

DATA SHEET

GEN series GN815 (GN816) Basic/IEPE ISO 2 MS/s (200 kS/s) Input Card

SPECIAL FEATURES

- IEPE transducer support
- TEDS Class 1 support for IEPE
- Isolated, unbalanced differential inputs
- ± 10 mV to ± 50 V input range
- Analog/digital anti-alias filters
- 18 bit at 2 MS/s (200 kS/s) sample rate
- 8 analog channels
- 2 GB (200 MB) memory
- Isolated metal BNC per channel
- Digital Event/Timer/Counter support
- 1 kV RMS CAT II probe
- 1 kV RMS differential probe
- Current clamps and burdens

GN815/GN816 Functions and Benefits

The GEN DAQ Basic/IEPE ISO 2 MS/s (200 kS/S) Input Card is a general purpose signal conditioner for use with voltage inputs, externally conditioned signals or probes and current clamps.

This card also supports IEPE transducers and TEDS Class 1 for easy setup of the acquisition channels. Built-in diagnostics supports automatic sensor connected, open or shorted detection.

The amplifier provides voltage inputs from ± 10 mV to ± 50 V. Optimum anti-alias protection is achieved by the 7-pole analog anti-alias filter combined with a fixed 2 MS/s sampling Analog-to-Digital converter.

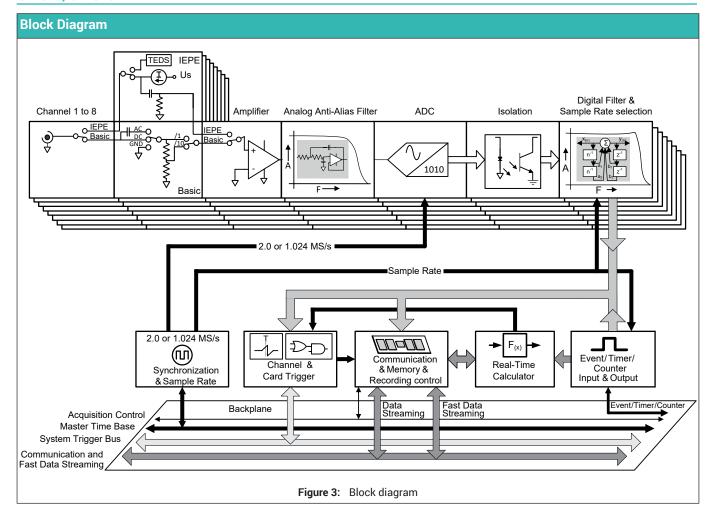
The digital filters operating at the full ADC sample rate offer a large range of high order anti-alias filter characteristics with precise phase match and noise-free digital output.

The GEN DAQ series input card offers 16 digital input events, two digital output events and two Timer/Counter channels.

Using voltage probes a single-ended 600 V RMS CAT III / 1000 V CAT II or a differential 1000 V RMS CAT III (1000 V RMS common mode) measurement range is created. The use of current clamps and external burdens allow for direct current measurements.

GN815/GN816

Capabilities Overview		
Model	GN815	GN816
Maximum sample rate per channel	2 MS/s	200 kS/s
Memory per card	2 GB	200 MB
Analog channels	8	
Anti-alias filters	Fixed bandwidth analog AA-filter combined with sample rate tracking digital AA-filter	
ADC resolution	18 bit	
Isolation	Channel to channel and channel to chassis	
Input type	Analog, isolated, unbalanced differential	
Passive voltage/current probes	Passive, singled-ended voltage probes	
Sensors	IEPE	
TEDS	Class 1, IEPE sensors	
Real-time cycle based calculators	Not supported	
Real-time formula database calculators (option)	Not supported	
Real-time calculated results output	Not supported	
Digital Event/Timer/Counter	16 digital events and 2 Timer/Counter channels	
Standard data streaming (CPCI up to 200 MB/s)	Not supported	
Fast data streaming (PCIe up to 1 GB/s)	Supported	
Slot width	1	


Mainframe Support						
	GEN2tB	GEN4tB	GEN7tA / GEN7tB	GEN17tA / GEN17tB	GEN3iA	GEN7iA ⁽¹⁾
GN815/GN816	Yes					
GEN DAQ API	Yes Yes ⁽²⁾					
EtherCAT®	No Yes No		lo			
CAN/CAN FD		Υ	es		N	lo

⁽¹⁾ GEN7iA with limited support (first three slots only)

⁽²⁾ Close Perception to enable GEN DAQ API access.

Supported Analog Sensors and Probes		
Perception input type	Sensor/probe types	Remarks
Basic voltage	 Single ended voltage input Passive single ended probes Active differential probes Current probes External current burdens 	Isolated BNC input
IEPE	 IEPE vibration sensors ICP® Accelerometers 2, 4, 6 or 8 mA @ ≥ 23 V 	 TEDS class I Automatic sensor connected, open or shorted diagnostics Isolated input

Supported Digital Sensors (TTL Level Input)			
Timer counter Input type	Supported digital sensors	Features	
Signal Direction	 HBK Torque sensors Torque sensors Speed sensors Position sensors 	 Angle measurement Frequency / RPM measurement Count/position measurement Count frequency up to 5 MHz Digital filter on input signals Several reset options RT-FDB can add a calculated Frequency/RPM channel based on the angle measurement 	
Direction 1 2 3 4 3 2 1 Wheel rotates clock wise Wheel rotates counter clock wise Figure 2: ABZ Incremental Encoder (Quadrature)	 HBK Torque sensors Torque sensors Speed sensors Position sensors 	 Angle measure Frequency / RPM measurement Count/position measurement Count frequency up to 2 MHz Digital filter on input signals Single, dual and quad precision count Transition tracking to avoid count drift Several reset options RT-FDB can add a calculated Frequency/RPM channel based on the angle measurement 	

Specifications and measurement uncertainty

Specifications are established using 23 °C environmental temperature.

For measurement uncertainty improvements, the system can be readjusted at a specific environmental temperature to minimize the impact of temperature drift.

Any analog amplifier error source is a linear function (y = ax + b)

- a % of reading error, represents the linear increasing error due to the increase of the input voltage: often referred to as gain error.
- **b** % of range error, represents the error when measuring 0 V; often referred to as offset error.

For measurement uncertainty these errors can be considered independent error sources.

Noise is not a separate error source outside of the standard specification.

Noise specifications are added separately in case you need dynamic accuracy on sample by sample level.

Only for sample by sample measurement uncertainty add the RMS noise error.

For e.g. power accuracy, the RMS noise error is already included in the power specifications.

Pass/Fail limits are rectangular distributed specifications, therefore measurement uncertainty is 0.58 * specified value.

Adding/removing or swapping cards

The specifications listed are valid for cards that have been calibrated and are used in the same mainframe, mainframe configuration and slots as they were at the time of calibration.

If cards are added, removed or relocated the thermal conditions of the card will change, resulting in additional thermal drift errors. The maximum expected error can be up to two times the specified Reading and Range error as well as 10 dB reduced common mode rejection.

Recalibration after configuration changes is therefore highly recommended.

		GN815/GN816
Analog Input Section		UNDIS/UNDIG
Channels	8	
Connectors	Isolated metal BNC	
Input type	Analog, isolated, unbalanced differential	
Input impedance		
1 MΩ impedance	± 1V ranges: ± 1% // 58 pF > ± 1V ranges: ± 10% All other ranges 66 pF ± 10%	
Input coupling	-	
Coupling modes	AC, DC, GND	
AC coupling frequency (1 MΩ impedance)	1.6 Hz ± 10%; - 3 dB	
100 31.62 10 8 3.16 1 0 0.31 0.1 0.00		10 20 [gp] 30 mag uit nde [dp] 40 M 60 0
Figure 4: Representative AC coupling response		
Ranges (1 MΩ impedance)	± 10 mV, ± 20 mV, ± 50 mV, ± 0.1 V, ± 0.2 V, ± 0	.5 V, ± 1 V, ± 2 V, ± 5 V, ± 10 V, ± 20 V, ± 50 V
Offset ± 50% in 1000 steps (0.1%); ± 50 V range has fixed 0% offset		
Common mode (referred to system ground)		
Ranges	Less than ± 2 V	Larger than or equal to ± 2 V
Rejection (CMR)	> 80 dB @ 80 Hz (100 dB typical)	> 60 dB @ 80 Hz (80 dB typical)

, , ,		
Ranges	Less than ± 2 V	Larger than or equal to ± 2 V
Rejection (CMR)	> 80 dB @ 80 Hz (100 dB typical)	> 60 dB @ 80 Hz (80 dB typical)
Maximum common mode voltage	33 V RMS	33 V RMS

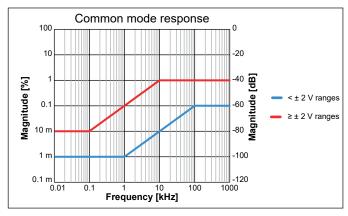
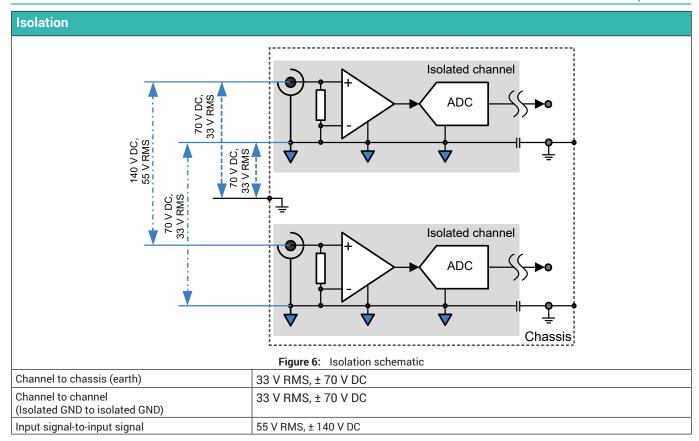


Figure 5: Representative common mode response

Input overload protection	
Overvoltage impedance change	The activation of the overvoltage protection system results in a reduced input impedance. The overvoltage protection is not active for as long as the input voltage remains less than 200% of the selected input range or 125 V, whichever value is the smallest.
Maximum nondestructive voltage	± 70 V DC
Overload recovery time	Restored to 0.1% accuracy in less than 5 µs after 200% overload

GN815/GN816


6

Voltage Specifications (Wideband) GN815 ⁽¹⁾		
	Pass/Fail limits	
DC gain error	0.035% of reading ± $35\mu\text{V}$	
DC Offset error	0.01% of Full Scale ± 200 μV	
Gain error drift	± 25 ppm/°C (± 14 ppm/°F)	
Offset error drift	±(45 ppm + 5 μV)/°C (±(25 ppm + 3 μV)/°F)	
RMS Noise (50 Ω terminated)	0.025% of Full Scale ± 50 μV	

(1) Wideband filter is valid for GN815 only.

