

Isolated 1 kV 200 kS Input Card

The isolated balanced differential input offers voltage ranges from \pm 10 mV to \pm 1000 V. Tested up to 6.4 kV, the reinforced insulation allows for safe measurements up to 600 V RMS CAT II (without probes). Optimum anti-alias protection is achieved by the 7-pole analog anti-alias filter combined with a fixed 2 MS/s sampling Analog-to-Digital converter. The digital filters operating at the full ADC sample rate offer a large range of high order anti-alias filter characteristics with precise phase match and noise-free digital output.

The two Timer/Counters and the G070A torque/RPM adapter allow for direct interfacing to HBM torque transducers or other torque and speed sensors.

GEN series GN611B

Isolated 1 kV 200 kS/s Input Card

Special features

- 6 analog channels
- Isolated, balanced differential inputs
- ± 10 mV to ± 1000 V input range
- Basic accuracy 0.02%
- Basic power accuracy 0.02%
- 600 V RMS CAT II reinforced insulation, tested up to 6.4 kV
- Analog/digital anti-alias filters
- 18 bit at 200 kS/s sample rate
- Real-time formula database calculators
- Triggering on real-time results
- Digital Event/Timer/Counter support
- 5 kV RMS certified probe

The real-time formula database calculators offer math routines to solve almost any realtime mathematical challenge. Dynamic digital cycle detection enables real-time storage as well as 1 μ s latency digital output of calculation results like True-RMS on all analog, torque, angle, speed and Timer/Counter channels. Channel to channel math creates computed channels with 1 μ s latency obtaining mechanical power and/or multiphase (not limited to three) electric power (P, Q, S) or even efficiency calculations. Real-time calculated results can be used to trigger the recording or signal alarms to the external world.

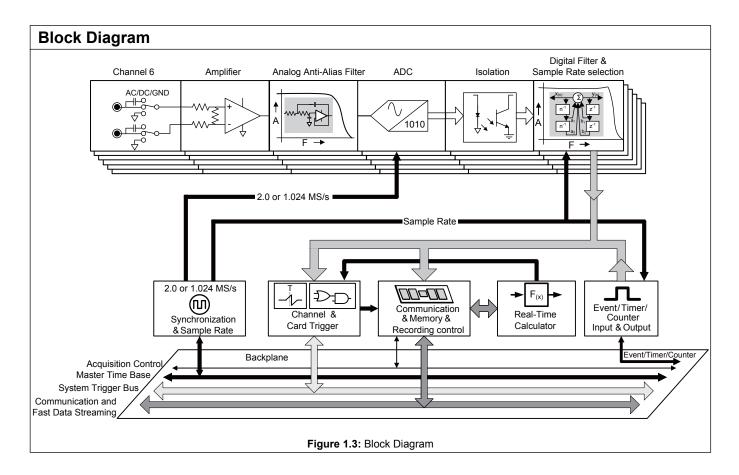
Capabilities Overview	
Model	GN611B
Maximum sample rate per channel	200 kS/s
Memory per card	200 MB
Analog channels	6
Anti-alias filters	Fixed bandwidth analog AA-filter combined with sample rate tracking digital AA-filter
ADC resolution	18 bit
Isolation	Channel to channel and channel to chassis
Input type	Analog, isolated balanced differential
Passive voltage/current probes	Special designed matching probes only (e.g. Elas HVD50R)
Sensors	Not supported
TEDS	Not supported
Real-time formula database calculators (option)	Extensive set of user programmable math routines with triggering on calculated results
Digital Event/Timer/Counter	16 digital events and 2 Timer/Counter channels
Standard data streaming (CPCI up to 200 MB/s)	Not supported
Fast data streaming (PCIe up to 1 GB/s)	Supported
Slot width	1

Real-time Calculated Results Output							
	Ethernet GEN DAQ API	EtherCAT [®]	CAN/CAN FD				
Maximum results per block	240	240	240				
Maximum result blocks per second	2000	1000	1000				
Latency	Ethernet dependent	1 ms	CAN bus speed				

Mainframe Support											
	GEN2tB	GEN3t	GEN4tB	GEN7tA	GEN17tA	GEN3i/GEN3iA	GEN7i/GEN7iA	GEN2i ⁽⁴⁾	GEN5i ⁽⁴⁾	GEN7t ⁽⁴⁾	GEN16t ⁽⁴⁾
GN610B/GN611B	Yes No										
GEN DAQ API			Yes			Ye	s ⁽¹⁾		N	lo	
EtherCAT [®]	No Yes No No										
CAN/CAN FD	Yes No Yes Yes ⁽²⁾ Yes ⁽³⁾ No No			lo							

(1) Close Perception to enable GEN DAQ API access.

