

DATA SHEET

GEN series GN610B (GN611B) Isolated 1 kV 2 MS/s (200 kS/s) Input Card

SPECIAL FEATURES

- 6 analog channels
- Isolated, balanced differential inputs
- ± 10 mV to ± 1000 V input range
- Basic accuracy 0.02%
- Basic power accuracy 0.02%
- 600 V RMS CAT II reinforced insulation, tested up to 6.4 kV
- 18 bit at 2 MS/s (200 kS/s) sample rate
- Real-time formula database calculators
- Triggering on real-time results
- Digital Event/Timer/Counter support
- 5 kV RMS certified probe

GN610B/GN611B Functions and Benefits

The isolated balanced differential input offers voltage ranges from \pm 10 mV to \pm 1000 V. Tested up to 6.4 kV, the reinforced insulation allows for safe measurements up to 600 V RMS CAT II (without probes).

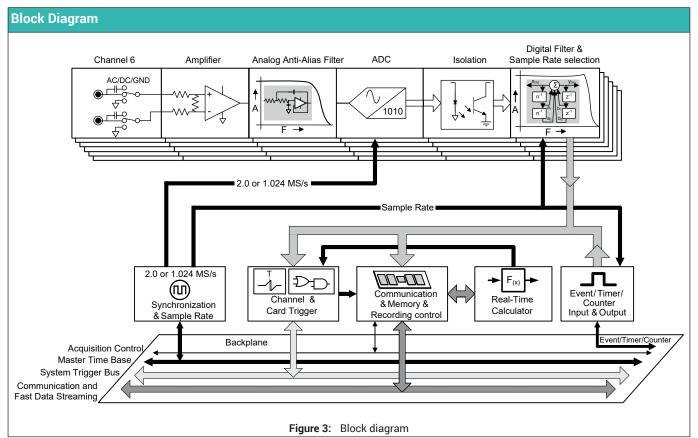
Anti-alias protection is achieved by a unique, multi stage approach. The first stage combines a 7-pole analog anti-alias filter with the Analog-to-Digital converter to create an alias free digital data stream at constant rate of 2 MS/s (200 kS/s).

The four Timer/Counters and the G070A torque/RPM adapter allow for direct interfacing to HBM torque transducers or other torque and speed sensors.

The real-time formula database calculators offer math routines to solve almost any real-time mathematical challenge. Dynamic digital cycle detection enables real-time storage as well as 1 µs latency digital output of calculation results like True-RMS on all analog, torque, angle, speed and Timer/ Counter channels.

Channel to channel math creates computed channels with 1 µs latency obtaining mechanical power and/or multiphase (not limited to three) electric power (P, Q, S) or even efficiency calculations. Real-time calculated results can be used to trigger the recording or signal alarms to the external world.

Capabilities Overview			
Model	GN610B	GN611B	
Maximum sample rate per channel	2 MS/s	200 kS/s	
Memory per card	2 GB	200 MB	
Analog channels	6		
Anti-alias filters	Fixed bandwidth analog AA-filter combined with	sample rate tracking digital AA-filter	
ADC resolution	18 bit		
Isolation	Channel to channel and channel to chassis		
Input type	Analog, isolated balanced differential		
Passive voltage/current probes	Special designed matching probes only (e.g. Elas HVD50R)		
Sensors	Not supported		
TEDS	Not supported		
Real-time formula database calculators (option)	Extensive set of user programmable math routines with triggering on calculated resu		
Digital Event/Timer/Counter	16 digital events and 4 Timer/Counter channels		
Standard data streaming (CPCI up to 200 MB/s)	Not supported		
Fast data streaming (PCIe up to 1 GB/s)	Supported		
Slot width	1		


Mainframe Support						
	GEN2tB	GEN4tB	gen7ta / gen7tb	GEN17tA / GEN17tB	GEN3iA	GEN7iA /GEN7iB
GN610B/GN611B			Ye	es		
GEN DAQ API		Ye	es		Ye	s ⁽¹⁾
EtherCAT®	No Yes No			0		
CAN/CAN FD		Ye	es		Ν	0

(1) Close Perception to enable GEN DAQ API access.

Supported Analog Sensors and Probes			
Amplifier mode	Supported analog sensors and probes	Features, Cabling and Accessories	
Power measurement	 Current transducers Current probes Electrical voltages single-ended and differential ⁽¹⁾ Active single-ended voltage probes Active differential voltage probes 	 Voltage input: ± 10 mV up to ± 1000 V Burden resistors 5 kV RMS certified probe Current probes 	

(1) 5 kV passive voltage probe

Supported Digital Sensors (TTL Level Input)				
Timer counter Input type	Supported digital sensors	Features		
Signal Direction Reset Reset Count up Figure 1: Uni and Bi-directional clock	 HBM Torque sensors Torque sensors Speed sensors Position sensors 	 Angle measurement Frequency/RPM measurement Count/position measurement Count frequency up to 5 MHz Digital filter on input signals Several reset options RT-FDB can add a calculated Frequency/ RPM channel based on the angle measurement 		
Signal Direction 1/2/3/4/3/2/1 Wheel rotates clock wise Figure 2: ABZ Incremental Encoder (Quadrature)	 HBM Torque sensors Torque sensors Speed sensors Position sensors 	 Angle measure Frequency/RPM measurement Count/position measurement Count frequency up to 2 MHz Digital filter on input signals Single, dual and quad precision count Transition tracking to avoid count drift Several reset options RT-FDB can add a calculated Frequency/ RPM channel based on the angle measurement 		

Specifications and measurement uncertainty

Specifications are established using 23 °C environmental temperature. For measurement uncertainty improvements, the system could be readjusted at a specific environmental temperature to minimize the impact of temperature drift.

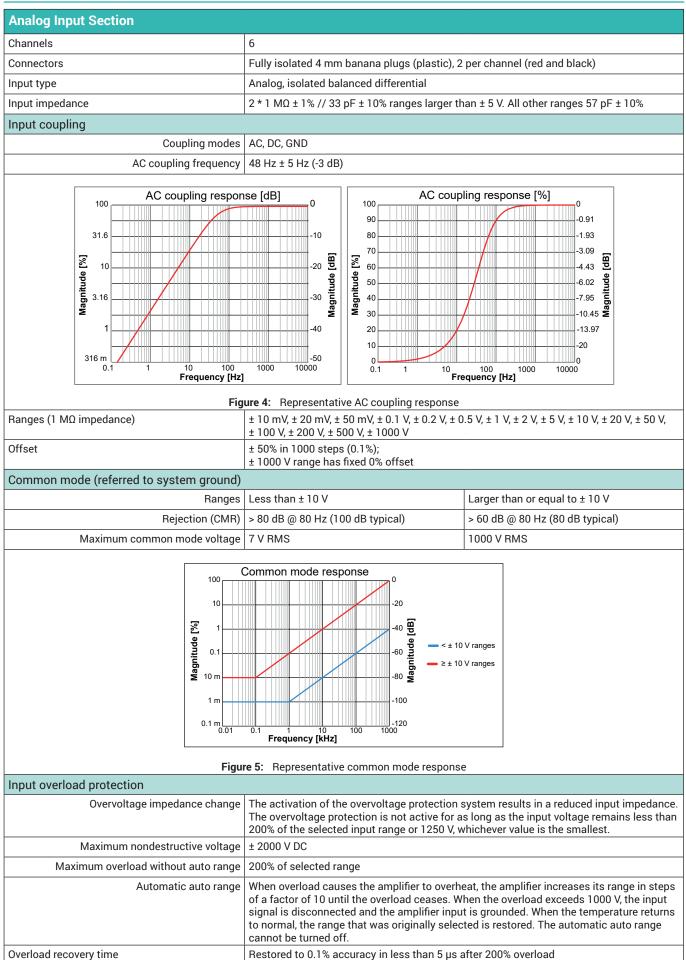
Any analog amplifier error source follows the = ax + b curve.

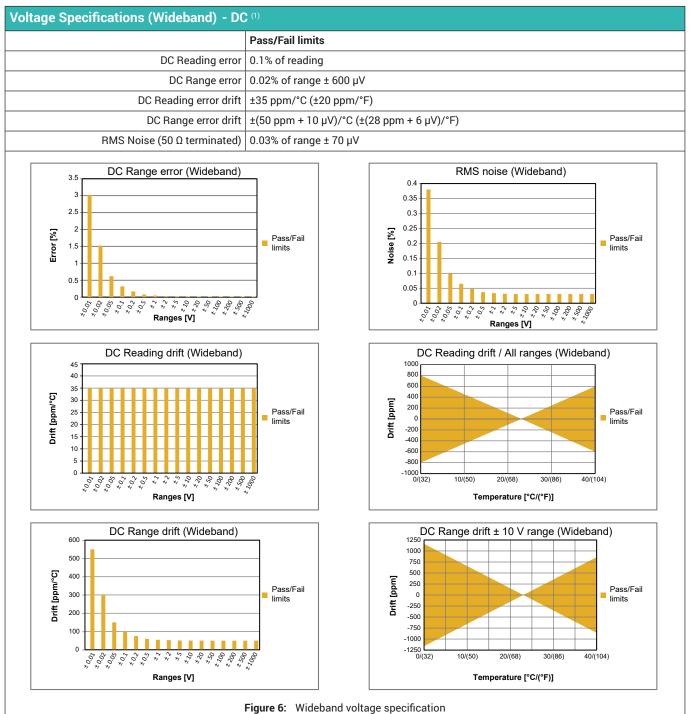
- a % of reading error, represents the linear increasing error due to the increase of the input voltage: often referred to as gain error.
- **b** % of range error, represents the error when measuring 0 V; often referred to as offset error.
- For measurement uncertainty these errors can be considered independent error sources.

Noise is not a separate error source outside of the standard specification.

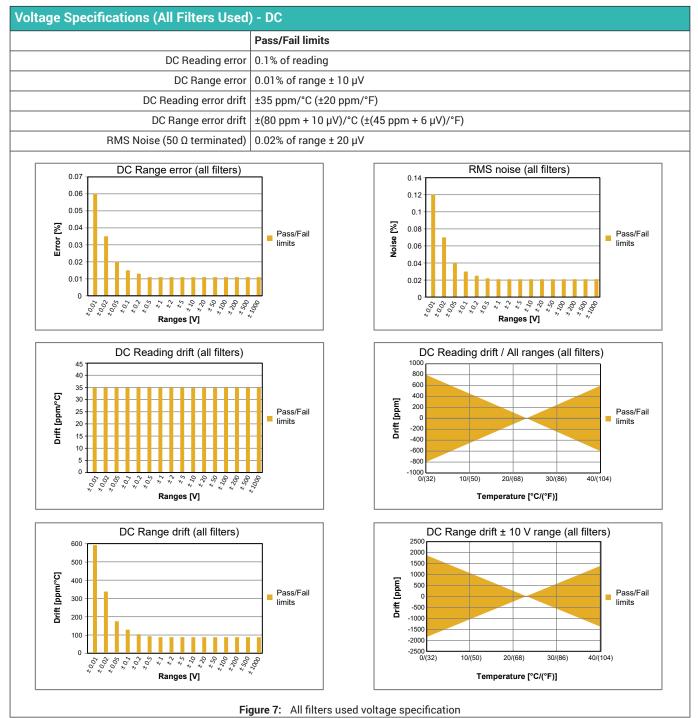
Noise specifications are added separately in case you need dynamic accuracy on sample by sample level.

Only for sample by sample measurement uncertainty add the RMS noise error.


For e.g. power accuracy, the RMS noise error is already included in the power specifications.


Pass/Fail limits are rectangular distributed specifications, therefore measurement uncertainty is 0.58 * specified value.

Adding/removing or swapping cards

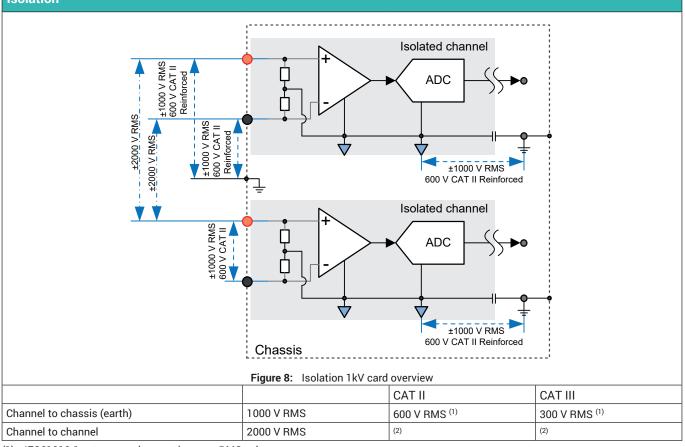

The specifications listed are valid for cards that have been calibrated and are used in the same mainframe, mainframe configuration and slots as they were at the time of calibration.

If cards are added, removed or relocated the thermal conditions of the card will change, resulting in additional thermal drift errors. The maximum expected error can be up to two times the specified Reading and Range error as well as 10 dB reduced common mode rejection. Recalibration after configuration changes is therefore highly recommended.

⁽¹⁾ Voltage Specifications (Wideband) are valid for GN610B only.