Voltage Specifications (All Filters Used)		
	Pass/Fail limits	
DC gain error	0.035% of reading ± $35\mu\text{V}$	
DC Offset error	0.01% of Full Scale ± 35 μV	
Gain error drift	± 25 ppm/°C (± 14 ppm/°F)	
Offset error drift	±(45 ppm + 5 μV)/°C (±(25 ppm + 3 μV)/°F)	
RMS Noise (50 Ω terminated)	0.015% of Full Scale ± 20 μV	

IEPE Sensor	
Input ranges	± 10 mV, ± 20 mV, ± 50 mV, ± 0.1 V, ± 0.2 V, ± 0.5 V, ± 1 V, ± 2 V, ± 5 V, ± 10 V, ± 20 V
Overvoltage protection	- 1 V to 22 V
IEPE gain error	0.1% ± 250 μV
IEPE gain error drift	± 25 ppm/°C (± 14 ppm/°F)
IEPE compliance voltage	≥ 23 V
Excitation current	2, 4, 6, 8 mA, software selectable
Excitation current accuracy	± 5%
Coupling time constant	1.5 s
Lower bandwidth	-3 dB @ 0.11 Hz
Maximum cable length	100 m (RG-58)
TEDS support	Yes; class 1
Sensor diagnostics	Sensor connected, open or shorted
Supported sensors	IEPE vibration sensors ICP® Accelerometers

Analog to Digital Conversion		
	GN815	GN816
Sample rate; per channel	0.1 S/s to 2 MS/s	0.1 S/s to 200 kS/s
ADC resolution; one ADC per channel	18 bit	
ADC type	Successive Approximation Register (SAR); Analog Devices AD4003BCPZ	
Time base accuracy	Defined by mainframe: ± 3.5 ppm; aging after 10 years ± 10 ppm	

Anti-Alias Filters

Note on phase matching channels. Every filter characteristic and/or filter bandwidth selection comes with it's own specific phase response. Using different filter selections (Wideband⁽¹⁾/Bessel IIR/Butterworth IIR/etc.) or different filter bandwidths can result in phase mismatches between channels.

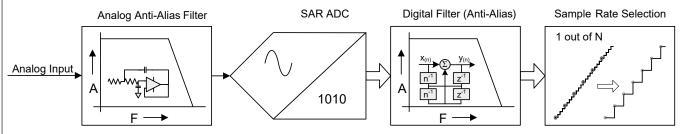


Figure 7: Combined analog and digital anti-alias filter block diagram

Anti-aliasing is prevented by a steep, fixed frequency analog anti-alias filter in front of the Analog to Digital Converter (ADC). The ADC always samples at a fixed sample rate. The fixed sample rate of the ADC avoids the need for different analog anti-alias filter frequencies. Directly behind the ADC, the high precision digital filter is used as anti-alias protection before the digital downsampling to the desired user sample rate is performed. The digital filter is programmed to a fraction of the user sample rate and automatically tracks any user sample rate selection. Compared to analog anti-alias filters, the programmable digital filter offers additional benefits like higher order filter with steep roll-off, a larger selection of filter characteristics, noise-free digital output and no additional phase shifts between channels that use the same filter settings.

Wideband ⁽¹⁾	When wideband is selected, there is neither an analog anti-alias filter nor any digital filter in the signal path. Therefore, there is no anti-alias protection when wideband is selected. Wideband should not be used if working in a frequency domain with recorded data.
Bessel IIR	When Bessel IIR filter is selected, this is always a combination of an analog Bessel anti- alias filter and a digital Bessel IIR filter to prevent aliasing at lower sample rates. Bessel filters are typically used when looking at signals in the time domain. They are best used for measuring transient signals or sharp edge signals like square waves or step responses.
Butterworth IIR	When Butterworth IIR filter is selected, this is always a combination of an analog Butterworth anti-alias filter and a digital Butterworth IIR filter to prevent aliasing at lower sample rates. This filter is best used when working in the frequency domain. When working in the time domain, this filter is best used for signals that are (close to) sine waves.
Elliptic IIR	When Elliptic IIR filter is selected, this is always a combination of an analog Butterworth anti-alias filter and a digital Elliptic IIR filter to prevent aliasing at lower sample rates. This filter is best used when working in the frequency domain. When working in the time domain, this filter is best used for signals that are (close to) sine waves.

(1) Wideband filter is valid for GN815 only.

8

Wideband (No Anti-Alias Protection) GN815(1) When wideband is selected, there is neither an analog anti-alias filter nor any digital filter in the signal path. Therefore, there is no anti-alias protection when wideband is selected. Wideband bandwidth | Between 950 kHz and 1300 kHz (-3 dB) 0.1 dB passband flatness DC to 200 kHz⁽²⁾ 4 V: Wideband overview 4 V: Wideband passband flatness 316 10 0.2 102.33 0.15 101.74 31 101.16 0.1 -30 **Wagnitude** [%] 3 m 0.3 m 0.3m 0.05 **[aB]**0 **Magnitnde [dB]** Magnitude [dB] **∑**_{100.58} -50 Magnitude -70 100 99.43 -90 30 μ 98.86 -110 -130 98 29 -0.2 -150 97.72 ∟ 0.1 10 100 Frequency [kHz] 10000 Frequency [kHz] 1000 1000 2 V: Wideband passband flatness 2 V: Wideband overview 10 102.33 0.2 0.15 101.74 3 -30 101.16 0.1 Magnitude [%] 0.05 0 Wagnitude [dB] **2** 100.58 //agnitude [dB] 0.3 -50 100 99.43 -90 -0.1 30 μ -0.15 -130 98.29 -150 10000 97.72 L 0.1 100 Frequency [kHz] Frequency [kHz]

Figure 8: Representative Wideband examples

- (1) Wideband filter is valid for GN815 only
- (2) Measured using a Fluke 5700A calibrator, DC normalized.

Bessel IIR Filter (Digital Anti-Alias) GN815 δp: Passband ripple δs: Stopband attenuation Magnitude [dB] ωp: Passband frequency ωc: Corner frequency ωs: Stopband frequency Figure 9: Digital Bessel IIR Filter When Bessel IIR filter is selected, this is always a combination of an analog Bessel anti-alias filter and a digital Bessel IIR filter. Analog anti-alias filter bandwidth 390 kHz ± 25 kHz (-3 dB) Analog anti-alias filter characteristic 7-pole Bessel, optimal step response Bessel IIR filter characteristic 8-pole Bessel style IIR Bessel IIR filter user selection Auto tracking for sample rate divided by: 10, 20, 40, 100 The user selects a division factor from the current sample rate; software then adjusts the filter when the sample rate is changed. Bessel IIR filter bandwidth (ωc) User selectable from 0.4 Hz to 200 kHz DC to 35 kHz @ $\omega c = 200 \text{ kHz}$ Bessel IIR 0.1 dB passband (ωp)(1) Bessel IIR filter stopband attenuation (δs) 60 dB With the Bessel IIR filter bandwidth selection of ωc = 200 kHz, a peak of -55 dB occurs between 1.6 MHz and 1.8 MHz due to limited analog anti-alias filter amplitude reduction. At lower bandwidth selections, the digital filter reduces this peak to -60 dB. Bessel IIR filter roll-off 48 dB/octave 4 V: Bessel 200 kHz overview 4 V: Bessel 200 kHz Passband flatness 316 10 102.33 0.2 0.15 31 -10 101.74 -30 0.1 101.16 **Magnitude** [%] 100.58 Magnitude [%] 图 0.3 0.05 -50 0.05 **o**.05 **o**. itude [3 m 0.3n 30 μ 98.86 -0.15 -130 98.29 -150 97.72 L 0.1 -0.2 10 100 Frequency [kHz] 1000 10000 10 Frequency [kHz] 1000 2 V: Bessel 200 kHz overview 2 V: Bessel 200 kHz Passband flatness 316 10 102.33 0.2 -10 101.74 0.15 31 -30 101.16 Magnitude [%] lagnitude [dB] ≥ 100.58 0.3 -50 0.05 Magnitude 3 m 100 0.05 0.3m -90 99 43 30 μ 98.86 0.15 -130 98.29 97.72 L 0.1 -150 -0.2 10 100 Frequency [kHz] Frequency [kHz] Figure 10: Representative Bessel IIR examples (GN815)

