

DATA SHEET

GEN series GN3211 Basic 20 kS/s Input Card

SPECIAL FEATURES

- 32 analog channels
- Balanced differential inputs
- ± 10 mV to ± 20 V input range
- Analog/digital anti-alias filters
- 20 kS/s sample rate
- 16 bit resolution
- Real-time cycle based calculators with triggering on calculated result
- Digital Event support
- Up to ± 10 kV input range using passive probe (option)
- Up to ± 1.2 kA input range using current clamp (option)

GN3211 Functions and Benefits

In differential mode, the card can be used in electrically noisy environments. The CMRR of the true differential amplifiers ensures high signal fidelity. When using the passive voltage probe and/or the current clamp options, the card can be used as an entry-level electrical-input amplifier to measure high voltages and currents.

Calibrating the probes and clamps with the channels and storing calibration results in the Perception Sensor Database can increase the accuracy well above the accuracy rating of the probe or clamp. In single-ended mode, the data acquisition card can serve as a cost effective input for preconditioned signals to be recorded with the GEN DAQ series of products. Superior, best in class anti-alias protection is achieved by a unique, multi stage approach. The first stage the Sigma Delta converter with built-in antialiasing filter creates an alias free digital data stream at constant rate of 250 kS/s.

The second stage feeds the 250 kS/s data stream into a user selectable digital filter, to reduce the signal to the desired maximum bandwidth. The digital filter supports both 11 or 12 orders as well as Bessel/Butterworth or Elliptic filter characteristics. The third stage decimates the 250 kS/s filtered signal to the desired sample rate.

The digital filter before decimation guarantees a superior phase match, ultra-low noise and alias free result.

Capabilities Overview	
Model	GN3211
Maximum sample rate per channel	20 kS/s
Memory per card	200 MB
Analog channels	32
Anti-alias filters	Fixed bandwidth analog AA-filter combined with sample rate tracking digital AA-filter
ADC resolution	16 bit
Isolation	Not supported
Input type	Analog balanced differential
Passive voltage/current probes	Passive, single-ended voltage probes Passive, differential matched voltage probes
Sensors	Not supported
TEDS	Not supported
Real-time formula database calculators (option)	Not supported
Digital Event/Timer/Counter	16 digital events; no Timer/Counters
Standard data streaming (CPCI up to 200 MB/s)	Yes, supported by all GEN series mainframes
Fast data streaming (PCIe up to 1 GB/s)	Not supported
Slot width	1

Mainframe Support							
	GEN2tB	GEN4tB	GEN7tA / GEN7tB ⁽²⁾	GEN17tA	GEN17tB	GEN3iA	GEN7iA / GEN7iB ⁽²⁾
GN3210/GN3211	No	No	Yes	Yes	No	Yes	Yes
GEN DAQ API	Yes Yes ⁽¹⁾						
EtherCAT®	No						
CAN/CAN FD	No						

(1) Close Perception to enable GEN DAQ API access.

(2) GEN7tB/GEN7iB with limited support (first three slots only)

Supported Analog Sensors and Probes							
Perception input type	Sensor/probe types	Remarks					
Basic voltage	 Electrical voltages single-ended and differential Active single-ended probes Active differential probes 	 ± 10 mV up to ± 20 V D-sub connector D-sub to BNC cables KAB171 and KAB172 					

Supported Digital Sensors (TTL Level Input)						
Timer counter Input type	Supported digital sensors	Features				
Signal Direction Reset. 3 Count up Figure 1: Uni and Bi-directional clock	 Frequency / RPM Count/position 	 Count frequency up to 5 MHz Input signal minimum width setting Several reset options 				
Signal Direction	 Angle Frequency / RPM Count/position 	 Count frequency up to 2 MHz Single, dual and quad precision count Input signal minimum width setting Transition tracking to avoid count drift Several reset options 				

Specifications and measurement uncertainty

Specifications are established using 23 °C environmental temperature. For measurement uncertainty improvements, the system could be readjusted at a specific environmental temperature to minimize the impact of temperature drift.

Any analog amplifier error source follows the = ax + b curve.

- a % of reading error, represents the linear increasing error due to the increase of the input voltage: often referred to as gain error.
- **b** % of range error, represents the error when measuring 0 V; often referred to as offset error.
- For measurement uncertainty these errors can be considered independent error sources.

Noise is not a separate error source outside of the standard specification. Noise specifications are added separately in case you need dynamic accuracy on sample by sample level. Only for sample by sample measurement uncertainty add the RMS noise error. For e.g. power accuracy, the RMS noise error is already included in the power specifications.

Pass/Fail limits are rectangular distributed specifications, therefore measurement uncertainty is 0.58 * specified value.

Adding/removing or swapping cards

The specifications listed are valid for cards that have been calibrated and are used in the same mainframe, mainframe configuration and slots as they were at the time of calibration.

If cards are added, removed or relocated the thermal conditions of the card will change, resulting in additional thermal drift errors. The maximum expected error can be up to two times the specified Reading and Range error as well as 10 dB reduced common mode rejection. Recalibration after configuration changes is therefore highly recommended.

Analog Input Section				
Channels	32			
Connectors	D-Sub (DD-50) connector			
Input type	Analog isolated balanced differential			
Input coupling	Differential, single-ended (positive or negative)			
Signal input coupling				
Coupling mode	s AC, DC, GND			
AC coupling frequenc	/ 1.6 Hz ± 10%; - 3 dB			
	1.6 Hz AC coupling response [dB]			
10- 10- 10- 10- 10- 10- 10- 10-	-20 gg -30 gg -3			
Impedance	2 x 1 MΩ ± 0.5% // 75 pF ± 15%			
Ranges	\pm 10 mV, \pm 20 mV, \pm 50 mV, \pm 0.1 V, \pm 0.2 V, \pm 0.5 V, \pm 1 V, \pm 2 V, \pm 5 V, \pm 10 V, \pm 20 V			
Offset	± 50% in 1000 steps (0.1%); ± 20 V range has fixed 0% offset			
DC Range error (Pass/Fail limits)				
Wideban	d 0.01% of range ± 25 μV			
All IIR filter	0.01% of range ± 25 μV			
DC range error drif	t ±(10 ppm + 2 μV)/°C (±(6 ppm + 1.5 μV)/°F)			
DC Reading error (Pass/Fail limits)				
Wideban	$d = 0.015\%$ of reading $\pm 25 \mu\text{V}$			
All IIR filter	s 0.015% of reading $\pm 25 \mu\text{V}$			
DU reading error drift ± 10 ppm/°C (± 6 ppm/°F)				
RMS Noise (50 1) terminated) (Pass/Fail limits)				
Wideban	a 0.01% of range $\pm 25 \mu$ V			
All IIR filter	s 0.01% of range ± 25 μV			