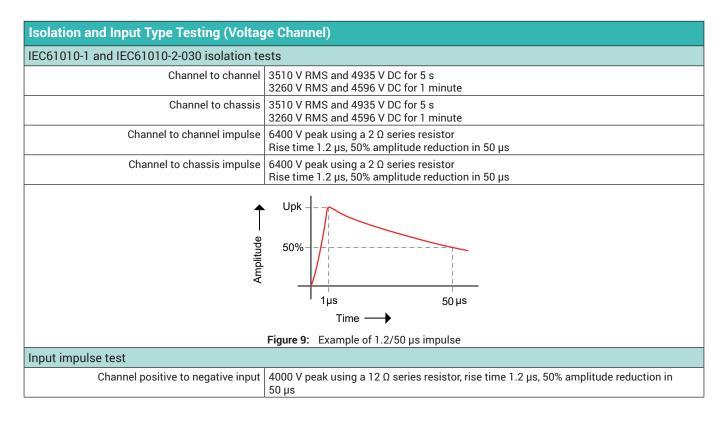
Basic Power Accuracy - DC

The GN610B/GN611B is calibrated and checked at 53 Hz voltage and current inputs using burden resistors. During calibration burden resistors are attached to three voltage channels to enable current measurements. Specifications are given for the 2.5 Ω burden. Using the 1.0 Ω or 10.0 Ω burden will give different current ranges but identical results.

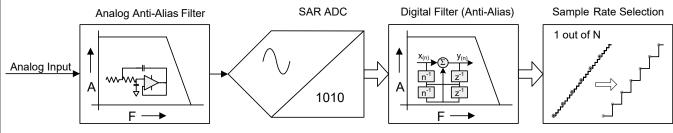

results.		,					
2.5 Ω	Burden spans	1.264 A DC	800 mA DC	400 mA DC	160 mA DC	80 mA DC	40 mA DC
0 - 100 Hz Sine wave CF: 1.41 Cos Phi : 1	Burden ranges	440 mA RMS	280 mA RMS	140 mA RMS	56 mA RMS	28 mA RMS	14 mA RMS
Voltage spans	Voltage ranges	Typical	Typical	Typical	Typical	Typical	Typical
40 V DC	14.1 V RMS	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.1% range	0.02% reading + 0.1% range	0.02% reading + 0.15% range
100 V DC	35.3 V RMS	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.1% range	0.02% reading + 0.1% range	0.02% reading + 0.15% range
200 V DC	70.7 V RMS	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.1% range	0.02% reading + 0.1% range	0.02% reading + 0.15% range
400 V DC	141 V RMS	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.1% range	0.02% reading + 0.1% range	0.02% reading + 0.15% range
1 kV DC	353 V RMS	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.1% range	0.02% reading + 0.1% range	0.02% reading + 0.15% range
2 kV DC	707 V RMS	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.1% range	0.02% reading + 0.1% range	0.02% reading + 0.15% range

Voltage channels Pass/Fail Limits Overview - AC

All values are calculated using the voltage channels inaccuracy specifications. The listed value is the maximum inaccuracy that exist at the end of the frequency band. For more accurate values use the specified math in the voltage channels inaccuracy specification table.


Voltage range	Signal frequency (f)					
	1 Hz < f	1 kHz < f	20 kHz < f	100 kHz < f	200 kHz < f	
	≤ 1 kHz	≤ 20 kHz	≤ 100 kHz	≤ 200 kHz	≤ 500 kHz	
Pass/Fail Limit at < ± 0.2 V						
Denme - LOOV	0.010%	0.010%	0.970%	2.170%	10.270%	reading
Range < ± 0.2 V	0.060%	0.060%	0.060%	0.060%	0.060%	range
Pass/Fail Limit at < ± 10 V						
	0.010%	0.010%	0.730%	1.630%	9.730%	reading
± 0.2 V ≤ Range < ± 10 V	0.060%	0.060%	0.060%	0.060%	0.060%	range
Pass/Fail Limit at ≥ ± 10 V						
	0.010%	1.962%	3.010%	3.462%	9.460%	reading
Range ≥ ± 10 V	0.060%	0.060%	0.060%	0.060%	0.060%	range

(1) IEC61010-1 category voltage ratings are RMS voltages.

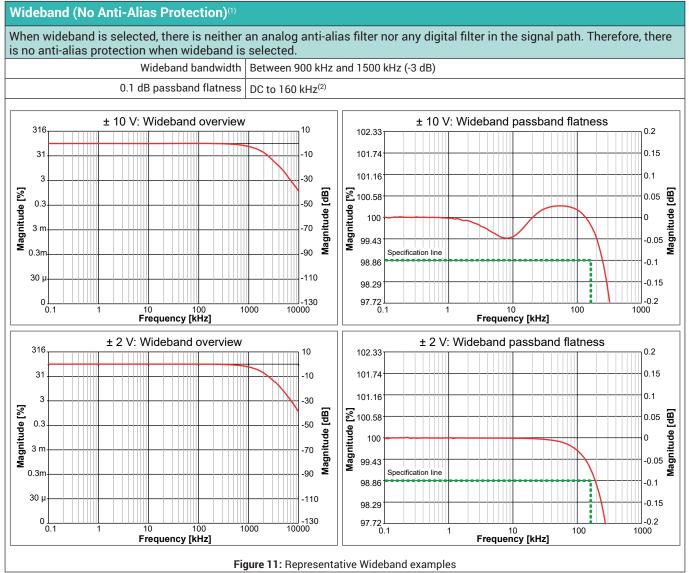

(2) Channel to channel CAT II and CAT III ratings are not a valid method to specify.

Analog to Digital Conversion	
Sample rate; per channel	0.1 S/s to 2 MS/s (GN610B) 0.1 S/s to 200 kS/s (GN611B)
ADC resolution; one ADC per channel	18 bit
ADC type	Successive Approximation Register (SAR); Analog Devices AD7986BCPZ
Time base accuracy	Defined by mainframe: ± 3.5 ppm; aging after 10 years ± 10 ppm

Anti-Alias Filters

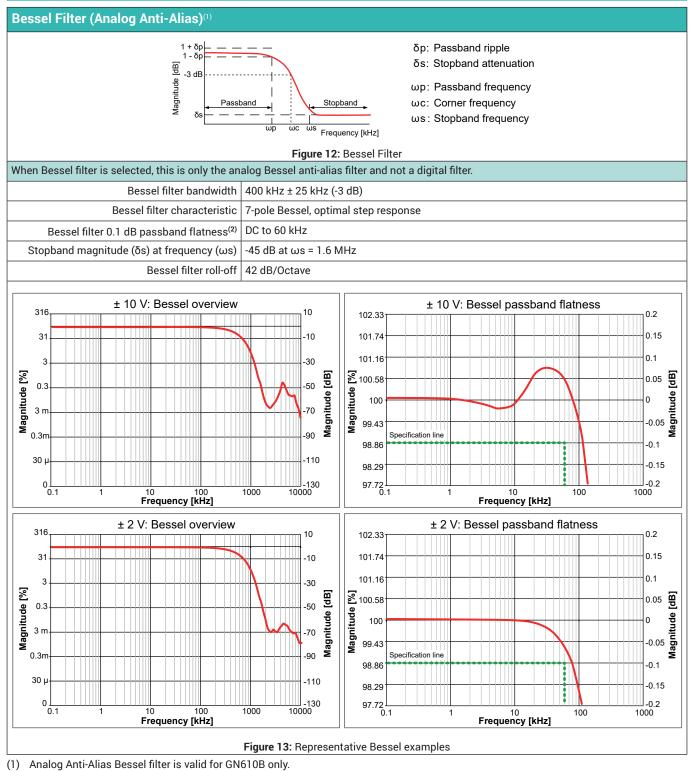
Note on phase matching channels. Every filter characteristic and/or filter bandwidth selection comes with it's own specific phase response. Using different filter selections (Wideband/Bessel/Butterworth/Bessel IIR/Butterworth IIR/Elliptic IIR) or different filter bandwidths can result in phase mismatches between channels.

Anti-aliasing is prevented by a steep, fixed frequency analog anti-alias filter in front of the Analog to Digital Converter (ADC). The ADC always samples at a fixed sample rate. The fixed sample rate of the ADC avoids the need for different analog anti-alias filter frequencies. Directly behind the ADC, the high precision digital filter is used as anti-alias protection before the digital downsampling to the desired user sample rate is performed. The digital filter is programmed to a fraction of the user sample rate and automatically tracks any user sample rate selection. Compared to analog anti-alias filters, the programmable digital filter offers additional benefits like higher order filter with steep roll-off, a larger selection of filter characteristics, noise-free digital output and no additional phase shifts between channels that use the same filter settings.

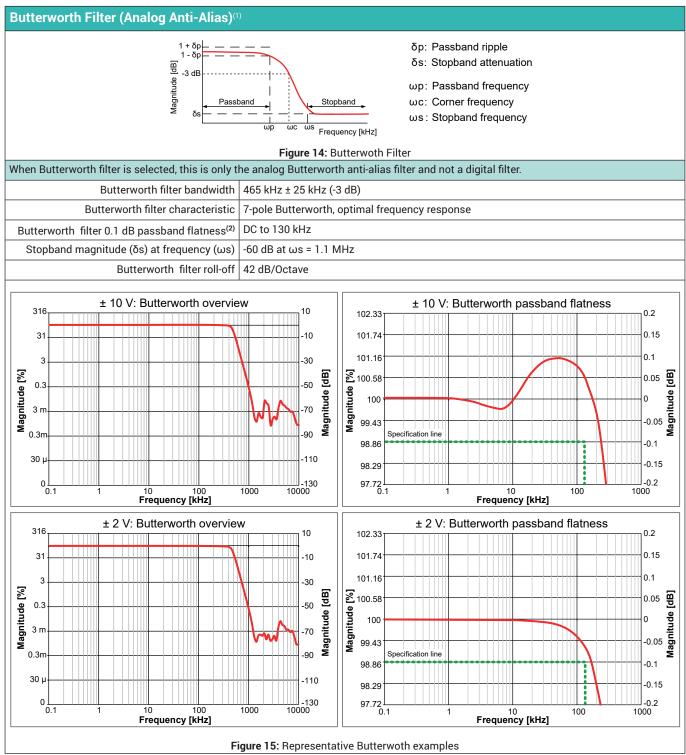

Wideband ⁽¹⁾	When wideband is selected, there is neither an analog anti-alias filter nor any digital filter in the signal path. Therefore, there is no anti-alias protection when wideband is selected. Wideband should not be used if working in a frequency domain with recorded data.
Bessel (Fc @ -3 dB) ⁽¹⁾	This analog Bessel filter can be used to reduce the higher bandwidth signals, especially at maximum sample rate 2 MS/s or 200 kS/s. For lower sample rates, the digital IIR filter is a better choice to prevent aliasing. Bessel filters are typically used when looking at signals in the time domain. They are best used for measuring transient signals or sharp edge signals like square waves or step responses.
Butterworth (Fc @ -3 dB) ⁽¹⁾	This analog Butterworth filter can be used to reduce the higher bandwidth signals, especially at maximum sample rate 2 MS/s or 200 kS/s. For lower sample rates, the digital IIR filter is a better choice to prevent aliasing. Butterworth filters are typically used when looking at (near) sine wave signals in the time domain or signals in the frequency domain.
Bessel IIR (Fc @ -3 dB)	When Bessel IIR filter is selected, this is always a combination of an analog Bessel anti- alias filter and a digital Bessel IIR filter to prevent aliasing at lower sample rates. Bessel filters are typically used when looking at signals in the time domain. They are best used for measuring transient signals or sharp edge signals like square waves or step responses.
Butterworth IIR (Fc @ -3 dB)	When Butterworth IIR filter is selected, this is always a combination of an analog Butterworth anti-alias filter and a digital Butterworth IIR filter to prevent aliasing at lower sample rates. This filter is best used when working in the frequency domain. When working in the time domain, this filter is best used for signals that are (close to) sine waves.
Elliptic IIR (Fc @ -0.1 dB)	When Elliptic IIR filter is selected, this is always a combination of an analog Butterworth anti-alias filter and a digital Elliptic IIR filter to prevent aliasing at lower sample rates. This filter is best used when working in the frequency domain. When working in the time domain, this filter is best used for signals that are (close to) sine waves.

(1) Wideband and analog Anti-Alias filters are valid for GN610B only.

