

eDAQ Main Processor

Special Features

- 10 to 55 V wide range input power
- Internal backup battery to protect against unplanned power losses or low voltage events
- Ethernet communications with a configurable IP address
- Internal CompactFlash memory (up to 128 GB)
- PC Card slot for additional external memory of 4 GB
- 10 digital inputs/outputs,
 8 configurable pulse counters and optional ECOM functionality
- High speed serial (HSS) connection compatible with the Somat eDISPLAY for real-time information

Detailed Description

The Somat ECPU-PLUS Base Processor is the foundation for the eDAQ system, specifically designed for rugged, mobile applications. The input power for the system operates in a wide range, from 10 to 55 volts DC. Connect the power supply through the 15-pin D-sub connector on the back panel. Internal backup batteries protect the eDAQ from unplanned power losses or low voltage events. The ECPU-PLUS also includes replaceable ten-amp, 42-volt rated automotive miniblade fuses.

The ECPU-PLUS communicates through standard 10/100 BASE-T Ethernet communications protocols and hosts its own web server with a configurable IP address. This combination allows the eDAQ to effortlessly communicate wirelessly through WWAN modems, 802.11 devices or point-to-point wireless bridges. The eDAQ also provides the capability for RS232 serial communication. Ethernet, serial and eDAQ to eDAQ networking communication all connects to the eDAQ through the 26-pin high density D-sub connector on the back panel. A high speed serial (HSS) communications port, through a Somat M8 bulkhead connector, in combination with a rugged Somat eDISPLAY LCD display provides realtime channel and test information.

To manage test data, the ECPU-PLUS has the capacity to perform a broad range of on-board data processing. This includes custom computed channels, triggers, gates, boolean expressions and Somat DataModes[™]. In addition to the standard data acquisition Time History collection, Somat DataModes provides data storage in multiple, easy to manage and analyze formats including Burst History, Time-at-Level, Event Slice, Peak/Valley and Rainflow histograms.

There are three different memory options for an eDAQ system. These include internal CompactFlash (up to 128 GB) and external PCMCIA (4 GB).

Additionally, the ECPU-PLUS contains ten digital I/O channels and eight pulse counter channels through a 44-pin high density D-sub connector on the back panel. Optionally, all the ECPU-PLUS functionality can be integrated with the Somat ECOM layer in the ECPU-PLUS-COM, providing three dedicated CAN network interfaces, one vehicle bus module interface and a GPS communications port all through Somat M8 bulkhead connectors.

Ordering Options

Order No.	Description
1-ECPU-PLUS-2	eDAQ Plus Base Processor Includes: (1) 1-SAC-EPWR15-2 Power Cable, (1) 1-SAC-ESR9/XO-2 Communications Cable and (1)
	1-SAC-EDIO-2 Digital I/O Transducer Cable1-SAC-TRAN-MP-2-2 cables.
1-ECPU-PLUS-	eDAQ Plus Base Processor with ECOM Layer
COM-2	Includes: (1) 1-SAC-EPWR15-2 Power Cable, (1) 1-SAC-ESR9/XO-2 Communications Cable, (1)
	1-SAC-EDIO-2 Digital I/O Transducer Cable and (4) 1-SAC-TRAN-MP-2-2 Transducer Cables
	Refer to the ECOM data sheet for more information

Memory (Order Separately)

Order No.	Description
1-4096MBFLASH-2	4 GB PCMCIA memory for eDAQ systems (for use in external memory slot)
1-CF32GB-INT-2	32 GB CompactFlash memory for eDAQ systems (internal only)
1-CF64GB-INT-2	64 GB CompactFlash memory for eDAQ systems (internal only)
1-CF128GB-INT-2	128 GB CompactFlash memory for eDAQ systems (internal only)

Accessories (Order Separately)

Order No.	Description
1-E-DISPLAY-2	Rugged LCD display for eDAQ systems
1-E-AC/15-2	AC power supply for eDAQ systems

Cables (Order Separately)

