




# **Special features**

- Digital amplifier for industrial automation tasks and production process monitoring
- 600 Hz CF measurement technology with TEDS sensor detection for SG full bridges
- Fast peak and limit value monitoring and digital inputs/outputs
- Accuracy class, typically 0.05%
- Modular mounting on a DIN EN 60715 type DIN rail (IEC 60715)
- Standardized CANopen CiA fieldbus coupling for parameterization and backup



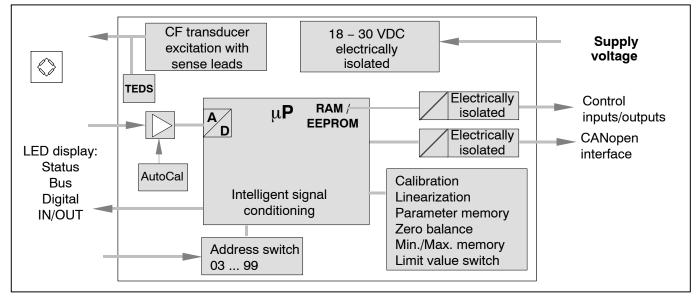


# **Technical data**

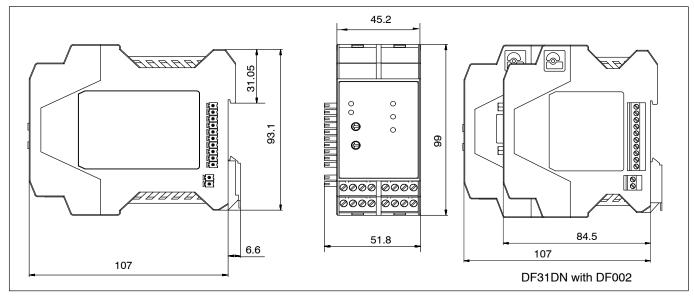
|                 | 0.05 type.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                 | 0.05 type.<br>0.1 in an industrial environment as per EN 61326<br>0.2 in the 10 mV/V measuring range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| V <sub>DC</sub> | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| V <sub>DC</sub> | < 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| V               | 18 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| %/V             | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| W               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ΠZ              | 600 (591.9 Hz ±100 ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                 | when several interconnected modules are used, the carrier frequency synchronized automatically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| V               | 2.5 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| mV/V            | ±4 ±10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| ohms            | 80 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                 | 4 and 6-wire circuitry with single-wire open-circuit monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| m               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 | >5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| MOIIII          | >5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Hz              | 0.05 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 | Bessel, 4th order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| μV/V            | 1.0 (at filter frequenzy 100 Hz)<br>0.05 (at filter frequenzy 1 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| μV/V<br>%       | 0.1<br>0,05 f.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                 | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                 | <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.0000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.0000 <0.000 <0.000 <0.000 <0.000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.00000 <0.0000 <0.0000 <0.00000 <0.0000 <0.00000 <0.0000 <0.000 |  |  |
| 70              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 | 64<br>1 to 63 via rotary switch on front<br>DeviceNet standard: "The DeviceNet Specification", available at<br>www.odva.org                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                 | Two-wire, as per ISO 11898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| kBit/s          | 500 250 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| m               | 100 250 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                 | Automatic detection after change of address<br>Triggered by sampling rate, timing control or SYNC message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                 | magorou by camping rate, uning control of o the message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| ms              | 0.85 25000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                 | Side connector terminal; electrically isolated from supply and measurement ground Option: DF002: 9-pin Sub-D (CAN-CiADR303-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                 | Delta-Sigma, 24-bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| bits            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                 | 1184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                 | V         V         %/V         W         Hz         V         m         MOhm         Hz         µV/V         %         %         %         %         %         ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

