
1-EGPS-200-P-2 shown

SOMAT XR EGPS-200

Precision GPS Module

Special Features

- High-accuracy speed output with update rate of 200Hz
- 22 base measurement channels
- PLUS package with RTK and IMU options provides additional channels and accuracy
- Rugged environmental protection to IP67 standard
- Integrated trigger input to synchronize measurements with external events

Detailed Description

The Precision GPS Receiver (EGPS-200) is designed for non-contact speed measurements in professional vehicle testing applications such as braking, acceleration and general vehicle dynamics. This module combines data from GPS and inertial sensors to provide a robust 200Hz update rate for maximum reliability and accuracy, even in areas with short interruptions in GPS reception. The EGPS-200 combines GPS and accelerometer data, so it outperforms devices dependent on GPS or survey grade receivers that emphasize absolute position, rather than speed.

EGPS-200 Base and PLUS packages are available. Both modules provide 22 possible channels including speed, absolute position, three-axis instantaneous acceleration, number of satellites and date and time information. Both modules have an input trigger channel through the TRIG input connector, for synchronizing data values with external events such as brake pedal depression or passing a marker point.

The PLUS package provides all the channels of the base model plus IMU (inertial measurement unit) and RTK (real time kinematic) measurements. The IMU option improves acceleration accuracy and completes the six degrees of freedom measurements by adding axis rotation (roll, pitch and yaw). The RTK option uses readings from two GPS antennas to output high-accuracy yaw, pitch and slip angle measurements. The PLUS module directly measures the yaw and pitch at any time, while slip angle calculations are made only when a vehicle is in motion.

The modules are engineered to operate from -20 to +65 °C. They are sealed for an IP67 protection class rating. Each module has four mounting holes for secure attachment to a test object.

The EGPS-200 modules are supported by the eDAQ ECOM layer (with ECO-1666 applied for compatibility with the EGPS-200), the eDAQIte ELCOM layer, the CX23-R, the eDAQXR CPU and the eDAQXR-lite CPU. The GPS connector on these devices powers the EPGS-200 module with 12 Vdc, at about 2.4 W. On boot up of the CX23-R, eDAQXR or eDAQXR-lite, GPS power output is always set to 5 Vdc. With the power option set to 5 Vdc, the modules operate in a minimal mode that is sufficient to send a message to the processor, allowing the processor to identify the module. When the processor receives this message, it switches to the 12 Vdc power mode.

Order No.	Description
1-EGPS-200-B-2	Precision GPS receiver, Includes (1) Trigger Cable (1-SAC-GPSTRIG-2) and (1) GPS Antenna (1-EGPS-200-ANT-2) To connect to an eDAQ or eDAQlite COM layer, or an eDAQXR or eDAQXR-lite CPU, please also order an SAC-EXT- MF cable. To connect to the SomatXR CX23-R please also order a KAB2102 cable.
1-EGPS-200-P-2	Precision GPS receiver PLUS Package - IMU and RTK Measurements, Includes (1) Trigger Cable (1-SAC-GPSTRIG- 2), (2) GPS Antennas (1-EGPS-200-ANT-2) and (1) Dual Antenna Template (1-EGPS-200-TEM-2). To connect to an eDAQ or eDAQlite COM layer, or an eDAQXR or eDAQXR-lite CPU, please also order an SAC-EXT-MF cable. To connect to the SomatXR CX23-R please also order a KAB2102 cable.
1-EGPS-200-ANT-2	EGPS-200 GPS Antenna
1-EGPS-200-TEM-2	EGPS-200 Dual Antenna Template - RTK, Required for EGPS-200 PLUS Package
1-SAC-GPSTRIG-2	EGPS-200 Trigger Cable, TNC Male to Pigtail - 2 Meters Length
1-SAC-EXT-MF-0.4-2	Extension Cable - Male/Female Connectors - 0.4 Meters Length
1-SAC-EXT-MF-2-2	Extension Cable - Male/Female Connectors - 2 Meters Length
1-SAC-EXT-MF-5-2	Extension Cable - Male/Female Connectors - 5 Meters Length
1-SAC-EXT-MF-10-2	Extension Cable - Male/Female Connectors - 10 Meters Length
1-SAC-EXT-MF-15-2	Extension Cable - Male/Female Connectors - 15 Meters Length