Analog Input Section			
Common mode (referred to system ground)		
Ranges	Less than ± 2 V	Larger than or equal to $\pm 2 V$	
Rejection (CMR)	> 80 dB @ 80 Hz (100 dB typical)	> 60 dB @ 80 Hz (80 dB typical)	
Maximum common mode voltage	2 V RMS	33 V RMS	
100 10 10 10 10 10 10 10 10 10 10 10 10	Common mode response -20 -40 gp -20 -40 gp -20 -60 pp -60 pp -80 pp -100 -100 -120 Frequency [kHz]	: ± 2 V ranges : ± 2 V ranges	
Input overload protection	are 5. Representative common mode response		
Overvoltage impedance change The activation of the over voltage protection system will result in a reduced input impedance. The over voltage protection will not be active as long as the input voltage is less of the selected input range or 50 V DC whichever is the smallest value.			
Overload recovery time	Restored to 0.1% accuracy in less than 5 µs a	after 200% overload	

Input Ranges When Using Passive Voltage Probes					
Detailed probe specifications can be found at the end of this datasheet					
Single-ended	Added voltage ranges				
G901 (10:1 divide factor)	± 50 V, ± 100 V, ± 200 V				
G902 (10:1 divide factor)	± 50 V, ± 100 V, ± 200 V				
G903 (100:1 divide factor)	± 50 V, ± 100 V, ± 200 V, ± 500 V, ± 1 kV				
G904 (100:1 divide factor)	± 50 V, ± 100 V, ± 200 V, ± 500 V, ± 1 kV, ± 2 kV				
G906 (1000:1 divide factor)	± 50 V, ± 100 V, ± 200 V, ± 500 V, ± 1 kV, ± 2 kV, ± 5 kV, ± 10 kV (± 20 kV @ DC to 60 Hz)				
Differential matched	Added voltage ranges				
G907 (10:1 divide factor)	± 50 V, ± 100 V, ± 200 V				

Input Ranges When Using Active Differential Voltage Probes				
G909 (20:1 divide factor)	\pm 140 V RMS input and \pm 1000 V RMS common mode			
G909 (200:1 divide factor)	± 1000 V RMS input and ± 1000 V RMS common mode			

Input Ranges When Using Current Clamps				
Detailed probe specifications can be found at the end of this datasheet				
Clamp type	Added current ranges			
G912 (AC/DC)	± 30 mA to ± 30 A DC ± 30 mA to ± 20 A RMS			
G913 (AC)	± 100 mA to ± 1000 A RMS			
G914 (AC) ± 50 mA to ± 20 A RMS				

Analog to Digital Conversion	
Sample rate; per channel	1 S/s to 20 kS/s
ADC resolution; one ADC per channel	24 bit, only 16 bit recorded
ADC type	Sigma Delta (Σ - Δ) ADC; Analog Devices AD7764BRUZ
Time base accuracy	Defined by mainframe: \pm 3.5 ppm; aging after 10 years \pm 10 ppm

Anti-Alias Filters

Note on phase matching channels. Every filter characteristic and/or filter bandwidth selection comes with it's own specific phase response. Using different filter selections (Wideband/Bessel IIR/Butterworth IIR/etc.) or different filter bandwidths can result in phase mismatches between channels.

	(no digital filter) is always in the signal path. Therefore, the anti-alias protection is always active when Sigma Delta wideband is selected.
Bessel IIR	When Bessel IIR filter is selected, this is always a combination of the built-in anti-alias filter of the Sigma Delta ADC and a digital Bessel IIR filter. Bessel filters are typically used when looking at signals in the time domain. They are best used for measuring transient signals or sharp edge signals like square waves or step responses.
Butterworth IIR	When Butterworth IIR filter is selected, this is always a combination of the built-in anti- alias filter of the Sigma Delta ADC and a digital Butterworth IIR filter. This filter is best used when working in the frequency domain. When working in the time domain, this filter is best used for signals that are (close to) sine waves.

Bandwidth and Filter Characteristic Selection versus Sample Rate								
The digital filter before decimation guarantees a superior phase match, ultra-low noise and alias free result.								
	AA-filter ⁽¹⁾ Digital lowpass filters (alias free)					Digital bandpass ⁽²⁾		
	Sigma Delta	Butterworth IIR Elliptic IIR	Bessel IIR Butterworth IIR Elliptic IIR	Bessel IIR Butterworth IIR Elliptic IIR	Bessel IIR Butterworth IIR Elliptic IIR	Bessel IIR	Elliptic	
User selectable sample rates		1/4 Fs	1/10 Fs	1/20 Fs	1/40 Fs	1/100 Fs	Highpass	Lowpass
20 kS/s	$\Sigma\Delta$ Wideband	5 kHz	2 kHz	1 kHz	500 Hz	200 Hz		
12.5 kS/s	$\Sigma\Delta$ Wideband	2.5 kHz	1.25 kHz	625 Hz	312.5 Hz	125 Hz		
10 kS/s	$\Sigma\Delta$ Wideband	2 kHz	1 kHz	500 Hz	250 Hz	100 Hz		
5 kS/s	$\Sigma\Delta$ Wideband	1.25 kHz	500 Hz	250 Hz	125 Hz	50 Hz		
4 kS/s	$\Sigma\Delta$ Wideband	1 kHz	400 Hz	200 Hz	100 Hz	40 Hz		2 kHz,
2.5 kS/s	$\Sigma\Delta$ Wideband	625 Hz	250 Hz	125 Hz	62.5 Hz	25 Hz		
2 kS/s	$\Sigma\Delta$ Wideband	500 Hz	200 Hz	100 Hz	50 Hz	20 Hz		
1.25 kS/s	$\Sigma\Delta$ Wideband	312.5 Hz	125 Hz	62.5 Hz	31.25 Hz	12.5 Hz		
1 kS/s	$\Sigma\Delta$ Wideband	250 Hz	100 Hz	50 Hz	25 Hz	10 Hz		
500 S/s	$\Sigma\Delta$ Wideband	125 Hz	50 Hz	25 Hz	12.5 Hz	5 Hz		
400 S/s	$\Sigma\Delta$ Wideband	100 Hz	40 Hz	20 Hz	10 Hz	4 Hz	40 Hz, 100 Hz	20 kHz, 40 kHz
250 S/s	$\Sigma\Delta$ Wideband	62.5 Hz	25 Hz	12.5 Hz	6.25 Hz	2.5 Hz	100112	50 kHz
200 S/s	$\Sigma\Delta$ Wideband	50 Hz	20 Hz	10 Hz	5 Hz	2 Hz		
125 S/s	$\Sigma\Delta$ Wideband	31.25 Hz	12.5 Hz	6.25 Hz	3.125 Hz	1.25 Hz		
100 S/s	$\Sigma\Delta$ Wideband	25 Hz	10 Hz	5 Hz	2.5 Hz	1 Hz		
50 S/s	$\Sigma\Delta$ Wideband	12.5 Hz	5 Hz	2.5 Hz	1.25 Hz	0.5 Hz		
40 S/s	$\Sigma\Delta$ Wideband	10 Hz	4 Hz	2 Hz	0.5 Hz	0.4 Hz		
25 S/s	$\Sigma\Delta$ Wideband	6.25 Hz	2.5 Hz	1.25 Hz	0.625 Hz	0.25 Hz		
20 S/s	$\Sigma\Delta$ Wideband	5 Hz	2 Hz	0.5 Hz	0.5 Hz	0.2 Hz		
12.5 S/s	$\Sigma\Delta$ Wideband	3.125 Hz	1.25 Hz	0.625 Hz	0.3125 Hz	0.125 Hz		
10 S/s	$\Sigma\Delta$ Wideband	2.5 Hz	1 Hz	0.5 Hz	0.25 Hz	0.1 Hz		

