SOMATX2

MX411B-R

Ultra-rugged highly dynamic universal amplifier

Special features

- 4 individually configurable inputs (electrically isolated)
- Connection of more than 5 transducer technologies
- Sampling rate of up to $100 \mathrm{kS} / \mathrm{s}$ per channel, $200 \mathrm{kS} / \mathrm{s}$ in 2 channels, active low-pass filter
- TEDS support
- Use in harsh environments (shock, vibration, temperature, dewing, moisture)
- Supply voltage for active transducers

Block diagram

Specifications MX411B-R

1) By using the variable transducer excitation voltage, the electrical isolation to the supply is bridged.
2) Higher sample rate range only when using max. 2 channels
3) Higher bandwidth only when higher sample rates are used (max. 2 channels)
4) Uninterruptible Power Supply (UPS)) for prolonged interruption of power, available as an accessory.
5) Hops: transition from module to module or signal conditioning/distribution via IEEE1394b FireWire (hub, backplane)
6) Hub: IEEE1394b FireWire node or distributor
7) The DC voltage supply must meet the requirements of IEC 60950-1 on a SELV voltage supply.

Specifications MX411B-R (Continued)

Operational height, max.	m	
Max. input voltage at transducer socket to ground (PIN 13		5,000
or PIN 4), without transients		
PIN 1, 2, 5, 8, 11, 12, 14 (bridge and TEDS)	V	± 5.5
PIN 3 (voltage)	V	± 40
PIN 6 (current)	V	± 1.5
PIN 5 (control circuits)	V	+3.3
Dimensions, horizontal (H x W x D)	mm	$80 \times 205 \times 140$
Weight, approx.		1,900

Strain gauge full bridge and half bridge, bridge excitation: carrier frequency		
Accuracy class		0.05
Carrier frequency (sine)	Hz	4,800 ± 2
Bridge excitation voltage	V	1; 2.5; 5 (± 5 \%)
Permissible cable length between module and transducer	m	100
Measuring ranges at 5 V excitation at 2.5 V excitation at 1 V excitation	mV / V mV / V mV / V	$\begin{gathered} \pm 4 \\ \pm 8 \\ \pm 20 \end{gathered}$
Transducer impedances at 5 V excitation at 2.5 V excitation at 1 V excitation	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{gathered} 300 \ldots 1,000 \\ 110 \ldots 1,000 \\ 80 \ldots 1,000 \end{gathered}$
Noise (peak-to-peak) at $25{ }^{\circ} \mathrm{C}$ and 5 V excitation with 1 Hz Bessel filter with 10 Hz Bessel filter with 100 Hz Bessel filter with 1 kHz Bessel filter	$\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$	$\begin{aligned} & <0.1 \\ & <0.2 \\ & <0.5 \\ & <1.5 \end{aligned}$
Non-linearity	\%	< 0.02 of full scale value
Zero drift (full bridge with 5 V excitation)	\%/10 K	<0.02 of full scale value
Full-scale drift (5 V excitation)	\%/10 K	< 0.05 of measured value

Strain gauge full bridge and half bridge, bridge excitation: DC voltage		
Accuracy class		0.05
Bridge excitation voltage (DC)	V	1; 2.5; 5; 7.5 (± 8 \%)
Permissible cable length between module and transducer	m	100 (at $\left.\mathrm{U}_{\mathrm{B}}=7.5 \mathrm{~V}: 50 \mathrm{~m}\right)$
Measuring ranges at 7.5 V excitation at 5 V excitation at 2.5 V excitation at 1 V excitation	mV / V mV / V mV / V mV / V	$\begin{gathered} \pm 4 \\ \pm 4 \\ \pm 10 \\ \pm 20 \end{gathered}$
Transducer impedance at 7.5 V excitation at 5 V excitation at 2.5 V excitation at 1 V excitation	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{gathered} 300 \ldots 5,000 \text { (max. } 50 \mathrm{~m} \text { cable) } \\ 110 \ldots 5,000 \\ 110 \ldots 5,000 \\ 80 \ldots 5,000 \end{gathered}$
Noise (peak-to-peak) at $25{ }^{\circ} \mathrm{C}$ and 5 V excitation with 1 Hz Bessel filter with 10 Hz Bessel filter with 100 Hz Bessel filter with 1 kHz Bessel filter with 10 kHz Bessel filter with filter off	$\mu \mathrm{V} / \mathrm{V}$	$\begin{aligned} & <0.15 \\ & <0.3 \\ & <0.6 \\ & <2 \\ & <9 \\ & <10 \end{aligned}$
Non-linearity	\%	< 0.02 of full scale value
Zero drift (full bridge with 5 V excitation)	\%/10 K	< 0.05 of full scale value
Full-scale drift (5 V excitation)	\%/10 K	< 0.05 of measured value