Ordering options, accessories and cables (Order Separately)

1-EGPS-200-P-2 (ANT1, ANT2) shown

1-EGPS-200-B-2 (ANT1) shown

Common Trigger connector and TNC connector

Specifications

Parameter	Unit	Value
Dimensions (including connector), width x length x height	mm	135 x 215 x 40
Weight	kg [lb]	1.4 [3.0]
Operating temperature range	°C [°F]	-20 +65 [-4 +149]
Storage temperature range	°C [°F]	-20 +65 [-4 +149]
Input power	W [V]	2.4 [12]
Combined speed	-	-
accuracy ¹⁾	km/h	±0.05
update rate	Hz	200
maximum	m/s	514
minimum	km/h	0.01
resolution	km/h	0.01
Absolute position	-	-
accuracy (95% CEP) ^{1) 2)}	m	±3
altitude accuracy	m	±6
update rate	Hz	20
resolution	0	1 x 10 ⁻⁷
Heading	-	-
accuracy (at 10 m/s)	o	0.05
resolution	0	1 x 10 ⁻⁵
Acceleration	-	-
accuracy	% of full scale	0.5
update rate	Hz	200
maximum (Base, 1-EGPS-200-B-2)	g	±2
maximum (Plus, 1-EGPS-200-P-2)	g	±6
resolution	g	0.01

¹⁾ GPS velocity can be calculated far more accurately than GPS position data, since it is calculated using advanced techniques such as measuring changes in carrier frequency cycles from the satellites used to carry the raw GPS data. It is impossible to quote absolute positional accuracies of GPS systems simply because accuracy depends on time of day, satellite coverage, weather, antenna mounting, tree and building coverage, etc. The specifications provided represent typical real-world performance.

²⁾95% CEP (circle of error probable) indicates that 95% of position readings will fall within a circle of the stated diameter.

Standards

Category	Standard	Description
Environmental	IP67	Dust tight, immersion up to 1 m
Radiated emissions and susceptibility	EN 61326-1:2006	

Base channels

Channel	Units	Range	Description	Update Rate
trigger	-	0 or 1	Current state of the trigger input (via TRIG connector).	200Hz
latitude	0	-90 +90	Standard earth latitude position measurement.	20Hz
longitude	0	-180 +180	Standard earth longitude position measurement.	20Hz
altitude	m	-10000 +10000	Standard altitude measurement, per WGS 84 ellipsoid (mean sea level).	20Hz
speed_3d	km/h	0 1852	Combined speed generated using raw speed and accelerometer channels.	200Hz
speed_raw2d	km/h	0 1852	2-D raw speed channel for testing on flat ground.	20Hz
speed_raw3d	km/h	0 1852	3-D raw speed channel for testing over elevation changes.	20Hz
heading	0	0 360	Heading reference.	20Hz
gradient	0	-90 +90	Angle of orientation with respect to the horizontal reference plane.	20Hz
accel_x	g	-6 +6	Instantaneous acceleration measurement for the x component.	200Hz
accel_y	g	-6 +6	Instantaneous acceleration measurement for the y component.	200Hz
accel_z	g	-6 +6	Instantaneous acceleration measurement for the z component.	200Hz
year	-	1998 2038	Current year.	automatic
month	-	1 12	Current calendar month.	automatic
day	-	1 31	Current day of the month.	automatic
hour	-	023	Current hour of the day.	automatic
minute	-	0 59	Current minute.	automatic
second	-	0 60 ³⁾	Current second.	automatic
nsec	-	0 1 x 10 ⁹	Current nanosecond.	selectable
nsat	-	0 255	Current total number of satellites in view.	20Hz
fix_quality	-	0, 1, 20 or 30	Quality of the GPS fix and speed channels data.	20Hz
-	-	-	0: Inadequate for GPS location, inadequate for speed	-
-	-	-	1: Adequate for nominal GPS location, inadequate for speed	-
-	-	-	20: Adequate for GPS location, adequate (but not optimal) for speed	-
-	-	-	30: Optimal for GPS location, optimal for speed	-
faa_mode	-	A (65) or N (78)	Quality of the GPS fix.	20Hz
-	-	-	A: Inadequate for determination of nominal GPS location fixes	-
-	-	-	N: Not adequate for determination of GPS location fixes	-

