low
AKTIV AUS	Ausgeschaltet = High Eingeschaltet = Low

5.4.9 Spitzenwertspeicher einstellen (SP.SPEICHER)

Ihnen stehen zwei Spitzenwertspeicher zur Überwachung von Prozessen zur Verfügung. Folgende Zuordnung wurde dabei getroffen:

SPWT1	Speicher für Maximalwerte
SPWT2	Speicher für Minimalwerte

Anzeigen der Max/Min-Werte im Messbetrieb mit Taste:

Ein weiterer Wert wird arithmetisch ermittelt:

SPWT3	Speicher für Spitze-Spitze-Wert

Verknüpfung mit SPWT1 bezüglich Steuerfunktionen und Hüllkurve.

Beide können als Spitzenwertspeicher oder als Momentanwertspeicher betrieben werden. Die Wahl der Betriebsart erfolgt mit Steuerkontakten (*siehe Seite 41*).

SPWT1/Mom	Momentan-bzw. Spitzenwert für SP1
SPWT1/Halt	Run / Hold-Modus für SP1
SPWT2/Mom	Momentan-bzw. Spitzenwert für SP2
SPWT2/Halt	Run / Hold-Modus für SP2

Die Funktion der Steuerkontakte zeigt das folgende Bild:

Abb. 5.3 Funktion der Steuerkontakte am Beispiel für SPWT1, Spitzenwert- und Momentanwertspeicherung (gilt auch für SPWT2 und SPWT3)

Werden die Speicher als Spitzenwertspeicher betrieben, ist durch Freigeben und Einstellen einer Entladerate eine Hüllkurvenfunktion möglich. Diese Entladerate wirkt sich auf alle Spitzenwertspeicher aus.

Abb. 5.4 Hüllkurvenfunktion

Folgende Parameter können eingestellt werden

FREIGABE

Die Spitzenwertspeicher können freigegeben oder gesperrt werden.

SPWT EIN	Spitzenwertspeicher freigegeben
SPWT AUS	Spitzenwertspeicher gesperrt

SPWT1 EING.

Wahl des Eingangssignals des Spitzenwertspeichers SPWT1.

BRUTTOWERT NETT	OWERT
-----------------	-------

SPWT2 EING.

Wahl des Eingangssignals des Spitzenwertspeichers SPWT2.

HÜLLKURVE

Die Entladerate der Hüllkurvenfunktion für beide Spitzenwertspeicher kann gewählt werden. Die Angabe entspricht einer Zeit in ms:

00000 s	Hüllkurvenfunktion aus
000.100 bis 060.000 s	Hüllkurvenfunktion ein

5.4.10 Eingänge und Ausgänge (EING/AUSG.)

In diesem Menü können die erforderlichen Einstellungen für das Eingangssignal des Scout 55, den Analogausgang und die Steuerkontakte durchgeführt werden.

QUELLE UA

Folgende Signale können als Quelle des Analogsignals angegeben werden:

BRUTTOWERT	Brutto
NETTOWERT	Netto
SPWT1 MAX	Speicher für Maximalwerte
SPWT2 MIN	Speicher für Minimalwerte
SPWT3 SPSP	Speicher für Spitz-Spitze-Wert

MODUS UA

Es sind je nach gewähltem Analogsignal folgende Optionen möglich:

Anzeige	Bedeutung			
UA AUS				
0 BIS 20mA	susgang $\pm 20 \text{ mA}$			
4 BIS 20mA	Ausgang +4 20 mA			
UA AUS	-			
10 VOLT	Ausgang +/- 10 V			

Information

Die Auswahl Stromausgang beziehungsweise Spannungsausgang wird mit Hilfe von Steckbrücken auf der Verstärkerplatine durchgeführt. Die Vorgehensweise ist auf Seite 11 beschrieben.

EING.SIGNAL

Zu Testzwecken können statt des Messsignals auch Kalibriersignal und Nullsignal angezeigt werden. Folgende Eingangssignale können gewählt werden:

MESSIGNAL	Messbetrieb
KAL.SIGNAL ¹⁾	Die Anzeige entspricht 50% des aktuellen Messbereichsend- wertes
NULLSIGNAL ¹⁾	Interner Nullpunkt

¹⁾ Zur Anzeige des Messsignals ist Rückkehr in den Messbetrieb erforderlich.

KONTAKT 1...6

Auf der Steckerleiste stehen Ihnen zur Steuerung von Funktionen des Scout 55 Steuerkontakte zur Verfügung. Die Belegung bzw. Zuordnung der Steuerkontakte ist frei konfigurierbar. Ab Werk ist keine Funktion für die Kontakte festgelegt.

Funktionen	Pegel 0V	Pegel 24V			
KEINE FKT.	keine Funktion (Werkseinstellung)				
AUTOCAL	Autokalibrierung Ein	Autokalibrierung Aus			
TARIEREN	Bei Übergang 0V - 24V wird Tara	awert übernommen			
SPWT1/MOM	Betriebsart Spitzenwert für SP1	Betriebsart Momentanwert für SP1			
SPWT1/HALT	Speicherinhalt SP1 und SP3 wird aktualisiert	Speicherinhalt SP1 und SP3 wird eingefroren			
SPWT2/MOM	Betriebsart Spitzenwert für SP2	Betriebsart Momentanwert für SP2			
SPWT2/HALT	Speicherinhalt SP2 wird aktualisiert	Speicherinhalt SP2 wird eingefroren			
NULLST.	Bei Übergang 0V - 24V wird das aktuelle momentane Eingangs- signal als Nullwert übernommen				
DRUCKEN	Ein Ausdruck über die Sch stelle wird ausgelöst				
BRUT/NET	Brutto an Analogausgang Netto an Analogausgang				
PARACODE 1	Externe Auswahl von Parametersätzen und binär codierten Eingängen				
PARACODE 2	siehe folgende Tabelle)				
PARACODE 3					
TAST. SPERR	Freigegeben Gesperrt				

PARASATZ	PARACODE				
	3	2	1		
1	0	0	0		
2	0	0	1		
3	0	1	0		
4	0	1	1		
5	1	0	0		
6	1	0	1		
7	1	1	0		
8	1	1	1		

FERNSTEU.

Die Steuerung des Gerätes über Steuerkontakte kann gesperrt oder freigegeben werden.

EIN	keine Anzeige	Bedienung über Tastatur und Kontakte
AUS	LOCAL	Bedienung nur über Tastatur

5.4.11 Zusatzfunkt. (Zusatzfunktionen)

P__

Um Sie bei eventuellen technischen Problemen besser unterstützen zu können, kann unter diesem Parameter der Firmware-Stand abgelesen werden. Bei Rückfragen an unsere Serviceabteilung oder HBM-Niederlassung ermöglicht die Angabe der vorhandenen Firmwareversion eine wirksame Unterstützung.

Beispiel: P34 Softwareversion P34

SERIEN NR.

Anzeige der Seriennummer des Gerätes.

BAUDRATE

Zwischen folgenden Werten kann als Baudrate der seriellen Schnittstelle gewählt werden.

Wählbare Baudraten	300	600	1200	2400	4800	9600
--------------------	-----	-----	------	------	------	------

PARITAET

Folgende Einstellungen sind möglich.

Wählbare Parität	GER PAR.	UNGER PAR.	KEINE PAR.

STOPBIT

Folgende Einstellungen sind möglich:

1 STOPBIT	
2 STOPBIT	

KOMM.ADR¹⁾

Eingabe der Geräteadresse.

Wählbare Geräteadressen	00 bis 31
-------------------------	-----------

1) Adresse wählbar nur bei RS485-Version; bei RS232 Adresse auf 0 stellen

DRUCK BRU.

Ausgabe des Bruttowertes über serielle Schnittstelle.

AUS/EIN

DRUCK NET.

Ausgabe des Nettowertes über serielle Schnittstelle.

AUS/EIN

DRUCK MAX.

Ausgabe des Maximalwertes über serielle Schnittstelle.

AUS/EIN

DRUCK MIN.

Ausgabe des Minimalwertes über serielle Schnittstelle.

AUS/EIN

DRUCK MIMA.

Ausgabe des MIN/MAX-Wertes über serielle Schnittstelle.

AUS/EIN

DRUCK GWS

Ausgabe der Zustände der Grenzwertschalter über serielle Schnittstelle.

AUS/EIN

DRUCK UEBER

Einstellung der Wiederholrate. Überschrift bestehend aus der Quelle des Messwertes und der Einheit.

0	=	keine Überschrift (nur Messwert)
1	=	Überschrift jedes mal
10	=	Überschrift alle 10 mal etc.

DRUCK PAR.

Ausgabe der gesamten Parameter.

START

Information

Die gewählten Druckfunktionen (außer DRUCK PAR) werden im Messbetrieb ausgeführt

(durch Drücken von edu oder über Fernsteuerkontakt).

NULL/TARA.

Ein Ändern des Tarawertes oder Nullwertes über die Tasten bzw. bzw. oder die Fernsteuerkontakte wird automatisch im aktuellen Parametersatz (EEPROM) abgelegt. Dieses Sichern kann ein- bzw. ausgeschaltet werden.

SICHERN.AUS

SICHERN.EIN

Information

Das EEPROM ist auf ca. 10000 Schreibzyklen begrenzt.