(2) Early shipments have no access to an USB port. Contact <u>Support-EPT@hbm.com</u> for a user installed upgrade.


(3) Requires custom system modification.

(4) Mainframe replaced by newer version.

Supported Analo	Supported Analog Sensors and Probes						
Amplifier mode	Supported analog sensors and probes	Features, Cabling and Accessories					
Power measurement	 Current transducers Current probes Electrical voltages single-ended and differential⁽¹⁾ Active single-ended voltage probes Active differential voltage probes 	 Voltage input: ± 10 mV up to ± 1000 V Burden resistors 5 kV RMS certified probe Current probes 					

(1) 5 kV passive voltage probe

Supported Digital Sensors (TTL Level Input)					
Timer counter Input type	Supported digital sensors	Features			
Signal Direction Reset 33 Count up 5 Gunt Up Count down Count dow	 HBM Torque sensors Torque sensors Speed sensors Position sensors 	 Angle measurement Frequency / RPM measurement Count/position measurement Count frequency up to 5 MHz Digital filter on input signals Several reset options RT-FDB can add a calculated Frequency/RPM channel based on the angle measurement 			
Signal Direction 1/2 Wheel rotates clock wise Figure 1.2: ABZ Incremental Encoder (Quadrature)	 HBM Torque sensors Torque sensors Speed sensors Position sensors 	 Angle measurement Frequency / RPM measurement Count/position measurement Count frequency up to 2 MHz Digital filter on input signals Single, dual and quad precision count Transition tracking to avoid count drift Several reset options RT-FDB can add a calculated Frequency/RPM channel based on the angle measurement 			

Specifications and measurement uncertainty

Specifications are established using 23 °C environmental temperature. For measurement uncertainty improvements, the system could be readjusted at a specific environmental temperature to minimize the impact of temperature drift.

Any analog amplifier error source follows the = ax + b curve.

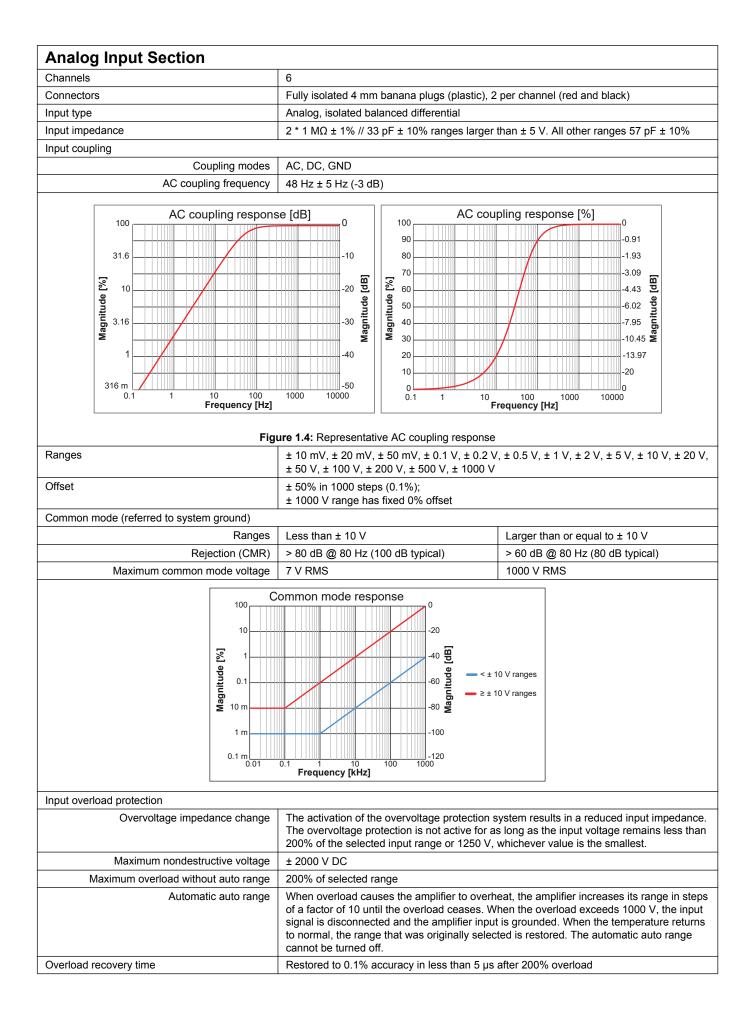
- a % of reading error, represents the linear increasing error due to the increase of the input voltage: often referred to as gain error.
- **b** % of range error, represents the error when measuring 0 V; often referred to as offset error