³⁾ A second value of 60 indicates the occurrence of a leap second.

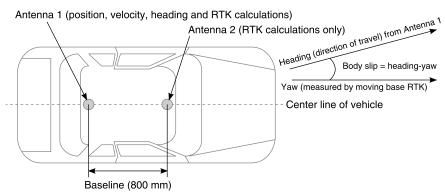
IMU Specifications (PLUS only, 1-EGPS-200-P-2)

Parameter	Units	Value
Gyroscope sensitivity (per axis)	-	-
typical initial sensitivity (dynamic range = ± 300 °/s, 25 °C)	°/s/LSB	0.07326
minimum initial sensitivity (dynamic range = ± 300 °/s, 25 °C)	°/s/LSB	0.0725
maximum initial sensitivity (dynamic range = ±300 °/s, 25 °C)	°/s/LSB	0.0740
typical initial sensitivity (dynamic range = ± 150 °/s, 25 °C)	°/s/LSB	0.03663
typical initial sensitivity (dynamic range = ± 75 °/s, 25 °C)	°/s/LSB	0.01832
temperature coefficient	ppm/°C	40
axis nonorthogonality (difference from 90° ideal, 25 °C)	0	±0.05
axis misalignment (relative to base plate and guide pins, 25 °C)	٥	±0.5
nonlinearity (best fit straight line)	% of full scale	0.1
Gyroscope bias	-	-
in run bias stability (1 standard deviation, 25 °C)	°/s	0.015
angular random walk (25 °C)	°/√h	4.2
temperature coefficient	°/s/°C	0.01
linear acceleration effect (any axis, 1 standard deviation)	°/s/g	0.05
Gyroscope noise performance (25 °C)	-	-
output noise (±300 °/s range, 2-tap filter setting)	°/s rms	0.60
output noise (±150 °/s range, 8-tap filter setting)	°/s rms	0.35
output noise (±75 °/s range, 32-tap filter setting)	°/s rms	0.17
rate noise density (f=25 Hz, ±300 °/s, no filtering)	°/s/√Hz rms	0.05
Gyroscope frequency response	-	-
3 dB bandwidth	Hz	350
sensor resonant frequency	kHz	14
Accelerometer sensitivity	-	-
typical dynamic range	g	±10
minimum dynamic range	g	±8
typical initial sensitivity (25 °C)	mg/LSB	2.522
minimum initial sensitivity (25 °C)	mg/LSB	2.471
maximum initial sensitivity (25 °C)	mg/LSB	2.572
temperature coefficient	ppm/°C	40
axis nonorthogonality (difference from 90° ideal, 25 °C)	0	±0.25
axis misalignment (relative to base plate and guide pins, 25 °C)	٥	±0.5
nonlinearity (best fit straight line)	% of full scale	±0.2
Accelerometer bias	-	-
in run bias stability (1 standard deviation, 25 °C)	m <i>g</i>	0.7
velocity random walk (25 °C)	m/s/√h	2.0
temperature coefficient	m <i>g</i> /°C	0.5
Accelerometer noise performance (25 °C, no filtering)	-	-
output noise	m <i>g</i> rms	35
noise density	mg /√Hz rms	1.85
Accelerometer frequency response	-	-
3 dB bandwidth	Hz	350
sensor resonant frequency	kHz	10

PLUS Package Channels

The following channels are only available with the PLUS package (1-EGPS-200-P-2). In addition, the base three-axis acceleration channels accel_x, accel_y and accel_z are derived from the higher accuracy IMU measurements.