(1) Sigma Delta $\Sigma\Delta$ Wideband prevents aliasing before the digitization of the signal.

(2) Digital bandpass filters are selectable in all sample rates.

Sigma Delta Wideband (Analog Anti-Alias)

When Sigma Delta wideband is selected there is always the built-in anti-alias filter of the Sigma Delta ADC (no digital filter) in the signal path. Therefore there is always anti-alias protection when wideband is selected. Care must be taken as this filter introduces slight overshoots on square wave or pulse response signals. Signals of sine wave type will not be effected. Wideband

(1) Measured using a Fluke 5700A calibrator, DC normalized.

(1) Measured using a Fluke 5700A calibrator, DC normalized

(1) Measured using a Fluke 5700A calibrator, DC normalized

Channel to Channel Phase Match

Using different filter selections (Wideband/Bessel IIR/Butterworth IIR/etc.) or different filter bandwidths will lead to phase mismatches between channels.

Wideband	1 kHz Sine wave
Channels on card	0.01 deg (30 ns)
GN3211 Channels within mainframe	0.01 deg (30 ns)
Bessel IIR, Filter frequency 2 kHz @ 20 kS/s	
Channels on card	0.01 deg (30 ns)
GN3211 Channels within mainframe	0.01 deg (30 ns)
Butterworth IIR, Filter frequency 5 kHz @ 20	kS/s
Channels on card	0.01 deg (30 ns)
GN3211 Channels within mainframe	0.01 deg (30 ns)
GN3211 channels across mainframes	Defined by synchronization method used (None, IRIG, GPS, Master/Sync, PTP)

Digital Event/Timer/Counter (1)				
				20 MHz
Signal Pulse width filter Pulse width filter Pulse width filter Pulse width filter Count			surement time bit Sample Rate Storage Sample Rate Storage	
				Storage
	Figure 13: Timer/Cour	nter block diagram		
Digital input events	16 per card			
Levels	TTL input level, user p	rogrammable invert lev	el	
Inputs	1 pin per input, some j	pins are shared with Tir	ner/Counter inputs	
Overvoltage protection ± 30 V DC continuously				
Minimum pulse width 100 ns				
Maximum frequency 5 MHz				
Digital output events	2 per card			
Levels	Line veloptoble: Trigger Alerm est Link and even			
	User selectable: Ingger, Alam, set high of Low			
Output event 2 User selectable: Recording active, set High or Low				
Digital output event user selections				
i rigger	r I high pulse per trigger (on every channel trigger of this card only) 12.8 μs minimum pulse width 200 μs ± 1 μs ± 1 sample period pulse delay			
Alarm	High when alarm condition of card is activated, low when not activated 200 μ s ± 1 μ s ± 1 sample period alarm event delay			
Recording active	High when recording, low when in idle or pause mode Recording active output delay of 450 ns			
Set High or Low	Output set High or Low; can be controlled by Custom Software Interface (CSI) extensions; delay depends on specific software implementation			
Gate time	1 to n samples (User selectable maximum Δt)			
Gate time and reading update rate	Gate time sets the ma	ximum update rate of t	he measurement value	?S
Gate time and minimum frequency	Minimum measured fr	requency or RPM = 1 / g	gate time	
Gate time and frequency accuracy	Accuracy = 50 ns / gate time			
Gate time impact	Gate time	1 us	10 us	100 us
	∆t Error	5%	0.5%	0.05%
	Update rate	1 MS/s	100 kS/s	10 kS/s
External start	Rising/Falling edge se	elected by user starts a	new recording	
External stop	Rising/Falling edge selected by the user stops the recording			

(1) Only if supported by mainframe.

Input Coupling Uni- and Bi-directional S	Signal	
Uni- and bi-directional input coupling is used when the direction signal is a stable signal.		
Signal Aw J	A = A = A = A = A = A = A = A = A = A =	
Count up	Count down Reset	
	Figure 14: Uni- and Bi-directional timing	
Inputs	3 pins: signal, reset and direction (only used in bi-directional count)	
Minimum pulse width (Δw)	100 ns	
Maximum input signal frequency	I frequency 5 MHz	
Counter range	0 to 231; uni-directional count -231 to +231 - 1; bi-directional count	
Gate measuring time	Sample period (1 / sample rate) to 50 s Can be selected by user to control update rate independent of sample rate	
Reset input		
Level sensitivity	User selectable invert level	
Minimum setup time prior to signal edge (Δ s)	100 ns	
Minimum hold time after signal edge (Δh)	100 ns	
Reset options		
Manual	Upon user request by software command	
Start recording	Count value set to 0 at Start of recording	
First reset pulse	First reset pulse After the recording is started, the first reset pulse sets the counter value to 0. The next reset pulses are ignored.	
Each reset pulse	On each external reset pulse, the counter value is reset to 0.	
Direction input		
Input Level sensitivity	Only used when in bi-directional mode Low: increment counter/positive frequency High: decrement counter/negative frequency	
Minimum setup time prior to signal edge (Δ s)	100 ns	
Minimum hold time after signal edge (Δ h)	100 ns	

Measurement Mode Angle

In angle measurement mode the counter will use a user defined maximum angle and revert back to zero when this count value is reached. Using the reset input the measured angle can be synchronized to the mechanical angle. The real-time calculators can extract the RPM from the measured angle independent from the mechanical synchronization.