For measurement uncertainty these errors can be considered independent error sources.

Noise is not a separate error source outside of the standard specification.

Noise specifications are added separately in case you need dynamic accuracy on sample by sample level.

Only for sample by sample measurement uncertainty add the RMS noise error.


For e.g. power accuracy, the RMS noise error is already included in the power specifications.

Pass/Fail limits are rectangular distributed specifications, therefore measurement uncertainty is 0.58 * specified value.

Adding/removing or swapping cards

The specifications listed are valid for cards that have been calibrated and are used in the same mainframe, mainframe configuration and slots as they were at the time of calibration.

If cards are added, removed or relocated the thermal conditions of the card will change, resulting in additional thermal drift errors. The maximum expected error can be up to two times the specified Reading and Range error as well as 10 dB reduced common mode rejection. Recalibration after configuration changes is therefore highly recommended.

Basic Power Accuracy

The GN610B/GN611B is calibrated and checked at 53 Hz voltage and current inputs using burden resistors. During calibration burden resistors are attached to three voltage channels to enable current measurements.

2.5 Ω	Burden spans	1.264 A DC	800 mA DC	400 mA DC	160 mA DC	80 mA DC	40 mA DC
0 - 100 Hz Sine wave CF: 1.41 Cos Phi : 1	Burden ranges	440 mA RMS	280 mA RMS	140 mA RMS	56 mA RMS	28 mA RMS	14 mA RMS
Voltage spans	Voltage ranges	Typical	Typical	Typical	Typical	Typical	Typical
40 V DC	14.1 V RMS	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.1% range	0.02% reading + 0.1% range	0.02% reading + 0.15% range
100 V DC	35.3 V RMS	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.1% range	0.02% reading + 0.1% range	0.02% reading + 0.15% range
200 V DC	70.7 V RMS	0.02% reading +0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.1% range	0.02% reading + 0.1% range	0.02% reading + 0.15% range
400 V DC	141 V RMS	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.1% range	0.02% reading + 0.1% range	0.02% reading + 0.15% range
1 kV DC	353 V RMS	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.1% range	0.02% reading + 0.1% range	0.02% reading + 0.15% range
2 kV DC	707 V RMS	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.05% range	0.02% reading + 0.1% range	0.02% reading + 0.1% range	0.02% reading + 0.15% range