Order No.	Description
1-SAC-EPWR15-2	Power Cable with a 15-pin D-Sub and tinned pigtail wires for main and remote power connections.
1-SAC-EDIO-2	Digital Input/Output Transducer Cable with a 44-pin high-density D-Sub connector and tinned pigtail wires for ECPU-PLUS digital I/O transducer wiring.
1-SAC-ESR9/XO-2	Communications Cable with a crossover RJ-45 connector for direct Ethernet connection to the support PC, a 26-pin D-Sub connector and a 9-pin D-Sub serial connector.
1-E-ETHERNET X/O-2	Communications Cable with a crossover RJ-45 connector for direct connection to the support PC and a 26-pin D-Sub connector.
1-SAC-ESYNCADAPT-2	Networking Adapter Cable with a 26-pin D-Sub connector, a RJ-45 hub connector and (2) female LEMO connectors for sync connections.
1-ESYNCADAPT-SC-2	Networking Cable with a 26-pin D-Sub connector, a RJ-45 hub connector, (2) female LEMO connectors for sync connections and a 9-pin D-Sub serial connector.
1-SAC-ESYNCCABLE-2	Networking Sync Cable with (2) male LEMO connectors for sync connections.
1-SAC-ESYNCTERM-2	Networking Termination Connector with a male LEMO connector for terminating a networking sync connection.

Specifications

Parameter	Units	Value
Layer dimensions	-	-
width	cm	23.0
length	cm	27.6
height	cm	6.6
Layer weight	kg	3.78
Temperature range	°C	-20 65
Relative humidity range, non-condensing	%	090
Power supply input range	V _{DC}	10 55
Power consumption ¹	-	-
no PC Card	w	3.45
with PC Card	w	3.49
Data acquisition sample rates	-	-
minimum	Hz	0.1
maximum (100-kHZ MSR)	kHz	100
maximum (98.3-kHz MSR)	kHz	98.304
Digital Inputs		
Steady-state input voltage (V_{in}) limits	-	-
minimum	%	-0.3
maximum	%	5.5
Transient input voltage (V _{in}) limits	-	-
minimum	%	-0.3
maximum	%	5.5
Input current per input channel	-	-
all inputs high	μΑ	110
input low ($V_{in} \le 2.7 V$)	μΑ	110
input high (V_{in} > 2.7 V) ²	mA	V _{in} /20
Threshold voltage	-	-
upper threshold ($V_{th, upper}$)	V	2.1
lower threshold (V _{th, lower})	V	0.5
Hysteresis voltage	-	-
minimum	V	0.7
maximum	V	1.4
Pulse Counters		
Pulse rate mode	-	-
maximum input frequency	MHz	1
maximum counts per sample period	counts	>4 billion
Pulse time period mode	-	-
resolution	nsec	200
accuracy	%	±0.01
minimum input frequency	Hz	0.0012

¹ Power consumption measurements include the efficiency of the power supply.

² The low inputs must be able to sink the high inputs.

Specifications (Continued)

Parameter	Units	Value
Digital Outputs		
Logic 0 provided current sink to ground (at 100 mA)	-	-
maximum	V	1.1
typical	V	0.9
Maximum allowable output current sink (single output) ¹	mA	400
Logic 1 output voltage (with no pull-up)	V	2.4
Maximum allowable output pull-up voltage	V	5.5

¹ For multiple outputs, see allowable output sink current plot below.

Standards

Category	Standard	Description
Shock	MIL-STD-810F	Method 516.5, Section 2.2.2 Functional Shock - ground vehicle
Vibration	MIL-STD-202G	Method 204D, Test condition C (10 g swept sine tested from 5 Hz to 2000 Hz)
Radiated emissions and susceptibility	EN 61326-1:2006	-
Ingress Protection	ANSI/IEC 60529-2004	IP54 water and dust intrusion

Allowable Output Sink Current

The following graph shows the allowable collector current at 50 °C depending on the number of simultaneous outputs. The data applies to one bank of output channels. The ECPU digital outputs are divided into two banks of five channels (i.e., |1-5| and |6-10|).

Digital Input Line Equivalent Circuit

The digital input circuitry determines the input as a logic 1 or 0. The input equivalent circuit is the same for all input channels.

Digital Output Line Equivalent Circuit

The output circuitry is applicable to all output channels.

This page is intentionally left blank.

7

© HBM, Inc. All rights reserved. All details describe our products in general form only. They are not to be understood as express warranty and do not constitute any liability whatsoever.

Americas:	HBM, Inc. • 19 Bartlett Street • Marlboro • MA 01752 • USA • Tel.: (800) 578 4260 • Email: info@usa.hbm.com
Asia:	Hottinger Baldwin Measurement (Suzhou) Co., Ltd. · 106 Heng Shan Road · Suzhou 215009 · Jiangsu · China Free hotline: 4006217621 (only in China) · Tel.: +86 512 682 47776 · Email: hbmchina@hbm.com.cn
Europe:	Hottinger Baldwin Messtechnik GmbH · Im Tiefen See 45 · 64293 Darmstadt · Germany Tel.: +49 6151 803-0 · Email: info@hbm.com

measure and predict with confidence

HBM: public