Angle options	
Reference	User selectable. Enables the use of the reset pin to reference the mechanical angle to the measured angle
Angle at reference point	User defined to specify mechanical reference point
Reset pulse	Angle value is reset to user defined "angle at reference point" value
Pulses per rotation	User defined to specify the encoder/count resolution
Maximum pulses per rotation	32767
Maximum RPM	30 * sample rate (Example: Sample rate 10 kS/s means maximum 300 k RPM)

Measurement Mode Frequency/RPM

Measurement Mode Count/Position

Count/position mode is typically used for tracking movement of device under test.

To reduce the sensitivity for count/position errors due to clock glitches use the minimum pulse width filter or enable the ABZ in stead of uni-/bipolar input coupling.

Counter range	0 to 2 ³¹ ; uni-directional count
	-2 ³¹ to +2 ³¹ - 1; bi-directional count

Maximum Timer Inaccuracy

Timer accuracy is a tradeoff between update rate and minimum required accuracy. This table shows the relationships

Torque Measurement Uncertainty using Frequency Measurements

When using the Timer/Counter channels to measure torque, the measurement uncertainty introduced by the timer inaccuracies can be calculated using the following examples based on HBK T40 torque transducers. The T40 torque transducer comes with 3 variants for frequency output: 10 kHz, 60 kHz or 240 kHz center frequency. From the data sheets you can extract the minimum and maximum frequency output like table below.

T40 Variant	-Full Scale frequency output	+Full Scale frequency output
T40 - 10 kHz	5 kHz	15 kHz
T40 - 60 kHz	30 kHz	90 kHz
T40 - 240 kHz	120 kHz	360 kHz

Overlay these operating ranges on top of the timer inaccuracy plots of Figure 17 will result in Figure 18 (see below).

- Remains the step to balance the update rate (torque bandwidth) versus the torque accuracy required.
- Calculate the inaccuracy using the -Full Scale frequency output and desired measurement time.
- Using a minimum of 60 RPM the following inaccuracies are calculated.

Selected measurement time	Maximum inaccuracy: T40 - 240 kHZ	Maximum inaccuracy: T40 - 60 kHZ	Maximum inaccuracy: T40 - 10 kHZ
50 μs (left red curve)	0.1200%	0.1500%	Not possible
100 μs (left purple curve)	0.0546%	0.0750%	Not possible
500 μs (left orange curve)	0.0101%	0.0107%	0.0125%
1 ms (right blue curve)	0.0050%	0.0052%	0.0063%
2 ms (right red curve)	0.0025%	0.0025%	0.0028%
5 ms (right grey curve)	0.0010%	0.0010%	0.0010%

For K=1 (70% probability) use the specified rectangular distribution and the maximum inaccuracy numbers and calculate:

Medsarement andereatiney - Maximum inaccuracy 0.50 (conversion for receangular distribution)			
Measurement uncertainty K=1 (About 70% probability)	Maximum inaccuracy: T40 - 240 kHZ	Maximum inaccuracy: T40 - 60 kHZ	Maximum inaccuracy: T40 - 10 kHZ
50 μs (left red curve)	0.0696%	0.0870%	Not possible
100 μs (left purple curve)	0.0316%	0.0435%	Not possible
500 μs (left orange curve)	0.0059%	0.0062%	0.00725%
1 ms (right blue curve)	0.0029%	0.0029%	0.00365%
2 ms (right red curve)	0.00145%	0.0015%	0.00162%
5 ms (right grey curve)	0.00058%	0.0006%	0.00058%

Speed (RPM) Measurement Uncertainty using Frequency Measurements

When using the Timer/Counter channels to measure speed (RPM), the measurement uncertainty introduced by the timer inaccuracies can be calculated using the following example.				
In the data sheet of the sp	In the data sheet of the speed sensor locate the specified number of pulse per rotation to calculate the frequency range of			the frequency range of
Minimum frequency = mi	inimum RPM used	during testing * number	of pulse per rotation	/ 60 sec
Maximum frequency = ma	aximum RPM used	during testing * number	of pulse per rotation	/ 60 sec
Speed Sensor pulse per rotat	100			
	180	180 Hz		
	1024	300 HZ		
Quarlay these energing room	1024	1024 HZ		341.3 KHZ
 Remains the step to bala Using the graphs find the As examples the following 	ance the update rate e crossings of the ov ng crossings can be f	(torque bandwidth) versus the terlayed operating frequencies w found in the graphs (at 60 RPM)	orque accuracy required. ith the measurement time cur	ves.
Selected measurement time		180 pulse sensor	360 pulse sensor	1024 pulse sensor
	2 ms (red curve)	Can't record at 60 RPM	Can't record at 60 RPM	0.00256%
	5 ms (grey curve)	Can't record at 60 RPM	0.0018%	0.0010%
	10 ms (Green curve)	0.0009%	0.0006%	0.00051%
For K=1 (70% probability) use Measurement uncertaint	e the specified rectan	gular distribution and the maxin ccuracy * 0.58 (Conversi	num inaccuracy numbers and on for rectangular dis	calculate: tribution)
Measurement uncertainty K=1 (About 70% probability)		180 pulse sensor	360 pulse sensor	1024 pulse sensor
	2 ms (red curve)	Can't record at 60 RPM	Can't record at 60 RPM	0.00148%
	5 ms (grey curve)	Can't record at 60 RPM	0.00104%	0.00059%
	10 ms (Green curve)	0.00052%	0.00035%	0.00030%
Accuracy [%]	0.010%	1.0 10.0 Signal frequency	1024 pulses 360 pulses pulses 100.0 1000 [kHz]	0.0
Measurement time $-1 \text{ ms} -2 \text{ ms} -5 \text{ ms} -10 \text{ ms} -20 \text{ ms} -100 \text{ ms}$				
 	Figure 19: RPM sens	sor operating range versus inac	suracy and measurement time	