Specifications MX411B-R (Continued)

Inductive full bridge and half bridge, bridge excitation: carrier frequency		
Accuracy class		0.05
Carrier frequency (sine)	Hz	$4,800 \pm 2$
Bridge excitation voltage	V	$1 ; 2.5(\pm 8 \%)$
Permissible cable length between module and transducer	m	100
Measuring ranges at 2.5 V excitation at 1 V excitation	mV / V	
Transducer impedances at 2.5 V excitation at 1 V excitation	mV / V	± 100
Noise (peak-to-peak) at 25 ${ }^{\circ} \mathrm{C}$ and 2.5 V excitation		± 250
with 1 Hz Bessel filter	Ω	$110 \ldots 1,000$
with 10 Hz Bessel filter	$\mu \mathrm{V} / \mathrm{V}$	$80 \ldots 1,000$
with 100 Hz Bessel filter	$\mu \mathrm{V} / \mathrm{V}$	
with 1 kHz Bessel filter	$\mu \mathrm{V} / \mathrm{V}$	<2
Non-linearity	$\mu \mathrm{V} / \mathrm{V}$	<4
Zero drift (full bridge with 2.5 V excitation)	$\%$	<12
Full-scale drift (2.5 V excitation)	$\% / 10 \mathrm{~K}$	<40

Piezoresistive full bridge, bridge excitation: DC voltage		
Accuracy class		0.05
Bridge excitation voltage (DC)	V	2.5; 5 (± 5 \%)
Permissible cable length between module and transducer	m	100
Measuring ranges at 5 V excitation at 2.5 V excitation	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$	$\begin{gathered} \pm 50 \\ \pm 100 \end{gathered}$
Transducer impedances at 5 V excitation at 2.5 V excitation	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & 110 \ldots 5,000 \\ & 110 \ldots 5,000 \end{aligned}$
Noise (peak-to-peak) at $25^{\circ} \mathrm{C}$ and 5 V excitation with 1 Hz Bessel filter with 10 Hz Bessel filter with 100 Hz Bessel filter with 1 kHz Bessel filter with 10 kHz Bessel filter with filter off	$\mu \mathrm{V} / \mathrm{V}$	$\begin{aligned} & <2 \\ & <3 \\ & <8 \\ & <25 \\ & <130 \\ & <150 \end{aligned}$
Non-linearity	\%	< 0.02 of full scale value
Zero drift (5 V excitation)	\%/10 K	< 0.03 of full scale value
Full-scale drift (5 V excitation)	\%/10 K	< 0.05 of measured value

Specifications MX411B-R (Continued)

Voltage $\pm 10 \mathrm{~V}$		
Accuracy class		0.03
Permissible cable length between module and transducer	m	100
Measuring range	V	± 10
Internal resistance of connected voltage source	$\mathrm{k} \Omega$	< 5
Input impedance	$\mathrm{M} \Omega$	> 10
Noise (peak-to-peak) at $25^{\circ} \mathrm{C}$ with 1 Hz Bessel filter with 10 Hz Bessel filter with 100 Hz Bessel filter with 1 kHz Bessel filter with 10 kHz filter with filter off / 9600 values/s	$\mu \mathrm{V}$ $\mu \mathrm{V}$	$\begin{aligned} & <25 \\ & <50 \\ & <100 \\ & <300 \\ & <600 \\ & <1,000 \end{aligned}$
Non-linearity	\%	< 0.02 of full scale value
Common-mode rejections at DC common mode at 50 Hz common mode	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	>100 typically 75
Max. Common-mode voltage (to housing and supply ground)	V	± 60
Zero drift	\%/10 K	< 0.02 of full scale value
Full-scale drift	\%/10 K	< 0.03 of measured value