5.5 Übersicht aller Gruppen und Parameter

				SET				
	DIALOG	PARAM.SATZ	ANPASSUNG	KALIBR.	GRENZWERT 14	SP.SPEICHER	EING/AUSG.	ZUSATZFUNK.
	SPRACHE	LADEN	AUFN. TYP	EINHEIT	FREIGABE	FREIGABE	QUELLE UA	P34
	PASSWORT	SPEICHERN?	SPEISUNG	NENNWERT	QUELLE	SPWT1	MODUS UA	SERIEN NR.
	TASTE GW	SET	EINGANG	DEZ.PUNKT	RICHTUNG	SPWT2	EING.SIGNAL	BAUDRATE
	TASTE NULL		AUTOKAL	ZIFF.SPRUNG	PEGEL	HUELLKURVE	KONTAKT 1	PARITAET
PARAM	TASTE TARA		FILTER	NULLWERT	HYSTERESE	SET	KONTAKT 2	STOPBIT
Ļ	TASTE SPWT		STILL ANZ	MESSBER.	LOGIK		KONTAKT 3	KOMM. ADR
<u> </u>	TAST.DRUCK		STILL DIG	TARAWERT	GW TASTE		KONTAKT 4	DRUCK BRU.
ete	TASTE SIGN		STILL AUSG	SET	SET		KONTAKT 5	DRUCK NET.
ram	SET ¹⁾		SET				KONTAKT 6	DRUCK MAX.
Pai							FERNSTEU.	DRUCK MIN.
der							SET	DRUCK MIMA
cht								DRUCK GWS
ersi								DRUCK UEBER
Übe								DRUCK PAR.
								NULL/TARA
								SET

¹⁾ mit SET zur nächsten Gruppe

5.5.1 Einstellen aller Parameter

6 SERIELLE SCHNITTSTELLE RS232

6.1 Allgemeines zur Schnittstelle

Über diese serielle Schnittstelle werden die Daten nacheinander Bit für Bit übertragen. Allgemeine Eigenschaften sind:

- Übertragungsgeschwindigkeit relativ "klein"
- Benötigt im einfachsten Fall ein 3adriges Kabel f
 ür eine
 Übertragung in beiden Richtungen (Duplex oder bidirektional)
- Es kann nur ein Gerät angeschlossen werden (Punkt-zu-Punkt-Verbindung)

Abb. 6.1 Leitungspegel des Zeichens Y bei negativer Logik

Vor jedes Zeichen (Daten-Byte) wird ein START-Bit gesetzt. Anschließend folgen die Daten-Bits und ein STOP-Bit. Da die Daten nacheinander übertragen werden, muss die Sendegeschwindigkeit mit der Empfangsgeschwindigkeit übereinstimmen.

Die Anzahl der Bits pro Sekunde nennt man Baudrate. Die exakte Baudrate des Empfängers wird bei jedem übertragenen Byte mit dem START-Bit synchronisiert. Anschließend folgen die Daten-Bits, die alle die gleiche Länge besitzen. Nach Erreichen des STOP-Bits geht der Empfänger in Wartestellung, bis er vom nächsten START-Bit reaktiviert wird.

Die Datenübertragung wird mit dem Software-Handshake X-ON (DC1) und X-OFF (DC3) gesteuert.

Ist das Gerät bereit Daten zu übertragen, schickt es über die Datenleitung das Steuerzeichen X-ON (DC1). Kann es keine Daten aufnehmen, z.B. wenn der Speicher belegt ist, wird das Steuerzeichen X-OFF (DC3) geschickt.

6.2 Kenndaten der seriellen Schnittstelle

Messrate	10 Mess/s
Wortlänge	8 Bit
Stop-Bit	1*; 2
Parität	ungerade, gerade ¹⁾ und keine
Baudrate	300; 600; 1200; 2400; 4800; 9600*

1) Werkseinstellung

7 KOMMUNIKATION MIT DEM SCOUT 55

7.1 Scout 55 und Rechner verbinden

Auf der Geräterückseite befindet sich eine serielle Schnittstelle RS232 zum Anschluss eines Rechners oder Terminals. Für die RS232-Verbindung wird ein Kabel (1,5 m Länge) mit freien Enden und einer 9-poligen Subminiatur-Buchse²)* geliefert (Bestell-Nr.:3-3301.0104). Die Verdrahtung und die Pinbelegung ist der folgenden Abbildung zu entnehmen.

Abb. 7.1 Rechner/Scout 55-Verbindung

Zum Verbinden des Scout 55 mit einem Rechner gehen Sie wie folgt vor:

- Beide Systeme an das Netz anschließen, zunächst ausgeschaltet lassen
- Schnittstelle entsprechend der Skizze anschließen
- Die Schnittstellen-Konfiguration (Baudrate, Datenformat) des Rechners muss der Grundeinstellung des Scout 55 entsprechen. Ist dies nicht der Fall, muss via Tastatur die Schnittstellen-Konfiguration verändert werden (siehe Bedienungsanleitung Scout 55 Teil 1).
- Zum Schluss schalten Sie beide Systeme ein

Beim Anschluss eines Druckers genügt ein einfacher Zeilendrucker, der für den Ausdruck nicht mehr als 4 Sekunden/pro Zeile benötigt. Ausgedruckt wird in 12 Spalten. Dies entspricht einer Zeilenlänge von 132 Zeichen.

2). Zubehör

7.2 Aktivieren der Schnittstelle RS232

Der HBM-Interpreter wird durch folgendes Zeichen aktiviert: * CTRL R (DC2) - Rechnerbetrieb ohne Echo

Durch die Eingabe des Steuerzeichens geht das Gerät in den Fernbedienungszustand und kann bis auf die Anzeigefunktionen des Displays nicht mehr bedient werden.

Rechnerbetrieb ohne Echo bedeutet, dass keine Befehlszeichen, sondern nur die erzeugten Daten zum Scout 55 zurückgesendet werden. Bei der RS232-Schnittstelle wird jede erzeugte Information sofort ausgegeben, wenn sie vollständig im Ausgabepuffer steht.

Mit folgendem Befehl können Sie den Fernbedienungszustand deaktivieren: CTRL A (SOH); siehe auch Befehl DCL auf *Seite 56*.

8 BEFEHLSSATZ DES HBM-INTERPRETERS

8.1 Wichtige Vereinbarungen

Diese Vereinbarungen und allgemeinen Hinweise erleichtern Ihnen das Arbeiten mit den Befehlen des HBM-Interpreters.

Schreibweise

Alle Befehle können Sie in Klein- oder Gro
ßbuchstaben eingeben.

Befehlskürzel

• Die Befehlskürzel bestehen aus 3 bis 5 Zeichen und je nach Befehl einer Liste von Parametern, die durch Kommata voneinander getrennt werden.

z.B. BDR 6,2,1 (x)

Leerzeichen

 Vorangestellte und nachfolgende Leerzeichen (Blanks) bei Parametern werden unterdrückt.

Befehlsarten

 die Abfragebefehle - sie dienen zum Auslesen von Informationen - sind mit einem angefügten Fragezeichen (?) gekennzeichnet

z.B. BDR?

Antworten

Die in den Beispielen angegebenen Antworten des Gerätes sind kursiv dargestellt.

Befehlsende

bei Eingabebefehlen:

• Das Befehlsendezeichen ist mit (x) gekennzeichnet. Erlaubte Befehlsendezeichen sind:

";", LF, LFCR, CRLF

bei Ausgabebefehlen:

• Das Befehlsendezeichen ist mit (y) gekennzeichnet. Das Befehlsendezeichen ist immer CRLF.

Zahlen eingeben/ausgeben

- Die eingegebenen Zahlen werden in den Zahlentyp des jeweiligen Parameters gewandelt
- Die Ausgabe von Zahlen erfolgt immer mit Festkommazahlen

Schnittstelle seriell

• Bei der RS232-Schnittstelle beginnt die Rechnerkommunikation mit den zugelassenen Kontrollzeichen.

CTRL R' oder 'CTRL B' und endet mit 'CTRL A' oder dem Befehl DCL

• Jeder Befehl bei seriellen Schnittstellen erzeugt eine Ausgabe (Antwort)

Quittierverhalten

- Ausgabebefehle gekennzeichnet durch ein ? erzeugen immer Ausgabedaten.
- Parameter ändern
- Werden Parameter verändert, die Auswirkungen auf die Messung selber haben, so wird nach der Eingabe eine Kalibrierung durchgeführt, die zwischen 1..3s dauern kann.

Normen

Alle verwendeten Befehle sind nach einer bestimmten Struktur aufgebaut. Grundsätzlich gibt es zwei Befehlstypen:

Einstellbefehle

Der Scout 55 wird über den Rechner eingestellt.

Beispiel: **BDR6,2,1** (x) 0 (y)

Die Schnittstelle wird auf 9600 Baud, gerade Parität und 1 Stop-Bit eingestellt.

Abfragebefehle

Messwerte oder Geräteeinstellungen werden aus dem Scout 55 ausgelesen und erscheinen auf dem Bildschirm.

Beispiel:	BDR? (x)
	6,2,1 (y)

Die Schnittstelle ist auf 9600 Baud, gerade Parität und 1 Stop-Bit eingestellt.

8.1.1 Befehlsstruktur

Befehlskürzel	Parameter	Endezeichen
TTT?	p1,p2,p n	(x)

Beispiel	
BDR? (x)	
BDR	Befehlskürzel als Alphazeichen (az)
?	nur bei Abfragebefehlen
p1,p2pn	Parameterwerte, bestehend aus Vorzeichen (+/-) und Ziffern (09) oder Zeichenketten (immer in Anführungszeichen ""). Ein positives Vorzeichen kann auch weggelassen werden.
,	Trennzeichen (Separator)
(x)	Bef.ende:
	Line Feed (LF), Semikolon (;) Carriage Return/Line Feed (CRLF) oder Line Feed/ Carriage Return (LFCR)
CR	ASCII-Zeichen: Carriage Return = dezimal 13
LF	ASCII-Zeichen: Line Feed = dezimal 10
;	ASCII-Zeichen: Semikolon = dezimal 59
Wird oin zusätzlicher Pa	ramatar - z B. Paramatar 2 - auggalassan, sa muss zumindast das

Wird ein zusätzlicher Parameter - z.B. Parameter 2 - ausgelassen, so muss zumindest das Trennzeichen eingegeben werden. z.B. **ASA 1,,0(x)**

Werden alle zusätzlichen Parameter ab einer bestimmten Stelle weggelassen, so kann die Eingabe durch das Befehlsende abgeschlossen werden.

8.1.2 Struktur der Datenausgabe

q1,q2..qn (y)

Beispiel 1:

IDN? (x)

HBM,Scout 55,0,P10 (y)

Die vom Scout 55 geschickten Antworten sind in dieser Dokumentation *kursiv* gedruckt (zweite Zeile der Beispiele).

q1,q2qn	Zahlenwerte mit Vorzeichen, Zeichenketten (immer in Anfüh- rungszeichen " oder '?' als Fehlermeldung
,	Trennzeichen (Separator)
(y)	Ende Sequenz (CRLF)

8.2 Einzelbeschreibung der Befehle

Auf den folgenden Seiten wird jeder Befehl aufgeführt, seine Struktur aufgeschlüsselt und durch ein Beispiel erläutert.