Simultaneous Dynamic Torque Ripple a	nd Accurate Torque Effic	iency Measurement	
If a high update rate is required to measure e.g. dynamic torque ripple yet for efficiency a high accuracy is required use both a measurement time of 50 µs as well as a RT-FDB function to calculate the mean value for each electric cycle. The measured torque signal coming from the timer counter will be 0.15 to 0.17% accurate, while the torque calculate for the electric cycle (typically being 1 ms or less) results in 0.0075% accuracy. As both signals are simultaneously available, the dynamic signal allows you to analyse the torque ripple behaviour, the electric cycle signal will be extremely accurate for efficiency calculations.			
Torque sensor Timer counter			/_raw: raw torque signal
	► Real-time math c @CycleMean(M_raw; "us	on timer M_ir ser defined")	st: instantaneous torque over user defined time
	Real-time math o @CycleMean(M_raw; Cy	on cycle M: t /cle_Master)	orque per detected cycle
Figure 20: Simultaneous dynamic and accurate torque calculations			
ePower signals	Application use	Dynamic response	Accuracy
M_raw	Torque ripple	Highest	Lowest
M_inst	Torque mean	Average	Average
M	Efficiency calculation	Lowest	Highest

Alarm Output	
Event channel alarm modes	High or low level check
Cross channel alarms	Logical OR of alarms from all measured channels
Alarm output	Active during valid alarm condition, output supported through mainframe
Alarm output level	High or low user selectable
Alarm output delay	515 μs ± 1 μs + maximum 1 sample period. Default 516 μs, compatible with standard behavior. Minimum selectable delay is the smallest delay available for all acquisition cards used within the mainframe. Delay equal to Trigger Out delay.
Selection per card	User selectable On/Off
Analog channel alarm modes	
Basic	Above or below level check
Dual	Outside or within bounds check
Analog channel alarm levels	
Levels	Maximum 2 level detectors
Resolution	16 bit (0.0015%) for each level

Triggering	
Channel trigger/qualifier	1 per channel; fully independent per channel, software selectable either trigger or qualifier
Pre- and post-trigger length	0 to full memory
Maximum trigger rate	400 triggers per second
Maximum delayed trigger	1000 seconds after a trigger occurred
Manual trigger (Software)	Supported
External Trigger In	
Selection per card	User selectable On/Off
Trigger In edge	Rising/Falling mainframe selectable, identical for all cards
Minimum pulse width	500 ns
Trigger In delay	±1 μs + maximum 1 sample period
Send to External Trigger Out	User can select to forward External Trigger In to the External Trigger Out BNC
External Trigger Out	
Selection per card	User selectable On/Off
Trigger Out level	High/Low/Hold High; mainframe selectable, identical for all cards
Trigger Out pulse width	High/Low: 12.8 µs Hold High: Active from first mainframe trigger to end of recording Pulse width created by mainframe; For details, please refer to the mainframe data sheet
Trigger Out delay	Selectable (10 µs to 516 µs) ± 1 µs + maximum 1 sample period Default 516 µs, compatible with standard behavior. Minimum selectable delay is the smallest delay available for all acquisition cards used within the mainframe
Cross channel triggering	
Measurement channels	Logical OR of triggers from all measured signals Logical AND of qualifiers from all measured signals
Calculated channels	Logical OR of triggers from all calculated signals (RT-FDB) Logical AND of qualifiers from all calculated signals (RT-FDB)
Analog channel trigger levels	
Levels	Maximum 2 level detectors
Resolution	16 bit (0.0015%) for each level
Direction	Rising/Falling; single direction control for both levels based on selected mode
Hysteresis	0.1 to 100% of Full Scale; defines the trigger sensitivity
Pulse detect/reject	Disable/Detect/Reject selectable. Maximum pulse width 65 535 samples
Analog channel trigger modes	
Basic	POS or NEG crossing; single level
Dual Level	One POS and one NEG crossing; two individual levels, logical OR
Analog channel qualifier modes	
Basic	Above or below level check. Enable/Disable trigger with single level
Dual	Outside or within bounds check. Enable/Disable trigger with dual level
Event channel trigger	
Event channels	Individual event trigger per event channel
Levels	Trigger on rising edge, falling edge or both edges
Qualifiers	Active High or Active Low for every event channel

On-board Memory	
Per card	200 MByte (100 MSample @ 16 Bits Storage)
Organization	Automatically distributed amongst channels enabled for storage or real-time calculations
Memory diagnostics	Automatic memory test when system is powered on but not recording
Storage sample size	16 bits, 2 bytes/sample

Patent Number : 7,868,886 Real-time extraction of basic signal parameters.

Supports real-time live scrolling and scoping waveform displays as well as real-time meters while recording.					
During recording reviews, it enhances speed for displaying and zooming extremely large recordings and it reduces the					
calculation time for statistical values on large data sets.					
Analog channels Maximum, Minimum, Mean, Peak to Peak, Standard Deviation and RMS values					
Event/Timer/Counter channels Maximum, Minimum and Peak to Peak values					

Data Recording Compared

	Aggregate sample rate limit	Maximum recorded data	Direct recording to drive	Trigger memory first	Trigger required to start recording
On start of acquisition	Yes	Free drive space	Yes	No	No
Wait for trigger	Yes	Free drive space	Yes	No	Yes
Wait for trigger to trigger memory first	No	Trigger memory	No	Yes	Yes
On start of acquisition reduced rate and	Reduced rate: Yes	Free drive space	Yes	No	No
wait for trigger to trigger memory first	Sample rate: No	Trigger memory	No	Yes	Yes

Aggregate sample rate limits when using streaming data

The maximum aggregate streaming rate per mainframe is defined by mainframe type and solid state drive, Ethernet speed, PC drive and other PC parameters.

When an aggregate sample rate is higher than the aggregate streaming rate of the system is selected, the memory on each acquisition card acts as a FIFO. As soon as this FIFO fills up, the recording is suspended (no data is recorded temporarily). During this period, the FIFO memory is transferred to a drive. When all FIFO's are empty, the recording is automatically resumed. User notifications are added to the recording file for post recording identification of suspended recording.