Bandwidth and Filter Characteristic Selection versus Sample Rate The digital filter before decimation guarantees a superior phase match, ultra-low noise and alias free result. Digital lowpass filters (alias free by using an analog anti alias filter in front of ADC) Wideband (1) Bessel IIR Bessel IIR Bessel IIR No Anti-alias **Butterworth IIR Butterworth IIR Butterworth IIR Butterworth IIR** filter Elliptic IIR Elliptic IIR Elliptic IIR Elliptic IIR **Bessel IIR** User selectable 1/40 Fs 1/100 Fs sample rates 1/4 Fs 1/10 Fs 1/20 Fs Wideband 200 kHz 100 kHz 50 kHz 20 kHz 2 MS/s⁽²⁾ Wideband 250 kHz 100 kHz 50 kHz 25 kHz 10 kHz 1 MS/s⁽²⁾ Wideband 125 kHz 50 kHz 25 kHz 12.5 kHz 5 kHz 500 kS/s⁽²⁾ Wideband 100 kHz 40 kHz 20 kHz 10 kHz 4 kHz 400 kS/s⁽²⁾ Wideband 6.25 kHz 2.5 kHz 250 kS/s⁽²⁾ 62.5 kHz 25 kHz 12.5 kHz 2 kHz 200 kS/s Wideband 50 kHz 20 kHz 10 kHz 5 kHz 1.25 kHz 125 kS/s Wideband 25 kHz 12.5 kHz 6.25 kHz 2.5 kHz 1 kHz 100 kS/s Wideband 20 kHz 10 kHz 5 kHz 2 kHz 50 kS/s Wideband 12.5 kHz 5 kHz 2.5 kHz 1.25 kHz 500 Hz 40 kS/s Wideband 10 kHz 4 kHz 2 kHz 1 kHz 400 Hz 25 kS/s Wideband 6.25 kHz 2.5 kHz 1.25 kHz 625 Hz 250 Hz 20 kS/s Wideband 5 kHz 2 kHz 1 kHz 500 Hz 200 Hz 12.5 kS/s Wideband 2.5 kHz 1.25 kHz 625 Hz 312.5 Hz 125 Hz 10 kS/s Wideband 1 kHz 500 Hz 100 Hz 2 kHz 250 Hz 5 kS/s Wideband 1.25 kHz 500 Hz 250 Hz 125 Hz 50 Hz 4 kS/s Wideband 1 kHz 400 Hz 200 Hz 100 Hz 40 Hz 625 Hz 2.5 kS/s Wideband 250 Hz 125 Hz 62.5 Hz 25 Hz 2 kS/s Wideband 500 Hz 200 Hz 100 Hz 50 Hz 20 Hz 1.25 kS/s Wideband 312.5 Hz 125 Hz 62.5 Hz 31.25 Hz 12.5 Hz 1 kS/s Wideband 250 Hz 100 Hz 50 Hz 25 Hz 10 Hz 500 S/s Wideband 125 Hz 50 Hz 25 Hz 12.5 Hz 5 Hz 4 Hz 400 S/s Wideband 100 Hz 40 Hz 20 Hz 10 Hz Wideband 6.25 Hz 2.5 Hz 250 S/s 62.5 Hz 25 Hz 12.5 Hz 200 S/s Wideband 50 Hz 20 Hz 10 Hz 5 Hz 2 Hz 1.25 Hz 125 S/s Wideband 31.25 Hz 12.5 Hz 6.25 Hz 3.125 Hz 100 S/s Wideband 25 Hz 10 Hz 5 Hz 2.5 Hz 1 Hz 50 S/s Wideband 12.5 Hz 5 Hz 2.5 Hz 1.25 Hz 0.5 Hz 40 S/s Wideband 10 Hz 4 Hz 2 Hz 1 Hz 0.4 Hz

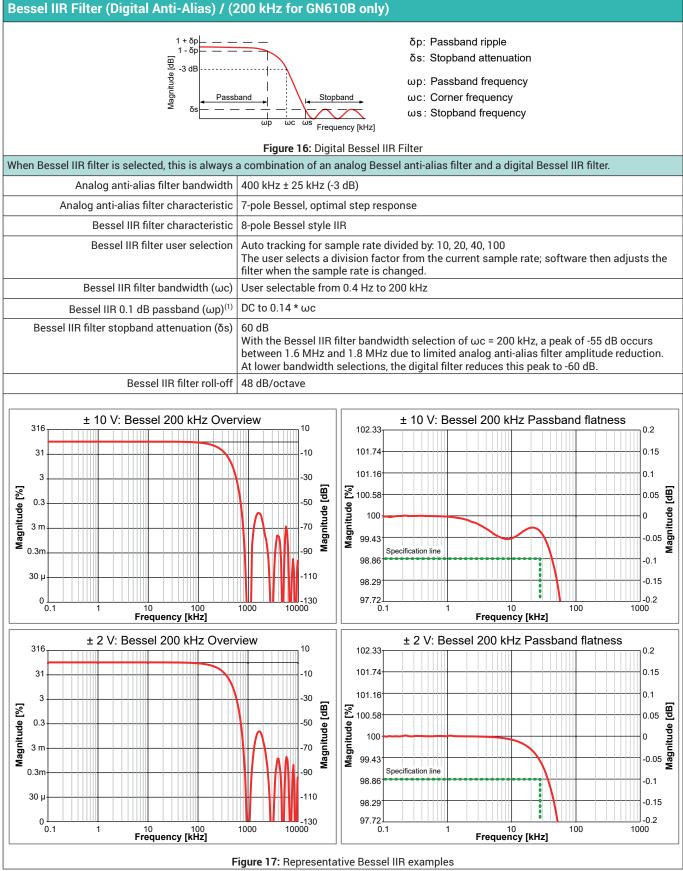

(1) Wideband filter is valid for GN610B only.

(2) User selectable sample rates are valid for GN610B only.

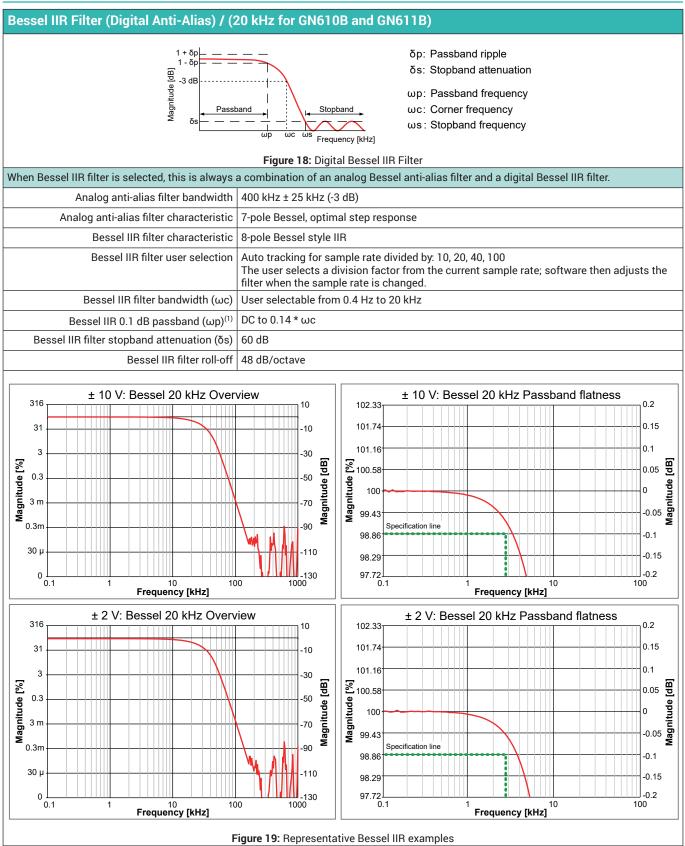


(1) Wideband filter is valid for GN610B only

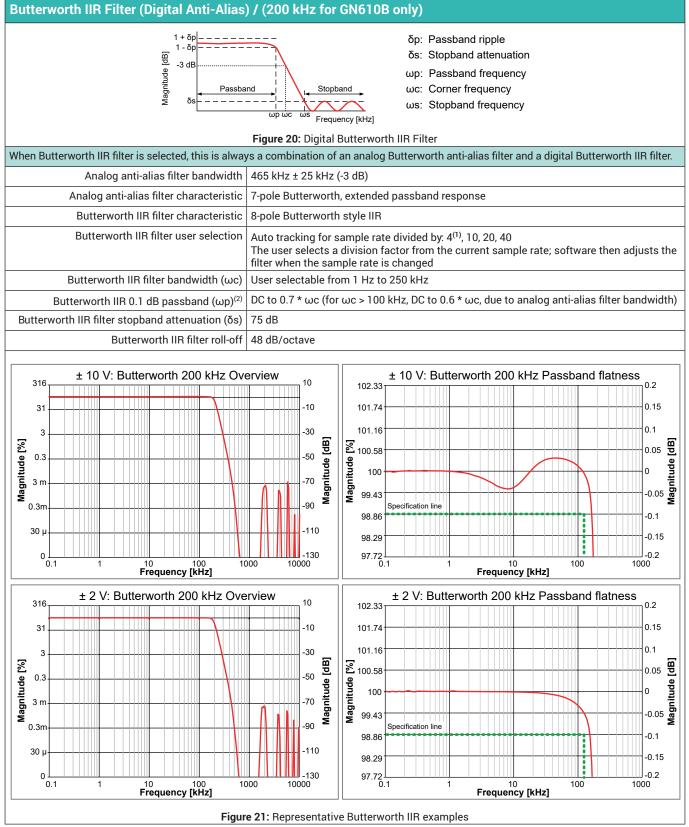
(2) Measured using a Fluke 5700A calibrator, DC normalized.



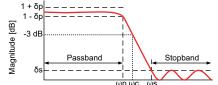
(2) Measured using a Fluke 5700A calibrator, DC normalized.

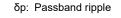


(1) Analog Anti-Alias Butterworth filter is valid for GN610B only.


(2) Measured using a Fluke 5700A calibrator, DC normalized.

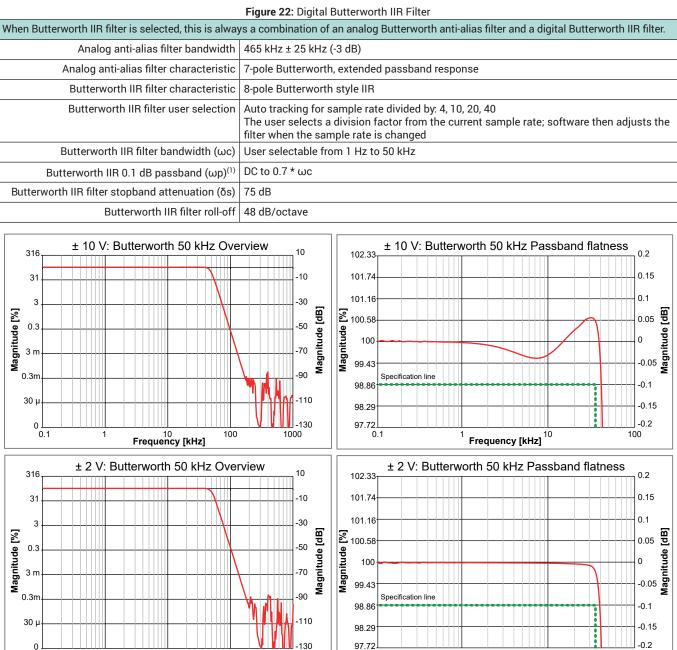
(1) Measured using a Fluke 5700A calibrator, DC normalized


(1) Measured using a Fluke 5700A calibrator, DC normalized



(1) Division by 4 not possible for the 2 MS/s sample rate

(2) Measured using a Fluke 5700A calibrator, DC normalized



- δs: Stopband attenuation
- ωp: Passband frequency
- ωc: Corner frequency
- ωs: Stopband frequency

ωp Frequency [kHz]

97.72

0.1

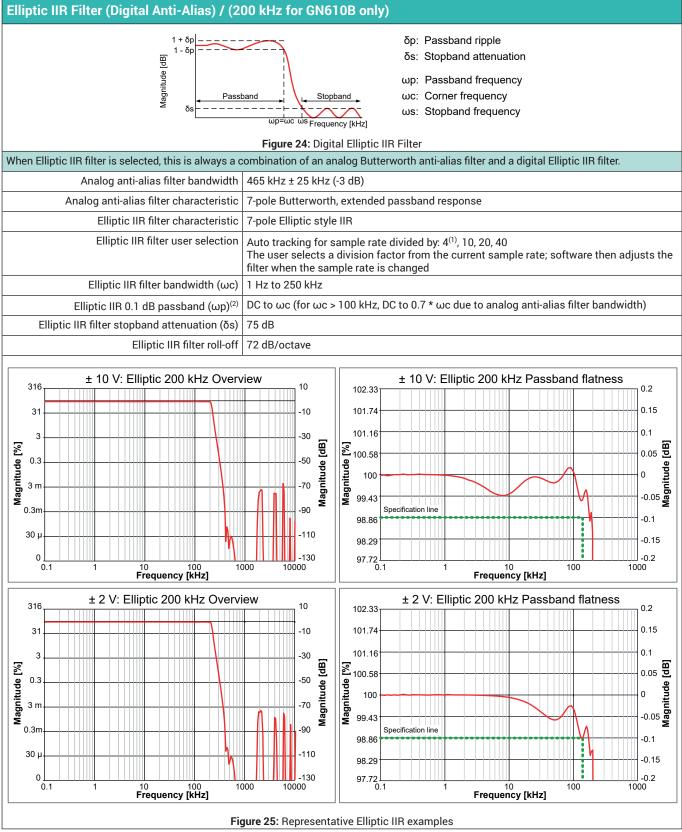
100

1000

Measured using a Fluke 5700A calibrator, DC normalized (1)