Befehl	Die Zeichenfolge, die eingegeben werden muss, um das Gerät zu bedienen, z.B.: BDR
Syntax	Einzuhaltende Schreibweise eines Befehles, z.B.: BDR p1,p2,p3 (x) BDR p1,,p3 (x)
Parameter	Die Bedeutung eventueller Parameter wird erklärt: z.B. ist bei Befehl ASA der Parameter p1=1, bedeutet dies: 1 V Brückenspeisespannung
Wirkung	z.B. Erklärung, wie das Gerät eingestellt wird.
Antwort	Auf Ihre Eingabe hin antwortet das Gerät. Diese Antwort erscheint bei Terminalbetrieb auf dem Bildschirm (bei Ausgabe- befehlen immer).
Beispiel	Das Beispiel zeigt Ihnen den eingegebenen Befehl und die Ant- wort des Gerätes. Die Antwort ist immer <i>kursiv</i> dargestellt. Folgend finden Sie die Befehle alphabetisch sortiert aufgelistet.

DCI	Device Clear	
DCL	Kommunikation beenden	
Syntax:	DCL (x) oder bei RS232 / RS485 Steuerzeichen CTRL A (ASCII-Code 01 dezimal).	
Parameter:	keine	
Wirkung:	Fernbedienung wird beendet.	
Antwort:	keine	
Beispiel:	DCL(x) Interpreter ist nicht mehr aktiv.	

Nach diesem Befehl können Sie einen neuen Befehl erst nach ca. 3 s wieder eingeben.

ESR?	Standard Event Status Register
	Ausgabe des Fehlerstatus-Registers
Syntax:	ESR? (x)
Parameter:	keine
Wirkung:	Ausgabe des Inhalts des Standard Event Status Registers (ESR) im Dezimaläquivalent.

Das Standard Event Status Register (ESR) wird beim Auftreten von Fehlern in der Kommunikation gesetzt. Unterschiedliche Fehlerursachen setzen dabei verschiedene Bits, so dass Fehler genau spezifiziert werden können.

8.2.1 Einstellen der Funktionen der Gruppe Zusatzfunktionen

BDR p1,p2,p3 (x)

2

8.2.1.1 Einstellen der Parameter der Schnittstelle RS232

-1	

Baud Rate

Einstellen der Parameter der RS232

Syntax:

Antwort:

Parameter:

р1	Baudrate
1	300
2	600
3	1200
4	2400
5	4800
6	9600
p2	Parität
0	keine
1	ungerade

gerade

	р3	Stop-Bits		
	1	1 Stop-Bit		
	2	2 Stop-Bit		
	Die Übertragung geführt.	ı wird immer mit 8 Bit Zeichenlänge durch-		
Wirkung:	Baudrate, Paritä Schnittstellen w	Baudrate, Paritätsbit und die Anzahl der Stop-Bits der seriellen Schnittstellen werden neu eingestellt		
Antwort:				
	Quittung	Bedeutung		
	0	Befehl ist ausgeführt		
	?	Fehler		
Beispiel:	Der Scout 55 wir BDR6,2,1 (x) 0 (y) Die Schnittstelle 1 Stop-Bit einge Baud Rate Quer	rd über die RS232-Schnittstelle bedient: • RS232 wurde auf 9600 Baud, gerade Parität und stellt. Y		
BDR?	Parameter der s	Parameter der seriellen Schnittstelle ausgeben		
Syntax:	BDR?(x)			
Parameter:	keine			
Wirkung:	Die eingestellte Baudrate, das Paritätsbit und die Anzahl der Stop-Bits der seriellen Schnittstelle werden ausgegeben.			
Antwort:	q1,q2,q3 (y)			
	q1	Baudrate		
	q2	Parität		
	q3	Stop-Bits		
Beispiel:	BDR? (x) 6,2,1 (y)			

Die Schnittstelle ist auf 9600, gerade Parität und 1 Stop-Bit eingestellt.

8.2.1.2 Abfrage der Geräteidentifikation/Firmwarestand

SNR?	Serial Number
SNK:	Ausgabe der Seriennummer des Gerätes
Syntax:	SNR?
Parameter:	keine
Wirkung:	Ausgabe der Seriennummer des Gerätes
Antwort:	Zeichenkette (10 Zeichen)
Beispiel:	SNR? (x) 4021837410
AID?	Amplifier Identification Query Ausgabe der Geräteidentifikation
Syntax:	AID?(x)
Parameter:	keine
Wirkung:	Ausgabe der Verstärkeridentifikation (Firmwarestand)
Antwort:	Zeichenkette (20 Zeichen)
Beispiel:	AID? (x) <i>HBM,Scout 55,0,P12 (y)</i> Firma, Gerätebezeichnung, 0, Versionsnummer

8.2.1.3 Druckfunktionen

DFO	

Print Format Select

Syntax: Parameter: Druckformat festlegen PFS p1 (x)

p1	Signal, das gedruckt werden soll
0	angezeigter Wert auf Display
1	Bruttowert
2	Nettowert
4	Spitzenwert1 (Maximalwert)
8	Spitzenwert2 (Minimalwert)
16	Spitzenwert3 (Spitze-Spitze-Wert)
63	alle Signale und Status Grenzwerte

Sie können alle Signalkombinationen einstellen, indem Sie die Summe der Kodierzahlen bilden.

Signal, das gedruckt werden soll, wird festgelegt. Die Einstellung wirkt sich auf die Druckausgabe über die Druckauslösung aus (Taste, Steuerkontakt)

Antwort:

Wirkung:

Quittung	Bedeutung
0	Befehl ist ausgeführt
?	Fehler

Beispiel:

Brutto, Netto sollen gedruckt werden p1 = 1+2

PFS 3 (x) 0 (y)

PFS?

Print Format Select Query

	Druckformat abfragen
Syntax:	PFS?(x)
Parameter:	keine
Wirkung:	Signal das ausgedruckt wird, wird ausgegeben.
Antwort:	q1 (y) Signal, bzw. Signalkombination, die mit dem PFS-Befehl einge- stellt wurde. (Kodierung siehe Befehl PFS)
Beispiel:	PFS? (x) 1 (y) Das Bruttosignal wird ausgedruckt (Auslösen über Taste oder Steuerkontakt).

8.2.2 Einstellen der Gruppe Parametersätze

MDD	Memory Device Data			
	Eingabe der Verst	Eingabe der Verstärker-Einstelldaten		
Syntax:	MDD p1 (x)			
Parameter:	p1 Verstärker-Einstell ker geholt wurden " ", ca. 100 Byt	daten, die mit dem Befehl MDD? vom Verstär- (als Hexadezimalstring e = 200 Zeichen).		
Wirkung:	Der Befehl dient da laden. Möchten Sie einze jeweiligen Befehl (azu, komplette Einstellungen zu sichern und zu Ine Parameter ändern, benutzen Sie bitte den (z.B. IMR).		
Antwort:				
	Quittung	Bedeutung		
	0	Befehl ist ausgeführt		
	?	Fehler		
Beispiel:	MDD "(Hexade 0 (y) Der Verstärker ist	ezimalstring)" (x) eingestellt.		
MDD?	Memory Device Data Query Ausgabe der Verstärker-Einstelldaten			
Syntax:	MDD? (x)			
Parameter:	keine			
Wirkung:	Einstellparameter des Verstärkers werden ausgegeben.			
Antwort:	"(Hexadezimals	string)" (y) " "ca. 100 Byte = 200 Zeichen		
Beispiel:	MDD? (x) <i>"0a00ff" (y)</i> sämtliche Einstell	parameter werden ausgegeben.		
חחד	Transmit Device	Data		
שטו	Verstärker-Einstel	lungen sichern		
Syntax:	TDD p1,p2 (x)			

Parameter:

р1	Verstärkereinstellungen	
0	Werkseinstellungen (Setup)	
1	RECALL aus Parametersatz 1 8	
2	SAVE aus Parametersatz 1 8	
3	Automatische Null-/Tarawertspeicherung	

falls p1=0 (Werkseinstellung); p2 keine Wirkung

falls p1=1 oder p1=2 ; p2=Nr. des Parametersatzes

p2	Nummer des Parametersatzes (falls p1=1 oder p1=2)	
1 8	Parametersatz 1 bis 8	

falls p1=3 ist: p2=1, Status automat. Null-/Tarawertspeicherung

p2	Status automatische Null-/Tarawertspei- cherung (falls p1=3)
0	Aus
1	Ein

Wirkung: Die Verstärker-Einstellungen werden gesichert oder gespeichert. Die Automatische Null-/Tarawertspeicherung ins EEPROM kann

ein- oder ausgeschaltet werden.

Antwort:

Quittung	Bedeutung
0	Befehl ist ausgeführt
?	Fehler

Beispiel 1: TDD2,4 (x) 0 (y) Die aktuellen Verstärkereinstellungen werden in Parametersatz48 abgelegt.

i

Information

Dieser Befehl löst einen Kalibriervorgang aus, der erst nach 1 ... 3 s eine weitere Kommunikation zulässt.

Beispiel 2:	TDD3,1 (x)
	0 (y)

Die automatische Null-/Tarawertspeicherung ist eingeschaltet. Bei jedem Nullsetzen wird der Nullstellwert im aktuellen Parametersatz abgelegt. Bei jedem Tarieren wird der Tarawert im aktuellen Parametersatz gespeichert.

Transmit Device Data Query

TDDp1(x)

Abfrage nach Ursprung der Verstärkereinstellungen

Syntax:

Parameter:

TDD?

р1	
0	Ursprung der Verstärker-Einstellung
3	Status automat. Null-/Tarawertspeicherung

Es wird der Ursprung der momentan wirksamen Verstärker-Einstellung ausgegeben oder der Status der Null-/Tarawertspeicherung angegeben.