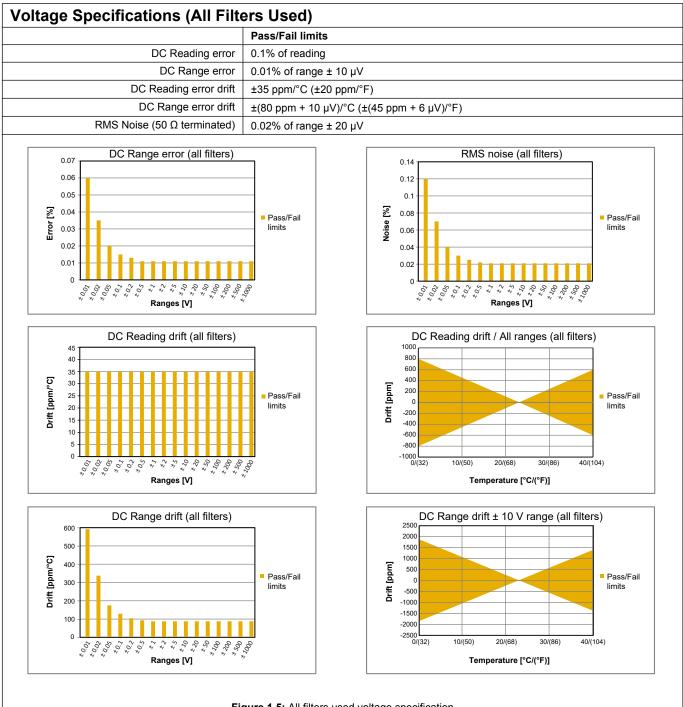
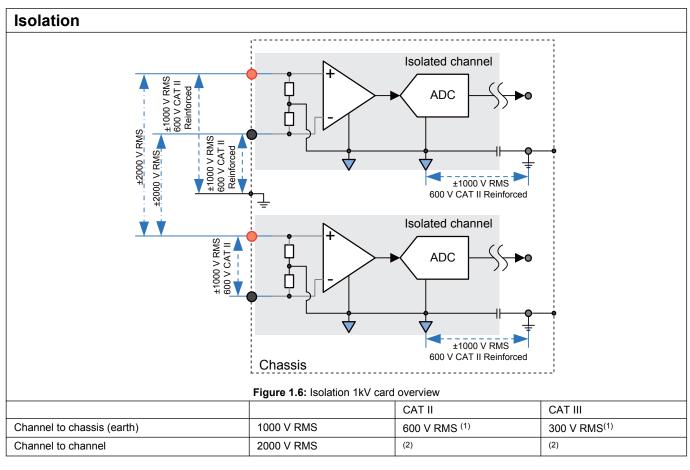
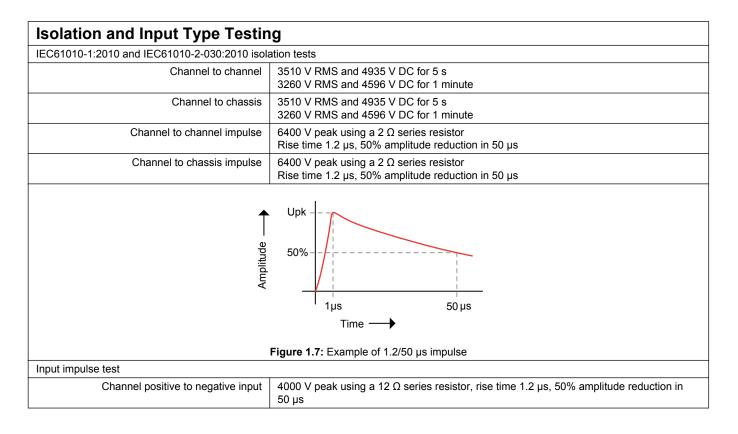
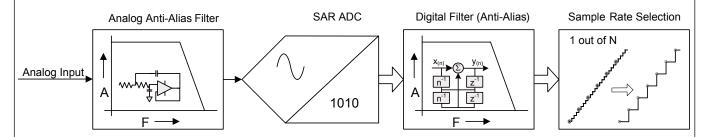




Figure 1.5: All filters used voltage specification

(1) IEC61010-1 category voltage ratings are RMS voltages.


(2) Channel to channel CAT II and CAT III ratings are not a valid method to specify.

Analog to Digital Conversion	
Sample rate per channel	0.1 S/s to 200 kS/s
ADC resolution; one ADC per channel	18 bit
ADC type	Successive Approximation Register (SAR); Analog Devices AD7986BCPZ
Time base accuracy	Defined by mainframe: ± 3.5 ppm; aging after 10 years ± 10 ppm

Anti-Alias Filters

Note on phase matching channels. Every filter characteristic and/or filter bandwidth selection comes with it's own specific phase response. Using different filter selections (Bessel IIR/Butterworth IIR/etc.) or different filter bandwidths can result in phase mismatches between channels.