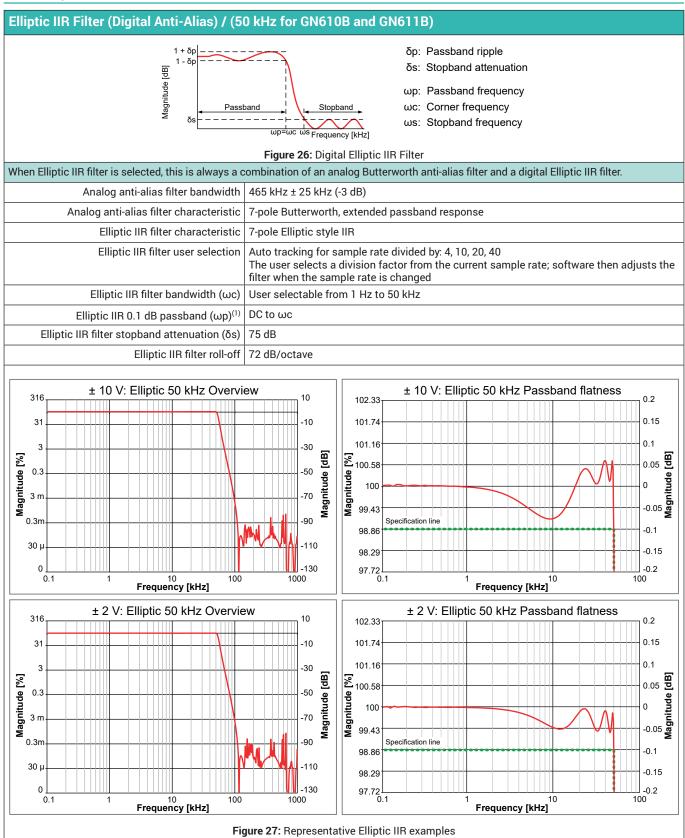
10 Frequency [kHz]

1


100

10

Frequency [kHz]


0

0.1

(1) Division by 4 not possible for the 2 MS/s sample rate

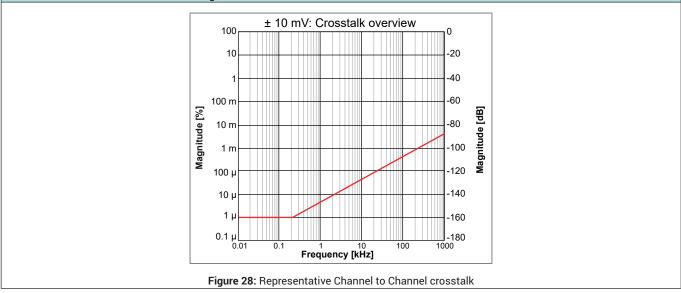
(2) Measured using a Fluke 5700A calibrator, DC normalized

(1) Measured using a Fluke 5700A calibrator, DC normalized

Channel to Channel Phase Match (GN610B)

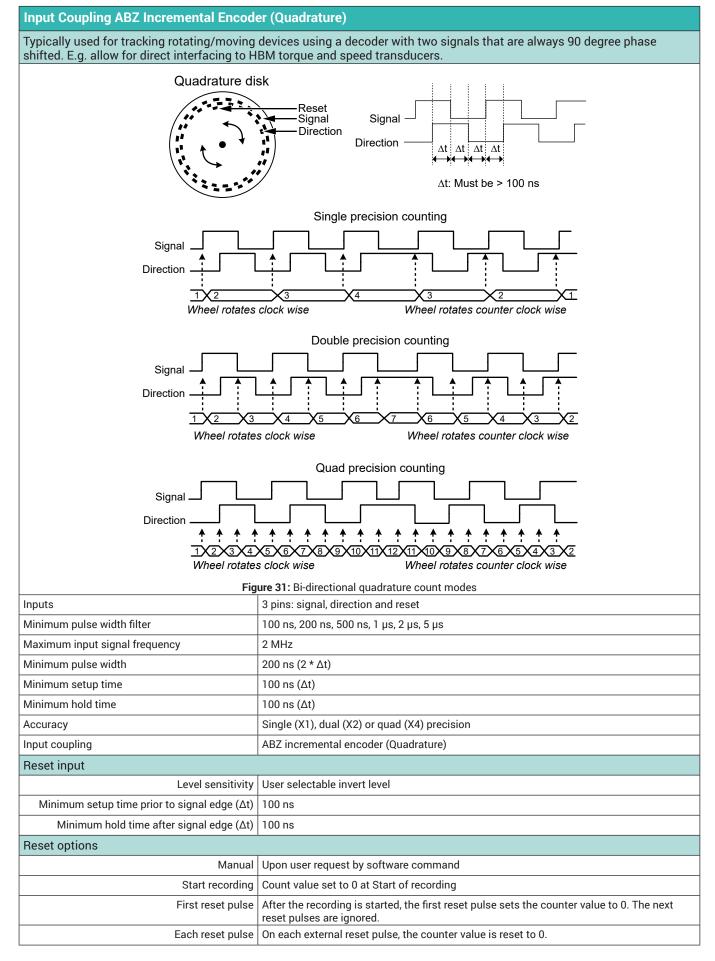
Using different filter selections (Wideband/Bessel IIR/Butterworth IIR/etc.) or different filter bandwidths results in phase mismatches between channels. All specifications are typical static values and measured using a 100 kHz sine wave and 2 MS/s sample rate.

Banges < +10V	Banges > +10V	Combined ranges	
Tranges < 110V	Tranges 2 110V	oomoned ranges	
0.1° (3 ns)	0.1° (3 ns)	0.1° (3 ns)	
0.1° (3 ns)	0.1° (3 ns)	0.1° (3 ns)	
0.1° (3 ns)	0.1° (3 ns)	0.1° (3 ns)	
0.1° (3 ns)	0.1° (3 ns)	0.1° (3 ns)	
Butterworth IIR, Filter frequency 200 kHz			
0.2° (6 ns)	0.2° (6 ns)	0.2° (6 ns)	
0.2° (6 ns)	0.2° (6 ns)	0.2° (6 ns)	
Elliptic IIR, Filter frequency 200 kHz			
0.2° (6 ns)	0.2° (6 ns)	0.2° (6 ns)	
0.2° (6 ns)	0.2° (6 ns)	0.2° (6 ns)	
Defined by synchronization method used (None, IRIG, GPS, Master/Sync, PTP)			
	0.1° (3 ns) 0.1° (3 ns) 0.1° (3 ns) 0.2° (6 ns) 0.2° (6 ns) 0.2° (6 ns) 0.2° (6 ns) 0.2° (6 ns)	0.1° (3 ns) 0.1° (3 ns) 0.2° (6 ns) 0.2° (6 ns)	


Channel to Channel Phase Match (GN611B)

Using different filter selections (Bessel IIR/Butterworth IIR/etc.) or different filter bandwidths results in phase mismatches between channels. All specifications are typical static values and measured using a 10 kHz sine wave and 200 kS/s sample rate.

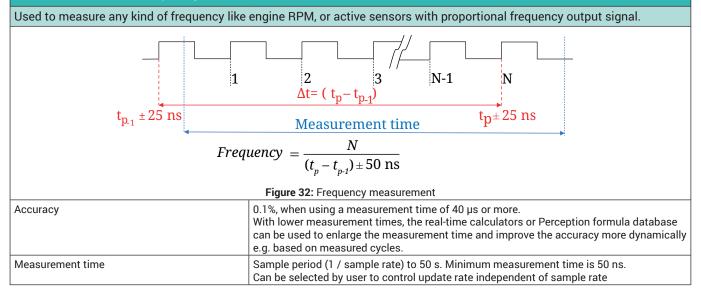
< ±10V spans	≥ ±10V spans	Combined spans		
Bessel IIR, Filter frequency 20 kHz				
0.01° (3 ns)	0.04° (13 ns)	0.27° (76 ns)		
0.01° (3 ns)	0.06° (17 ns)	0.27° (76 ns)		
Butterworth IIR, Filter frequency 50 kHz				
0.02° (6 ns)	0.04° (13 ns)	0.27° (76 ns)		
0.02° (6 ns)	0.06° (17 ns)	0.27° (76 ns)		
Elliptic IIR, Filter frequency 50 kHz				
0.02° (6 ns)	0.04° (13 ns)	0.27° (76 ns)		
0.02° (6 ns)	0.06° (17 ns)	0.27° (76 ns)		
Defined by synchronization method used (None, IRIG, GPS, Master/Sync, PTP)				
	0.01° (3 ns) 0.01° (3 ns) 0.02° (6 ns) 0.02° (6 ns) 0.02° (6 ns) 0.02° (6 ns) 0.02° (6 ns)	0.01° (3 ns) 0.04° (13 ns) 0.01° (3 ns) 0.06° (17 ns) 0.02° (6 ns) 0.04° (13 ns) 0.02° (6 ns) 0.06° (17 ns) 0.02° (6 ns) 0.06° (13 ns) 0.02° (6 ns) 0.04° (13 ns) 0.02° (6 ns) 0.04° (13 ns) 0.02° (6 ns) 0.04° (13 ns) 0.02° (6 ns) 0.06° (17 ns)		


Channel to Channel Crosstalk

Channel to channel crosstalk is measured with a 50 Ω termination resistor on the input and uses sine wave signals on the channel above and below the channel being tested. To test Channel 2, Channel 2 is terminated with 50 Ω , while Channels 1 and 3 are connected to the sine wave generator.

Digital Event/Timer/Counter The Digital Event/Timer/Counter input connector is located on the mainframe. For exact layout and pinning see mainframe data sheet. 20 MHz Update Measurement Sample Rate time Measurement Signa mode Count 16 bit Count Pulse width filter Sample Input ∆t timer Scaling Rate Update Direction coupling Up/Down Up/Down 32 bit Pulse width filter Storage rate Angle or 16 bit Count Reset Reset Pulse width filter Sample 16 event bit Rate Storage Figure 29: Timer/Counter block diagram Digital input events 16 per card Levels TTL input level, user programmable invert level 1 pin per input, some pins are shared with Timer/Counter inputs Inputs Overvoltage protection ± 30 V DC continuously Minimum pulse width 100 ns Maximum frequency 5 MHz Digital output events 2 per card Levels TTL output levels, short circuit protected Output event 1 User selectable: Trigger, Alarm, set High or Low Output event 2 User selectable: Recording active, set High or Low Digital output event user selections Trigger 1 high pulse per trigger (on every channel trigger of this card only) 12.8 µs minimum pulse width 200 µs ± 1 µs ± 1 sample period pulse delay Alarm High when alarm condition of card is activated, low when not activated 200 µs ± 1 µs ± 1 sample period alarm event delay Recording active High when recording, low when in idle or pause mode Recording active output delay of 450 ns Set High or Low Output set High or Low; can be controlled by Custom Software Interface (CSI) extensions; delay depends on specific software implementation Timer/Counter 4 per card Levels TTL input levels Inputs 3 pins: signal, reset and direction All pins are shared with digital event inputs Uni-directional, Bi-directional and ABZ incremental encoder (Quadrature) Input coupling Measurement modes Count (C) Angle (0 to 360 degrees) Frequency ($\Delta count / \Delta t$) RPM (Δcount / Δt / 60 s) Timer accuracy ± 25 ns (20 MHz) Measurement time 1 to n samples (User selectable maximum Δt) Measurement time and reading update rate Measurement time sets the maximum update rate of the Measurement values Measurement time and minimum frequency Minimum measured frequency or RPM = 1 / Measurement time

Input Coupling Uni- and Bi-directional Signal		
Uni- and bi-directional input coupling is used when the direction signal is a stable signal.		
Signal A Direction Reset	$\begin{array}{c} \Delta s \\ \downarrow \Delta s \\ \downarrow \downarrow$	
Count up	Count down Reset	
	Figure 30: Uni- and Bi-directional timing	
Inputs	3 pins: signal, reset and direction (only used in bi-directional count)	
Minimum pulse width filter	100 ns, 200 ns, 500 ns, 1 μs, 2 μs, 5 μs	
Maximum input signal frequency	4 MHz	
Minimum pulse width (Δw)	100 ns	
Reset input		
Level sensitivity	User selectable invert level	
Minimum setup time prior to signal edge (Δ s)	100 ns	
Minimum hold time after signal edge (Δh)	100 ns	
Reset options		
Manual	Upon user request by software command	
Start recording	Count value set to 0 at Start of recording	
First reset pulse After the recording is started, the first reset pulse sets the counter value to 0. The ne reset pulses are ignored.		
Each reset pulse On each external reset pulse, the counter value is reset to 0.		
Direction input		
Input Level sensitivity Only used when in bi-directional mode Low: increment counter/positive frequency High: decrement counter/negative frequency		
Minimum setup time prior to signal edge (Δ s)	100 ns	
Minimum hold time after signal edge (Δ h)	100 ns	

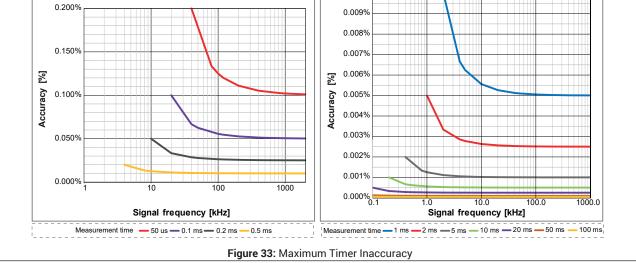


Measurement Mode Angle

In angle measurement mode the counter will use a user defined maximum angle and revert back to zero when this count value is reached. Using the reset input the measured angle can be synchronized to the mechanical angle. The real-time calculators can extract the RPM from the measured angle independent from the mechanical synchronization.