Antwort:

Wirkung:

falls p1 = 0; q1 zeigt den Ursprung der Verstärkereinstellungen

q1	Ursprung der Verstärker-Einstellungen	
1 8	Parametersatz 1 8	
?	Fehler	

falls p1 = 3; q1 entspricht Status der Tara-/Nullwertspeicherung

falls p1 = 3 ; q1 entspricht Status der Tara-/Nullwertspeicherung

q1	Status automat. Null-/Tarawertspeicherung	
0	Aus	
1	Ein	

Beispiel 1: TDD?0 (x) 2 (y) Der Ursprung der momentan wirksamen Verstärker-Einstellung ist Parametersatz 2. Beispiel 2: TDD?3 (x) 1 (y)

Automatische Null-/Tarawertspeicherung ist eingeschaltet.

8.2.3 Ausgabeformat, Messwertausgabe festlegen

8.2.3.1 Ausgabeformat festlegen

COF

Change Output Format

Messwert-Ausgabe-Format ändern COF p1 (x)

Syntax:

Parameter:

р1	Messwert-Ausgabe-Format
0	Messwert, Status (ASCII-Format)
1	Messwert (ASCII-Format)
2	Binäre Messwertausgabe 4 Byte (MSB XXXX LSB)
3	Binäre Messwertausgabe 4 Byte (LSB XXXX MSB)
4	Binäre Messwertausgabe 2 Byte (MSB LSB)
5	Binäre Messwertausgabe 2 Byte (LSB MSB)
6	BCD-Messwertausgabe

Binäre 4-Byte-Ausgabe:

3 Byte Messwert1 1 Byte Status

Binäre 2-Byte-Ausgabe: 1=MSB, 2=LSB

2 Byte Messwert

BCD-Ausgabe:

Die Messwerte sind auf den Anzeigeendwert skaliert. Bei der Ausgabe im ASCII-Format wird der Dezimalpunkt berücksichtigt. Im Binär/BCD-Format muss der Dezimalpunkt vom Anwender in die Messwertverarbeitung miteinbezogen werden.

Bei folgenden MSV-Befehlen werden die Messwerte in der gewünschten Form ausgegeben.

Antwort:

Wirkung:

Quittung	Bedeutung
0	Befehl ist ausgeführt
?	Fehler

Beispiel:

COF0 (x) 0 (y) Messwerte und Status werden in ASCII-Format ausgegeben.

COF?

	Messwert Ausgube i offici ubilitigen
Syntax:	COF?(x)
Parameter:	keine
Wirkung:	Kennziffer des Ausgabeformates wird ausgegeben.
Antwort:	q1 (y)
Beispiel:	COF?(x) <i>0 (y)</i> Als Ausgabeformat für Messwerte und Status ist ASCII-Format eingestellt.

Messwert-Ausgabe-Format abfragen

Change Output Format Query

8.2.3.2 Messwertausgabe festlegen

Measuring Signal Value Query

Ausgabe des Messwertes

MSV p1,p2 (x)

Syntax:

Parameter:

р1	Signal		
1	BRU	Brutto (mit Anzeigefilterung)	
2	NET	Netto (mit Anzeigefilterung)	
3	SPWT1	Spitzenwert1 (Maximum)	
4	SPWT2	Spitzenwert2 (Minimum)	
5	SPWT3	Spitzenwert3 (Spitze-Spitze)	
6	GW1	Pegel	
7	GW1	Hysterese	
8	GW2	Pegel	
9	GW2	Hysterese	
10	GW3	Pegel	
11	GW3	Hysterese	
12	GW4	Pegel	
13	GW4	Hysterese	
14	BRU	Brutto (dyn., ohne Filterung)	
15	NET	Netto (dyn., ohne Filterung)	

p2	Anzahl der Messwerte
0	Endlos senden
1 65535	Default = 1

Wirkung:Es wird der Messwert vom gewünschten Signal p1 ausgegeben.
Format abhängig vom letzten COF-Befehl.Antwort:Messwert (Ausgabe-Format siehe COF-Befehl)Beispiel 1:Ausgabe im ASCII-Vollformat
COF0 (x)

0 (y) Einen Brutto-Messwert holen.

	MSV?1 (x) 9.998,0 (y) └ Statusbyte Messwert = 9,998 kN Drei Netto-Messwerte holen. MSV?2,3 (x) 9.998,0 CRLF 9.998,0 CRLF 9.998,0 CRLF (y) └ Statusbyte └ Statusbyte └ Messwert = 9,998 kN
Beispiel 2:	Ausgabe im 4 Byte-Binärformat Binär 4Byte Format COF2 (x) 0 (y) Einen Brutto-Messwert holen. MSV?1 (x) #0ffeedd00CRLF(y) 1 Statusbyte * 3 Byte Messwert Kennung für binäre Ausgabe
Beispiel 3:	Endlosausgabe Brutto-Messwerte werden endlos ausgegeben. MSV?1,0 (x) #0ffeedd00CRLF #0ffeedd00CRLF #0ffeedd00CRLF STP(x) Ausgabe abbrechen
STP	Stop Stop der Messwertausgabe
Syntax:	STP (x)
Parameter:	keine
Wirkung:	Die mit MSV?1,0 gestartete Messwertausgabe wird gestoppt.
Antwort:	Keine
Beispiel:	STP (x)

8.2.4 Einstellen der Funktionen der Gruppe Anpassung

8.2.4.1 Einstellen des Verstärkereinganges

Amplifier Sensor Adaption

Brückenspeisespannung, Aufnehmerart und Eingangsbereich eingeben

Syntax:

ASA p1,p2,p3 (x)

Parameter:

р1	Brückenspeisespannung
1	1 V
2	2,5 V

p2	Aufnehmerart
1	Vollbrücke
2	Halbbrücke
3	LVDT

р3	Eingangssignalbereich (bei Ub)
1	4 mV/V (Ub=2,5 V) / 10 mV/V (Ub=1 V)
2	40 mV/V / 100 mV/V
3	400 mV/V / 1000 mV/V

Wirkung: Brückenspeisespannung, Aufnehmerart und der Eingangssignalbereich werden eingestellt.

Antwort:

Quittung	Bedeutung
0	Befehl ist ausgeführt
?	Fehler

Beispiel:

Der Scout 55 wird eingestellt: ASA1,2,2 (x) 0 (y) Der Scout 55 wird auf Brückenspeisespannung 1 V, Halbbrücke und Eingangssignalbereich 100 mV/V eingestellt.

ASA?

Amplifier Sensor Adaption Query

Brückenspeisespannung, Aufnehmerart und Eingangsbereich ausgeben

Syntax:

ASA?p1(x)

Parameter:

Wirkung:

Antwort:

Beispiel:

Antwort:

р1		
0	Einste Aufne	ellung der Brückenspeisespannung, der ehmerart und des Eingangssignalberei- ches ausgeben
1	Tab Brücl und c	velle der möglichen Einstellungen der kenspeisespannung, der Aufnehmerart les Eingangssignalbereiches ausgeben
Der Verstärker gib rart, die Eingangss	t die Bi signalb	rückenspeisespannung, die Aufnehme- ereiche aus.
ASA?0 (x) q1,q2,q3 (y)		
q1		Brückenspeisespannung
q2	Aufnehmerart	
q3		Eingangssignalbereiche
ASA?0 (x) 1,2,2 (y) Der Scout 55 ist momentan auf Brückenspeisespannung 1 V, Halbbrücke und Eingangssignalbereich 100 mV/V eingestellt. ASA?1 (x)		
q1,q2,q3 (y)		
Tabelle möglicher Einstellungen		
q1		Brückenspeisespannung
q2		Aufnehmerart
q3		Eingangssignalbereiche
siehe Tabelle Seite	e 68	

Beispiel: ASA?1 (x) Antwort des Verstärkers: "01.002.50", "123", "123"(y)

8.2.4.2 Filtereinstellungen wählen

Amplifier Signal Filtering

Eingabe von Grenzfrequenz und Filter-Charakteristik

ASF p1,p2(x)

Г

Syntax: Parameter:

р1	Filter-Frequenz
1 n	Kennziffer für Frequenzwert
	(entspricht dem Index aus der Frequenzta- belle, die mit dem Befehl ASF?0 ausgegeben werden kann) siehe Seite 71
p2	Filtercharakteristik

μz	FILEICHAIAKIEHSUK
1	Bessel
2	Butterworth

Wirkung: Das Tiefpassfilter wird auf einen Frequenzwert und eine Filtercharakteristik eingestellt.

Antwort:

Quittung	Bedeutung
0	Befehl ist ausgeführt
?	Fehler

Beispiel:

Eingabe von Grenzfrequenz und Filtercharakteristik: ASF 10,1(x) 0(y)Das Filter wird auf 40-Hz-Grenzfrequenz und Bessel-Charakteristik eingestellt.

ASF?

Amplifier Signal Filtering Query

Ausgabe der Grenzfrequenz und Filter-Charakteristik.

Syntax:

ASF?p1(x)

Parameter:

р1	Filter-Kennziffer
0	momentane Filtereinstellungen
1	Frequenztabelle (Bessel und Butterworth)

Wirkung:

Ausgabe der Parameter des Tiefpassfilters, d.h. eingestellte Grenzfrequenz und Filter-Charakteristik Antwort:

Falls p1 =0 q1,q2 (y)

q1	Kennziffer der Filterfrequenz
q2	Filter-Charakteristik (1=Bessel, 0= Butterworth)

Tabelle der möglichen Filterfrequenzen (Bessel/Butterworth)

Beispiel:

Tabelle der möglichen Filterfrequenzen ASF?1 (x) "0.050 0.100 0.200 0.500 1.250 2.500 5.000 10.00 20.00 40.00 100.0 200.0 400.0", "5.000 10.00 20.00 40.00 80.00 200.0 500.0" (y)

Folgende Tabelle zeigt eine Übersicht der möglichen Grenzfrequenzen und den Index der einzustellenden Frequenz (jedes Element ist 5 Zeichen lang).