HBM

| Input of characteristic curve                                                  |    | TEDS, calibration, editing                                                                                                              |  |  |  |
|--------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Zero balance                                                                   |    | over the entire measuring range                                                                                                         |  |  |  |
| Tare balance                                                                   |    |                                                                                                                                         |  |  |  |
| Duration of balance                                                            |    | over the entire measuring range                                                                                                         |  |  |  |
|                                                                                | ms | < 2                                                                                                                                     |  |  |  |
| AutoCal                                                                        | ms |                                                                                                                                         |  |  |  |
| Parameter memory                                                               |    | 1 set as per CiA DS404, protected in the EEPROM                                                                                         |  |  |  |
| Limit value switches                                                           |    |                                                                                                                                         |  |  |  |
| Definition                                                                     |    | as per CiA DS404, ALARM block                                                                                                           |  |  |  |
| Number                                                                         |    | 4                                                                                                                                       |  |  |  |
| Functions                                                                      |    | Switching threshold, hysteresis (2-point control), greater than, less than                                                              |  |  |  |
| Signal source (user-selectable)                                                |    | gross, net, max, min, peak-to-peak                                                                                                      |  |  |  |
| Hysteresis                                                                     |    | adjustable over the entire measuring range                                                                                              |  |  |  |
| Update                                                                         |    | at each measured value                                                                                                                  |  |  |  |
| Peak-value memory                                                              |    |                                                                                                                                         |  |  |  |
| Number                                                                         |    | 3                                                                                                                                       |  |  |  |
| Function                                                                       |    | min., max., peak-to-peak                                                                                                                |  |  |  |
| Update                                                                         |    | at each measured value                                                                                                                  |  |  |  |
| Clearing peak-value memory                                                     | ms | < 2                                                                                                                                     |  |  |  |
| Retaining the current measured value/peak                                      |    | <2                                                                                                                                      |  |  |  |
| value<br>Current–value memory                                                  | ms | Run /Hold                                                                                                                               |  |  |  |
| Digital input                                                                  |    |                                                                                                                                         |  |  |  |
| Number                                                                         |    | 1                                                                                                                                       |  |  |  |
| Switching actions, any combination selectable                                  |    | Flank controlled: Zeroing, taring, peak-value memory (min/max)                                                                          |  |  |  |
| 5 , ,                                                                          |    | one-off clear                                                                                                                           |  |  |  |
|                                                                                |    | Level controlled: Peak-value memory (min/max) stop, continuous clear                                                                    |  |  |  |
| Response time                                                                  |    | Control action occurs at the latest with the next but one measurement value                                                             |  |  |  |
| Active input level can also be selected                                        | V  | 0 or 24                                                                                                                                 |  |  |  |
| inverted                                                                       | -  | (State of input level displayed by LED)                                                                                                 |  |  |  |
| Input voltage range                                                            | v  | 030                                                                                                                                     |  |  |  |
| Switching voltages                                                             | -  |                                                                                                                                         |  |  |  |
| Logic High level                                                               | V  | >10                                                                                                                                     |  |  |  |
| Logic Low level                                                                | v  | <5                                                                                                                                      |  |  |  |
| one-way fitting                                                                | V  | -30 0                                                                                                                                   |  |  |  |
| Electrical isolation to supply, transducer and                                 |    |                                                                                                                                         |  |  |  |
| bus potentials                                                                 |    |                                                                                                                                         |  |  |  |
| Isolation voltage, functional, typ.                                            | V  | 500                                                                                                                                     |  |  |  |
| Input current at 24V, typ.                                                     | mA | 12                                                                                                                                      |  |  |  |
| Latency times of electronic digital input                                      |    |                                                                                                                                         |  |  |  |
| when changing from 0V to 24V, typ.                                             | μs | 200                                                                                                                                     |  |  |  |
| when changing from 24V to 0V, typ.                                             | μs | 400                                                                                                                                     |  |  |  |
| Permissible cable length to digital input, max.                                | m  | 030                                                                                                                                     |  |  |  |
| Digital output                                                                 | ·  | ·                                                                                                                                       |  |  |  |
| Number                                                                         |    | 2                                                                                                                                       |  |  |  |
| Switching actions, any combination can be selected separately for each output  |    | Limit value switch 1 to 4, positive/negative range overrun, overload, measured value invalid                                            |  |  |  |
| Response times                                                                 |    | Switching action occurs with next measurement value, see "Sampling rate"; exception: "Measurement value invalid" after 300 700 ms, typ. |  |  |  |
|                                                                                | Ì  | 0 or 24                                                                                                                                 |  |  |  |
| Active input level can also be selected                                        | V  | 0 01 24                                                                                                                                 |  |  |  |
| Active input level can also be selected<br>inverted separately for each output | V  | (State of output switch displayed by LED)                                                                                               |  |  |  |
| inverted separately for each output                                            | V  |                                                                                                                                         |  |  |  |
|                                                                                |    | (State of output switch displayed by LED)                                                                                               |  |  |  |