Current 20 mA		
Accuracy class		0.03
Permissible cable length between module and transducer	m	100
Measuring range	mA	± 20
Measuring resistance value	Ω	50
Noise (peak-to-peak) at 25 ${ }^{\circ} \mathrm{C}$ with 1 Hz Bessel filter with 10 Hz Bessel filter with 100 Hz Bessel filter with 1 kHz Bessel filter with 10 kHz Bessel filter with filter off	$\mu \mathrm{A}$	<0.5
Non-linearity	$\mu \mathrm{A}$	<1.5
Common-mode rejections	$\mu \mathrm{A}$	<10
at DC common mode at 50 Hz common mode	$\mu \mathrm{A}$	<20
Max. $C o m m o n-m o d e ~ v o l t a g e ~$ (to housing and supply ground)	$\mu \mathrm{A}$	<28
Zero drift	dB	<30
Full-scale drift	dB	<0.02 of full scale value

Specifications MX411B-R (Continued)

Current-fed piezoelectric transducers (IEPE, ICP ${ }^{(8)}$)		
Accuracy class		0.1
Permissible cable length between module and transducer May be laid inside closed buildings only	m	< 30
Transducer excitation	mA	$4 \mathrm{~mA} \pm 15 \%$
Measuring ranges (AC)	V	$\pm 2 ; \pm 10$
IEPE compliance voltage, typ.	V	21
Noise (peak-to-peak) at $25^{\circ} \mathrm{C}$ and measuring range $\pm 10 \mathrm{~V}$ for 1 Hz Bessel filter for 10 Hz Bessel filter for 100 Hz Bessel filter for 1 kHz Bessel filter for 10 kHz Bessel filter for filter off	$\mu \mathrm{V}$ $\mu \mathrm{V}$	$\begin{aligned} & <25 \\ & <50 \\ & <100 \\ & <300 \\ & <600 \\ & <1,000 \end{aligned}$
Non-linearity	\%	<0.1 of full scale value
Common-mode rejections at DC common mode at 50 Hz common mode, typically	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} >100 \\ 75 \end{gathered}$
Max. Common-mode voltage (to housing and supply ground)	V	± 60
Zero drift	\%/10 K	< 0.1 of full scale value
Full-scale drift	\%/10 K	< 0.03 of measured value

Real-time calculation at the module

Root mean square value (RMS)		4
Peak value		8
\quad Number of peak values		8
\quad Output rate, max.	Hz	4,800

Decimal sample rates and Bessel digital low-pass filters
(4th order Bessel at sample rates $<\mathbf{1 0 0 , 0 0 0 ~ H z}$; 6th order at sample rate $=\mathbf{1 0 0 , 0 0 0 ~ H z}$)

Type	-1 dB (Hz)	-3 dB (Hz)	-20 dB (Hz)	Runtime ${ }^{\text { }}$ (${ }^{\text {(ms) }}$	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
$\begin{aligned} & \bar{\otimes} \\ & \mathbb{N} \\ & \underset{\sim}{\infty} \end{aligned}$	20,616	30,000	44,600	0.002	0.01	2.8	100,000
	12,373	20,000	43,000	0.005	0.02	1.0	100,000
	5,917	10,000	23,465	0.021	0.04	0.8	100,000
	2,929	5,000	11,715	0.06	0.07	0.8	100,000
	1,164	2,000	4,700	0.19	0.20	0.8	100,000
	584	1,000	2,350	0.40	0.30	0.6	100,000
	292	500	1,175	0.82	0.70	0.6	100,000
	117	200	470	2.10	1.70	0.6	100,000
	58.0	100	235	4.20	3.50	0.6	100,000
	29.2	50	117.5	8.50	7.0	0.6	100,000
	11.7	20	47	21.3	17.0	0.6	100,000
	5.80	10	23.5	42.7	35.0	0.6	100,000
	2.91	5	11.74	85.5	70.0	0.6	100,000
	1.19	2	5.04	187	175	0.9	1,000
	0.59	1	2.54	351	350	0.8	1,000
	0.30	0.5	1.27	680	700	0.8	1,000
	0.12	0.2	0.51	1,669	1,751	0.8	1,000
	0.06	0.1	0.25	3,315	3,499	0.8	1,000

${ }^{*}$) The A/D converter's delay time for all sample rates is 277μ s and this is not taken into account in the "runtime" column!