р1	Bessel-Frequenzen (Hz)	Butterworth-Frequen- zen (Hz)
1	0.050	5.000
2	0.100	10.00
3	0.200	20.00
4	0.500	40.00
5	1.250	80.00
6	2.500	200.0
7	5.000	500.0
8	10.00	
9	20.00	
10	40.00	
11	100.0	
12	200.0	
13	400.0	

Motion Control

MTC p1,p2,p3 (x)

Stillstandsanzeige (Messwerte/Toleranzband/Ausgang) festlegen

Syntax:

Parameter:

р1	Anzahl der Messwerte
0	Stillstandsanzeige ausgeschaltet
1 255	Anzahl der Messungen; ergibt in Verbindung mit der gewählten Filterfrequenz die ent- sprechende Zeitspanne

p2	Toleranzband
	In Digits, bezogen auf die Anzeige-Einheiten (Endwert)

р3	Ausgabestatus Stillstandsanzeige
0	Keine Ausgabe des Zustands über "WARNUNG"
1	Ausgabe des Zustands über "WARNUNG"

Wirkung:

Beispiel:

Die Funktion Stillstandsanzeige wird eingestellt.

MTC 200,10,1 (x) 0 (y)

Annahme: Filtereinstellung: f<2,5 Hz = Abtastrate 1200 Werte/sec Anzeigeendwert: 100,00 N

Die Stillstandsanzeige wird eingestellt: Liegen 200 Messwerte innerhalb eines Toleranzbandes von 0,1 N (10 Digits von 10.000) wird die Stillstandsanzeige aktiviert. Außerdem wird der Zustand über "WARNUNG" ausgegeben.

MTC?

Motion Control Query

Ausgabe Stillstandsanzeige

MTC?p1(x)

Syntax: Parameter:

р1	
0	Einstellungen der Stillstandsanzeige
1	Status Stillstandsanzeige

Wirkung:

Antwort:

Ausgabe der Einstellungen der Stillstandsanzeige

Falls p1=0; Ausgabe der Einstellungen der Stillstandsanzeige q1,q2,q3 (y)
q1	Anzahl der Messwerte
q2	Toleranzfeld in Anzeige-Einheiten
q3	Status Ausgang "WARNUNG"

Falls p1=1; q1 zeigt den Status der Stillstandsanzeige

q1	Status der Stillstandsanzeige
q2	Kein Stillstand; Bedingungen nicht erfüllt
q3	Stillstand; Bedingungen erfüllt

Beispiel:

MTC?0 (x)

0,0,0 (y)

Die Stillstandsanzeige ist nicht aktiviert. Der Zustand der Stillstandsanzeige wird nicht über "WARNUNG" ausgegeben.

8.2.4.3 Autokalibrierung einstellen

ACL

Autocal

ACL p1 (x)

Ein-/Ausschalten der Autokalibrierung

Syntax:

Parameter:

р1	Automatische Kalibrierung
0	Ausschalten
1	Einschalten

Wirkung:

Umschalten der Autokalibrierung.

Antwort:

Quittung	Bedeutung
0	Befehl ist ausgeführt
?	Fehler

Beispiel:

ACL1 (x) 0 (y)

Information

Eine Kalibrierung wird ausgelöst und die zyklische Autokalibrierung eingeschaltet. Diese unterbricht etwa alle 5 Minuten die Messung und kalibriert den Verstärker. Sollte eine solche Unterbrechung während einer Messung stören, muss die automatische Kalibrierung ausgeschaltet sein.

	Autocal Query	Autocal Query			
AGE:	Ein-/Ausschalten de	Ein-/Ausschalten der Autokalibrierung			
Syntax:	ACL?(x)	ACL ? (x)			
Parameter:	keine	keine			
Wirkung:	Zustand der Autoka	Zustand der Autokalibrierung wird ausgegeben.			
Antwort:					
	q1	Zustand			
	0	Autokalibrierung ist Aus			
	1	Autokalibrierung ist Ein			
CAL	Die Autokalibrierun Calibrate Kalibrieren	g ist eingeschaltet.			
Syntax:		CAL (x)			
Parameter:	keine	keine			
Wirkung:	Es wird ein einmali	Es wird ein einmaliger Kalibriervorgang ausgelöst.			
Antwort:					
	Quittung	Bedeutung			
	0	Befehl ist ausgeführt			
	?	Fehler			
Beispiel:	CAL (x)				

CAL (x) 0 (y) Eine Kalibrierung wird durchgeführt.

i Information

Dieser Befehl löst einen einmaligen Kalibriervorgang aus, der erst nach 1 bis 3 s eine weitere Kommunikation zulässt.

8.2.5 Einstellen der Funktionen der Gruppe Kalibrieren

8.2.5.1 Wahl der Einheit

ENII	Engineering Unit			
LNO	Eingabe der Einhe	eit		
Syntax:	ENU p1(x)			
Parameter:				
	р1	Eingabe der Einheit		
	1 n	Kennziffer der gewünschten Einheit (siehe Tabelle)		
Wirkung:	Die Einheit wird ei	Die Einheit wird eingestellt.		
Antwort.	Quittung	Bedeutung		
	0	Befehl ist ausgeführt		
	?	Fehler		
Beispiel:	ENU11(x) 0 (y) Es wird als Einheit kN eingestellt. Engineering Unit Query			
ENU:	Ausgabe der Einheit.			
Syntax:	ENU?p1(x)	ENU?p1(x)		
Parameter:				
	p1	Ausgabe der Einheit		
	0	Ausgabe der momentan eingestellten Einheit		
	1	Ausgabe aller möglichen Einstellungen		
Wirkung:	Die momentan ge	wählte Einheit wird ausgegeben		
Antwort:	q1 (y)			
Beispiel 1:	ENU?0 (x) <i>11 (y)</i> Es ist die Einheit k	<n gewählt.<="" td=""></n>		
Beispiel 2:	ENU?1 (x) " mV/V, V, g, kg, T	, kT, TON, LB, oz, N, kN, bar, mbar, Pa, PAS,		

HPas, Kpas PSI, μm, mm, cm, m, Inch, Nm, kNm, FTLB, INLB, μm/m, m/s, m/ss, %, ‰, PPM s, MP, MN, A, mA " (y)

Index		Index		Index		Index	
1	mV/V	13	mbar	25	kNm	37	MN
2	V	14	Pa	26	FTLB	38	А
3	g	15	PAS	27	INLB	39	mA
4	kg	16	HPas	28	μm/m		
5	Т	17	kPas	29	m/s		
6	kТ	18	PSI	30	m/ss		
7	TON	19	μm	31	%		
8	LB	20	mm	32	‰		
9	oz	21	cm	33	PPM		
10	Ν	22	m	34	S		
11	kN	23	Inch	35	"leer"		
12	bar	24	Nm	36	MP		

Übersicht aller möglichen Einheiten und Kennziffern.

8.2.5.2 Wahl des Anzeigeendwertes

IAD

Indication Adaption

Eingabe, Anzeigeendwert, Dezimalpunkt, Schrittweite

Syntax:

IAD p1,p2,p3 (x)

p1	Anzeigeendwert ohne Dezimalpunkt (max. 200000)
p2	Dezimalpunkt (Anzahl Nachkommastellen 0 5)
р3	Schrittweite (siehe Tabelle)

Parameter:

р3	Schrittweite
1	1
2	2
3	5
4	10
5	20
6	50
7	100
8	200
9	500
10	1000

Wirkung:

Mit Hilfe dieses Befehls werden die Anzeigenanpassungswerte eingegeben.

Bedeutuna

i In

Information

Bei "V" und "mV/V" sind die Skalierungen fix.

Ouittung

Antwort:

	_	
	0	Befehl ist ausgeführt
	?	Fehler
Beispiel:	IAD 10000,3,4 (x) <i>0 (y)</i> Die Anzeigenanpa Anzeigeendwert 1	ssung wird eingestellt auf: 0.000 mit Schrittweite 10
IAD?	Indication Adaptic Eingabe, Anzeigee	on Query endwert, Dezimalpunkt, Schrittweite ausgeben
Syntax:	IAD?(x)	
Parameter:	keine	
Wirkung:	Ausgabe der mon zimalpunkt, Schrit	nentanen Einstellung von Anzeigeendwert, De- tweite.
Antwort:	q1,q2,q3 (y)	

Parameter:	siehe IAD-Befehl
Beispiel:	IAD? (x) 10000,3,4 (y) Die Anzeigenanpassung ist eingestellt auf: Anzeigeendwert 10.000 mit Schrittweite 10

8.2.5.3 Nullwert einstellen

CDW	Calibration Dead Weight		
Syntox:	Nullstellen starten	/ Nullwert (Balance) eingeben	
Syntax.	cDW (X) odel CDV	v p (x)	
Parameter.	p'i (optional)		
	p1	Nullwert in mV/V	
		Wert wird in mV/V eingegeben; innerhalb des Eingangssignalbereiches	
Wirkung:	Im Verstärker-Nul	lspeicher wird der eingegebene Wert abgelegt.	
Antwort:			
	Quittung	Bedeutung	
	0	Befehl ist ausgeführt	
	?	Fehler	
Beispiel 1:	Nullstellen starten		
	CDW (x)		
	0 (y)		
	Das am Verstärkereingang anliegende Signal wird als Nullwert übernommen.		
Beispiel 2:	Nullwert 2,0000 mV/V eingeben (gewählter Eingangsbereich 4 mV/V)		
	CDW 2.0000(x)		
	0 (y)		
	Wird für p1 der mit CDW?1 ausgelesene Wert gesendet, so wird das anliegende Messsignal zu Null gesetzt.		
CDW?	Calibration Dead Ausgabe des Null	Weight Query wertes	
Syntax:	CDW?p1(x)		

Parameter:

	р1	Nullwert
	0	momentan eingestellter Nullwert (mV/V)
	1	momentaner Messwert (mV/V)
Wirkung:	Mit diesem Befehl der momentan an	wird der momentan eingestellte Nullwert oder liegende Messwert ausgegeben.
Antwort:	q1 (y)	
Beispiel 1:	CDW?0 (x) 3.256 (y) momentan einges	tellter Nullwert ist 3.256 mV/V.
Beispiel 2:	CDW?1 (x) 2.001 (y) momentan angele setzt dieses Signa	gter Messwert wird ausgeben. CDW2.001 I zu Null.