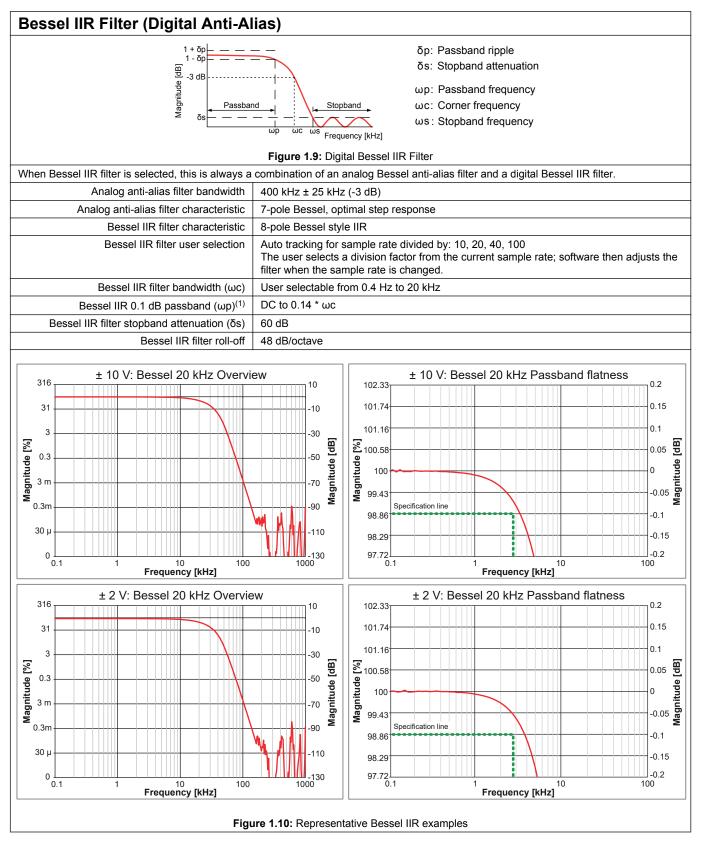
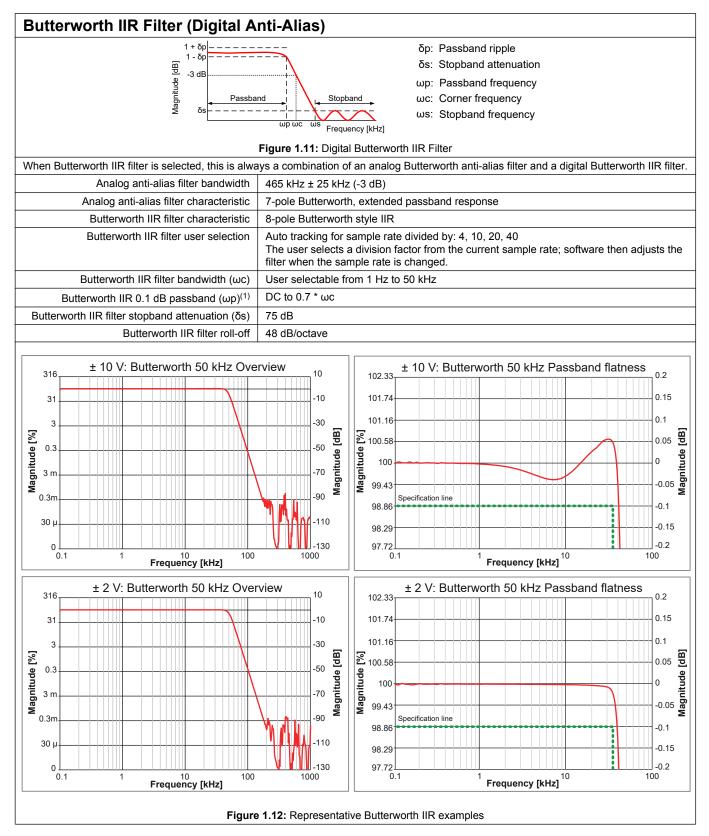
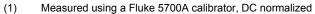
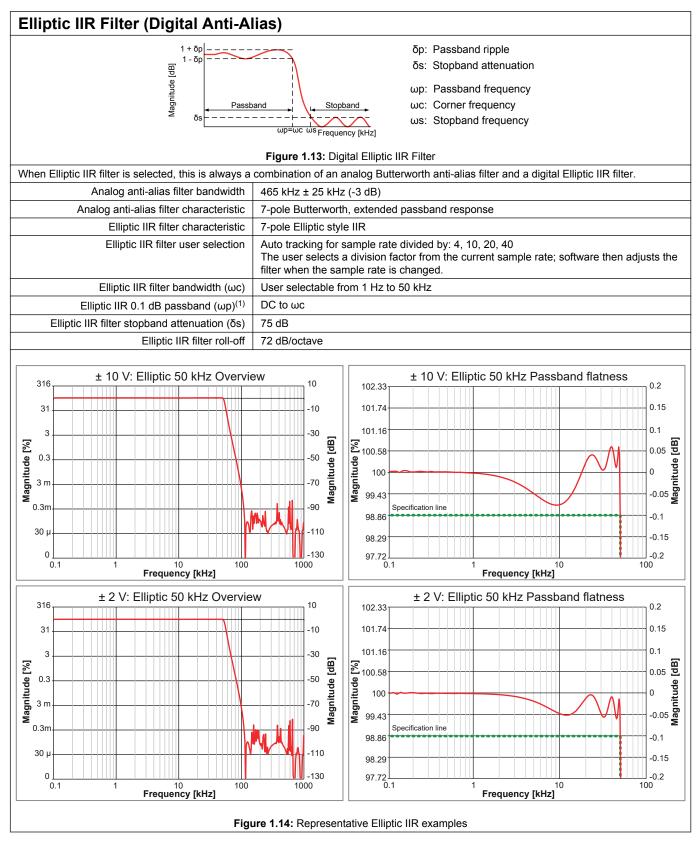