Decimal sample rates: Bessel filter amplitude response

Decimal sample rates and Butterworth digital low-pass filters

(4th order Butterworth at sample rates $<\mathbf{1 0 0 , 0 0 0 ~ H z} ; 6$ th order at sample rate $\mathbf{= 1 0 0 , 0 0 0 ~ H z}$)

Type	-1 dB (Hz)	-3 dB (Hz)	-20 dB (Hz)	Runtime ${ }^{\text { }}$ (ms)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
	28,269	30,000	35,359	0.02	0.02	193	100,000
	18,328	20,000	26,009	0.03	0.03	17.6	100,000
	8,994	10,000	14,155	0.06	0.04	15.5	100,000
	4,475	5,000	7,265	0.10	0.09	15	100,000
	1,787	2,000	2,929	0.30	0.20	14	100,000
	894	1,000	1,466	0.70	0.40	14	100,000
	447	500	733	1.30	0.80	14	100,000
	179	200	293	3.30	2.00	14	100,000
	89	100	147	6.60	4.00	14	100,000
	44.7	50	73.3	13.0	8.00	14	100,000
	17.9	20	29.3	33.0	21.0	14	100,000
	8.9	10	14.7	66.0	43.0	14	100,000
	4.47	5	7.33	132	85.0	14	100,000
	1.69	2	3.55	248	194	11	1,000
	0.84	1	1.78	471	387	11	1,000
	0.42	0.5	0.89	921	774	11	1,000
	0.17	0.2	0.35	2,266	1,934	11	1,000
	0.08	0.1	0.18	4,510	3,869	11	1,000

${ }^{*}$) The A/D converter's delay time for all sample rates is 277μ s and this is not taken into account in the "runtime" column!

Decimal HBM sample rates : Butterworth filter amplitude response

Decimal sample rates and digital low-pass filters (two-channel mode), Bessel
(4th order for sample rates $<\mathbf{2 0 0 , 0 0 0 ~ H z} ; 6$ th order for sample rate $=\mathbf{2 0 0 , 0 0 0 ~ H z}$)

Type	-1 dB (Hz)	-3 dB (Hz)	-20 dB (Hz)	Runtime ${ }^{\text {\% }}$ (${ }^{\text {(ms) }}$	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
$\begin{aligned} & \bar{\otimes} \\ & \mathbb{N} \\ & \oplus \\ & \hline \end{aligned}$	41,232	60,000	89,200	0.001	0.005	2.8	200,000
	24,746	40,000	86,000	0.0025	0.01	1.0	200,000
	11,834	20,000	46,930	0.01	0.02	0.8	200,000
	5,858	10,000	23,430	0.03	0.035	0.8	200,000
	2,328	4,000	8,400	0.09	0.10	0.8	200,000
	1,168	2,000	4,700	0.40	0.15	0.6	200,000
	584	1,000	2,350	0.82	0.35	0.6	200,000
	234	400	940	2.10	0.85	0.6	200,000
	116	200	470	4.20	1.75	0.6	200,000
	58.4	100	235	8.50	3.50	0.6	200,000
	23.4	40	94	21.3	8.50	0.6	200,000
	11.6	20	47	42.7	17.50	0.6	200,000
	5.82	10	23.48	85.5	35.0	0.6	200,000
	2.38	4	10.08	187	87.5	0.9	1,000
	1.18	2	5.08	351	175	0.8	1,000
	0.60	1	2.54	680	350	0.8	1,000
	0.24	0.4	1.02	1,669	875	0.8	1,000
	0.12	0.2	0.50	3,315	1,750	0.8	1,000

${ }^{*}$) The A/D converter's delay time for all sample rates is 140μ s and this is not taken into account in the "runtime" column!

Decimal sample rates and digital low-pass filters (two-channel mode), Butterworth
(4th order for sample rates $<\mathbf{2 0 0 , 0 0 0 ~ H z} ; 6$ th order for sample rate $\mathbf{= 2 0 0 , 0 0 0 ~ H z}$)

Type	-1 dB (Hz)	-3 dB (Hz)	-20 dB (Hz)	Runtime ${ }^{*}$) (ms)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
	56,538	60,000	70,718	0.01	0.01	193	200,000
	36,656	40,000	52,018	0.015	0.015	17.6	200,000
	17,988	20,000	28,310	0.03	0.02	15.5	200,000
	8,950	10,000	14,530	0.05	0.045	15	200,000
	3,576	4,000	5,858	0.15	0.10	14	200,000
	1,788	2,000	2,932	0.35	0.20	14	200,000
	894	1,000	1,466	0.65	0.40	14	200,000
	358	400	586	1.65	1.00	14	200,000
	178	200	294	3.30	2.00	14	200,000
	89.4	100	147	6.50	4.00	14	200,000
	35.8	40	59	16.5	10.5	14	200,000
	17.8	20	29.4	33.0	21.5	14	200,000
	8.94	10	14.66	66.0	42.5	14	200,000
	3.38	4	7.1	124	97.0	11	1,000
	1.68	2	3.6	235	193	11	1,000
	0.84	1	1.78	460	387	11	1,000
	0.34	0.4	0.70	1,133	967	11	1,000
	0.16	0.2	0.36	2,255	1,934	11	1,000