Triggered Recording Definiti	ons									
The details in this table apply to	D:									
Wait for trigger Wait for trigger memory first										
On start of acquisition reduced r	ate and wait for trigg	er to trigger memory f	irst							
Sweep		Trigger Stop-trigger								
- A			Dottroo	in angger	Post-trigger					
		←	Sw	veep						
	Defined by a trigger trigger signal.	signal, pre- and post-	rigger dat	a and optior	nally between-trigger d	lata and/or stop-				
Triggered data segments	-									
Pre-trigger data	Data recorded prior to a trigger signal. Note: If a trigger signal is received before the full length of pre-trigger data is recorded, the trigger is accepted and the pre-trigger data recorded is automatically reduced to the available pre-trigger data at the time of the trigger.									
Post-trigger data	Data recorded after Note: The recording <i>begins on</i> " selection	a trigger or stop-trigg g of the post-trigger da n.	er signal. ta can be	re-started or	delayed depending o	n the " <i>post-trigger</i>				
Between-trigger data	Data recorded due t The length of betwe trigger signals.	to re-trigger(s) or while een-trigger data is not	e waiting fo specified a	or the Stop-t and added b	rigger. ased on the timing of	the trigger or stop-				
Trigger signals										
Trigger signal	Jnal This signal ends the pre-trigger and starts the post-trigger data recording. See table section "Post-trigger begins on" for more details. A trigger signal can be set up on external input trigger, analog and digital channels as well as using cimple to complex PT EDP formulae									
Stop-trigger signal	This signal starts th See table section "F A stop-trigger signa	ne post-trigger data re Post-trigger begins on' als can be set up on ex	cording wh for more ternal inpu	nen in "post- details. ut trigger an	trigger begins on stop d simple to complex F	-trigger" mode. T-FDB formulas.				
Post-trigger begins on				<u> </u>	· · · · · · · · · · · ·					
First trigger				Trigger						
		Pre-trigger: 10.00	ms	Post	-trigger: 20.00 ms					
	T C .									
	Any trigger received Between-trigger dat	al ends the pre-trigger d during the post-trigg ta does not exist in thi	data recor er data rec s mode.	rding and sta cording is igr ner data	arts the recording of th hored.	e post-trigger data.				
Every trigger		· · · · · · · · · · · · · · · · · · ·	Frigger Trigg	ger 1	rigger					
		Pre-trigger: 10.00 ms			Post-trigger: 20.00 ms					
	The first trigger end Any trigger received All recorded post-tr	ls the pre-trigger data d during the post-trigg igger data recorded at	recording er data rec the time c	and starts th cording resta of the trigger	ne recording of the po arts the recording of po r is added to the betwo	st-trigger data. ost-trigger data. een-trigger data.				
Stop trigger	The resulting swee	o contains pre-, betwee	en- and the	e post-trigge	er data.					
Stop-trigger		Pre-trigger: 10.00 ms	Frigger Betwee	en-trigger	Stop-trigger Post-trigger: 20.00 ms					
	The trigger signal e stop-trigger then er Any trigger received Any stop-trigger red The resulting sweet	nds the pre-trigger dat ids the between-trigge d during the between-t ceived during the pre-t contains pre betwee	a recordin r data reco rigger and rigger and en- and the	g and starts ording and s post-trigger post-trigger post-trigger	the between-trigger c tarts the post-trigger c data recording is igno data recording is igno data a	lata recording. The data recording. ored. ored.				

Trigger Memory Filled While Recording							
The trigger memory is limited in size and can easily get filled when using high sample rates combined with high trigger rates. This section explains how triggers are handled when the trigger memory is completely filled.							
Post-trigger begins on Sweep recording selection							
First trigger	A new sweep is only recorded if both pre- and post-trigger data fits in the free trigger memory at the time a trigger signal is received. When not enough free trigger memory is available, only the trigger time and trigger source get recorded (No pre- or post data is recorded).						
Every trigger	A new sweep is started using the same rules as for the first trigger mode. If during the post-trigger recording a new trigger is received, the sweep is only extended with new post-trigger data if the additional post-trigger data fits the available free trigger memory. When not enough trigger memory is available, the already recorded pre-, between and post-trigger data for the previously received trigger(s) will be recorded.						
Stop-trigger signal	A new sweep is only recorded if both pre-, 2.5 ms between and post-trigger data fits in the free trigger memory at the time a trigger signal is received. If no stop-trigger signal is received before the trigger memory fills up, the sweep recording is automatically stopped at the time the trigger memory is completely filled.						

Triggered Recording Limits									
 The details in this table apply to: Wait for trigger Wait for trigger to trigger memory first On start of acquisition reduced rate and wait for trigger to trigger memory first 									
Wait for trigger to trigger memory first									
On start of acquisition reduced rate and wait for trigger to trigger memory first Wait for trigger									
Triggered data recording	Limited recor	ding time	Use available	e size of drive					
Sample rate	Unlimited sa	mple rates	Low to medium sample rates (Depending on system used)						
Channel count	Unlimited ch	annel count	Low to medium channel counts (Depending on system used)						
Maximum number of sweeps									
In trigger memory	2000		Not applicable						
In PNRF recording file	200 000		1						
Sweep parameters	Minimum	Maximum	Minimum	Maximum					
Pre-trigger length	0	Trigger memory of acquisition card	0	Available free drive space					
Post-trigger length	0	Trigger memory of acquisition card	0	0					
Sweep length	10 samples	Trigger memory of acquisition card	1 minute	Available free drive space					
Maximum sweeps rate	400/s	·	Not applicable						
Minimum time between-triggers	2.5 ms		Not applicable						
Dead time between sweeps	0 ms		Not applicable						

Data Recording Details (1)										
16 Bit Resolution										
Data Recording Mode	Wait for trigger to trigger memory first			On start of acquisition reduced rate and wait for trigger to trigger memory first						
	Enabled channels		Er	Enabled channels		Enabled channels				
	1 Ch	16 Ch	32 Ch	1 Ch	16 Ch	32 Ch	1 Ch	16 Ch	32 Ch	
Max. trigger memory		not used		100 MS	5.7 MS	2.7 MS	80 MS	4.5 MS	2.1 MS	
Max. trigger sample rate		not used		20 kS/s		250 kS/s				
Max. reduced FIFO	100 MS	5.7 MS	2.7 MS		not used		20 MS	0.9 MS	0.6 MS	
Max. (reduced) sample rate		20 kS/s			not used		Trigg	jer sample ra	te / 2	
Max. aggregate reduced streaming rate	0.02 MS/s 0.04 MB/s	0.32 MS/s 0.64 MB/s	0.64 MS/s 1.28 MB/s		not used		0.02 MS/s 0.04 MB/s	0.32 MS/s 0.64 MB/s	0.64 MS/s 1.28 MB/s	

(1) Terminology used in alignment with Perception software.