(1) Measured using a Fluke 5700A calibrator, DC normalized

Bessel IIR Filter (Digital Anti-Alias) GN816 δp: Passband ripple δs: Stopband attenuation Magnitude [dB] ωp: Passband frequency ωc: Corner frequency ωs: Stopband frequency Figure 11: Digital Bessel IIR Filter When Bessel IIR filter is selected, this is always a combination of an analog Bessel anti-alias filter and a digital Bessel IIR filter. Analog anti-alias filter bandwidth 390 kHz ± 25 kHz (-3 dB) Analog anti-alias filter characteristic 7-pole Bessel, optimal step response Bessel IIR filter characteristic 8-pole Bessel style IIR Bessel IIR filter user selection Auto tracking for sample rate divided by: 10, 20, 40, 100 The user selects a division factor from the current sample rate; software then adjusts the filter when the sample rate is changed. Bessel IIR filter bandwidth (ωc) User selectable from 0.4 Hz to 20 kHz DC to $3.5 \text{ kHz} @ \omega c = 20 \text{ kHz}$ Bessel IIR 0.1 dB passband (ωp)(1) Bessel IIR filter stopband attenuation (δs) 75 dB Bessel IIR filter roll-off 48 dB/octave 4 V: Bessel 20 kHz Overview 4 V: Bessel 20 kHz Passband flatness 10 102.33 02 101.74 3 101.16 Magnitude [%] /agnitude [dB] Magnitude [%] 0.05 0.3 -50 100.58 3 m 100 0.3n 99.43 98.86 30 ı -130 98.29 -150 10000 ∐-0.2 100 97.72 L 0.1 10 100 Frequency [kHz] Frequency [kHz] 2 V: Bessel 20 kHz Overview 2 V: Bessel 20 kHz Passband flatness 102.33 0.2 316 10 101.74 0.15 31 0.1 -30 101.16 Magnitude [%] 뛴 Magnitude [dB] **2** 100.58 0.3 -50 lagnitude **Magnitude** 3 n 100 99.43 0.3m 98.86 30 ı -130 98.29 -150 97.72 -0.2 10 100 Frequency [kHz] 1000 1000 10000 Frequency [kHz]

(1) Measured using a Fluke 5700A calibrator, DC normalized

B03997_05_E00_00 24/09/2025 11

Figure 12: Representative Bessel IIR examples (GN816)

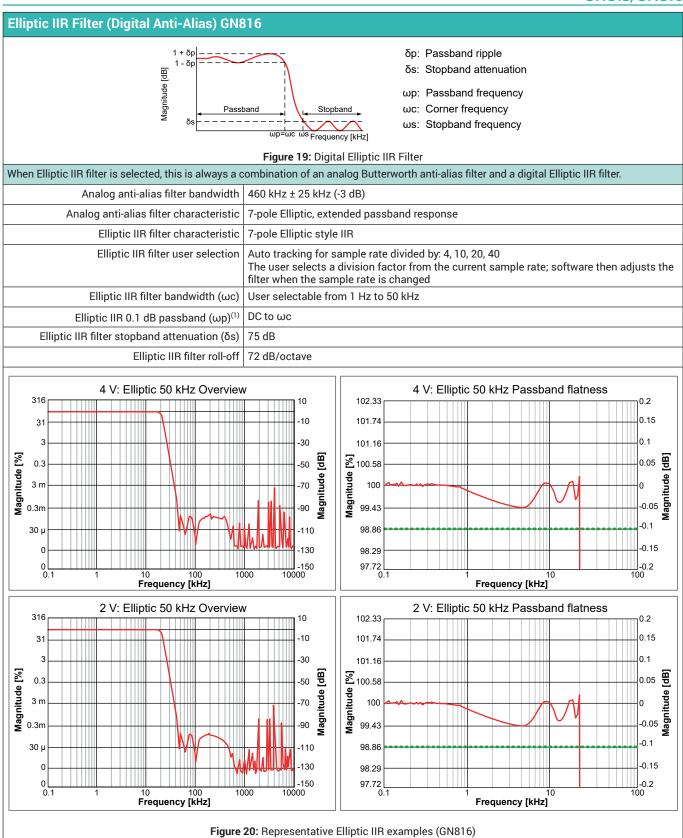
Butterworth IIR Filter (Digital Anti-Alias) GN815 δp: Passband ripple δs: Stopband attenuation Magnitude [dB] -3 dE ωp: Passband frequency ωc: Corner frequency Passband ωs: Stopband frequency Frequency [kHz] Figure 13: Digital Butterworth IIR Filter When Butterworth IIR filter is selected, this is always a combination of an analog Bessel anti-alias filter and a digital Butterworth IIR filter. Analog anti-alias filter bandwidth 460 kHz ± 25 kHz (-3 dB) Analog anti-alias filter characteristic 7-pole Bessel, extended passband response Butterworth IIR filter characteristic 8-pole Butterworth style IIR Butterworth IIR filter user selection Auto tracking for sample rate divided by: 4(1), 10, 20, 40 The user selects a division factor from the current sample rate; software then adjusts the filter when the sample rate is changed Butterworth IIR filter bandwidth (ωc) User selectable from 1 Hz to 250 kHz DC to 150 kHz @ ωc = 200 kHz Butterworth IIR 0.1 dB passband (ωp)(2) Butterworth IIR filter stopband attenuation (δs) 75 dB With the Butterworth IIR filter bandwidth selection of $\omega c = 250$ kHz, a peak of -60 dB occurs between 1.8 MHz and 2.2 MHz due to limited analog anti-alias filter amplitude reduction. At lower bandwidth selections, the digital filter reduces this peak to -75 dB. Butterworth IIR filter roll-off 48 dB/octave 4 V: Butterworth 200 kHz overview 4 V: Butterworth 200 kHz Passband flatness 316 10 102.33 0.2 -10 101.74 0 15 31 -30 101.16 0 1 Magnitude [%] **2** 100.58 Magnitude [dB] 0.05 0.3 -50 Magnitude 0 -0.05 **Magnitude** 3 n -70 100 -90 99.43 0.3n 98.86 30 L -0.15 -130 98.29 -150 -0.2 97.72 10 Frequency [kHz] 10 100 Frequency [kHz] 1000 10000 0. 100 1000 2 V: Butterworth 200 kHz overview 2 V: Butterworth 200 kHz Passband flatness 316 102.33 0.2 -10 101.74 0.15 31 0.1 -30 101.16 Magnitude [%] /agnitude [dB] **2** 100.58 gnitude [dB] 0.3 .50 Magnitude 3 n 100 99.43 0.3r.90 98.86 30 µ -0.15 -130 98 20 -150 -0.2 97.72 10 100 Frequency [kHz] 1000 10000 100 1000 Frequency [kHz]

- (1) Division by 4 not possible for the 2 MS/s sample rate
- (2) Measured using a Fluke 5700A calibrator, DC normalized

12 24/09/2025 B03997_05_E00_00

Figure 14: Representative Butterworth IIR examples (GN815)

Butterworth IIR Filter (Digital Anti-Alias) GN816 δp: Passband ripple δs: Stopband attenuation Magnitude [dB] -3 dE ωp: Passband frequency ωc: Corner frequency Passband ωs: Stopband frequency Frequency [kHz] Figure 15: Digital Butterworth IIR Filter When Butterworth IIR filter is selected, this is always a combination of an analog Bessel anti-alias filter and a digital Butterworth IIR filter. Analog anti-alias filter bandwidth 460 kHz ± 25 kHz (-3 dB) Analog anti-alias filter characteristic 7-pole Bessel, extended passband response Butterworth IIR filter characteristic 8-pole Butterworth style IIR Butterworth IIR filter user selection Auto tracking for sample rate divided by: 4, 10, 20, 40 The user selects a division factor from the current sample rate; software then adjusts the filter when the sample rate is changed Butterworth IIR filter bandwidth (ωc) User selectable from 1 Hz to 50 kHz DC to 35 kHz @ $\omega c = 50 \text{ kHz}$ Butterworth IIR 0.1 dB passband $(\omega p)^{(1)}$ Butterworth IIR filter stopband attenuation (δs) 75 dB Butterworth IIR filter roll-off 48 dB/octave 4 V: Butterworth 50 kHz Overview 4 V: Butterworth 50 kHz Passband flatness 316 10 102.33 0.2 31 -10 101.74 -30 101.16 Magnitude [%] ₹ 100.58 0.05 Magnitude 3 m 100 0.3m 99.43 30 μ 98.86 -0.1598.29 -150 97.72 -0.2 10 100 Frequency [kHz] 10000 Frequency [kHz] 2 V: Butterworth 50 kHz Overview 2 V: Butterworth 50 kHz Passband flatness 316 102.33 10 02 0.15 -10 101.74 3 -30 101.16 Magnitude [%] <u>B</u> **2** 100.58 0.3 -50 Magnitude 3 m 100 -0.05 0.3m 99.43 90 98.86 30 u -130 98 29 -0.2 97.72 150 0.1 100 10000 Frequency [kHz] Frequency [kHz] Figure 16: Representative Butterworth IIR examples (GN816)