Angle options	
Reference	User selectable. Enables the use of the reset pin to reference the mechanical angle to the measured angle
Angle at reference point	User defined to specify mechanical reference point
Reset pulse	Angle value is reset to user defined "angle at reference point" value
Pulses per rotation	User defined to specify the encoder/count resolution
Maximum pulses per rotation	32767
Maximum RPM	30 * sample rate (Example: Sample rate 10 kS/s means maximum 300 k RPM)

Measurement Mode Frequency/RPM


Measurement Mode Count/Position

Count/position mode is typically used for tracking movement of device under test.

To reduce the sensitivity for count/position errors due to clock glitches use the minimum pulse width filter or enable the ABZ in stead of uni-/bipolar input coupling.

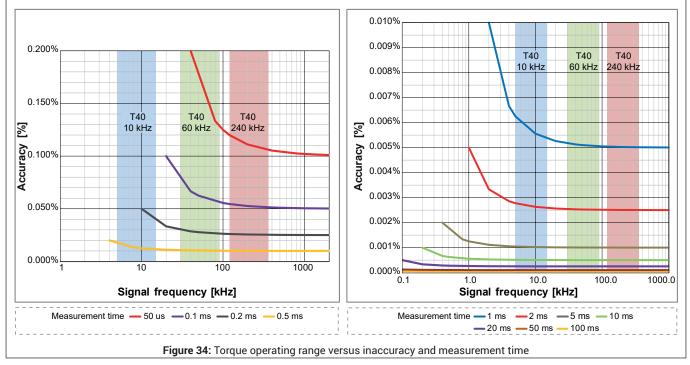
Counter range	0 to 2 ³¹ ; uni-directional count
	-2 ³¹ to +2 ³¹ - 1; bi-directional count

Maximum Timer Inaccuracy Timer accuracy is a tradeoff between update rate and minimum required accuracy. This table shows the relationships between measured signal frequency, selected measurement time (update rate) and timer accuracy. The inaccuracy distribution is to be considered rectangular. (signal frequency * 50 ns) Calculate the inaccuracy by using: * 100% Inaccuracy = ± INTEGER ((signal frequency -1) * measurement time) Mea-Higher signal frequencies: Signal frequency (2 MHz down to 10 kHz) sure-2 MHz 1 MHz 500 kHz 400 kHz 200 kHz 100 kHz 50 kHz 40 kHz 20 kHz 10 kHz ment ±10.000% 1 μs ±3.333% ±5.000% 2 us ±1.111% ±1.250% ±1.333% +2.000%5 µs 10 µs ±0.526% ±0.556% ±0.625% ±0.667% ±1.000% 20 µs ±0.256% ±0.263% ±0.278% ±0.286% ±0.333% ±0.500% 50 µs ±0.101% ±0.102% ±0.103% ±0.105% ±0.111% ±0.125% ±0.133% ±2.000% 0.1 ms ±0.050% ±0.051% ±0.051% ±0.051% ±0.053% ±0.056% ±0.063% ±0.067% ±0.100% 0.2 ms ±0.025% ±0.026% ±0.026% ±0.028% ±0.029% ±0.033% ±0.050% 0.5 ms ±0.010% ±0.010% ±0.010% ±0.0011% ±0.0011% ±0.0013% 1 ms ±0.0050% ±0.0051% ±0.0051% ±0.0051% ±0.0053% ±0.0056% 2 ms ±0.0025% ±0.0026% ±0.0026% 5 ms ±0.0010% 10 ms ±0.0005% 20 ms ±0.00025% 50 ms ±0.00010% 100 ms ±0.00005% Mea-Lower signal frequencies: Signal frequency (40 Hz to 5 kHz) sure-5 kHz 4 kHz 2 kHz 1 kHz 500 Hz 400 Hz 200 Hz 100 Hz 50 Hz 40 Hz ment 0.5 ms ±0.0133% ±0.0200% 1 ms ±0.0063% ±0.0067% ±0.0100% ±0.0028% ±0.0033% 2 ms +0.0029%+0.0050%5 ms ±0.0010% ±0.0011% ±0.0011% ±0.0013% ±0.0013% ±0.0020% 10 ms ±0.00051% ±0.00051% ±0.00053% ±0.00056% ±0.00063% ±0.00067% ±0.00100% ±0.00025% ±0.00026% 20 ms +0.00025%±0.00026% +0.00028%+0.00029%±0.00033% +0.00050%50 ms ±0.00010% ±0.00010% ±0.00010% ±0.00010% ±0.00010% ±0.00011% ±0.00011% ±0.00130% ±0.00013% ±0.00020% 100 ms ±0.000050% ±0.000050% ±0.000050% ±0.000051% ±0.000051% ±0.000051% ±0.000053% ±0.000056% ±0.000063% ±0.000067% 0.010% 0.200% 0.009%

Torque Measurement Uncertainty using Frequency Measurements

When using the Timer/Counter channels to measure torque, the measurement uncertainty introduced by the timer inaccuracies can be calculated using the following examples based on HBK T40 torque transducers. The T40 torque transducer comes with 3 variants for frequency output: 10 kHz, 60 kHz or 240 kHz center frequency. From the data sheets you can extract the minimum and maximum frequency output like table below.

T40 Variant	-Full Scale frequency output	+Full Scale frequency output
T40 - 10 kHz	5 kHz	15 kHz
T40 - 60 kHz	30 kHz	90 kHz
T40 - 240 kHz	120 kHz	360 kHz


Overlay these operating ranges on top of the timer inaccuracy plots of Figure 33 will result in Figure 34 (see below).

- Remains the step to balance the update rate (torque bandwidth) versus the torque accuracy required.
- Calculate the inaccuracy using the -Full Scale frequency output and desired measurement time.
- Using a minimum of 60 RPM the following inaccuracies are calculated.

Selected measurement time	Maximum inaccuracy: T40 - 240 kHZ	Maximum inaccuracy: T40 - 60 kHZ	Maximum inaccuracy: T40 - 10 kHZ
50 µs (left red curve)	0.1200%	0.1500%	Not possible
100 μs (left purple curve)	0.0546%	0.0750%	Not possible
500 μs (left orange curve)	0.0101%	0.0107%	0.0125%
1 ms (right blue curve)	0.0050%	0.0052%	0.0063%
2 ms (right red curve)	0.0025%	0.0025%	0.0028%
5 ms (right grey curve)	0.0010%	0.0010%	0.0010%

For K=1 (70% probability) use the specified rectangular distribution and the maximum inaccuracy numbers and calculate:

Measurement uncertainty = Maximum inaccuracy ~ 0.58 (Conversion for rectangular distribution)			
Measurement uncertainty K=1 (About 70% probability)	Maximum inaccuracy: T40 - 240 kHZ	Maximum inaccuracy: T40 - 60 kHZ	Maximum inaccuracy: T40 - 10 kHZ
50 μs (left red curve)	0.0696%	0.0870%	Not possible
100 μs (left purple curve)	0.0316%	0.0435%	Not possible
500 μs (left orange curve)	0.0059%	0.0062%	0.00725%
1 ms (right blue curve)	0.0029%	0.0029%	0.00365%
2 ms (right red curve)	0.00145%	0.0015%	0.00162%
5 ms (right grey curve)	0.00058%	0.0006%	0.00058%

Speed (RPM) Measurement Uncertainty using Frequency Measurements

inaccuracies can be cal	culated using the fol	neasure speed (RPM), the m lowing example. the specified number of puls	-	
the sensor output:				
		during testing * number during testing * number		
Speed Sensor pulse per rot		Frequency at 60 RPM	Frequency at 10 000 RPM	Frequency at 20 000 RPM
	180	180 Hz	30 kHz	60 kHz
	360	360 Hz	60 kHz	120 kHz
	1024	1024 Hz	170.7 kHz	341.3 kHz
 Remains the step to b Using the graphs find 	alance the update rate the crossings of the ov	r inaccuracy plots of Figure 33 v (torque bandwidth) versus the t erlayed operating frequencies w found in the graphs (at 60 RPM)	orque accuracy required. ith the measurement time cur	
Selected measurement tim	ne	180 pulse sensor	360 pulse sensor	1024 pulse sensor
	2 ms (red curve)	Can't record at 60 RPM	Can't record at 60 RPM	0.00256%
	5 ms (grey curve)	Can't record at 60 RPM	0.0018%	0.0010%
	10 ms (Green curve)	0.0009%	0.0006%	0.00051%
		gular distribution and the maxin ccuracy * 0.58 (Conversi		
Measurement uncertainty K=1 (About 70% probability		180 pulse sensor	360 pulse sensor	1024 pulse sensor
	2 ms (red curve)	Can't record at 60 RPM	Can't record at 60 RPM	0.00148%
	5 ms (grey curve)	Can't record at 60 RPM	0.00104%	0.00059%
	10 ms (Green curve)	0.00052%	0.00035%	0.00030%
	O.000%		1024 pulses	
	0.002% 0.000% 0.1 Measurement time -	1.0 10.0 Signal frequency -1 ms -2 ms -5 ms -10 ms		0.0
	Figure 35: RPM sens	sor operating range versus inacc	curacy and measurement time	

Simultaneous D	vnamic Torque	Ripple and Acc	urate Torque Effic	ciency Measurement

If a high update rate is required to measure e.g. dynamic torque ripple yet for efficiency a high accuracy is required use both a measurement time of 50 µs as well as a RT-FDB function to calculate the mean value for each electric cycle. The measured torque signal coming from the timer counter will be 0.15 to 0.17% accurate, while the torque calculate for the

electric cycle (typically being 1 ms or less) results in 0.0075% accuracy. As both signals are simultaneously available, the dynamic signal allows you to analyse the torque ripple behaviour, the electric cycle signal will be extremely accurate for efficiency calculations.

Torque sensor		M_	raw: raw torque signal
	► Real-time math c @CycleMean(M_raw; "us		: instantaneous torque over user defined time
	► Real-time math o @CycleMean(M_raw; Cy	vcle_Master)	que per detected cycle
Figure 36: Si	multaneous dynamic and accu	rate torque calculations	1
ePower signals	Application use	Dynamic response	Accuracy
M_raw	Torque ripple	Highest	Lowest
M_inst	Torque mean	Average	Average
	rorque mean		5

Alarm Output	
Event channel alarm modes	High or low level check
Cross channel alarms	Logical OR of alarms from all measured channels
Alarm output	Active during valid alarm condition, output supported through mainframe
Alarm output level	High or low user selectable
Alarm output delay	515 μs ± 1 μs + maximum 1 sample period. Default 516 μs, compatible with standard behavior. Minimum selectable delay is the smallest delay available for all acquisition cards used within the mainframe. Delay equal to Trigger Out delay.
Selection per card	User selectable On/Off
Analog channel alarm modes	
Basic	Above or below level check
Dual	Outside or within bounds check
Analog channel alarm levels	
Levels	Maximum 2 level detectors
Resolution	16 bit (0.0015%) for each level

Triggering	
Channel trigger/qualifier	1 per channel; fully independent per channel, software selectable either trigger or qualifier
Pre- and post-trigger length	0 to full memory
Maximum trigger rate	400 triggers per second
Maximum delayed trigger	1000 seconds after a trigger occurred
Manual trigger (Software)	Supported
External Trigger In	
Selection per card	User selectable On/Off
Trigger In edge	Rising/Falling mainframe selectable, identical for all cards
Minimum pulse width	500 ns
Trigger In delay	±1 µs + maximum 1 sample period
Send to External Trigger Out	User can select to forward External Trigger In to the External Trigger Out BNC
External Trigger Out	
Selection per card	User selectable On/Off
Trigger Out level	High/Low/Hold High; mainframe selectable, identical for all cards
Trigger Out pulse width	High/Low: 12.8 µs Hold High: Active from first mainframe trigger to end of recording Pulse width created by mainframe; For details, please refer to the mainframe data sheet
Trigger Out delay	Selectable (10 μ s to 516 μ s) ± 1 μ s + maximum 1 sample period Default 516 μ s, compatible with standard behavior. Minimum selectable delay is the smallest delay available for all acquisition cards used within the mainframe
Cross channel triggering	
Measurement channels	Logical OR of triggers from all measured signals Logical AND of qualifiers from all measured signals
Calculated channels	Logical OR of triggers from all calculated signals (RT-FDB) Logical AND of qualifiers from all calculated signals (RT-FDB)
Analog channel trigger levels	
Levels	Maximum 2 level detectors
Resolution	16 bit (0.0015%) for each level
Direction	Rising/Falling; single direction control for both levels based on selected mode
Hysteresis	0.1 to 100% of Full Scale; defines the trigger sensitivity
Pulse detect/reject	Disable/Detect/Reject selectable. Maximum pulse width 65 535 samples
Analog channel trigger modes	
Basic	POS or NEG crossing; single level
Dual Level	One POS and one NEG crossing; two individual levels, logical OR
Analog channel qualifier modes	
Basic	Above or below level check. Enable/Disable trigger with single level
Dual	Outside or within bounds check. Enable/Disable trigger with dual level
Event channel trigger	
Event channels	Individual event trigger per event channel
Levels	Trigger on rising edge, falling edge or both edges
Qualifiers	Active High or Active Low for every event channel