Channel	Description	Units	Update Rate
yaw_rate	Angular velocity about the yaw axis.	°/s	200Hz
pitch_rate	Angular velocity about the pitch axis.	°/s	200Hz
roll_rate	Angular velocity about the roll axis.	°/s	200Hz
rtk_yaw	Angular position about the yaw axis. ⁴⁾	0	20Hz
rtk_pitch	Angular position about the pitch axis.	0	20Hz
rtk_baseline	Distance between RTK antennas (should be near 800 mm).	mm	20Hz
rtk_accuracy	Expected accuracy of rtk_yaw and rtk_pitch channel data.	mm	20Hz

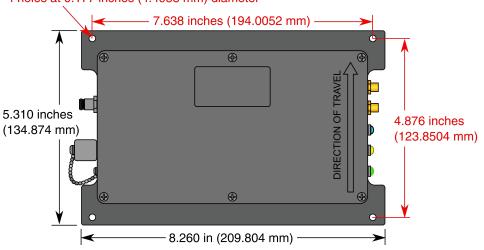

⁴⁾ Slip angle can be calculated as heading minus yaw angle.

Antennae and unit installation

To obtain maximum EGPS-200 data accuracy and integrity, it is essential that the GPS antennae and the EGPS-200 unit be properly mounted in the test vehicle. The EGPS-200 units require a 3.3V active antenna which must be mounted in a position giving a good view of the sky. The antennae (1-EGPS-200-ANT-2) supplied with the EGPS-200 unit are adequate for most EGPS-200 testing applications. However, for the most demanding applications, the user may want to consider procuring the highest quality antennae available. These are typically larger in size (and typically quite expensive).

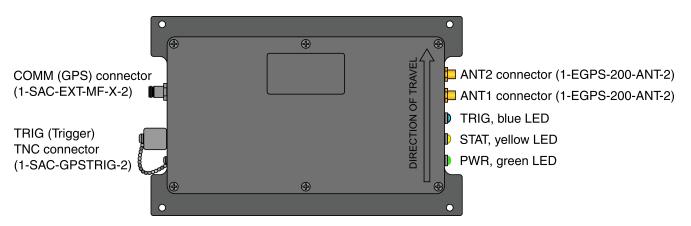
EGPS-200 (1-EGPS-200-B-2) Base unit: The single antenna lead is connected to the ANT connector. Mounting the antenna on the top of the vehicle is recommended. The user should be careful not to crush the antenna lead – for example when a vehicle window or door is closed.

EGPS-200 (1-EGPS-200-P-2) Plus unit: Following is a diagram that illustrates the recommended antennae mounting on a test vehicle.



- 1. It is strongly recommended that the two antennas be mounted on the roof of the vehicle. The (primary GPS measurements) antenna that is connected to ANT1 must be to the rear of the (RTK measurements) antenna that is connected to ANT2.
- The distance between the two antennae should be as close as possible to the RTK baseline distance of 800 millimeter. The magnetic mounting dual antenna template (1-EGPS-200-TEM-2) is provided to facilitate this. Small deviations on the order of a few millimeters can be tolerated with fairly insignificant loss of accuracy for the RTK channels.