(1) Measured using a Fluke 5700A calibrator, DC normalized

Elliptic IIR Filter (Digital Anti-Alias) GN815 δp: Passband ripple δs: Stopband attenuation Magnitude [dB] ωp: Passband frequency ωc: Corner frequency ωs: Stopband frequency ωp=ωc ωs Frequency [kHz] Figure 17: Digital Elliptic IIR Filter When Elliptic IIR filter is selected, this is always a combination of an analog Butterworth anti-alias filter and a digital Elliptic IIR filter. Analog anti-alias filter bandwidth 460 kHz ± 25 kHz (-3 dB) 7-pole Elliptic, extended passband response Analog anti-alias filter characteristic Elliptic IIR filter characteristic 7-pole Elliptic style IIR Elliptic IIR filter user selection Auto tracking for sample rate divided by: 4⁽¹⁾, 10, 20, 40 The user selects a division factor from the current sample rate; software then adjusts the filter when the sample rate is changed Elliptic IIR filter bandwidth (ωc) User selectable from 1 Hz to 250 kHz DC to ωc Elliptic IIR 0.1 dB passband (ωp)(2) Elliptic IIR filter stopband attenuation (δs) 75 dB With the Elliptic IIR filter bandwidth selection of $\omega c = 250$ kHz, a peak of -60 dB occurs between 1.8 MHz and 2.2 MHz due to limited analog anti-alias filter amplitude reduction. At lower bandwidth selections, the digital filter reduces this peak to -75 dB. Elliptic IIR filter roll-off 72 dB/octave 4 V: Elliptic 200 kHz overview 4 V: Elliptic 200 kHz Passband flatness 316 10 102.33 0.2 -10 101.74 0.15 31 30 101.16 Magnitude [%] 필 **2** 100.58 0.05 0.3 -50 Magnitude agnitude 3 m 100 0.3m -90 99.43 98.86 30 L -130 98.29 -150 -0.2 97.72 100 1000 10000 Frequency [kHz] Frequency [kHz] 2 V: Elliptic 200 kHz overview 2 V: Elliptic 200 kHz Passband flatness 316 102.33 0.2 10 101.74 -10 31 101 16 .30 **Magnitude [%]** 3 m 0.3 m 0.3m **≤** 100.58 <u>8</u> 0.05 -50 Magnitude **Aagnitude** 100 -0.05 99.43 98 86 30 μ 98.29 -130 97.72 100 Frequency [kHz] Frequency [kHz]

- (1) Division by 4 not possible for the 2 MS/s sample rate
- (2) Measured using a Fluke 5700A calibrator, DC normalized

24/09/2025 B03997_05_E00_00

Figure 18: Representative Elliptic IIR examples (GN815)

(1) Measured using a Fluke 5700A calibrator, DC normalized

Channel to Channel Phase Match

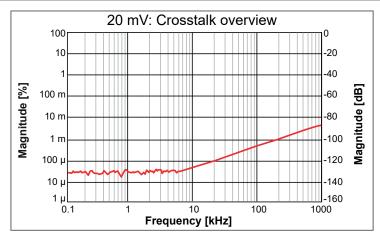
Using different filter selections (Wideband⁽¹⁾/Bessel IIR/Butterworth IIR/etc.) or different filter bandwidths results in phase mismatches between channels.

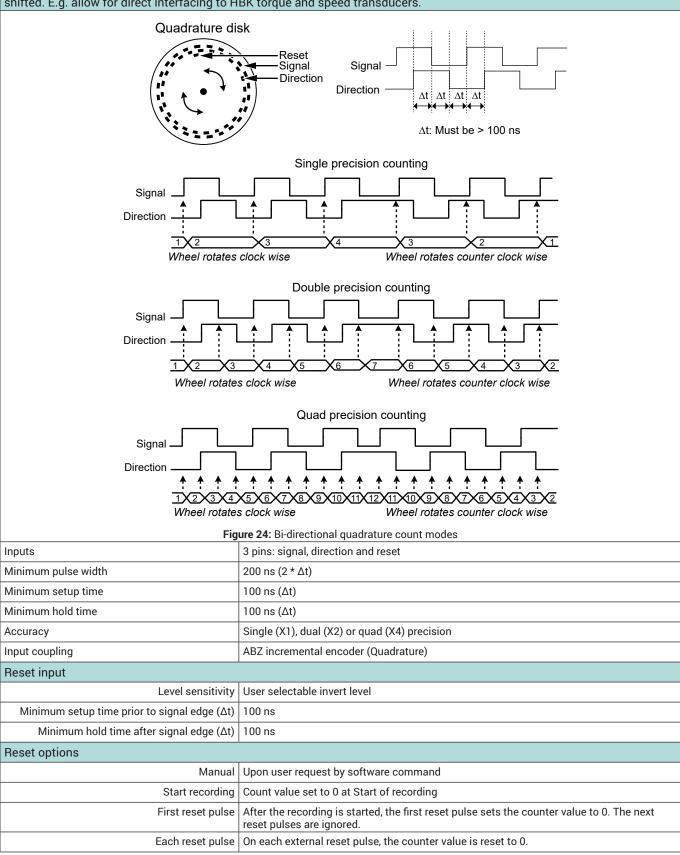
mismatches between channels.		nismatches between channels.					
	100 kHz Sine wave (GN815)	800 kHz Sine wave (GN815)	10 kHz Sine wave (GN816)				
Wideband ⁽¹⁾							
Channels on card	0.5 deg (14 ns)	2.0 deg (7 ns)					
GN815 Channels within mainframe	0.5 deg (14 ns)	2.0 deg (7 ns)					
Bessel IIR, Filter frequency 200 kHz @ 2 MS,	/s (GN815)						
Channels on card	0.5 deg (14 ns)						
GN815 Channels within mainframe	0.5 deg (14 ns)						
Butterworth IIR, Filter frequency 200 kHz @	2 MS/s (GN815)						
Channels on card	0.5 deg (14 ns)						
GN815 Channels within mainframe	0.5 deg (14 ns)						
Elliptic IIR, Filter frequency 200 kHz @ 2 MS/s (GN815)							
Channels on card	0.5 deg (14 ns)						
GN815 Channels within mainframe	0.5 deg (14 ns)						
Bessel IIR, Filter frequency 20 kHz @ 200 kS	/s (GN816)						
Channels on card			0.5 deg (0.14 μs)				
GN816 Channels within mainframe			0.5 deg (0.14 μs)				
Butterworth IIR, Filter frequency 20 kHz @ 2	00 kS/s; 10 kHz Sine wave ((GN816)					
Channels on card			0.5 deg (0.14 μs)				
GN816 Channels within mainframe			0.5 deg (0.14 μs)				
Elliptic IIR, Filter frequency 20 kHz @ 200 kS	/s (GN816)						
Channels on card			0.5 deg (0.14 µs)				
GN816 Channels within mainframe			0.5 deg (0.14 μs)				
GN815/GN816 channels across mainframes	Defined by synchronization m	ethod used (None, IRIG, GPS, N	Master/Sync, PTP)				
(a) 148 1 1 1 1 1 1 1 1 1	Widehand filter in valid for CNOTE only						

⁽¹⁾ Wideband filter is valid for GN815 only.

Channel to Channel Crosstalk

Channel to channel crosstalk is measured with a 50 Ω termination resistor on the input and uses sine wave signals on the channel above and below the channel being tested. To test Channel 2, Channel 2 is terminated with 50 Ω , while Channels 1 and 3 are connected to the sine wave generator.

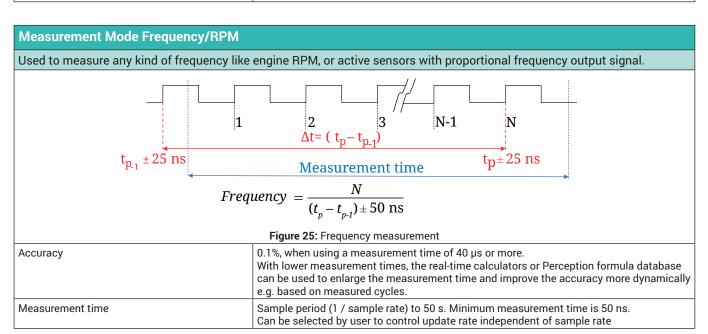



Figure 21: Representative Channel to Channel crosstalk

Digital Event/Timer/Counter The Digital Event/Timer/Counter input connector is located on the mainframe. For exact layout and pinning see mainframe data sheet. 20 MHz Update Measurement Sample Rate time Measurement Signal mode 16 bit Pulse width filter Sample Input Δt timer Scaling Rate Update Direction coupling Up/Down Up/Down 32 bit Pulse width filter Storage rate Angle or 16 bit Count Reset Reset Pulse width filter Sample 16 event bit Rate Storage Figure 22: Timer/Counter block diagram Digital input events 16 per card Levels TTL input level, user programmable invert level 1 pin per input, some pins are shared with Timer/Counter inputs Inputs Overvoltage protection ± 30 V DC continuously Minimum pulse width 100 ns Maximum frequency 5 MHz Digital output events 2 per card Levels TTL output levels, short circuit protected Output event 1 User selectable: Trigger, Alarm, set High or Low Output event 2 User selectable: Recording active, set High or Low Digital output event user selections 1 high pulse per trigger (on every channel trigger of this card only) Trigger 12.8 µs minimum pulse width 200 µs ± 1 µs ± 1 sample period pulse delay Alarm High when alarm condition of card is activated, low when not activated 200 µs ± 1 µs ± 1 sample period alarm event delay Recording active High when recording, low when in Idle or Pause mode Recording active output delay of 450 ns Set High or Low Output set High or Low; can be controlled by Custom Software Interface (CSI) extensions; delay depends on specific software implementation Timer/Counter 2 per card Levels TTL input levels 3 pins: signal, reset and direction Inputs All pins are shared with digital event inputs Uni-directional, Bi-directional and ABZ incremental encoder (Quadrature) Input coupling Measurement modes Count (C) Angle (0 to 360 degrees) Frequency (Δ count / Δ t) RPM (Δcount / Δt / 60 s) Timer accuracy ± 25 ns (20 MHz) Measurement time 1 to n samples (User selectable maximum Δt) Measurement time and reading update rate Measurement time sets the maximum update rate of the Measurement values Measurement time and minimum frequency Minimum measured frequency or RPM = 1 / Measurement time