| Short-circuit current, typ.                                                                      | А                            | 1.1                                   |  |  |  |
|--------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|--|--|--|
| Short-circuit period                                                                             |                              | unlimited                             |  |  |  |
| Electrical isolation to transducer and bus<br>potentials                                         |                              |                                       |  |  |  |
| Isolation voltage, functional, typ.                                                              | V                            | 500                                   |  |  |  |
| Reference potential like supply voltage                                                          |                              |                                       |  |  |  |
| Latency times of electronic digital<br>outputs                                                   |                              |                                       |  |  |  |
| when changing from 0V to 24V, typ.                                                               | μs                           | 240                                   |  |  |  |
| when changing from 24V to 0V, typ.                                                               | μs                           | 400                                   |  |  |  |
| Permissible cable length to digital input, max.                                                  | m                            | 30                                    |  |  |  |
| Environmental conditions                                                                         |                              |                                       |  |  |  |
| Nominal temperature range                                                                        | ٥C                           | 0 +50                                 |  |  |  |
| Operating temperature range                                                                      | °C                           | -10 +60                               |  |  |  |
| Storage temperature range                                                                        | °C                           | -20 +70                               |  |  |  |
| Permissible rel. humidity, non-condensing                                                        | %                            | 10 90                                 |  |  |  |
| Enclosure                                                                                        |                              |                                       |  |  |  |
| Material                                                                                         |                              | Polyamide PA 6.6                      |  |  |  |
| Dimensions (WxHxD)                                                                               |                              |                                       |  |  |  |
| without connections                                                                              | mm                           | 23 x 100 x 114                        |  |  |  |
| Weight, approx.                                                                                  | g                            | 150                                   |  |  |  |
| Mechanical stress<br>(test similar to DIN IEC 60068, Part 2–6)                                   |                              |                                       |  |  |  |
| Vibration (30 min each direction)                                                                | m/s <sup>2</sup>             | 50 (565 Hz)                           |  |  |  |
| Impact (3 times each direction, impact duration 11ms) (test similar to DIN IEC 60068, Part 2–27) | m/s²                         | 350                                   |  |  |  |
| Assembly                                                                                         |                              | Support rail, DIN EN60715 (IEC 60715) |  |  |  |
| Connection                                                                                       |                              | Plug-in terminals                     |  |  |  |
| Degree of protection                                                                             |                              | IP20                                  |  |  |  |
| Reliability                                                                                      |                              | ·                                     |  |  |  |
| MTTF (MIL-HDBK-217F, Feb. 1995)                                                                  | hours                        | 92000                                 |  |  |  |
| EMC conformance                                                                                  |                              | · · · · · · · · · · · · · · · · · · · |  |  |  |
| as per EN 61326 <sup>*)</sup>                                                                    | in an industrial environment |                                       |  |  |  |

\* For measurement as per EN 61326, May 2004 edition, Annex F, burst to shielding of the transducer or bus line, there must be compliance with the class accuracy of 0.1 when using filter frequencies up to and including 2 Hz. When a filter frequency of 100 Hz is used, the measurement variation can be as much as 1.3%.


#### Filter data and sampling rate

| Desired<br>frequency | –1 dB (Hz) | –3 dB (Hz) | –20 dB (Hz) | Phase delay<br>(ms) | Sampling rate<br>(s <sup>-1</sup> ) | min. cycle time (ms) |
|----------------------|------------|------------|-------------|---------------------|-------------------------------------|----------------------|
| 100 Hz               | 130        | 225        | 560         | 2.3                 | 1184                                | 0.85                 |
| 50 Hz                | 48         | 82         | 220         | 4.6                 | 1184                                | 0.85                 |
| 20 Hz                | 20         | 34         | 100         | 9.5                 | 1184                                | 0.85                 |
| 10 Hz                | 10.5       | 18.6       | 56          | 16.6                | 1184                                | 0.85                 |
| 5 Hz                 | 5.2        | 9.3        | 28          | 31                  | 592                                 | 1.7                  |
| 2 Hz                 | 2.1        | 3.7        | 11.2        | 70                  | 237                                 | 4.2                  |
| 1 Hz                 | 1.05       | 1.8        | 5.6         | 140                 | 118                                 | 8.4                  |
| 0.5 Hz               | 0.52       | 0.9        | 2.8         | 280                 | 59                                  | 16.9                 |
| 0.2 Hz               | 0.21       | 0.36       | 1.1         | 700                 | 24                                  | 42.2                 |
| 0.1 Hz               | 0.105      | 0.18       | 0.56        | 1400                | 12                                  | 84.5                 |
| 0.05 Hz              | 0.052      | 0.09       | 0.28        | 2800                | 6                                   | 168.9                |

# **Block diagram**



#### Dimensions in mm



# Scope of supply:

Module digiCLIP DF31DN Coded plug connector for sensor connection (2 pieces) Coded plug connector for digital IN/OUT (2 pieces)

Order No.: 1–DF31DN Order No.: 3–3312.0404 24 V / 0 V Order No.: 3–3312.0418 IN / OUT Order No.: 3–3312.0444 Combicon Order No.: CR–MSTB

Plug–in terminal for CANBUS and supply voltage Combicon Order No.: CF CD–ROM with free setup software (digiCLIP Assistant); (the latest Assistant can be downloaded free of charge under http://www.hbm.com/support)

 Accessories (not included among the items supplied):

 Setup-Toolkit for digiCLIP (interface converter USB/CAN, connection cable, free setup software (digiCLIP Assistant)
 Order No.: 1-DIGICLIP-SETUP

 Connector set for digiCLIP module (needed for two-tier installation in the control cabinet)
 Order No.: 1-DIGICLIP-SETUP

 Connection module for frontal assignment of the rear terminal strip (bus and power supply)
 Order No.: 1-DF002

©[Hottinger Baldwin Messtechnik GmbH. Subject to modifications. All product descriptions are for general information only. They are not to be understood as a guarantee of quality or durability.

### Hottinger Baldwin Messtechnik GmbH

Im Tiefen See 45 · 64293 Darmstadt · Germany Tel. +49 6151 803-0 · [Fax: +49 6151 803-9100 Email: info@hbm.com · www.hbm.com



# measure and predict with confidence