- 3. The antennae should be mounted parallel to the direction of travel center line. This will minimize the difference between the heading channel data and the rtk_yaw channel data when there is no vehicle slip.
- 4. The antennae should be mounted so that both are the same distance above the ground. This will minimize the difference between the gradient channel data and the rtk_pitch channel data when there is no vehicle squat (dive).
- 5. Both antennas should be mounted directly to the metal roof of the vehicle. The metal under the antenna acts as a "ground plane" for the antenna. This is important for optimal satellite signal acquisition. Do not use adhesive tapes or any other material to hold the antennae in place some adhesive tapes completely block acquisition of the GPS signals.
- 6. To avoid any possible damage to the car paintwork, clean the metal to remove any dirt or grime before mounting the antenna. This also reduces the possibility that the antenna will move when the vehicle experiences high acceleration rates or encounters strong wind gusts.
- 7. The antennas should be mounted so the antenna cables point in the same direction for example, mount the antennae such that both cables exit towards the rear of the test vehicle.
- 8. Both antennas must be of the same make and model. This is critical for acquiring accurate differential GPS data for the RTK channels.


Requirements and recommendations for mounting EGPS-200 units are as follows:

- 1. Due to the relatively small size of the EGPS-200 unit, mounting it in the test vehicle at the optimal orientation can be somewhat challenging. However, for acquisition of the combined speed, acceleration and gyroscope channels (1-EGPS-200-P-2 only), it is important to make a concerted effort to mount the unit per the following recommendations.
 - a. The unit should be mounted such that the "direction of travel" arrow on the EGPS-200 lid is parallel to the direction of travel center line, and points to the forward direction.
 - b. The unit should be mounted such that the XY plane of the unit is parallel to the ground plane. One way to check this is to verify that the X and Y axis accelerometers are centered at zero g's when the vehicle is parked on flat ground.
 - c. Ideally, the unit should be mounted such that it sees the same IMU accelerations and angular displacements as the (typically roof mounted) antennae. While this may not be feasible in all situations, it is critical that the unit be rigidly secured to the vehicle chassis to minimize the differences between what the GPS antennae sense and what the IMU senses.
 - d. Before using the EGPS-200 for formal test data acquisition, the user is strongly advised to perform some check out tests to verify proper antennae and EGPS-200 unit installation.

4 holes at 0.177 inches (4.4958 mm) diameter

Common mounting diagram (Top view of 1-EGPS-200-P-2 shown)

Cable connection and status LEDs diagram (Top view of 1-EGPS-200-P-2 shown)

1-SAC-GPSTRIG-2		Function	Wire color
TNC connector	2.0 m	Shield Conducto	Brown

EGPS-200 Status LEDs

LED	Description				
PWR (gre	PWR (green) shows power and PPS lock status				
Off	Unit is not powered.				
On	Turns on immediately after 12 volt power is applied to the unit, which is typically several seconds after the connected CPU is powered up.				
1Hz	PPS lock is attained.				
STAT (ye	llow) shows GPS signal status				
Off	Unit is not powered.				
1Hz	Unit has acquired enough satellites to get a GPS position fix (i.e., after the fix_quality channel is 1 or higher).				
On	For the EGPS-200 Plus (1-EGPS-200-P-2) only, RTK lock is attained.				
TRIG (blu	TRIG (blue) shows input from the TRIG connector				
Off	No connection to the trigger input connector, so trigger channel is pulled high (internally).				
On	Connection to trigger input connector and the trigger channel input is pulled down to logic 0, when the two wires of the trigger cable pigtail (1-SAC-GPSTRIG-2) are connected to each other.				

CE

© HBM, Inc. All rights reserved. All details describe our products in general form only. They are not to be understood as express warranty and do not constitute any liability whatsoever.

Americas:	HBM, Inc. • 19 Bartlett Street • Marlboro • MA 01752 • USA • Tel.: (800) 578 4260 • Email: info@usa.hbm.com	
Asia:	Hottinger Baldwin Measurement (Suzhou) Co., Ltd. · 106 Heng Shan Road · Suzhou 215009 · Jiangsu · China Free hotline: 4006217621 (only in China) · Tel.: +86 512 682 47776 · Email: hbmchina@hbm.com.cn	
Europe:	Hottinger Baldwin Messtechnik GmbH · Im Tiefen See 45 · 64293 Darmstadt · Germany Tel.: +49 6151 803-0 · Email: info@hbm.com	

B02890-02_E00_00 HBM: public

measure and predict with confidence