8.2.5.4 Messbereich einstellen

IMR Syntax:	Input Measuring F Eingabe der Mess IMR p1(x)	Range bereichsendwerte
Falameter.	p1	Messbereichsendwert in mV/V
	•	Wert wird in mV/V eingegeben; innerhalb des Eingangssignalbereiches
Wirkung: Antwort:	Der Messbereich v	vird eingestellt.
	Quittung	Bedeutung
	0	Befehl ist ausgeführt
	?	Fehler
Beispiel:	IMR 2.0 (x) 0 (y) Der Messbereich wird auf 2.0 mV/V eingestellt.	
IMR?	Input Measuring Range Query Ausgabe des Messbereichsendwertes	

Parameter:

	p1	Messbereichsendwert
	0	aktueller Messbereich in mV/V
	1	momentanes Messsignal in mV/V
	2	maximal und minimal einstellbare Messbe- reichsendwerte in mV/V
Wirkung:	Ausgabe des eing	estellten Messbereichs.
Antwort:	q1,q2 (y)	
Beispiel 1:	IMR?0 (x) 1.987 (y) momentan eingestellter Messbereichsendwert ist 1.987 mV/V.	
Beispiel 2:	IMR?2 (x) 4.0,0.2 (y) Bei einem gewählten Eingangssignalbereich von 4 mV/V wird als Maximalwert 4.0 mV/V und als Minimalwert 0.2 mV/V ausgege- ben.	

8.2.5.5 Tarieren

TAR	Tare Instruction	
	Tarierung starten ,	/ Tarawert eingeben
Syntax:	TAR (x) oder TAR p1(x)	
Parameter:	p1 (optional) oder Tarawert in Anzeigeeinheiten	
Wirkung:	Mit diesem Befehl wird das Signal tariert bzw. ein Tarawert eingestellt.	
Antwort:		
	Quittung	Bedeutung
	0	Befehl ist ausgeführt

Beispiel 1:

Tarieren starten TAR (x) 0 (y) Der aktuelle Messwert wird als Tarawert übernommen.

Die Tarierung erfolgt rechnerisch, nicht durch Abgleichen des Eingangssignals.

?

Fehler

Beispiel 2:	TAR200.0 (x) <i>0 (y)</i> Eingabewert wird in den Taraspeicher geschrieben.
TAP2	Tare Value Query
	Tarawert ausgeben
Syntax:	TAR?(x)
Parameter:	keine
Wirkung:	Der Tarawert wird in Anzeige-Einheiten ausgegeben.
Antwort:	q1 (y) Tarawert in Anzeige-Einheiten
Beispiel:	TAR? (x) 200.0 (y) Eingestellt ist z.B. ein Anzeigeendwert von 2000.0 kN. Der Tara- wert beträgt 200.0 kN.

8.2.6 Einstellen der Funktionen der Gruppe Grenzwert 1...4

LIV p1,p2,p3,p4,p5,p6,p7 (x)

LIV

Limit Value

Eingabe der Grenzwertschalter-Einstellungen

Syntax:

Parameter:

р1	Grenzwertschalter
1	1
2	2
3	3
4	4

p2	Grenzwertüberwachung
0	AUS
1	EIN

р3	Quelle der Grenzwerte
1	Bruttowert
2	Nettowert
3	Spitzenwertspeicher 1 (Maximalwert)
4	Spitzenwertspeicher 2 (Minimalwert)
5	Spitzenwertspeicher 3 (Spitze-Spitze-Wert)

p4	Schaltrichtung
1	Schaltet bei Überschreiten des Pegels
2	Schaltet bei Unterschreiten des Pegels

р5	Grenzwertpegel in Anzeigeeinheiten
	Wert wird in Anzeigeeinheiten (z.B. kN) angegeben

р6	Hysteresewert in Anzeigeeinheiten
	Wert wird in Anzeigeeinheiten (z.B. 100 kN) angege- ben; immer positiv

р7	Ausgangslogik der Grenzwertschalter	
1	Aktiv entspricht Ein	
2	Aktiv entspricht Aus	

Wirkung: Mit Hilfe dieses Befehls wird der Grenzwertschalter p1 auf Grenzwertüberwachung, auf Eingangssignal p3, auf Schaltrichtung p4, auf Schaltpegel p5, sowie auf Hysterese p6 und Ausgangslogik p7 eingestellt.

Antwort:

Quittung	Bedeutung
0	Befehl ist ausgeführt
?	Fehler

Beispiel:

LIV1,1,3,1,100,10,1 (x) 0 (y)

Der Grenzwertschalter 1 wird aktiviert und das Eingangssignal SPWT1/Max (Maximalwert) zugeordnet. Der Grenzwert schaltet bei Überschreiten des Einschaltpegels von 100 kN und einer Hysterese von 10 kN (Ausschaltpegel 90 kN). Der Steuerausgang bei Überschreiten des Pegels ist aktiv.

LIV?

Limit Value Query

LIV? p1,p2 (x)

Ausgabe der Grenzwertschalter-Einstellungen

Syntax:

Parameter:

р1	Grenzwertschalter
0	den Signalwert von p2 abfragen (Ausgabe in An- zeigeeinheiten)
1	aktuelle Einstellungen GR1
2	aktuelle Einstellung GR2
3	aktuelle Einstellung GR3
4	aktuelle Einstellung GR4

p2	Signal-Kennziffer, falls p1=0	
1	momentanes Bruttosignal in Anzeigeeinheiten	
2	momentanes Nettosignal in Anzeigeeinheiten	
3	momentanes Maximalwert in Anzeigeeinheiten	
4	momentanes Minimalwert in Anzeigeeinheiten	
5	momentanes Spitze-Spitze-Wert in Anzeigeeinhei- ten	

Mit Hilfe dieses Befehls wird die Einstellung des Grenzwertschalter p1 ausgegeben.

Antwort:

Wirkung:

q1,q2,q3,q4,q5,q6,q7 (y)

q1	Nummer des Grenzwertschalters	
q2	Grenzwertüberwachung EIN/AUS	
q3	Eingangssignal des Grenzwertschalters	
q4	Schaltrichtung positiv/negativ	
q5	Schaltpegel des Grenzwertschalters	
q6	Hysteresewert	
q7	Logik des Steuerausganges	

Beispiel 1: LIV?2 (x) 2,1,3,1,100,10,1 (y) Der Grenzwertschalter 2 ist aktiviert und das Eingangssignal SPWT1/Max (Maximalwert) zugeordnet. Der Grenzwert schaltet bei Überschreiten des Einschaltpegels von 100 kN. Die

	Hysterese beträgt 10 kN (Ausschaltpegel 90 kN). Der Steueraus- gang ist aktiv.
Beispiel 2:	LIV?0,3 (x) 200 (y) Der gespeicherte Wert in SPWT1/Max ist 200 kN.

8.2.7 Einstellen der Funktionen der Gruppe Spitzenwertspeicher

PVS

Peak Value Select

Eingabe der Spitzenwertspeicher-Einstellungen PVS p1,p2,p3,p4 (x)

Syntax:

Parameter:

р1	Spitzenwertspeicher	
1	Maximalwert	
2	Minimalwert	
3	Spitze-Spitze-Wert	

p2	Spitzenwertermittlung (gilt für alle Speicher)	
0	AUS	
1	EIN	

р3	Quelle der Speicher	
1	Bruttowert	
2	Nettowert	

p4	Hüllkurven (gilt für alle Speicher)
0	Hüllkurvenfunktion ist ausgeschaltet
00100 60000	Zeitkonstante in ms

Wirkung:

Mit Hilfe dieses Befehls wird die Funktion des Spitzenwertspeichers p1 eingestellt.

Antwort:

Quittung	Bedeutung
0	Befehl ist ausgeführt
?	Fehler

Beispiel:

PVS1,1,1,0 (x) 0 (y) Dem Spitzenwertspeicher 1 (Maximalwert) wird das Bruttosignal zugeordnet. Alle Spitzenwertspeicher werden eingeschaltet; die Hüllkurvenfunktion wird ausgeschaltet.

DVS2	Peak Value Select Query		
1 40:	Ausgabe der Spitzenwertspeicher-Einstellungen		
Syntax:	PVS?p1(x)		
Parameter:	p1		
	Kennziffer des Sp	itzenwertspeichers (s. Befehl PVS)	
Wirkung:	Mit diesem Befehl wird die Einstellung des Spitzenwertspeichers p1 ausgegeben.		
Antwort: q1,q2,q3,q4 (y)			
	q1	Kennziffer des Spitzenwertspeichers	
	q2	Spitzenwertermittlung EIN/AUS	
	q3	Quelle des Speichers	
	q4	Zeitkonstante für Hüllkurven-Funktion in ms	
CPV	zugeordnet. Alle Spitzenwertspeicher sind eingeschaltet; die Hüllkurvenfunktion ist ausgeschaltet. Clear Peak Value Spitzenwertspeicher löschen		
Syntax:	CPV (x)		
Parameter:	Keine		
Wirkung:	Mit diesem Befehl werden die Spitzenwertspeicher gelöscht.		
Antwort:			
	Quittung	Bedeutung	
	0	Befehl ist ausgeführt	
	?	Fehler	
Beispiel:	CPV (x)		
	0 (y)		

Spitzenwertspeicher 1 (Max), Spitzenwertspeicher 2 (Min) und Spitzenwertspeicher 3 (Min Max) sind gelöscht.

Nach dem Löschen des Spitzenwertspeichers entspricht das Ausgangssignal des Speichers 1 und 2 dem anliegenden Messwert. Der Speicher 3 (Min Max) hat den Wert Null.

8.2.8 Einstellen der Funktionen der Gruppe Eingänge/Ausgänge

8.2.8.1 Eingangssignal des Verstärkers wählen

ASS p1(x)

Amplifier Signal Select

Verstärker-Eingangssignal auswählen

Syntax:

Parameter:

р1	Eingangsquelle
0	Internes Nullsignal
1	Internes Kalibriersignal
2	Messsignal

Wirkung:

Auswahl des Verstärker-Eingangssignals.

Antwort:

Quittung	Bedeutung
0	Befehl ist ausgeführt
?	Fehler

Beispiel:

Der Scout 55 wird eingestellt: ASS 0(x) *0 (y)* Der Verstärkereingang wird auf internes Nullsignal geschaltet.