On-board Memory	
Per card	2 GB (1 GS @ 16 bits, 500 MS @ 18 bits storage) (GN610B) 200 MB (100 MS @ 16 bits, 50 MS @ 18 bits storage) (GN611B)
Organization	Automatically distributed amongst channels enabled for storage or real-time calculations
Memory diagnostics	Automatic memory test when system is powered on but not recording
Storage sample size	User selectable 16 or 18 bits 16 bits, 2 bytes/sample 18 bits, 4 bytes/sample

Real-time Formula Database Calculators

Figure 37: Real-time cycle based calculators			
Cycle Source	Determines the periodic real-time calculation speed by either setting a timer or using a real-time cycle detect		
Cycle Source: Timer			
Timer duration	1.0 ms (1 kHz) to 60 s (0.0167 Hz)		
Cycle Source: Cycle detect			
Level crossing	Real-time monitors one input channel using a signal level, hysteresis and direction to determine the cyclic nature of the signal		
Cycle count	Sets the counted number of cycles used for periodic calculation output		
Cycle period ⁽¹⁾	Maximum Cycle period that can be detected: 0.25 s (4 Hz) Minimum Cycle period that can be detected: 0.91 ms (1.1 kHz) Calculations are stopped when the Cycle period exceeds its maximum Cycle period (0.25 s). Cycle count is temporarily increased when Cycle period becomes shorter than minimum Cycle period (0.91 ms). Time event notifications in the channel data indicate when the Cycle period has been exceeded or when the automatic Cycle count is increased		
Cycle based calculator			
Number of calculators	32; at sample rates 200 kS/s or lower. At higher sample rates, the number of calculators is reduced to match the available DSP power		
DSP load	Each calculator can perform 1 calculation. Not every calculation uses the same DSP power. Selecting a calculation with the highest computation power could result in a reduction in the total number of calculators. Different combinations require different computation power. The effects of selected combinations is reflected in Perception software.		
Cycle Source calculations	Cycle and Frequency		
Analog channel calculations	RMS, Minimum, Maximum, Mean, Peak-to-Peak, Area, Energy and Crest Factor		
Timer/Counter channel calculations	Frequency (to enable triggering), RPM of Angle		
Cycle	Square wave signal, 50% duty cycle Represent Cycle Source; rising edge indicates start of new calculation period		
Frequency	Detected cycle interval is converted to a frequency (1/cycle time of input signal)		
Trigger detector			
Number of detectors	32; One per real-time calculator		
Trigger level	Defined by the user for each detector. Generates trigger when the calculated signal crosses the level		
Trigger output delay	Triggers are delayed by 100 ms on calculated signals. The trigger time is corrected internally so that the sweep triggering is correct. An additional pre-trigger length of 100 ms is added to enable the trigger time correction. This reduces the maximum sweep length by 100 ms		

F(x)

Selectable

Math

Source

ŝ

Cycle Based Calculator

.

<u>/.</u>.

Trigger Detector

......

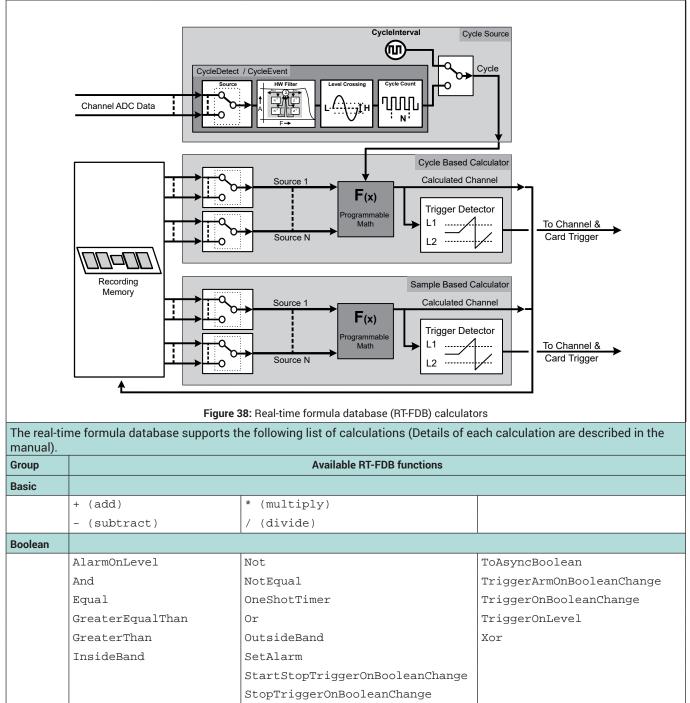
L1

L2 -----

Calculated Channels

To Channel &

Card Trigger


(1) Cycle period range depends on signal wave shape and hysteresis setting. Specified for Sine wave with 25% Full Scale hysteresis.

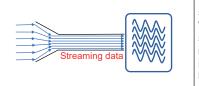
Real-time Formula Database Calculators (Option to be ordered separately)

The real-time formula database (RT-FDB) option offers an extensive set of math routines to enable almost any real-time mathematical challenge. The database structure enables the user to define a list of mathematical equations similar to the Perception review formula database.

The maximum supported sample rate is 2 MS/s.

Different versions of Perception can enable more or less features as described in GEN DAQ the mainframes manuals.

Dool tim	Deal time Formula Detahage Coloulators (Ontion to be andered concretable)			
Group	e Formula Database Calculators (Option to be ordered separately) Available RT-FDB functions			
Cycle				
Cycle	CycleArea	CycleFundamentalPhase	CycleNOP	
	CycleBusDelay	CycleFundamentalRMS	CyclePeak2Peak	
	CycleCount	CycleHarmonicPhase	CyclePhase	
	CycleCrestFactor	CycleHarmonicRMS	CycleRMS	
	CycleDetect	CycleInterval	CycleRPM	
	CycleEnergy	CycleMax	CycleSampleCount	
	CycleEvent	CycleMean	CycleStdDev	
	CycleFrequency	CycleMin	CycleTHD	
	ey erer requeitey		ExternalCycleEvent	
eDrive				
eDrive	AronConversion	EfficiencyValue	SpaceVector	
	DQ0Transformation	HarmonicsIEC61000	SpaceVectorInv	
	EfficiencyMode	PowerLoss	Spaceveccorriv	
Enhanced	Imerencynode			
Ellinanceu	Abs	LessEqualThan	RadiansToDegrees	
	Atan	LessThan	SampleCount	
	Atan2	Max	Sin	
	Cos	Min	Sqrt	
	DegreesToRadians	Minus	Tan	
	Integrate	Modulo		
	IntegrateGated	PureDFT		
Fieldbus				
Fielubus	SetScalarFromFieldbus			
Filter				
Filler	FilterBesselBP	FilterButterworthBP	FilterChebyshevBP	
	FilterBesselHP	FilterButterworthHP	FilterChebyshevHP	
	FilterBesselLP	FilterButterworthLP	FilterChebyshevLP	
	HWFilter		Filterenebysneviir	
Math				
width	NumSamplesMean	TimedMean		
	NumSamplesStdDev	TimedStdDev		
Signal generation	-			
generation	Ramp			
	Sinewave			


Real-time Statstream®		
	g waveform displays as well as real-time meters while recording. I for displaying and zooming extremely large recordings and it reduces the	
Analog channels	Maximum, Minimum, Mean, Peak to Peak, Standard Deviation and RMS values	
Event/Timer/Counter channels	Maximum, Minimum and Peak to Peak values	

Data Recording Modes	
On start of acquisition Channel 1 Channel n Streaming data PNRF file on drive	Data recording to PC or mainframe drive. Data recording to a drive is limited by an aggregate sample rate , the recording time is limited by the size of drive . Note: As the aggregate sample rate limit depends on Ethernet speed and storage drive used, as well as the PC and drive not being used for other purposes as data recording, it is strongly recommended for higher aggregate sample rates to test the chosen setup prior to performing your test.
Wait for trigger Channel 1 Channel n Streaming data PNRF file on drive	Triggered data recording to PC or mainframe drive. Trigger data recording to a drive is limited by an aggregate sample rate , the recording time is limited by the size of drive. Note: As the aggregate sample rate limit depends on Ethernet speed and storage drive used, as well as the PC and drive not being used for other purposes as data recording, it is strongly recommended for higher aggregate sample rates to test the chosen setup prior to performing your test. Not recommended for transient/one time only/destructive tests.
Wait for trigger to trigger memory first	Triggered data recording to trigger memory on the acquisition card. Triggered data recording to trigger memory has no sample rate limits , the recording time is limited by the size of trigger memory . Triggered data recorded in trigger memory is moved to a drive as quickly as possible. Note : This data recording mode guarantees the data will always be recorded according to the user defined settings. Recommended for transient/one time only/destructive tests.
On start of acquisition reduced rate and wait for trigger to trigger memory first Channel 1 Channel n Channel n Channel n Channel n Channel n Channel n	Data recording to PC or mainframe drive and simultaneous triggered data recording to trigger memory on the acquisition card. The reduced rate data recording to a drive is limited by an aggregate sample rate and the recording time is limited by the size of drive . The triggered data recording to trigger memory has no sample rate limits , the triggered data recording time is limited by the size of trigger memory . The triggered data recorded in trigger memory is moved to a drive as quickly as possible. As this data move happens simultaneously with the reduce rate data recording, it uses bandwidth of the aggregate sample rate. Note: As the aggregate sample rate limit depends on Ethernet speed and storage drive used, as well as the PC and drive not being used for other purposes as data recording, it is strongly recommended for higher aggregate sample rates as well as higher number of triggers per second to test the chosen setup prior to performing your test.

Data Recording Compared

Aggregate sample rate limit	Maximum recorded data	Direct recording to drive	Trigger memory first	Trigger required to start recording
Yes	Free drive space	Yes	No	No
Yes	Free drive space	Yes	No	Yes
No	Trigger memory	No	Yes	Yes
Reduced rate: Yes	Free drive space	Yes	No	No
Sample rate: No	Trigger memory	No	Yes	Yes
	rate limit Yes Yes No Reduced rate: Yes	rate limitrecorded dataYesFree drive spaceYesFree drive spaceYesTrigger memoryNoTrigger memoryReduced rate: YesFree drive spaceSample rate: NoTrigger memory	Aggregate sample rate limitMaximum recorded datarecording to driveYesFree drive spaceYesYesFree drive spaceYesNoTrigger memoryNoReduced rate: YesFree drive spaceYesSample rate: NoTrigger memoryNo	Aggregate sample rate limitMaximum recorded datarecording to driveTrigger memory firstYesFree drive spaceYesNoYesFree drive spaceYesNoNoTrigger memoryNoYesReduced rate: YesFree drive spaceYesNoSample rate: NoTrigger memoryNoYes

Aggregate sample rate limits when using streaming data

The maximum aggregate streaming rate per mainframe is defined by mainframe type and solid state drive, Ethernet speed, PC drive and other PC parameters.

When an aggregate sample rate is higher than the aggregate streaming rate of the system is selected, the memory on each acquisition card acts as a FIFO. As soon as this FIFO fills up, the recording is suspended (no data is recorded temporarily). During this period, the FIFO memory is transferred to a drive. When all FIFO's are empty, the recording is automatically resumed. User notifications are added to the recording file for post recording identification of suspended recording.

GN6I0B/GN6IIB					
Triggered Recording Definiti	ions				
The details in this table apply to • Wait for trigger • Wait for trigger to trigger memor • On start of acquisition reduced r					
Sweep	Trigger Stop-trigger Pre-trigger Between-trigger Post-trigger				
	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓				
	Sweep Defined by a trigger signal, pre- and post-trigger data and optionally between-trigger data and/or stop- trigger signal.				
Triggered data segments					
Pre-trigger data	Data recorded prior to a trigger signal. Note: If a trigger signal is received before the full length of pre-trigger data is recorded, the trigger is accepted and the pre-trigger data recorded is automatically reduced to the available pre-trigger data at the time of the trigger.				
Post-trigger data	Data recorded after a trigger or stop-trigger signal. Note: The recording of the post-trigger data can be re-started or delayed depending on the " <i>post-trigger begins on</i> " selection.				
Between-trigger data	Data recorded due to re-trigger(s) or while waiting for the Stop-trigger. The length of between-trigger data is not specified and added based on the timing of the trigger or stop- trigger signals.				
Trigger signals					
Trigger signal	This signal ends the pre-trigger and starts the post-trigger data recording. See table section "Post-trigger begins on" for more details. A trigger signal can be set up on external input trigger, analog and digital channels as well as using simple to complex RT-FDB formulas.				
Stop-trigger signal	This signal starts the post-trigger data recording when in "post-trigger begins on stop-trigger" mode. See table section "Post-trigger begins on" for more details. A stop-trigger signals can be set up on external input trigger and simple to complex RT-FDB formulas.				
Post-trigger begins on					
First trigger					
55	Trigger Pre-trigger: 10.00 ms Post-trigger: 20.00 ms				
	The first trigger signal ends the pre-trigger data recording and starts the recording of the post-trigger of Any trigger received during the post-trigger data recording is ignored. Between-trigger data does not exist in this mode. The resulting sweep contains pre- and the post-trigger data.				
Every trigger	Pre-trigger: 10.00 ms				
	The first trigger ends the pre-trigger data recording and starts the recording of the post-trigger data. Any trigger received during the post-trigger data recording restarts the recording of post-trigger data. All recorded post-trigger data recorded at the time of the trigger is added to the between-trigger data. The resulting sweep contains pre-, between- and the post-trigger data.				
Stop-trigger	Trigger Stop-trigger Pre-trigger: 10.00 ms Between-trigger Pre-trigger: 10.00 ms Post-trigger: 20.00 ms				
	The trigger signal ends the pre-trigger data recording and starts the between-trigger data recording. The stop-trigger then ends the between-trigger data recording and starts the post-trigger data recording. Any trigger received during the between-trigger and post-trigger data recording is ignored. Any stop-trigger received during the pre-trigger and post-trigger data recording is ignored. The resulting sweep contains pre-, between- and the post-trigger data.				