Input Coupling Uni- and Bi-directional Signal Uni- and bi-directional input coupling is used when the direction signal is a stable signal. Δs Signal Direction Reset 6 Count down Count up Reset Figure 23: Uni- and Bi-directional timing Inputs 3 pins: signal, reset and direction (only used in bi-directional count) Minimum pulse width (Δw) 100 ns Maximum input signal frequency 5 MHz Reset input Level sensitivity User selectable invert level Minimum setup time prior to signal edge (Δ s) 100 ns Minimum hold time after signal edge (Δh) Reset options Manual Upon user request by software command Start recording Count value set to 0 at Start of recording After the recording is started, the first reset pulse sets the counter value to 0. The next First reset pulse reset pulses are ignored. On each external reset pulse, the counter value is reset to 0. Each reset pulse **Direction input** Input Level sensitivity Only used when in bi-directional mode Low: increment counter/positive frequency High: decrement counter/negative frequency Minimum setup time prior to signal edge (Δ s) 100 ns Minimum hold time after signal edge (Δh) 100 ns

Input Coupling ABZ Incremental Encoder (Quadrature)


Typically used for tracking rotating/moving devices using a decoder with two signals that are always 90 degree phase shifted. E.g. allow for direct interfacing to HBK torque and speed transducers.

Measurement Mode Angle

In angle measurement mode the counter will use a user defined maximum angle and revert back to zero when this count value is reached. Using the reset input the measured angle can be synchronized to the mechanical angle. The real-time calculators can extract the RPM from the measured angle independent from the mechanical synchronization.

Angle options			
Reference	User selectable. Enables the use of the reset pin to reference the mechanical angle to the measured angle		
Angle at reference point	User defined to specify mechanical reference point		
Reset pulse	Angle value is reset to user defined "angle at reference point" value		
Pulses per rotation	User defined to specify the encoder/count resolution		
Maximum pulses per rotation	32767		
Maximum RPM	30 * sample rate (Example: Sample rate 10 kS/s means maximum 300 k RPM)		

Measurement Mode Count/Position					
Count/position mode is typically used for tracking movement of device under test. To reduce the sensitivity for count/position errors due to clock glitches use the minimum pulse width filter or enable the AB in stead of uni-/bipolar input coupling.					
Counter range 0 to 2^{31} ; uni-directional count -2^{31} to $+2^{31}$ - 1; bi-directional count					

Frequency Measurement Inaccuracy

Frequency measurement accuracy is a tradeoff between update rate and minimum required accuracy. This table shows the relationships between measured signal frequency, selected measurement time (update rate) and frequency accuracy. The inaccuracy distribution is to be considered rectangular.

Calculate the inaccuracy by using:(1)	Signal frequency * $\left(CEILING\left(\frac{Measuring\ time}{30000\ *50\ ns}\right)\right)$ * 50 ns Inaccuracy = ± * * 100%
	Frequency prescaler *FLOOR $\left(\frac{\text{Signal frequency * Measuring time}}{\text{Frequency prescaler}}\right)$
	(Trequency presents)

Measurement	Higher signal frequencies: Signal frequency 2 MHz down to 10 kHz										
time	Worst case (in %)	2 MHz	1 MHz	500 kHz	400 kHz	200 kHz	100 kHz	50 kHz	40 kHz	20 kHz	10 kHz
1 μs	±10.000 @ ~2 MHz ⁽²⁾	±5.000%									
2 μs	±5.000 @ ~1 MHz ⁽²⁾	±2.5	500%								
5 μs	±2.000 @ ~400 kHz ⁽²⁾	±1.0	±1.000%		±1.000%						
10 μs	±1.000 @ ~200 kHz ⁽²⁾			±0.500%							
20 μs	±0.500 @ ~100 kHz ⁽²⁾			±0.	250%						
50 μs	±0.200 @ ~40 kHz ⁽²⁾		±0.100% ±0.125% ±0.100%					±0.100%			
100 us	±0.100 @ ~20 kHz ⁽²⁾		±0.050%								
200 us	±0.050 @ ~10 kHz ⁽²⁾		±0.0250%								
500 us	±0.020 @ ~4 kHz ⁽²⁾		±0.0100%								
1 ms	±0.0100 @ ~2 kHz ⁽²⁾		±0.0050%								
2 ms	±0.0100 @ ~1 kHz ⁽²⁾					±0.00	50%				
5 ms	±0.0080 @ ~400 Hz ⁽²⁾					±0.00	40%				
10 ms	±0.0070 @ ~200 Hz ⁽²⁾		±0.0035%								
20 ms	±0.0070 @ ~100 Hz ⁽²⁾		±0.0035%								
50 ms	±0.0068 @ ~40 Hz ⁽²⁾					±0.00	34%				
100 ms	±0.0067 @ ~20 Hz ⁽²⁾					±0.003	335%				
·											

Measurement	Lower signal freque	ncies: Sigr	nal frequen	cy 5 kHz d	own to 40	Hz					
time	Worst case (in %)	5 kHz	4 kHz	2 kHz	1 kHz	500 Hz	400 Hz	200 Hz	100 Hz	50 Hz	40 Hz
500 us	±0.0200 @ ~4 kHz ⁽²⁾	±0.0125%	±0.0125% ±0.0100%								
1 ms	±0.0100 @ ~2 kHz ⁽²⁾		±0.0050%								
2 ms	±0.0100 @ ~1 kHz ⁽²⁾		±0.0050%								
5 ms	±0.0080 @ ~400 Hz ⁽²⁾		±0.0040%			±0.00500%	±0.0040%				
10 ms	±0.0070 @ ~200 Hz ⁽²⁾		±0.00359		±0.0035%						
20 ms	±0.0070 @ ~100 Hz ⁽²⁾		±0.0035%								
50 ms	±0.0068 @ ~40 Hz ⁽²⁾		±0.0034%				±0.0043%	±0.0034%			
100 ms	±0.0067 @ ~20 Hz ⁽²⁾					±0.003	35%				

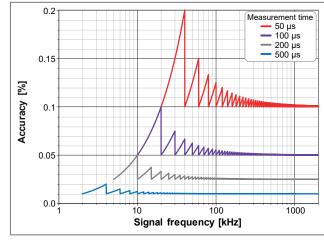


Figure 26: Maximum frequency inaccuracy

- (1) Note: Keep the Frequency PreScaler as small as possible for the selected frequency range to get the best accuracy.
- (2) The worst case scenario signal frequency is slightly below the displayed value, consistent with the sawtooth pattern observed in Figure 26.

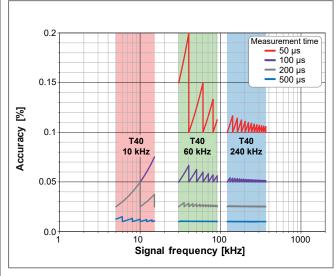
Torque Measurement Uncertainty using Frequency Measurements

When using the Timer/Counter channels to measure torque, the measurement uncertainty introduced by the timer inaccuracies can be calculated using the following examples based on HBK T40 torque transducers.

The T40 torque transducer comes with 3 variants for frequency output: 10 kHz, 60 kHz or 240 kHz center frequency. From the datasheets you can extract the minimum and maximum frequency output like table below.

T40 Variant	-Full Scale frequency output	+Full Scale frequency output
T40 - 10 kHz	5 kHz	15 kHz
T40 - 60 kHz	30 kHz	90 kHz
T40 - 240 kHz	120 kHz	360 kHz

Overlay these operating ranges on top of the timer inaccuracy plots of Figure 26 will result in Figure 27 (see below).


- Remains the step to balance the update rate (torque bandwidth) versus the torque accuracy required.
- Calculate the inaccuracy using the Full Scale frequency output and desired measurement time.

Selected measurement time	Maximum inaccuracy: T40 - 240 kHZ	Maximum inaccuracy: T40 - 60 kHZ	Maximum inaccuracy: T40 - 10 kHZ
50 μs	0.1167%	0.2000%	Not possible
100 μs	0.0542%	0.0667%	Not possible
500 μs	0.0102%	0.0107%	0.0150%
1 ms	0.0050%	0.0052%	0.0060%
2 ms	0.0050%	0.0051%	0.0055%
5 ms	0.0040%	0.0040%	0.0042%

For K=1 (70% probability) use the specified rectangular distribution and the maximum inaccuracy numbers and calculate:

Measurement uncertainty = Maximum inaccuracy * 0.58 (Conversion for rectangular distribution)

Measurement uncertainty K=1 (About 70% probability)	Maximum inaccuracy: T40 - 240 kHZ	Maximum inaccuracy: T40 - 60 kHZ	Maximum inaccuracy: T40 - 10 kHZ
50 μs	0.0677%	0.1160%	Not possible
100 μs	0.0314%	0.0387%	Not possible
500 μs	0.0059%	0.0062%	0.0087%
1 ms	0.0029%	0.0030%	0.0035%
2 ms	0.0029%	0.0029%	0.0032%
5 ms	0.0023%	0.0023%	0.0024%

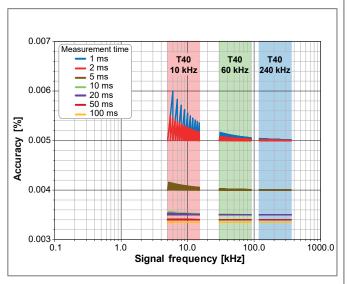


Figure 27: Torque operating range versus inaccuracy and measurement time

Speed (RPM) Measurement Uncertainty using Frequency Measurements

When using the Timer/Counter channels to measure speed (RPM), the measurement uncertainty introduced by the timer inaccuracies can be calculated using the following example.