Information

Dieser Befehl löst einen Kalibriervorgang aus, der erst nach 1 bis 3 s eine weitere Kommunikation zulässt.

Um die Messung fortzusetzen: p1=2 eingeben

ASS?	Amplifier Signal Select Verstärker-Eingangssignal ausgeben.		
Syntax:	ASS?(x)		
Parameter:	keine		
Wirkung:	Art des Verstärker-Eingangssignals wird ausgegeben		
Antwort:	q1 (y)		
	q1	Eingangs-Signalquelle des Verstärkers	
	0	Internes Nullsignal	
	1	Internes Kalibriersignal	
	2	Messsignal	
Beispiel:	ASS? (x) 2 (y)		

Verstärker-Eingang ist auf Messsignal geschaltet.

8.2.8.2 Einstellen des Analogausganges

OPS

Output Path Select

Signal dem Analogausgang zuordnen und Betriebs-modus wählen

Syntax:

OPS p1,p2 (x)

Parameter:

р1	Signal
1	Bruttosignal an Analogausgang
2	Nettosignal an Analogausgang
3	SPWT1 (Maximalwert) an Analogausgang
4	SPWT2 (Minimalwert) an Analogausgang
5	SPWT3 (Spitze-Spitze-Wert) an Analogaus- gang

p2	Modus Analogausgang (U / I)
0	Analogausgang AUS
1	±- 10 V (U) / ±- 20 mA (I)
2	keine Fkt. (U) / 4 20 mA (I)

Wirkung:

Es wird dem Analogausgang ein Signal zugeordnet und die Betriebsart eingestellt.

Der Analogausgang (Spannung oder Strom) wird durch Umstecken von Steckbrücken auf der Leiterplatte gewählt. Die Einstellung ist im Teil1 der Bedienungsanleitung auf Seite 9 beschrieben.

Antwort:

	Quittung	Bedeutung
	0	Befehl ist ausgeführt
	?	Fehler
Beispiel:	OPS1,1 (x) 0 (y) Dem Analogausga triebsmodus wird (Annahme: Mit Ju Spannung festgel	ang wird das Bruttosignal zugeordnet. Als Be- ± 10 V eingestellt. mpern wurde als analoges Ausgangssignal egt)
OPS?	Output Path Selee	ct Query
	Eingangssignal de ausgeben	es Analogausgang und Betriebsmodus
Syntax:	OPS?p1(x)	
Parameter:		
	p1	Analogausgang: Signal und Betriebsart
	0	momentan zugeordnetes Eingangssignal
	1	Betriebsart Spannung oder Strom gesteckt
Wirkung:	Es wird das mome gausganges ausg geben.	entan zugeordnete Eingangssignal des Analo- egeben oder die gewählte Betriebsart ausge-
Antwort:	q1,q2 (y) q2 entspricht dem	ı Parameter p2 (siehe Befehl OPS)
	q1	Betriebsmodus (gesteckt)
	1	Spannung
	2	Strom
Beispiel:	OPS?0 (x) 2 (y) Dem Analogausga	ang ist das Nettosignal zugeordnet.

Beispiel: OPS?1 (x) 2,2 (y) Stromausgang gesteckt; Modus 4 ... 20 mA gewählt

8.2.8.3 Einstellen der Fernsteuerung

LOR

Local / Remote

Syntax:

Local / Remote-Umschaltung LOR p1 (x)

Parameter:

р1	Zustand
0	Remote, Fernsteuerung über Kontaktaus-
	gänge
1	Local, keine Fernsteuerung

Wirkung:

Umschaltung auf Fernsteuerung bestimmter Verstärkerfunktionen über Fernsteuereingänge.

Antwort:

	Quittung	Bedeutung	
	0	Befehl ist ausgeführt	
	?	Fehler	
Beispiel:	LOR1 (x) 0 (y) Die Local-Kontrolle ist eingeschaltet, d.h. alle Einstellfunktionen für Verstärkerparameter über die Fernsteuereingänge sind bloc- kiert.		
	Local / Remote Query		
LON:	Local / Remote-Zu	ustand abfragen	
Syntax:	LOR? (x)		
Parameter:	keine		
Wirkung:	Zustand der Local	l-Remote-Steuerung wird ausgegeben.	
Antwort:	q1 (y) entspricht p	1 (siehe Befehl LOR)	

Beispiel:

0 (y)

Die Remote-Kontrolle ist eingeschaltet, d.h. alle Einstellfunktionen für Verstärkerparameter über die Fernsteuereingänge sind freigegeben.

8.2.8.4 Einstellen der Belegung der Steuerkontakte

RFP

Remote Function Programming

Belegung der Remote-Funktionen

Syntax:

RFPp1,p2 (x)

Parameter:

p1 entspricht der Nummer des Kontaktes (1 ... 6)

p2 entspricht der Kennziffer der Funktion (s. Tabelle)

p2		Funktion
0	NOP	Keine Funktion
1	ACAL	Autokalibrieren
2	TARA	Tarieren
3	CPV1	SPWT1 / Mom
4	HLD1	SPWT1 / Halt
5	CPV2	SPWT2 / Mom
6	HLD2	SPWT2 / Halt
7	NULL	Nullstellen
8	PRNT	Drucken
9	PAR1	Bit zur Abfrage Param.satz 1 4
10	PAR2	Bit zur Abfrage Param.satz 1 4

Die Default-Einstellung nach einem "SET UP" des Gerätes ist für alle Kontakte "keine Funktion". Über die Funktionen PAR1 und PAR2 können binär (00 bis 11) die vier Parametersätze abgerufen werden.

Wirkung: Es wird die Wirkung des Steuerkontaktes auf die gewählten Verstärkerfunktionen festgelegt.

Antwort:

Quittung	Bedeutung
0	Befehl ist ausgeführt
?	Fehler

Beispiel:

RFP 2,1 (x) 0 (y) Steuerkontakt 2 ist mit der Funktion Autokal (ACAL) belegt.

Information

Die Möglichkeit der Remote-Local-Umschaltung bleibt immer erhalten, auch wenn sich das Gerät im Local-Zustand befindet.

RFP?	Remote Function Programming Query Belegung der Remote-Funktionen abfragen		
Syntax:	RFP?p1(x)		
Parameter:			
	р1		
	0	Tabelle der möglichen Funktionen ausgeben	
	1 6	Belegung der Remote-Funktionen ausgeben	
Wirkung:	Belegung der Remote-Funktionen am Anschlussstecker ausgeben.		
Antwort:	q1 (y)		
Beispiel 1:	RFP?2 (x) 1 (v)		

	Steuerkontakt 2 ist mit der Funktion Autokal (ACAL) belegt.
Beispiel 2:	RFP?0 (x)
	"NOPACALTARACPV1HLD1CPV2HLD2NULLPRNTPAR1PAR2" (y)

9 BEISPIEL

Das folgende Beispiel zeigt Ihnen anhand einer Messaufgabe die Funktionalität des Gerätes und die erforderlichen Einstellungen.

Aufgabenstellung

Der Umformprozeß in einer Presse soll überwacht werden, um eine gleichmäßige Qualität der Produkte zu erreichen. Zu Erfassen ist die maximale Presskraft in jedem Zyklus. Diese Maximalkraft muss zur Sicherstellung des Fertigungsprozesses zwischen dem unteren (F1) und dem oberen (F2) Kraftgrenzwert liegen.

Lösung

Der mit einem DMS-Kraftaufnehmer (z.B. C9B/10kN; 1mV/V) gemessene Kraftverlauf wird mit dem Scout 55 verstärkt und bewertet. Mit Hilfe des Spitzenwertspeichers (Maximum) wird die Maximalkraft erfaßt und mit zwei Grenzwertschaltern bezüglich der unteren und oberen Grenze bewertet. Ein weiterer Grenzwertschalter ist für den Überlastschutz (Schnellabschaltung) der Maschine vorgesehen.

Die Steuerung des Prozesses übernimmt eine SPS. Neben den Steuerbefehlen für die Presse gibt sie an den Scout 55 ein Startsignal zu Beginn des Presszyklus und trifft nach Ablauf des Prozesses die logische Verknüpfung der Grenzwertausgänge zur "Gut-Schlecht-Bewertung".

Mit dem Startsignal der SPS wird über einen Steuereingang des Scout 55 der Inhalt des Spitzenwertspeichers gelöscht. Um ungewollte Änderungen zu vermeiden, ist während des Messbetriebes nur die Taste "Auswahl des Anzeigesignals" für den Maschinenführer vor Ort freigegeben.

Die Parametereinstellungen sind mit einem Paßwort vor unbefugten Änderungen zu schützen.

Die Steuerung des Gerätes über die Steuerkontakte (Fernsteuerung) muss aktiviert werden.

Verdrahtungsplan

Zeitdiagramm

Auswertung der Grenzwertmeldung durch SPS

	Gut	Ausschuss	
GW1	1	0	1
GW2	1	1	0

Folgende Einstellungen sind zu wählen:

- GW1 Überprüft, ob die untere Kraftgrenze erreicht wurde. Eingangssignal ist der Ausgang des Spitzenwertspeichers (Maximalwert). Bei Überschreiten der Grenze GW1 wird ein High-Signal erzeugt. Dazu muss eine positive Schaltrichtung mit positiver Ausgangslogik eingestellt werden.
- GW2 Überprüft, ob die obere Kraftgrenze erreicht wurde. Eingangssignal ist der Ausgang des Spitzenwertspeichers (Maximalwert). Bei Überschreiten der Grenze GW2 wird ein Low-Signal erzeugt. Dazu muss eine positive Schaltrichtung mit positiver Ausgangslogik eingestellt werden.
- GW3 Überprüft, ob die maximale Belastungsgrenze der Maschine überschritten wird (Not-Aus-Funktion). Eingangssignal ist der Brutto-Messwert. Bei Überschreiten der Grenze GW3 wird ein High-Signal erzeugt. Dazu muss eine positive Schaltrichtung mit positiver Ausgangslogik eingestellt werden.