Trigger Memory Filled While Recording	Trigger Memory Filled While Recording						
The trigger memory is limited in size and can easily get filled when using high sample rates combined with high trigger rates. This section explains how triggers are handled when the trigger memory is completely filled.							
Post-trigger begins on	Sweep recording selection						
First trigger	A new sweep is only recorded if both pre- and post-trigger data fits in the free trigger memory at the time a trigger signal is received. When not enough free trigger memory is available, only the trigger time and trigger source get recorded (No pre- or post data is recorded).						
Every trigger	A new sweep is started using the same rules as for the first trigger mode. If during the post-trigger recording a new trigger is received, the sweep is only extended with new post-trigger data if the additional post-trigger data fits the available free trigger memory. When not enough trigger memory is available, the already recorded pre-, between and post-trigger data for the previously received trigger(s) will be recorded.						
Stop-trigger signal	A new sweep is only recorded if both pre-, 2.5 ms between and post-trigger data fits in the free trigger memory at the time a trigger signal is received. If no stop-trigger signal is received before the trigger memory fills up, the sweep recording is automatically stopped at the time the trigger memory is completely filled.						

The details in this table apply toWait for triggerWait for trigger to trigger memorOn start of acquisition reduced reduced	y first	or trigger to trigger memory first			
	On start of	Wait for trigger to trigger memory first On start of acquisition reduced rate and wait for trigger to trigger memory first		Wait for trigger	
Triggered data recording Limited recording time Use available size of drive					
Sample rate	Unlimited sa	nple rates	Low to medium sample rates (Depending on system used)		
Channel count	Unlimited cha	annel count	Low to medium channel counts (Depending on system used)		
Maximum number of sweeps					
In trigger memory	2000		Not applicab	le	
In PNRF recording file	200 000		1		
Sweep parameters	Minimum	Maximum	Minimum	Maximum	
Pre-trigger length	0	Trigger memory of acquisition card	0	Available free drive space	
Post-trigger length	0	Trigger memory of acquisition card	0	0	
Sweep length	10 samples	Trigger memory of acquisition card	1 minute	Available free drive space	
Maximum sweeps rate	400/s		Not applicab	le	
Minimum time between-triggers	2.5 ms		Not applicable		
Dead time between sweeps	0 ms		Not applicable		

16 Bit Resolution									
Data Recording Mode	On start of acquisition & Wait for trigger		Wait for tr	Wait for trigger to trigger memory first		On start of acquisition reduced rate and wait for trigger to trigger memory first			
	Enabled channels		En	Enabled channels		Enabled channels			
	1 Ch	6 Ch	6 Ch & events	1 Ch	6 Ch	6 Ch & events	1 Ch	6 Ch	6 Ch & events
Max. trigger memory		not used		1 GS	166 MS	142 MS	800 MS	133 MS	113 MS
Max. trigger sample rate	not used			2 MS/s			2 MS/s		
Max. reduced FIFO	1 GS	166 MS	142 MS		not used		199 MS	33 MS	28 MS
Max. (reduced) sample rate	2 MS/s			not used		Trigger sample rate / 2			
Max. aggregate reduced streaming rate	2 MS/s 4 MB/s	12 MS/s 24 MB/s	14 MS/s 28 MB/s	not used		2 MS/s 4 MB/s	12 MS/s 24 MB/s	14 MS/s 28 MB/s	
18 Bit Resolution			1	1			1		
Data Recording Mode		tart of acquis & Vait for trigge		Wait for tr	Vait for trigger to trigger memory first On start of acquisition rate and wait for trigger to memory first		r to trigger		
-		abled chann		Enabled channels		Enabled channels			
	1 Ch	6 Ch	6 Ch & events Timer/ Counter	1 Ch	6 Ch	6 Ch & events Timer/ Counter	1 Ch	6 Ch	6 Ch & events Timer/ Counter
Max. trigger memory		not used	1	500 MS	83 MS	44 MS	400 MS	66 MS	35 MS
Max. trigger sample rate		not used			2 MS/s	<u> </u>		2 MS/s	1
Max. reduced FIFO	500 MS	83 MS	44 MS		not used		99 MS	16 MS	10 MS
Max. (reduced) sample rate		2 MS/s			not used		Trigg	jer sample ra	te / 2
Max. aggregate reduced streaming rate	2 MS/s 8 MB/s	12 MS/s 48 MB/s	18 MS/s 72 MB/s		not used		2 MS/s 8 MB/s	12 MS/s 48 MB/s	18 MS/s 72 MB/s

(1) Terminology used in alignment with Perception software.

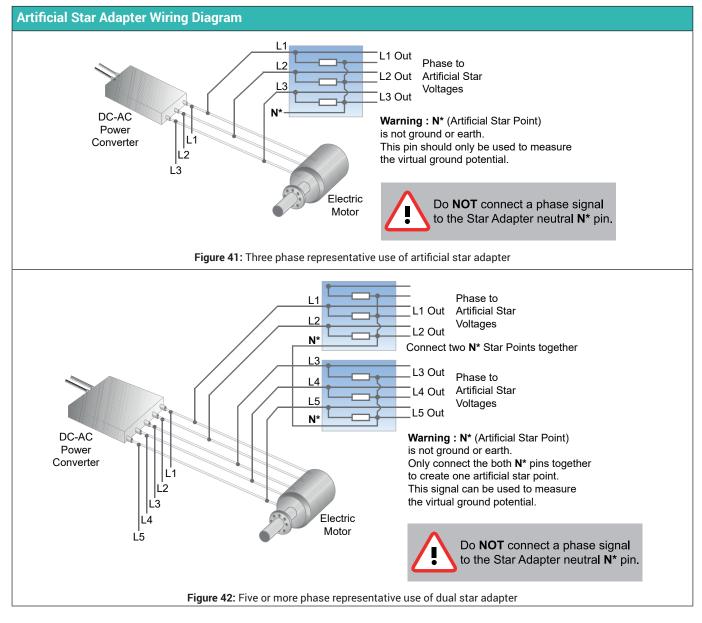
Data Recording Detai									
Data Recording Mode	On start of acquisition & Wait for trigger Enabled channels			Wait for trigger to trigger memory first		On start of acquisition reduced rate and wait for trigger to trigger memory first Enabled channels			
			En	Enabled channels					
	1 Ch	6 Ch	6 Ch & events	1 Ch	6 Ch	6 Ch & events	1 Ch	6 Ch	6 Ch & events
Max. trigger memory		not used		100 MS	16 MS	14 MS	80 MS	13 MS	11 MS
Max. trigger sample rate	not used			200 kS/s			200 kS/s		
Max. reduced FIFO	100 MS	16 MS	14 MS		not used		18 MS	3 MS	2.5 MS
Max. (reduced) sample rate		200 kS/s			not used		Trigg	er sample ra	te / 2
Max. aggregate reduced streaming rate	0.2 MS/s 0.4 MB/s	1.2 MS/s 2.4 MB/s	1.4 MS/s 2.8 MB/s	not used		0.2 MS/s 0.4 MB/s	1.2 MS/s 2.4 MB/s	1.4 MS/s 2.8 MB/s	
18 Bit Resolution									
Data Recording Mode		tart of acquis & vait for trigge		Wait for trigger to trigger memory first		On start of acquisition reduced rate and wait for trigger to trigger memory first			
	En	abled chann	els	Enabled channels		Enabled channels			
	1 Ch	6 Ch	6 Ch & events Timer/ Counter	1 Ch	6 Ch	6 Ch & events Timer/ Counter	1 Ch	6 Ch	6 Ch & events Timer/ Counter
Max. trigger memory		not used	1	50 MS	8 MS	5 MS	40 MS	6.5 MS	4 MS
Max. trigger sample rate		not used			200 kS/s	1		200 kS/s	1
Max. reduced FIFO	50 MS	8 MS	5 MS		not used		9 MS	1.5 MS	1 MS
Max. (reduced) sample rate	200 kS/s		not used		Trigger sample rate / 2				
Max. aggregate reduced streaming rate	0.2 MS/s 0.8 MB/s	1.2 MS/s 4.8 MB/s	1.8 MS/s 7.2 MB/s		not used		0.2 MS/s 0.8 MB/s	1.2 MS/s 4.8 MB/s	1.8 MS/s 7.2 MB/s

(1) Terminology used in alignment with Perception software.

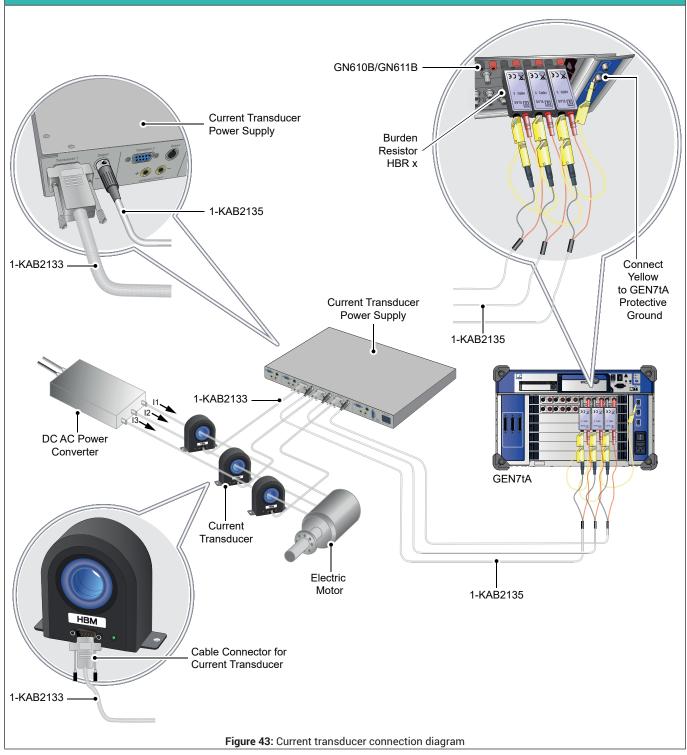
Environmental Creatifications							
Environmental Specifications							
Temperature Range							
Operational	0 °C to +40 °C (+32 °F to +104 °F)						
Non-operational (Storage)	-25 °C to +70 °C (-13 °F to +158 °F)						
Thermal protection	Automatic thermal shutdown at 85 °C (+185 °F) internal temperature User warning notifications at 75 °C (+167 °F)						
Relative humidity	0% to 80%; non-condensing; operational						
Protection class	IP20						
Altitude	Maximum 2000 m (6562 ft) above sea level; operational						
Shock: IEC 60068-2-27							
Operational	Half-sine 10 g/11 ms; 3-axis, 1000 shocks in positive and negative direction						
Non-operational	Half-sine 25 g/6 ms; 3-axis, 3 shocks in positive and negative direction						
Vibration: IEC 60068-2-64							
Operational	1 g RMS, ½ h; 3-axis, random 5 to 500 Hz						
Non-operational	2 g RMS, 1 h; 3-axis, random 5 to 500 Hz						
Operational Environmental Tests							
Cold test IEC60068-2-1 Test Ad	-5 °C (+23 °F) for 2 hours						
Dry heat test IEC 60068-2-2 Test Bd	+40 °C (+104 °F) for 2 hours						
Damp heat test IEC 60068-2-3 Test Ca	+40 °C (+104 °F), humidity > 93% RH for 4 days						
Non-Operational (Storage) Environmental T	ests						
Cold test IEC-60068-2-1 Test Ab	-25 °C (-13 °F) for 72 hours						
Dry heat test IEC-60068-2-2 Test Bb	+70 °C (+158 °F) humidity < 50% RH for 96 hours						
Change of temperature test IEC60068-2-14 Test Na	-25 °C to +70 °C (-13 °F to +158 °F) 5 cycles, rate 2 to 3 minutes, dwell time 3 hours						
Damp heat cyclic test IEC60068-2-30 Test Db variant 1	+25 °C/+40 °C (+77 °F/+104 °F), humidity > 95/90% RH 6 cycles, cycle duration 24 hours						

Harmonized Standa	rds for CE and UKCA Compliance, According to the Following Directives ⁽¹⁾						
Low Voltage Directive (LVD): 2014/35/EU Electromagnetic Compatibility Directive (EMC): 2014/30/EU							
Electrical Safety							
EN 61010-1 (2017)	Safety requirements for electrical equipment for measurement, control, and laboratory use - General requirements						
EN 61010-2-030 (2017)	Particular requirements for testing and measuring circuits						
Electromagnetic Com	patibility						
EN 61326-1 (2013)	Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements						
Emission							
EN 55011	Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics Conducted disturbance: class B; Radiated disturbance: class A						
EN 61000-3-2	Limits for harmonic current emissions: class D						
EN 61000-3-3	Limitation of voltage changes, voltage fluctuations and flicker in public low voltage supply systems						
Immunity							
EN 61000-4-2	Electrostatic discharge immunity test (ESD); contact discharge ± 4 kV/air discharge ± 8 kV: performance criteria B						
EN 61000-4-3	Radiated, radio-frequency, electromagnetic field immunity test; 80 MHz to 2.7 GHz using 10 V/m, 1000 Hz AM: performance criteria A						
EN 61000-4-4	Electrical fast transient/burst immunity test Mains ± 2 kV using coupling network. Channel ± 2 kV using capacitive clamp: performance criteria B						
EN 61000-4-5	Surge immunity test Mains ± 0.5 kV/± 1 kV Line-Line and ± 0.5 kV/± 1 kV/± 2 kV Line-earth Channel ± 0.5 kV/± 1 kV using coupling network: performance criteria B						
EN 61000-4-6	Immunity to conducted disturbances, induced by radio-frequency fields 150 kHz to 80 MHz, 1000 Hz AM; 10 V RMS @ mains, 3 V RMS @ channel, both using clamp: performance criteria A						
EN 61000-4-11	Voltage dips, short interruptions and voltage variations immunity tests Dips: performance criteria A; Interruptions: performance criteria C						

(1) Let The manufacturer declares on its sole responsibility that the product is in conformity with the essential requirements of the applicable UK legislation and that the relevant conformity assessment procedures have been fulfilled.