In the datasheet of the speed sensor locate the specified number of pulse per rotation to calculate the frequency range of the sensor output:

Minimum frequency = minimum RPM used during testing \star number of pulse per rotation / 60 sec Maximum frequency = maximum RPM used during testing \star number of pulse per rotation / 60 sec

Speed Sensor pulse per rotation	Frequency at 60 RPM	Frequency at 10000 RPM	Frequency at 30000 RPM
180	180 Hz	30 kHz	90 kHz
360	360 Hz	60 kHz	180 kHz
1024	1024 Hz	170.7 kHz	512 kHz

Overlay these operating ranges on top of the timer inaccuracy plots of Figure 26 will result in Figure 28 (see below).

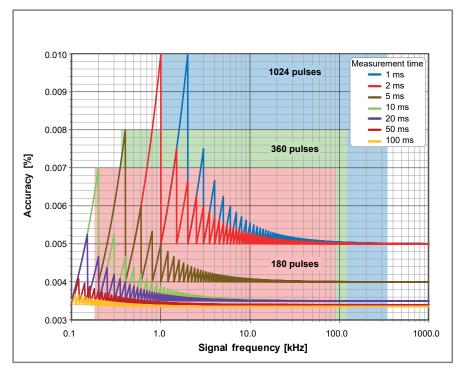
- Remains the step to balance the update rate (RPM change updates per second) versus the RPM accuracy required.
- Using the graphs find the crossings of the overlayed operating frequencies with the measurement time curves.
- As examples the following crossings can be found in the graphs (at 60 RPM)

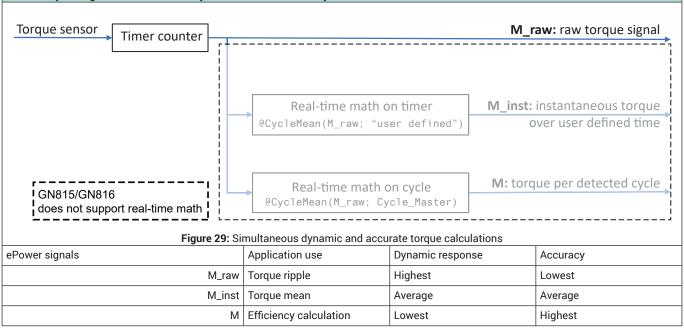
Selected measurement time	180 pulse sensor	360 pulse sensor	1024 pulse sensor
2 ms	Can't record at 60 RPM	Can't record at 60 RPM	0.0051%
5 ms	Can't record at 60 RPM	0.0072%	0.0041%
10 ms	0.0063%	0.0042%	0.0036%

For K=1 (70% probability) use the specified rectangular distribution and the maximum inaccuracy numbers and calculate:

Measurement uncertainty = Maximum inaccuracy * 0.58 (Conversion for rectangular distribution)

Medsurement undertainty Maximum indecuracy 0.50 (conversion for rectangular distribution)				
Measurement uncertainty K=1 (About 70% probability)		180 pulse sensor	360 pulse sensor	1024 pulse sensor
	2 ms	Can't record at 60 RPM	Can't record at 60 RPM	0.0030%
	5 ms	Can't record at 60 RPM	0.0042%	0.0024%
	10 ms	0.0037%	0.0024%	0.0021%




Figure 28: RPM sensor operating range versus inaccuracy and measurement time

Simultaneous Dynamic Torque Ripple and Accurate Torque Efficiency Measurement

If a high update rate is required to measure e.g. dynamic torque ripple yet for efficiency a high accuracy is required use a measurement time of 50 µs to calculate the mean value for each electric cycle.

The measured torque signal coming from the timer counter will be 0.15 to 0.17% accurate, while the torque calculate for the electric cycle (typically being 1 ms or less) results in 0.0075% accuracy.

As both signals are simultaneously available, the dynamic signal allows you to analyse the torque ripple behaviour, the electric cycle signal will be extremely accurate for efficiency calculations.

Alarm Output	
Event channel alarm modes	High or low level check
Cross channel alarms	Logical OR of alarms from all measured channels
Alarm output	Active during valid alarm condition, output supported through mainframe
Alarm output level	High or low user selectable
Alarm output delay	515 µs ± 1 µs + maximum 1 sample period. Default 516 µs, compatible with standard behavior. Minimum selectable delay is the smallest delay available for all acquisition cards used within the mainframe. Delay equal to Trigger Out delay.
Selection per card	User selectable On/Off
Analog channel alarm modes	
Basic	Above or below level check
Dual	Outside or within bounds check
Analog channel alarm levels	
Levels	Maximum 2 level detectors
Resolution	16 bit (0.0015%) for each level

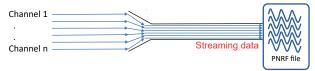
24

Pre- and post-trigger length 0 to fu Maximum trigger rate 400 tr	channel; fully independent per channel, software selectable either trigger or qualifier ull memory riggers per second seconds after a trigger occurred
Pre- and post-trigger length 0 to fu Maximum trigger rate 400 tr Maximum delayed trigger 1000 s Manual trigger (Software) Suppo	ull memory riggers per second
Maximum trigger rate 400 tr Maximum delayed trigger 1000 s Manual trigger (Software) Suppo	riggers per second
Maximum delayed trigger 1000 s Manual trigger (Software) Suppo	
Manual trigger (Software) Suppo	seconds after a trigger occurred
External Trigger In	orted
Selection per card User s	selectable On/Off
Trigger In edge Rising	g/Falling mainframe selectable, identical for all cards
Minimum pulse width 500 ns	is
Trigger In delay ± 1 µs	s + maximum 1 sample period
Send to External Trigger Out User of	can select to forward External Trigger In to the External Trigger Out BNC
External Trigger Out	
Selection per card User s	selectable On/Off
Trigger Out level High/	(Low/Hold High; mainframe selectable, identical for all cards
Hold F	/Low: 12.8 µs High: Active from first mainframe trigger to end of recording width created by mainframe; For details, please refer to the mainframe data sheet
Defau Minim	table (10 µs to 516 µs) ± 1 µs + maximum 1 sample period ult 516 µs, compatible with standard behavior. num selectable delay is the smallest delay available for all acquisition cards used n the mainframe
Cross channel triggering	
	al OR of triggers from all measured signals al AND of qualifiers from all measured signals
	ral OR of triggers from all calculated signals (RT-FDB) ral AND of qualifiers from all calculated signals (RT-FDB)
Analog channel trigger levels	
Levels Maxin	mum 2 level detectors
Resolution 16 bit	t (0.0015%) for each level
Direction Rising	g/Falling; single direction control for both levels based on selected mode
Hysteresis 0.1 to	100% of Full Scale; defines the trigger sensitivity
Analog channel trigger modes	
Basic POS o	or NEG crossing; single level
Dual Level One P	POS and one NEG crossing; two individual levels, logical OR
Analog channel qualifier modes	
Basic Above	e or below level check. Enable/Disable trigger with single level
Dual Outsid	de or within bounds check. Enable/Disable trigger with dual level
Event channel trigger	
Event channels Individ	dual event trigger per event channel
Levels Trigge	er on rising edge, falling edge or both edges
Qualifiers Active	e High or Active Low for every event channel

On-board Memory	
Per card	GN815: 2 GB (1 GS @ 16 bits, 500 MS @ 18 bits storage) GN816: 200 MB (100 MS @ 16 bits storage)
Organization	Automatically distributed amongst channels enabled for storage
Memory diagnostics	Automatic memory test when system is powered on but not recording
Storage sample size	User selectable 16 or 18 bits 16 bits, 2 bytes/sample 18 bits, 4 bytes/sample

GN815/GN816

Real-time Statstream®


Patent Number: 7,868,886

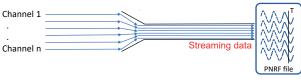
Real-time extraction of basic signal parameters.
Supports real-time live scrolling and scoping waveform displays as well as real-time meters while recording.
During recording reviews, it enhances speed for displaying and zooming extremely large recordings and it reduces the calculation time for statistical values on large data sets.

Analog channels	Maximum, Minimum, Mean, Peak to Peak, Standard Deviation and RMS values
Event/Timer/Counter channels	Maximum, Minimum and Peak to Peak values

Data Recording Modes

On start of acquisition

recording time is limited by the size of drive. Note: As the aggregate sample rate limit depends on Ethernet speed and storage drive used, as well as the PC and drive not being used for other purposes as data recording, it is strongly recommended for higher aggregate sample rates to test the chosen setup prior to performing

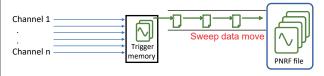

Recorded data is continuously streamed into the recording file on a

Data recording to a drive is limited by an aggregate sample rate, the

mainframe or PC drive

your test.