Environmental Specifications						
Temperature Range						
Operational	0 °C to +40 °C (+32 °F to +104 °F)					
Non-operational (Storage)	-25 °C to +70 °C (-13 °F to +158 °F)					
Thermal protection	Automatic thermal shutdown at 85 °C (+185 °F) internal temperature User warning notifications at 75 °C (+167 °F)					
Relative humidity	0% to 80%; non-condensing; operational					
Protection class	IP20					
Altitude	Maximum 2000 m (6562 ft) above sea level; operational					
Shock: IEC 60068-2-27						
Operational	Half-sine 10 g/11 ms; 3-axis, 1000 shocks in positive and negative direction					
Non-operational	Half-sine 25 g/6 ms; 3-axis, 3 shocks in positive and negative direction					
Vibration: IEC 60068-2-64						
Operational	1 g RMS, ½ h; 3-axis, random 5 to 500 Hz					
Non-operational	2 g RMS, 1 h; 3-axis, random 5 to 500 Hz					
Operational Environmental Tests						
Cold test IEC60068-2-1 Test Ad	-5 °C (+23 °F) for 2 hours					
Dry heat test IEC 60068-2-2 Test Bd	+40 °C (+104 °F) for 2 hours					
Damp heat test IEC 60068-2-3 Test Ca	+40 °C (+104 °F), humidity > 93% RH for 4 days					
Non-Operational (Storage) Environmental T	ests					
Cold test IEC-60068-2-1 Test Ab	-25 °C (-13 °F) for 72 hours					
Dry heat test IEC-60068-2-2 Test Bb	+70 °C (+158 °F) humidity < 50% RH for 96 hours					
Change of temperature test IEC60068-2-14 Test Na	-25 °C to +70 °C (-13 °F to +158 °F) 5 cycles, rate 2 to 3 minutes, dwell time 3 hours					
Damp heat cyclic test IEC60068-2-30 Test Db variant 1	+25 °C/+40 °C (+77 °F/+104 °F), humidity > 95/90% RH 6 cycles, cycle duration 24 hours					

Harmonized Standards for CE and UKCA Compliance, According to the Following Directives ⁽¹⁾							
Low Voltage Directive (LVD): 2014/35/EU Electromagnetic Compatibility Directive (EMC): 2014/30/EU							
Electrical Safety							
EN 61010-1 (2017)	Safety requirements for electrical equipment for measurement, control, and laboratory use - General requirements						
EN 61010-2-030 (2017)	Particular requirements for testing and measuring circuits						
Electromagnetic Comp	patibility						
EN 61326-1 (2013)	Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements						
Emission							
EN 55011	Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics Conducted disturbance: class B; Radiated disturbance: class A						
EN 61000-3-2	Limits for harmonic current emissions: class D						
EN 61000-3-3	Limitation of voltage changes, voltage fluctuations and flicker in public low voltage supply systems						
Immunity							
EN 61000-4-2	Electrostatic discharge immunity test (ESD); contact discharge ± 4 kV/air discharge ± 8 kV: performance criteria B						
EN 61000-4-3	Radiated, radio-frequency, electromagnetic field immunity test; 80 MHz to 2.7 GHz using 10 V/m, 1000 Hz AM: performance criteria A						
EN 61000-4-4	Electrical fast transient/burst immunity test Mains ± 2 kV using coupling network. Channel ± 2 kV using capacitive clamp: performance criteria B						
EN 61000-4-5	Surge immunity test Mains ± 0.5 kV/± 1 kV Line-Line and ± 0.5 kV/± 1 kV/± 2 kV Line-earth Channel ± 0.5 kV/± 1 kV using coupling network: performance criteria B						
EN 61000-4-6	Immunity to conducted disturbances, induced by radio-frequency fields 150 kHz to 80 MHz, 1000 Hz AM; 10 V RMS @ mains, 3 V RMS @ channel, both using clamp: performance criteria A						
EN 61000-4-11	Voltage dips, short interruptions and voltage variations immunity tests Dips: performance criteria A; Interruptions: performance criteria C						

(1) LA The manufacturer declares on its sole responsibility that the product is in conformity with the essential requirements of the applicable UK legislation and that the relevant conformity assessment procedures have been fulfilled.

Manufacturer:

Hottinger Brüel & Kjaer GmbH Im Tiefen See 45 64293 Darmstadt Germany

Importer:

Hottinger Bruel & Kjaer UK Ltd. Technology Centre Advanced Manufacturing Park Brunel Way Catcliffe Rotherham South Yorkshire S60 5WG United Kingdom