Manufacturer:

Hottinger Brüel & Kjaer GmbH Im Tiefen See 45 64293 Darmstadt Germany


Importer.

Hottinger Bruel & Kjaer UK Ltd. Technology Centre Advanced Manufacturing Park Brunel Way Catcliffe Rotherham South Yorkshire S60 5WG United Kingdom

GN6I0B/GN6IIB					
G068: Artificial Star Adapter (Option, to	b be ordered separately)				
The artificial star adapter creates an artificia	al star point to measure 3-phase signals				
Maximum input voltage 1000 V DC (707 V RMS) between each of the phases					
Components per phase	Capacitance 250 pF (min: 225 pF; max: 275 pF) Resistance 0.3 MΩ (min: 0.297 MΩ; max: 0.303 MΩ)				
Inputs 3; 4 mm safety banana plugs					
Outputs 6; 4 mm safety banana pins; plugs straight into GN610B/GN611B cards					
Artificial star N Reference plug only. Not to be used as input					
Safety	Compliant with IEC61010-1 600 V CAT II				
Application use	The 3-phase signals L1, L2 and L3 can be connected with inputs L1, L2, L3 of the artificial star adapter. The connection N* is the voltage present on the artificial "star point".				
L	250pF 300KΩ 1 L2 vt vt vt vt vt vt vt vt vt vt				
 Weight	Figure 39: Electrical schematic 170 g (6 oz)				
Material housing	Polyurethane, vacuum resin casting				
-					
Setup Two boxes can be plugged into a single GN610B/GN611B card Two or more GN610B/GN611B cards with Artificial star adapters fit next to each other					
Temperature range					
Operational temperature	• 0 °C to +40 °C (+32 °F to +104 °F)				
Non-operational (storage)	-25 °C to +70 °C (-13 °F to +158 °F)				
106.7 mm (4.20")					
Figure 40: Artificial star adapter					

GN610B/GN611B Current Transducer (CT) Wire Diagram

Current Transducers, to be ordered separately

Ultra-stable, high precision fluxgate technology current transducers for non-intrusive, isolated measurement

Figure 44: HBM current transducers, power supply and cables

Туре	Maximum current	Bandwidth (-3 dB)	Aperture size	Order No.
			-	
CTS50ID	75 A DC / 50 A RMS	1000 kHz	27.6 mm	1-CTS50ID
CTS200ID	300 A DC / 200 A RMS	500 kHz	27.6 mm	1-CTS200ID
CTS400ID	600 A DC / 400 A RMS	300 kHz	27.6 mm	1-CTS400ID
CTS600ID	900 A DC / 600 A RMS	500 kHz	27.6 mm	1-CTS600ID
CTM1200ID	1500 A DC / 1200 A RMS	400 kHz	45.0 mm	1-CTM1200ID
CTT50ID	75 A DC / 50 A RMS	2000 kHz	20.7 mm	1-CTT50ID
CTT100ID	150 A DC / 100 A RMS	2000 kHz	20.7 mm	1-CTT100ID
CTT200ID	285 A DC / 200 A RMS	2000 kHz	20.7 mm	1-CTT200ID
CTN1000ID	1500 A DC / 1000 A RMS	400 kHz	41.0 mm	1-CTN1000ID

Current Transducers Interface and Cables, to be ordered separately					
Article		Description	Order No.		
CT Interface unit		Interface unit for up to six current transducers. Industry standard D-SUB 9 pin input connectors. Multi-pin XLR output connectors. Supports transducer calibration winding access through 4 mm banana plugs. Front LEDs to indicate normal operation of each transducer. 100 - 240 V AC 50/60 Hz AC input voltage. 120 - 370 V DC input voltage. 1U height 19" rack mountable.	1-CTPSIU-6-1U		
CT cables		Industry standard current transducer connection cable. Shielded, low ohmic 9 wire cable with D-SUB 9 connectors on both ends. Supports power, status, current output and calibration current input. Lengths: 2, 5, 10 and 20 meters (6, 16, 32 and 65 ft)	1-KAB2133-2 1-KAB2133-5 1-KAB2133-10 1-KAB2133-15 1-KAB2133-20		
Banana input cable		Shielded cable for 1-GN31xB current channels. LEMO breakout cable with direct current (blue), voltage as current (red), isolated ground/return (black) and shield (yellow) 4 mm banana connectors. The cable is shielded to minimize the typical impact of electromagnetic disturbance generated by high power switching power supplies. Available length: 1 m (3.3 ft)	1-KAB2136-1		

Ordering Informa	Ordering Information						
Article		Description	Order No.				
Basic 1 kV ISO 2 MS/s		6 channels, 18 bit, 2 MS/s, ± 10 mV to ± 1000 V input range, 2 GB RAM, 1 kV isolated balanced differential input (600 V RMS CAT II isolation), 4 mm fully isolated banana plugs. Real-time cycle based calculations with triggering on calculated results. Supported by Perception V6.72 and higher.	1-GN610B				
Basic 1 kV ISO 200 kS/s		6 channels, 18 bit, 200 kS/s, ± 10 mV to ± 1000 V input range, 200 MB RAM, 1 kV isolated balanced differential input (600 V RMS CAT II isolation), 4 mm fully isolated banana plugs. Real-time cycle based calculations with triggering on calculated results. Supported by Perception V6.72 and higher.	1-GN611B				

Option, to be ordered separately						
Article		Description	Order No.			
GEN DAQ real-time formula database calculators		Option to enable enhanced real-time calculators. Setup uses a user configurable formula database similar to the Perception formula database. All calculations are performed by the DSP of the acquisition card. Triggering possible on many of the results of the calculations. Calculated cycle based results can be real-time transferred to the GEN DAQ API, USB-to-CAN-FD or EtherCAT [®] option. EtherCAT [®] output supports true real-time 1 ms latency.	1-GEN-OP-RT-FDB			

Special Voltage Probes, to be ordered separately								
Article		Description	Order No.					
5 kV RMS, 20 MΩ, 50:1 differential probe		5 kV RMS, 20 M Ω , 50:1, 0.2% high precision, differential probe to be used in combination with GN610B, GN611B (HVD50R- 61x), GN310B and GN311B (HVD50R-31x) acquisition cards. The built-in earthing monitor system increases safety of the user and protects the GEN series inputs for isolation overloads.	HVD50R-61x HVD50R-31x Ordered from custom systems ⁽¹⁾					
5 kV RMS High Voltage Cable		The High Voltage Cable (HVC) is an extension for measurement cables with voltages up to 5 kV RMS. This device is designed to be connected with a cable on the input terminal of the high precision differential probe HVD10, HVD50R-61x and HVD50R- 31x. The HVC is designed according IEC 61010-031:2015 compliant to 1000 V RMS CAT IV and 1500 V DC CAT IV.	HVC Ordered from custom systems ⁽¹⁾					

(1) Contact custom systems at: <u>customsystems@hbkworld.com</u> Request quote/information for special products for GEN series.

Accessories, to be ordered separately							
Article		Description	Order No.				
Artificial star adapter		The artificial star adapter is a plug-on interface card to measure 3-phase signals with the GN610/GN611/GN610B/ GN611B cards. This adapter is intended for measuring 3-phase signals while creating a virtual/artificial star point.	1-G068				
1000 V CAT IV / 1500 V DC CAT III 3-wire Isolated shielded test leads		 The cable uses safety-shrouded banana plugs for. 3-phase measurement (Black/Brown/Grey) or single-phase neutral to line Shield connector (Yellow) The cable is shielded to minimize the typical impact of electromagnetic disturbance generated by high-power inverters, as well as to minimize emissions from the rise times of the switching inverter voltages measured with this cable. Available lengths: 1.5 m (4.92 ft), 3.0 m (9.84 ft), 6.0 m (19.7 ft),12 m (39.4 ft), 20 m (65,6 ft) 	1-KAB2139-1.5 1-KAB2139-3 1-KAB2139-6 1-KAB2139-12 1-KAB2139-20				
XLR to Banana cable for GN61XB		CT interface unit to GN61xB DAQ 1kV card connection cable. Uses XLR and banana connectors for a current output connection to the GEN DAQ card. Requires an additional burden resistor in front of the GN61xB card to convert current to voltage. Length 2 m (6 ft)	1-KAB2135-2				

GN610B/GN611B Burden Resistors, to be ordered separately

Burden selection for GN610B/GN611B

Note: When using the CTS/CTM series together with GN610B/GN611B cards a burden resistor is required to convert the CT output current to a voltage. When selecting the burden several specifications need to be taken into account: maximum power of the burden, maximum voltage the CT can drive with constant current, the wire impedance of the cables used etc. See the CT operating manual for more details.

See the CT operatin	ng manual f	or more details.				
Model	Model		urden	mV/A sensitivity A/V scaling		
CTT50ID		HBR 2.5 Ω		5.0	200	
CTT100ID		HBR 1.0 Ω		2.0	500	
CTT200ID		HBR 1.0 Ω		0.5	2000	
CTN1000ID		HBR 1.0 Ω		0.6667	1500	
CTS50ID		HBR 2.5 Ω		5.0	200	
CTS200ID		HBR 1.0 Ω		2.0	500	
CTS400ID		HBR 1.0 Ω		0.5	2000	
CTS600ID		HBR 1.0 Ω		0.6667	1500	
CTS1200ID		HBR 1.0 Ω		0.6667	1500	
CTS1200ID-CD3000		HBR 1.0 Ω		0.6667	1500	
Article			Description			Order No
HBR 0.25 Ω, 1 W precision burden resistor		Hand Black	0.25 Ω 1 W, 0.02% high precision, low thermal drift burden resistor. Internally uses 4 wire connection to reduce inaccuracy caused by the currents running to the burden resistor. Using banana input connectors and banana output pins. Directly compatible with GN610B/GN611B acquisition cards.			Ordered from custom systems ⁽¹⁾
HBR 0.5 Ω, 1 W precision burden resistor	sion burden		$0.5 \Omega 1$ W, 0.02% high precision, low thermal drift burden resistor. Internally uses 4 wire connection to reduce inaccuracy caused by the currents running to the burden resistor. Using banana input connectors and banana output pins. Directly compatible with GN610B/GN611B acquisition cards.			Ordered from custom systems ⁽¹⁾
HBR 1 Ω, 1 W precision burden resistor	cision burden		1 Ω , 1 W, 0.02% high precision, low thermal drift burden resistor. Internally uses 4 wire connection to reduce inaccuracy caused by the currents running to the burden resistor. Using banana input connectors and banana output pins. Directly compatible with GN610B/GN611B acquisition cards.			Ordered from custom systems ⁽¹⁾
HBR 2.5 Ω, 1 W precision burden resistor	124-201			2.5Ω , 1 W, 0.02% high precision, low thermal drift burden resistor. Internally uses 4 wire connection to reduce inaccuracy caused by the currents running to the burden resistor. Using banana input connectors and banana output pins. Directly compatible with GN610B/GN611B acquisition cards.		
HBR 10 Ω, 1 W precision burden resistor		CELAS CE	10 Ω , 1 W, 0.02% high precision, low thermal drift burden resistor. Internally uses 4 wire connection to reduce inaccuracy caused by the currents running to the burden resistor. Using banana input connectors and banana output pins. Directly compatible with GN610B/GN611B acquisition cards.			Ordered from custom systems ⁽¹⁾
,I						

 Contact custom systems at: <u>customsystems@hbkworld.com</u>. Request quote/information for special products for GEN series.

Hottinger Brüel & Kjaer GmbH

Im Tiefen See 45 · 64293 Darmstadt · Germany Tel. +49 6151 803-0 · Fax +49 6151 803-9100 www.hbkworld.com · info@hbkworld.com

Subject to modifications. All product descriptions are for general information only. They are not to be understood as a guarantee of quality or durability.