[^0]Decimal sample rates and digital low-pass filters, linear phase (FIR)

Type	Start of level drop	-3 dB (Hz)	-20 dB (Hz)	Runtime*) (ms)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
	8,333	10,530	13,460	1,130	0,055	8,6	25,000
	6,667	8,380	10,780	0.410	0,07	8,6	20,000
	3,333	3,900	4,580	0.802	0.117	8.6	20,000
	1,667	2,100	2,694	2.41	0.274	8.6	5,000
	1,000	1,130	1,308	6.21	0.544	8.6	2,500
	833	1,050	1,346	4.01	0.551	8.6	2,500
	667	838	1,078	4.80	0.694	8.6	1,000
	333	420	539	10.4	1.39	8.6	1,000
	167	210	269	26.9	2.73	8.6	500
	67	84	108	50.2	6.88	8.6	200
	33	42	54	108	13.8	8.6	100

${ }^{*}$) The A/D converter's delay time for all sample rates is 277μ s and this is not taken into account in the "runtime" column!

Decimal sample rates: amplitude response, linear phase (FIR)

Decimal sample rates and digital low-pass filters, Butterworth (FIR)

Type	Start of level drop	-3 dB (Hz)	-20 dB (Hz)	Runtime ${ }^{\text {® }}$ (ms)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
든000000	1,498	1,700	2,220	3,2	0,285	15,6	10,000
	1,384	1,500	1,887	3.48	0.346	18.7	10,000
	698	750	924	5.56	0.682	18.7	5,000
	344	370	471	14.1	1.40	18.7	2,500
	275	300	377	17.3	1.75	18.7	2,000
	140	150	185	27.6	3.41	18.7	1,000
	69	75	94	71.8	6.97	18.7	500
	28	30	37	139	17.0	18.7	200
	14	15	19	358	34.9	18.7	100

${ }^{*}$) The A/D converter's delay time for all sample rates is 277μ s and this is not taken into account in the "runtime" column!

Decimal sample rates: Butterworth filter amplitude response (FIR)

Classic HBM sample rates and digital low-pass filters, Bessel
(4th order for sample rates $<96,000 \mathrm{~Hz}$; 6 th order for sample rate $=96,000 \mathrm{~Hz}$)

Type	-1 dB (Hz)	-3 dB (Hz)	-20 dB (Hz)	Runtime (ms)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
©©©-	20,000	29,250	43,000	0.002	0.016	4.1	96,000
	10,000	16,810	40,260	0.008	0.023	1.5	96,000
	5,000	8,510	19,906	0.027	0.042	0.9	96,000
	2,000	3,515	8,275	0.094	0.1	0.6	96,000
	1,000	1,715	4,070	0.22	0.2	0.6	96,000
	500	852	2,008	0.47	0.41	0.6	96,000
	200	341	803	1.22	1.01	0.8	96,000
	100	171	402	2.5	2.01	0.8	96,000
	50	84.2	215	4	4.08	1	19,200
	20	33.7	86	10	10.2	1	9,600
	10	16.9	43	20	20.6	1	9,600
	5	8.41	21.5	40	41	1	4,800
	2	3.37	8.6	98	102.8	1	1,200
	1	1.58	4.3	196	206.4	1	600
	0.5	0.84	2.15	392	411.2	1	600
	0.2	0.34	0.86	982	1,026	1	300
	0.1	0.17	0.43	1,968	2,052	1	150

${ }^{*}$) The A/D converter's delay time for all sample rates is 293μ s and this is not taken into account in the "runtime" column!