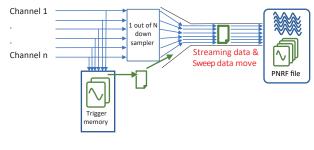
On trigger


Recorded data is continuously streamed into the recording file on a mainframe or PC drive, but only the data before and after a single trigger event, the so-called 'pre-trigger' and 'post-trigger' data, is retained in the

Trigger data recording to a drive is limited by an aggregate sample rate, the recording time is limited by the size of drive.

Note: As the aggregate sample rate limit depends on Ethernet speed and storage drive used, as well as the PC and drive not being used for other purposes as data recording, it is strongly recommended for higher aggregate sample rates to test the chosen setup prior to performing your test.

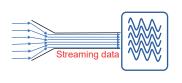
Not recommended for transient/one time only/destructive tests.


On trigger - buffered with Low rate Storage disabled

Triggered data recording to trigger memory on the acquisition card. Triggered data recording to trigger memory has no sample rate limits, the recording time is limited by the size of trigger memory. Triggered data recorded in trigger memory is moved to a drive as quickly as possible.

Note: This data recording mode guarantees the data will always be recorded according to the user defined settings. Recommended for transient/one time only/destructive tests.

On trigger - buffered with Low rate Storage enabled



Data recording to PC or mainframe drive and simultaneous triggered data recording to trigger memory on the acquisition card. The Low rate data recording to a drive is limited by an aggregate sample rate and the recording time is limited by the size of drive. The triggered data recording to trigger memory has no sample rate limits, the triggered data recording time is limited by the size of trigger memory. The triggered data recorded in trigger memory is moved to a drive as quickly as possible. As this data move happens simultaneously with the Low rate data recording, it uses bandwidth of the aggregate sample rate. Note: As the aggregate sample rate limit depends on Ethernet speed and storage drive used, as well as the PC and drive not being used for other purposes as data recording, it is strongly recommended for higher aggregate sample rates as well as higher number of triggers per second to test the chosen setup prior to performing your test.

Data Recording Compared

	Aggregate sample rate limit	Maximum recorded data	Direct recording to drive	Trigger memory first	Trigger required to start recording
On start of acquisition	Yes	Free drive space	Yes	No	No
On trigger	Yes	Free drive space	Yes	No	Yes
On trigger - buffered with Low rate Storage disabled	No	Trigger memory	No	Yes	Yes
On trigger - buffered with Low rate	Low rate: Yes	Free drive space	Yes	No	No
Storage enabled	High rate: No	Trigger memory	No	Yes	Yes

Aggregate sample rate limits when using streaming data

The maximum aggregate streaming rate per mainframe is defined by mainframe type and solid state drive, Ethernet speed, PC drive and other PC parameters.

When an aggregate sample rate is higher than the aggregate streaming rate of the system is selected, the memory on each acquisition card acts as a FIFO. As soon as this FIFO fills up, the recording is suspended (no data is recorded temporarily). During this period, the FIFO memory is transferred to a drive. When all FIFO's are empty, the recording is automatically resumed. User notifications are added to the recording file for post recording identification of suspended recording.

Triggered Recording Definitions The details in this table apply to the next recording modes: On trigger - buffered with Low rate Storage disabled • On trigger - buffered with Low rate Storage enabled Start acquisition Stop acquisition 4 Pre: 600.0 ms Post: 400.0 ms Group 3 - - - - - - - - - = Sample based Defined by a trigger signal, pre- and post-trigger data and optionally between-trigger data and/or stoptrigger signal. Triggered data segments Pre-trigger data Data recorded prior to a trigger signal. Note: If a trigger signal is received before the full length of pre-trigger data is recorded, the trigger is accepted and the pre-trigger data recorded is automatically reduced to the available pre-trigger data at Data recorded after a trigger or stop-trigger signal. Post-trigger data Note: The recording of the post-trigger data can be re-started or delayed depending on the "post-trigger begins on" selection. Between-trigger data Data recorded due to re-trigger(s) or while waiting for the Stop-trigger. The length of between-trigger data is not specified and added based on the timing of the trigger or stoptrigger signals. Trigger signals Trigger signal This signal ends the pre-trigger and starts the post-trigger data recording. See table section "Post-trigger begins on" for more details. A trigger signal can be set up on external input trigger, analog and digital channels as well as using simple to complex RT-FDB formulas. This signal starts the post-trigger data recording when in "post-trigger begins on stop-trigger" mode. Stop-trigger signal See table section "Post-trigger begins on" for more details. A stop-trigger signals can be set up on external input trigger and simple to complex RT-FDB formulas. Post-trigger begins on First trigger ► Start acquisition Stop acquisition < Pre: 800.0 ms Post: 200.0 ms Cycle based · · · · · · · · · · · · The first trigger signal ends the pre-trigger data recording and starts the recording of the post-trigger data. Any trigger received during the post-trigger data recording is ignored. Between-trigger data does not exist in this mode. The resulting sweep contains pre- and the post-trigger data. ► Start acquisition Stop < Every trigger Pre: 800.0 ms | Post: ≥ 200.0 ms Group 1 Cycle based The first trigger ends the pre-trigger data recording and starts the recording of the post-trigger data. Any trigger received during the post-trigger data recording restarts the recording of post-trigger data. All recorded post-trigger data recorded at the time of the trigger is added to the between-trigger data. The resulting sweep contains pre-, between- and the post-trigger data. ▶ Start acquisition Stop trigger Stop 4 acquisition Pre: 800.0 ms Post: 200.0 ms The trigger signal ends the pre-trigger data recording and starts the between-trigger data recording. The stop-trigger then ends the between-trigger data recording and starts the post-trigger data recording. Any trigger received during the between-trigger and post-trigger data recording is ignored. Any stop-trigger received during the pre-trigger and post-trigger data recording is ignored. The resulting sweep contains pre-, between- and the post-trigger data.

Trigger Memory Filled While Recording								
	The trigger memory is limited in size and can easily get filled when using High rate samples combined with high trigger rates. This section explains how triggers are handled when the trigger memory is completely filled.							
Post-trigger begins on	Sweep recording selection							
First trigger	A new sweep is only recorded if both pre- and post-trigger data fits in the free trigger memory at the time a trigger signal is received. When not enough free trigger memory is available, only the trigger time and trigger source get recorded (No pre- or post data is recorded).							
Every trigger	A new sweep is started using the same rules as for the first trigger mode. If during the post-trigger recording a new trigger is received, the sweep is only extended with new post-trigger data if the additional post-trigger data fits the available free trigger memory. When not enough trigger memory is available, the already recorded pre-, between and post-trigger data for the previously received trigger(s) will be recorded.							
Stop-trigger	A new sweep is only recorded if both pre-, 2.5 ms between and post-trigger data fits in the free trigger memory at the time a trigger signal is received. If no stop-trigger signal is received before the trigger memory fills up, the sweep recording is automatically stopped at the time the trigger memory is completely filled.							

Triggered Recording Limits

The details in this table apply to the next recording modes:

- On trigger
 On trigger buffered with Low rate Storage disabled

On trigger - buffered with Low rate Storage enabled						
	On trigger	- buffered, independent of Low rate Storage	On trigger			
Triggered data recording	Limited recor	rding time	Use available	e size of drive		
Sample rate	Unlimited sar	mple rates		Low to medium sample rates (Depending on system used)		
Channel count	Unlimited cha	annel count		Low to medium channel counts (Depending on system used)		
Maximum number of sweeps						
In trigger memory	2000		Not applicable			
In PNRF recording file	200 000		1			
Sweep parameters	Minimum	Maximum	Minimum	Maximum		
Pre-trigger length	0	Trigger memory of acquisition card	0	Available free drive space		
Post-trigger length	0	Trigger memory of acquisition card	0	0		
Sweep length	10 samples	Trigger memory of acquisition card	1 second	Available free drive space		
Maximum sweeps rate	400/s		Not applicable			
Minimum time between-triggers	2.5 ms		Not applicable			
Dead time between sweeps	0 ms		Not applicable			

Data Recording Detail	s (GN815)	(1)							
16 Bit Resolution									
Data Recording Mode	On start of acquisition & Wait for trigger		Wait for tr	Wait for trigger to trigger memory first		On start of acquisition reduced rate and wait for trigger to trigger memory first			
	Er	abled chann	els	En	abled chann	els	Er	nabled chann	els
	1 Ch	8 Ch	8 Ch & events	1 Ch	8 Ch	8 Ch & events	1 Ch	8 Ch	8 Ch & events
Max. trigger memory		not used		954 MS	119 MS	106 MS	762 MS	95 MS	84 MS
Max. trigger sample rate		not used			2 MS/s			2 MS/s	
Max. reduced FIFO	954 MS	119 MS	106 MS		not used		190 MS	23 MS	21 MS
Max. (reduced) sample rate		2 MS/s			not used		Trigg	ger sample ra	te / 2
Max. aggregate reduced streaming rate	2 MS/s 4 MB/s	16 MS/s 32 MB/s	18 MS/s 36 MB/s		not used		1 MS/s 2 MB/s	8 MS/s 16 MB/s	9 MS/s 18 MB/s
18 Bit Resolution									
Data Recording Mode		tart of acquis & Vait for trigge		Wait for trigger to trigger memory first		On start of acquisition reduced rate and wait for trigger to trigger memory first			
	Er	abled chann	els	En	Enabled channels		Enabled channels		
	1 Ch	8 Ch	8 Ch & events Timer/ Counter	1 Ch	8 Ch	8 Ch & events Timer/ Counter	1 Ch	8 Ch	8 Ch & events Timer/ Counter
Max. trigger memory		not used		477 MS	59 MS	43 MS	381 MS	47 MS	34 MS
Max. trigger sample rate		not used			2 MS/s	1		2 MS/s	ı
Max. reduced FIFO	477 MS	59 MS	43 MS		not used		95 MS	11 MS	8 MS
Max. (reduced) sample rate		2 MS/s			not used		Trigo	jer sample ra	te / 2
Max. aggregate reduced streaming rate	2 MS/s 8 MB/s	16 MS/s 64 MB/s	22 MS/s 88 MB/s		not used		1 MS/s 4 MB/s	8 MS/s 32 MB/s	11 MS/s 44 MB/s

⁽¹⁾ Terminology used in alignment with Perception software.