Connector Pin Assi	gnment								
Connector type		PC	SITRONIC HDC50	F5R8N0X/AA					
Mating connector type		Ha bla	arting part number anking piece 61030	9670505615 ()000041)	Metal shell 610300	10019, ca	ıble clamp 61030000145,		
Output voltage		5 \	/ ± 20%						
Output current		0.3	3 A maximum (all c	output pins inte	ernally connected)				
	Front View								
<u>CH 16 NEG.</u>		-0	RESERVED	CH 32 NEG.		6 0	RESERVED		
<u>CH 16 POS.</u>	RESERVED	33 16-	CH 8 NEG.	CH 32 POS.	RESERVED		CH 24 NEG.		
<u>CH 15 NEG.</u>	RESERVED	32 16-	CH 8 POS.	CH 31 NEG.	RESERVED		CH 24 POS.		
CH 15 POS.	RESERVED	3) 14-	CH 7 NEG.	CH 31 POS.	RESERVED	-0 ³	CH 23 NEG.		
<u>CH 14 NEG.</u>	RESERVED	9 9 13-	CH 7 POS.	CH 30 NEG.	RESERVED		CH 23 POS.		
<u>CH 14 POS.</u>	RESERVED	9 12-	CH 6 NEG.	CH 30 POS.	RESERVED	-00 -00 -00	CH 22 NEG.		
<u>CH 13 NEG.</u>	RESERVED	8 0)-	CH 6 POS.	CH 29 NEG.	RESERVED		CH 22 POS.		
CH 13 POS.	RESERVED	ଅ ଲ–	CH 5 NEG.	CH 29 POS.	RESERVED		CH 21 NEG.		
CH 12 NEG.	RESERVED	8 9 9–	CH 5 POS.	CH 28 NEG.	RESERVED		CH 21 POS.		
CH 12 POS.	SIG. GROUND	8 8	CH 4 NEG.	CH 28 POS.	SIG. GROUND	-41 ²⁵ 8-	CH 20 NEG.		
<u>CH 11 NEG.</u>	SIG. GROUND	9 9 0-	CH 4 POS.	CH 27 NEG.	SIG. GROUND	-00°	CH 20 POS.		
<u>CH 11 POS.</u>	SIG. GROUND	8 8	CH 3 NEG.	CH 27 POS.	SIG. GROUND		CH 19 NEG.		
<u>CH 10 NEG.</u>	5 V output	2	CH 3 POS.	CH 26 NEG.	5 V output		CH 19 POS.		
<u>CH 10 POS.</u>	5 V output	9 @	CH 2 NEG.	CH 26 POS.	5 V output		CH 18 NEG.		
CH 9 NEG.	5 V output	20 20-	CH 2 POS.	CH 25 NEG.	5 V output		CH 18 POS.		
		<u> </u>							

Figure 21: Input connector pin diagram (Front view)

CH 25 POS.

RESERVED

RESERVED

RESERVED

-09 2-

-18

⊕ॅ0

CH 17 NEG.

CH 17 POS.

RESERVED

RESERVED

CH 9 POS.

RESERVED

-69 0

-39

1

CH 1 NEG.

CH 1 POS.

KAB171, KAB172: Breakout Cables (Option, to be ordered separately)

Figure 22: KAB171/KAB172 breakout cable				
Cable length	1.5 m			
Cable type	Multiple coax cables bundled in a sleeve to minimize crosstalk between cables			
Coax cable	Axon RG178 B/U (RoHS compliant)			
Cable impedance	50 Ω, 105 pF/m			
Cable shield	All shields are connected to one another and connected to D-sub ground pins			
BNC label	Each BNC is labeled using color and text. Label indicates the channel number and the input type (positive or negative).			
Cable variants				
KAB171	D-sub connector to 16 male BNCs, 1 BNC/channel (single-ended) 16 coax cables (1 coax cable/channel), 5 V output not connected in cable			
KAB172	D-sub connector to 32 male BNCs, 2 BNCs/channel (differential) 32 coax cables (2 coax cables/channel), 5 V output not connected in cable			

G056, G058: Breakout Panels (Option, to be ordered separately)

Ordering Information								
Article		Description	Order No.					
Basic 20 kS/s input card		32 Channel 20 kS/s per channel Differential digitizer, 200 MB RAM per card, 16 bit. Support for mainframe Digital Event connector. The lack of 32 bit storage mode disables the use of the Timer/Counter functions.	1-GN3211					

Accessories, to be ordered separately					
Article		Description	Order No.		
16 channel single- ended break out cable		16 ch single-ended break out cable, HD-sub to 16x BNC, 2 m; for use with GEN DAQ GN1610, GN1611, GN3210 and GN3211 input cards	1-KAB171-2		
16 channel differential break out cable		16 ch differential break out cable, HD-sub to 32x BNC, 2 m; for use with GN1610, GN1611, GN3210 and GN3211 input cards	1-KAB172-2		
16 channel differential ended break out panel		16 ch differential 19 inch mountable 1 U (44.45 mm) height breakout panel; 16 x 2 BNC feed-through; to be used with 16 ch differential break out cable	1-G056		
32 channel single- ended break out panel	- A B B B B B B B B B B B B B B B B B B	32 ch single-ended 19-inch mountable 1 U (44.45 mm) height breakout panel; 32 BNC feed-through To be used with: GN3210/GN3211 using KAB171 GN840B/GN1640B using KAB433	1-G058		

Voltage Probes (Options, to be ordered separately)				
Article		Description	Order No.	
Passive, SE probe 10:1, 400 MHz, 10 MΩ, 1.2 m	States of the second se	Passive, single-ended voltage probe. Has a capacitive compensation range from 10 to 25 pF. Divide factor is 10:1, bandwidth is -3dB @ 400 MHz, maximum input voltage is 300 V RMS CAT II, maximum DC inaccuracy is 2%, and the probe connected to a channel has an input impedance of 10 M Ω . Probe cable length is 1.2 m (3.9 ft).	1-G901	
Passive, SE isolated probe, 100:1, 400 MHz, 100 MΩ		Passive, single-ended isolated voltage probe. Has a capacitive compensation range from 10 to 50 pF. The divide factor is 100:1, bandwidth is -3 dB ($@$ 400 MHz, maximum input voltage is 1000 V RMS CAT II, maximum DC inaccuracy is 2%, and the probe connected to a channel has an input impedance of 50 M Ω . Probe cable length is 2 m (6.5 ft).	1-G903	
Passive, DIFF matched isolated probe, 10:1, 100 MHz, 10 MΩ		Passive, differential matched isolated voltage probe. Has a capacitive compensation range from 35 to 70 pF. The divide factor is 10:1, the bandwidth is -3 dB @ 100 MHz, maximum input voltage is 300 V RMS CAT II, maximum DC In-accuracy is 2%, and the probe attached to a channel has an input impedance of 10 M Ω . Probe cable length is 3 m (9.8 ft).	1-G907	
Active, DIFF probe, 200:1, 25 MHz, 4 MΩ		Active, differential voltage probe. Supported by every input channel due to the active output. Divide factors of 20:1 and 200:1 can be manually selected. Supported bandwidth -3 dB @ 25 MHz. Maximum input voltage and common mode voltage both are 1000 V RMS. Maximum DC inaccuracy is 2%, and the probe has an input impedance of 4 M Ω on each input. Probe coax cable length is 0.95 m (3.12 ft).	1-G909	

Hottinger Brüel & Kjaer GmbH

Im Tiefen See 45 · 64293 Darmstadt · Germany Tel. +49 6151 803-0 · Fax +49 6151 803-9100 www.hbkworld.com · info@hbkworld.com

Subject to modifications. All product descriptions are for general information only. They are not to be understood as a guarantee of quality or durability.