Classic HBM sample rates and Butterworth digital low-pass filters
(4th order for sample rates $<96,000 \mathrm{~Hz}$; 6th order for sample rate $=96,000 \mathrm{~Hz}$)

Type	-1 dB (Hz)	-3 dB (Hz)	-20 dB (Hz)	Runtime (ms)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
E000000	20,000	21,700	27,500	0.025	0.02	15.6	96,000
	10,000	11,100	15,500	0.06	0.04	15.6	96,000
	5,000	5,585	8,100	0.13	0.08	14.5	96,000
	2,000	2,238	3,280	0.3	0.2	14.5	96,000
	1,000	1,119	1,640	0.6	0.4	14.5	96,000
	500	560	820	1.2	0.8	14.5	96,000
	200	237	420	2.1	1.6	11	19,200
	100	118	210	4	3.3	11	19,200
	50	59	105	7.8	6.6	11	19,200
	20	24	42	19.4	16.1	11	4,800
	10	11.8	21	38.6	32.4	11	2,400
	5	5.9	10.5	76.5	65	11	1,200
	2	2.4	4.2	191	163	11	600
	1	1.2	2.1	382	325	11	300
	0.5	0.59	1.05	760	653	11	300
	0.2	0.24	0.42	1,900	1,630	11	150
	0.1	0.12	0.21	3,790	3,260	11	150

[^1]Classic HBM sample rates and digital low-pass filters (two-channel mode), Bessel
(4th order for sample rates $<192,000 \mathrm{~Hz} ; 6$ th order for sample rate $=192,000 \mathrm{~Hz}$)

Type	-1 dB (Hz)	-3 dB (Hz)	-20 dB (Hz)	Runtime (ms)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
$\begin{aligned} & \bar{\otimes} \\ & \mathbb{N} \\ & \varnothing \sim \end{aligned}$	40,000	58,500	86,000	0.001	0.008	1.6	192,000
	20,000	33,620	80,520	0.004	0.012	1.5	192,000
	10,000	17,020	39,812	0.0135	0.021	0.9	192,000
	4,000	7,030	16,550	0.047	0.05	0.6	192,000
	2,000	3,430	8,140	0.11	0.1	0.6	192,000
	1,000	1,704	4,016	0.235	0.21	0.6	192,000
	400	682	1,606	0.61	0.51	0.8	192,000
	200	342	804	1.25	1.00	0.8	192,000
	100	168.4	430	2	2.04	1	192,000
	40	67.4	172	5	5.1	1	192,000
	20	33.8	86	10	10.3	1	192,000
	10	16.82	43	20	20.5	1	9,600
	4	6.74	17.2	49	51.4	1	2,400
	2	3.36	8.6	98	103.2	1	1,200
	1.0	1.68	4.3	196	205.6	1	1,200
	0.4	0.68	1.72	491	513	1	600
	0.2	0.34	0.86	984	1,026	1	300

*) The A/D converter's delay time for all sample rates is $141 \mu \mathrm{~s}$ and this is not taken into account in the "runtime" column!
Classic HBM sample rates and digital low-pass filters (two-channel mode), Butterworth
(4th order for sample rates $<192,000 \mathrm{~Hz} ; 6$ th order for sample rate $=192,000 \mathrm{~Hz}$)

Type	-1 dB (Hz)	-3 dB (Hz)	-20 dB (Hz)	Runtime (ms)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
든Z0000	40,000	43,400	55,000	0.013	0.01	17.8	192,000
	20,000	22,200	31,000	0.03	0.02	15.6	192,000
	10,000	11,170	16,200	0.07	0.04	14.5	192,000
	4,000	4,476	6,560	0.15	0.1	14.5	192,000
	2,000	2,238	3,280	0.3	0.2	14.5	192,000
	1,000	1,120	1,640	0.6	0.4	14.5	192,000
	400	474	840	1.05	0.8	14.5	192,000
	200	236	420	2	1.65	11	192,000
	100	118	210	3.9	3.3	11	192,000
	40	48	84	9.7	8.05	11	9,600
	20	23.6	42	19.3	16.2	11	4,800
	10	11.8	21	38.3	32.5	11	2,400
	4	4.8	8.4	95.5	81.5	11	1,200
	2	2.4	4.2	191	162.5	11	600
	1	1.18	2.1	380	326.5	11	600
	0.4	0.48	0.84	950	815	11	300
	0.2	0.24	0.42	1,895	1,630	11	300

[^2]
[^0]: ${ }^{*}$) The A/D converter's delay time for all sample rates is 140μ s and this is not taken into account in the "runtime" column!

[^1]: ${ }^{*}$) The A/D converter's delay time for all sample rates is 293μ s and this is not taken into account in the "runtime" column!

[^2]: ${ }^{*}$) The A / D converter's delay time for all sample rates is 141μ s and this is not taken into account in the "runtime" column!