Data Recording Detail	s (GN816)									
16 Bit Resolution										
Data Recording Mode	On start of acquisition & Wait for trigger		Wait for trigger to trigger memory first		On start of acquisition reduced rate and wait for trigger to trigger memory first					
	Enabled channels		els	En	abled chann	els	En	Enabled channels		
	1 Ch	8 Ch	8 Ch & events	1 Ch	8 Ch	8 Ch & events	1 Ch	8 Ch	8 Ch & events	
Max. trigger memory		not used		100 MS	12 MS	10.5 MS	80 MS	9.5 MS	8 MS	
Max. trigger sample rate		not used			200 kS/s			200 kS/s		
Max. (reduced) sample rate	200 kS/s		not used		Trigg	Trigger sample rate / 2				
Max. aggregate reduced streaming rate	0.2 MS/s 0.4 MB/s	1.6 MS/s 3.2 MB/s	1.8 MS/s 3.6 MB/s		not used		0.1 MS/s 0.2 MB/s	0.8 MS/s 1.6 MB/s	0.9 MS/s 1.8 MB/s	
18 Bit Resolution										
Data Recording Mode		tart of acquis & Vait for trigge		Wait for trigger to trigger memory first		On start of acquisition reduced rate and wait for trigger to trigger memory first				
	En	abled chann	els	Enabled channels		Enabled channels				
	1 Ch	8 Ch	8 Ch & events Timer/ Counter	1 Ch	8 Ch	8 Ch & events Timer/ Counter	1 Ch	8 Ch	8 Ch & events Timer/ Counter	
Max. trigger memory		not used		50 MS	6 MS	4 MS	40 MS	4.5 MS	3 MS	
Max. trigger sample rate	not used		200 kS/s		200 kS/s					
Max. reduced FIFO	50 MS	6 MS	4 MS		not used		10 MS	1 MS	0.7 MS	
Max. (reduced) sample rate	200 kS/s		not used			Trigger sample rate / 2				
Max. aggregate reduced streaming rate	0.2 MS/s 0.8 MB/s	1.6 MS/s 6.4 MB/s	2.2 MS/s 8.8 MB/s		not used		0.1 MS/s 0.4 MB/s	0.8 MS/s 3.2 MB/s	1.1 MS/s 4.4 MB/s	

⁽¹⁾ Terminology used in alignment with Perception software.

GN815/GN816

Environmental Specifications						
Temperature Range						
Operational	0 °C to +40 °C (+32 °F to +104 °F)					
Non-operational (Storage)	-25 °C to +70 °C (-13 °F to +158 °F)					
Thermal protection	Automatic thermal shutdown at 85 °C (+185 °F) internal temperature User warning notifications at 75 °C (+167 °F)					
Relative humidity	0% to 80%; non-condensing; operational					
Protection class	IP20					
Altitude	Maximum 2000 m (6562 ft) above sea level; operational					
Shock: IEC 60068-2-27						
Operational	Half-sine 10 g/11 ms; 3-axis, 1000 shocks in positive and negative direction					
Non-operational	Half-sine 25 g/6 ms; 3-axis, 3 shocks in positive and negative direction					
Vibration: IEC 60068-2-64						
Operational	1 g RMS, ½ h; 3-axis, random 5 to 500 Hz					
Non-operational	2 g RMS, 1 h; 3-axis, random 5 to 500 Hz					
Operational Environmental Tests						
Cold test IEC60068-2-1 Test Ad	-5 °C (+23 °F) for 2 hours					
Dry heat test IEC 60068-2-2 Test Bd	+40 °C (+104 °F) for 2 hours					
Damp heat test IEC 60068-2-3 Test Ca	+40 °C (+104 °F), humidity > 93% RH for 4 days					
Non-Operational (Storage) Environmental T	ests					
Cold test IEC-60068-2-1 Test Ab	-25 °C (-13 °F) for 72 hours					
Dry heat test IEC-60068-2-2 Test Bb	+70 °C (+158 °F) humidity < 50% RH for 96 hours					
Change of temperature test IEC60068-2-14 Test Na	-25 °C to +70 °C (-13 °F to +158 °F) 5 cycles, rate 2 to 3 minutes, dwell time 3 hours					
Damp heat cyclic test IEC60068-2-30 Test Db variant 1	+25 °C/+40 °C (+77 °F/+104 °F), humidity > 95/90% RH 6 cycles, cycle duration 24 hours					

Harmonized Standards for CE and UKCA Compliance, According to the Following Directives(1)							
Low Voltage Directive (LVD): 2014/35/EU Electromagnetic Compatibility Directive (EMC): 2014/30/EU							
Electrical Safety							
EN 61010-1	Safety requirements for electrical equipment for measurement, control, and laboratory use - General requirements						
EN 61010-2-030	Particular requirements for testing and measuring circuits						
Electromagnetic Comp	patibility						
EN 61326-1	Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements						
Emission							
EN 55011	Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics Conducted disturbance: class B; Radiated disturbance: class A						
EN 61000-3-2	Limits for harmonic current emissions: class D						
EN 61000-3-3	Limitation of voltage changes, voltage fluctuations and flicker in public low voltage supply systems						
Immunity							
EN 61000-4-2	Electrostatic discharge immunity test (ESD); contact discharge ± 4 kV/air discharge ± 8 kV: performance criteria B						
EN 61000-4-3	Radiated, radio-frequency, electromagnetic field immunity test; 80 MHz to 2.7 GHz using 10 V/m, 1000 Hz AM: performance criteria A						
EN 61000-4-4	Electrical fast transient/burst immunity test Mains ± 2 kV using coupling network. Channel ± 2 kV using capacitive clamp: performance criteria B						
EN 61000-4-5	Surge immunity test Mains ± 0.5 kV/± 1 kV Line-Line and ± 0.5 kV/± 1 kV/± 2 kV Line-earth Channel ± 0.5 kV/± 1 kV using coupling network: performance criteria B						
EN 61000-4-6	Immunity to conducted disturbances, induced by radio-frequency fields 150 kHz to 80 MHz, 1000 Hz AM; 10 V RMS @ mains, 10 V RMS @ channel, both using clamp: performance criteria A						
EN 61000-4-11	Voltage dips, short interruptions and voltage variations immunity tests Dips: performance criteria A; Interruptions: performance criteria C						

(1) La The manufacturer declares on its sole responsibility that the product is in conformity with the essential requirements of the applicable UK legislation and that the relevant conformity assessment procedures have been fulfilled.

Manufacturer:

Hottinger Brüel & Kjaer GmbH Im Tiefen See 45 64293 Darmstadt Germany Importer:

Hottinger Bruel & Kjaer UK Ltd.
Technology Centre Advanced Manufacturing Park
Brunel Way Catcliffe
Rotherham
South Yorkshire
S60 5WG
United Kingdom

Ordering Informa	ation		
Article		Description	Order No.
Basic/IEPE 2M ISO		8 channels, 18 bit, 2 MS/s, ± 10 mV to ± 50 V input range, 2 GB RAM, 33 V RMS isolated, unbalanced differential input, single metal isolated BNC per channel. Basic voltage and IEPE sensor with TEDS class 1 support. Supported by Perception V6.50 and higher.	1-GN815
Basic/IEPE 200k ISO		8 channels, 18 bit, 200 kS/s, ± 10 mV to ± 50 V input range, 200 MB RAM, 33 V RMS isolated unbalanced differential input, single metal isolated BNC per channel. Basic voltage and IEPE sensor with TEDS class 1 support. Supported by Perception V6.50 and higher.	1-GN816

Current Probes (Options, to be ordered separately)			
Article		Description	Order No.
AC/DC current clamp i30s		AC/DC Hall effect current probe; 30 mA to 30 A DC; 30 mA to 20 A AC RMS; DC-100 kHz; BNC output cable 2 m (6.5 ft), incl. adapter for 4 mm safety banana, requires 9 V battery.	1-G912
AC current clamp SR661		AC current probe; 100 mA to 1200 A AC RMS; 1 Hz - 100 kHz; safety BNC output cable 2 m (6.5 ft).	1-G913
AC current clamp M1V20-2		Highly accurate AC current probe; 50 mA to 20 A; 30 Hz - 40 kHz; metal BNC output cable 2 m (6.5 ft).	1-G914

Hottinger Brüel & Kjaer GmbH

Im Tiefen See 45 · 64293 Darmstadt · Germany Tel. +49 6151 803-0 · Fax +49 6151 803-9100 www.hbkworld.com · info@hbkworld.com