Erfaßt den maximalen Spitzenwert des Kraftverlaufes. Muss freigegeben wer-SPWT1 den, die Hüllkurvenfunktion muss deaktiviert sein. Eingangssignal ist der Brutto-Messwert. Das Löschen des SPWT1 wird mit dem Steuerkontakt 1 durch Umschalten auf Momentanwert erreicht.

Steuerkontakt 1 Löscht den Inhalt des Spitzenwertspeichers. Die Funktion SPWT1/Mom muss ausgewählt werden. Die Fernsteuerung muss aktiviert sein.

10 FEHLERMELDUNGEN

Fehlermeldung	Ursache	Abhilfe	
FIX	Der gegebene Wert kann nicht verstellt wer- den.		
	Beispiel: Bei der Einheit V und mV/V ist die Einstellung des Nennwertes fix auf 10.000		
OVFL B	Bruttowert übersteuert		
OVFL N	Nettowert übersteuert		
KAL.ERR	Aufnehmer/Sensor falsch angeschlossen:	Den Aufnehmer richtig	
	- Kein Aufnehmer/Sensor angeschlossen	anschließen. Gerät aus- und wieder ein- schalten.	
	 Keine Sechsleiter-Rückführung ange- schlossen 		
	 Messbrücke falsch angeschlossen (z.B. Vollbrücke eingestellt, aber Halbbrücke angeschlossen) 		
UEBERSCHR.	Der gewählte Wert für Messbereich, Null- stellwert, Nennwert oder Tarawert kann nicht eingestellt werden, da dieser die zu- lässigen Grenzen überschreitet.	Das Gerät setzt auto- matisch den maxima- len bzw. minimalen Wert ein, sobald die Fehlermeldung mit "ENTER" quittiert wurde.	
DATENFEHL.	Beim Abspeichern der Parameter ist ein Übertragungsfehler aufgetreten		

STICHWORTVERZEICHNIS

Α

- ACL? Autocal Query Ein/Ausschalten der Autokalibrierung, 74
- ACL?Autocal QueryEin/Ausschalten der Autokalibrierung, 73
- AID?Amplifier Identification Query/Ausgabe der Geräteidentifikation, 59
- Analogausgang, 87
- Anpassung, 32
- Anzeigeendwert, 76
- Anzeigenanpassung, 77
- ASA Amplifier Sensor Adaption Brückenspeisespannung, Aufnehmerart und Eingangsbereich eingeben, 68
- ASA?Amplifier Sensor Adaption Query Brückenspeisespannung, Aufnehmerart und Eingangsbereich ausgeben, 69
- ASF Amplifier Signal Filtering/ Eingabe von Grenzfrequenz und Filter-Charakteristik, 70
- ASF?Amplifier Signal Filtering Query/Ausgabe der Grenzfrequenz und Filter-Charakteristik., 70
- ASS Amplifier Signal Select/Verstärke-Eingangssignal auswählen, 86
- ASS? Amplifier Signal Select/Verstärker Eingangssignal ausgeben., 87
- Aufnehmer anschließen, DMS-Voll- und Halbbrücken, Induktive Voll- und Halbbrücken, Potentiometrische Aufnehmer, Piezoresistive Aufnehmer, LVDT, 14
- Aufnehmerart, 68

- Aufnehmertypen, DMS-Kraftaufnehmer, Induktive Wegaufnehmer, Piezoresistive Aufnehmer, Potentiometrische Aufnehmer, 22 Ausgangslogik der Steuerkontakte, 37 Ausgangssignal, 40
- Autokalibrieren, 90
- Autokalibrierung, 33, 41, 73

В

Baudrate, 42, 50, 58
BDR Baud Rate/Einstellen der Parameter der RS232, 57
BDR? Baud Rate Query Parameter der seriellen Schnittstelle ausgeben, 58
BNC-Buchse, 18

- Brückenspeisespannung, 68
- Brutto, 27

Bruttosignal, 21

Bruttowert, 37

С

CAL Calibrate/Kalibrieren, 74

- CDW Calibration Dead Weight Nullstellen starten / Nullwert (Balance) eingeben, 78
- CDW? Calibration Dead Weight Query/Ausgabe des Nullwertes, 78
- COF Change Output Format Meßwert /Ausgabe-Format ändern, 64
- COF? Change Output Format Query/Meßwert-Ausgabe-Format abfragen, 65

CPV Clear Peak Value/Spitzenwertspeicher löschen, 85

D

DCL Device Clear Kommunikation beenden, 56 Dezimalpunkt, 35, 76 DMS-Aufnehmer, 14 Drucker, 51 Druckformat, 59

Е

Echo, 52 Eingabe, 76 Eingänge/Ausgänge, 40 Eingangssignal, 40 Einheit, 75 Einstellen der Parameter, 46 ENU Engineering Unit/Eingabe der Einheit, 75 ENU?Engineering Unit Query/Ausgabe der Einheit., 75 ESR? Standard Event Status Register-Ausgabe des Fehlerstatus-Registers, 56

F

Fehlermeldung, 100 Fernbedienung, 52 Fernsteuerung, 42 Filter, 33 Filter-Charakteristik, 70

G

Grenzfrequenz, 70 Grenzfrequenzen, 71 Grenzwert, sperren/freigeben, 37 Grenzwerte, 27 Grenzwertpegel, 27, 82 einstellen im Messbetrieb, 27 Grenzwertschalter, 81 Grenzwertschalter-Einstellungen, 81 Grenzwertüberwachung, 81

Н

Halbbrücke, 68 Hüllkurven, 84 Hüllkurvenfunktion, 39 Hysterese, 36, 37, 82

I

- IAD Indication Adaption/Eingabe, Anzeigeendwert, Dezimalpunkt, Schrittweite, 76
- IAD? Indication Adaption Query/Eingabe, Anzeigeendwert, Dezimalpunkt, Schrittweite ausgeben, 77
- IMR Input Measuring Range/Eingabe der Meßbereichsendwerte, 79
- IMR? Input Measuring Range QueryAusgabe des Meßbereichsendwert, 79

Induktivaufnehmer, 14

Κ

Kalibrieren, 34, 74

L

- LIV Limit Value/Eingabe der Grenzwertschalter-Einstellungen, 81
- LIV? Limit Value Query/Ausgabe der Grenzwertschalter-Einstellungen, 83
- Local, 89
- Logik, 18
- LOR Local / Remote/Local / Remote/Umschaltung, 89
- LOR? Local / Remote Query/Local / Remote-Zustand abfragen, 89
- LVDT, 14, 68

Μ

Master/Slave, 11

MDD Memory Device Data/Eingabe der Verstärker-Einstelldaten, 61

MDD? Memory Device Data Query/Ausgabe der Verstärker-Einstelldaten, 61

Messbeispiel, 92

Messbereichsendwert, 36, 79

Messbetrieb, 25, 29, 31

Messwert/Ausgabe/Format, 64

- Messwerte, ausgeben, 66
- MSV? Measuring Signal Value Query/Ausgabe des Meßwertes, 66

MTC, 71

MTC Motion Control Stillstandsanzeige (Messwerte/Toleranzband/Ausgang) festlegen, 72

Ν

Nennwert, 35

Netto, 27

Nettowert, 37 Netzspannungswahl, 13 Nullabgleich, 27 Nullstellen, 78 Nullwert, 78

0

- OPS Output Path Select/Signal dem Analogausgang zuordnen und Betriebsmodus wählen, 87
- OPS? Output Path Select Query/Eingangssignal des Analogausgang und Betriebsmodus ausgeben, 88

Ρ

Parameter, 45 einstellen. 46 speichern, 31 Parametersatz. 42 laden/speichern, 31 Parität, 42, 50, 58 PFS Print Format Select/Druckformat festlegen. 59 PFS? Print Format Select Query/Druckformat abfragen, 60 Piezoresistive Aufnehmer, 14 Pinbelegung, 51 Potentiometrische Aufnehmer, 14 Programmierbetrieb, 25, 29, 30, 31 Programmieren, 30 PVS Peak Value Select/Eingabe der Spitzenwertspeicher-Einstellungen, 84

PVS? Peak Value Select Query/Ausgabe der Spitzenwertspeicher/Einstellungen, 85

R

Remote, 89

- RFP Remote Function Programming/Belegung der Remote-Funktionen, 90
- RFP? Remote Function Programming Query/Belegung der Remote/Funktionen abfragen, 91

RS-232-Schnittstelle, 27

RS232, 51, 52

S

Schaltrichtung, 37, 82 Schnittstellen-Konfiguration, des Rechners, des Scout 55, 51 Schrittweite, 35, 76 Serielle Schnittstelle, 20, 49 SET, 27 Sicherungen, 14 Sicherungstausch, 13 SNR?Seriennummer des Gerätes ausgeben, 59 Spannungsausgang wählen, 16 Spannungsversorgung, 12 Spitzenwertspeicher, 27, 38, 84 freigeben, sperren, 39 Sprache auswählen, 31 START-Bit, 49 Statusbyte, 64, 67 Steckbrücken, 11 Steuerein- und Ausgänge, 19

Steuerkontakte, 38, 41 Stillstandsanzeige, Toleranzfeld, Status, 34 Stop-Bit, 49, 58 Stopbit, 43 STP Stop/Stop der Meßwertausgabe, 67 Subminiatur-Buchse, 51 Synchronisation, 12, 19

Т

TAR Tare Instruction/Tarierung starten / Tarawert eingeben, 80
TAR? Tare Value Query/Tarawert ausgeben, 81
Tarawert, 36, 80
Tarieren, 27, 80, 90
Tarierung, 80
TDD Transmit Device Data Verstärker-Einstellungen sichern, 61
TDD? Transmit Device Data Query

TDD? Transmit Device Data Query Abfrage, nach Ursprung der Verstärkereinstellungen, 63

V

Verstärker-Eingangssignal, 86 Verstärker-Einstelldaten, 61 Verstärkereinstellungen, 63 Vierleiter-Technik, 15 Vollbrücke, 68

W

Werkseinstellung, 50 laden/speichern, 32 Werkseinstellungen, 11, 21 **Z** Ziffernsprung, 35 Zusatzfunktionen, 42

HBK - Hottinger Brüel & Kjaer www.hbkworld.com info@hbkworld.com