Figure 1.8: Combined analog and digital anti-alias filter block diagram


Anti-aliasing is prevented by a steep, fixed frequency analog anti-alias filter in front of the Analog to Digital Converter (ADC). The ADC always samples at a fixed sample rate. The fixed sample rate of the ADC avoids the need for different analog anti-alias filter frequencies. Directly behind the ADC, the high precision digital filter is used as anti-alias protection before the digital downsampling to the desired user sample rate is performed. The digital filter is programmed to a fraction of the user sample rate and automatically tracks any user sample rate selection. Compared to analog anti-alias filters, the programmable digital filter offers additional benefits like higher order filter with steep roll-off, a larger selection of filter characteristics, noise-free digital output and no additional phase shifts between channels that use the same filter settings.


Bessel IIR	When Bessel IIR filter is selected, this is always a combination of an analog Bessel anti- alias filter and a digital Bessel IIR filter to prevent aliasing at lower sample rates. Bessel filters are typically used when looking at signals in the time domain. They are best
	used for measuring transient signals or sharp edge signals like square waves or step responses.
Butterworth IIR	When Butterworth IIR filter is selected, this is always a combination of an analog Butterworth anti-alias filter and a digital Butterworth IIR filter to prevent aliasing at lower sample rates. This filter is best used when working in the frequency domain. When working in the time domain, this filter is best used for signals that are (close to) sine waves.
Elliptic IIR	When Elliptic IIR filter is selected, this is always a combination of an analog Butterworth anti-alias filter and a digital Elliptic IIR filter to prevent aliasing at lower sample rates. This filter is best used when working in the frequency domain. When working in the time domain, this filter is best used for signals that are (close to) sine waves.


		aracteristic S		•		
The digital filter bet		rantees a superior pha				
	Wideband	Digital lowpa	Digital lowpass filters (alias freeby using an analog anti alias filter in front			
	No Anti-alias filter	Butterworth IIR Elliptic IIR	Bessel IIR Butterworth IIR Elliptic IIR	Bessel IIR Butterworth IIR Elliptic IIR	Bessel IIR Butterworth IIR Elliptic IIR	Bessel IIR
User selectable sample rates		1/4 Fs	1/10 Fs	1/20 Fs	1/40 Fs	1/100 Fs
2 MS/s	Wideband		200 kHz	100 kHz	50 kHz	20 kHz
1 MS/s	Wideband	250 kHz	100 kHz	50 kHz	25 kHz	10 kHz
500 kS/s	Wideband	125 kHz	50 kHz	25 kHz	12.5 kHz	5 kHz
400 kS/s	Wideband	100 kHz	40 kHz	20 kHz	10 kHz	4 kHz
250 kS/s	Wideband	62.5 kHz	25 kHz	12.5 kHz	6.25 kHz	2.5 kHz
200 kS/s	Wideband	50 kHz	20 kHz	10 kHz	5 kHz	2 kHz
125 kS/s	Wideband	25 kHz	12.5 kHz	6.25 kHz	2.5 kHz	1.25 kHz
100 kS/s	Wideband	20 kHz	10 kHz	5 kHz	2 kHz	1 kHz
50 kS/s	Wideband	12.5 kHz	5 kHz	2.5 kHz	1.25 kHz	500 Hz
40 kS/s	Wideband	10 kHz	4 kHz	2 kHz	1 kHz	400 Hz
25 kS/s	Wideband	6.25 kHz	2.5 kHz	1.25 kHz	625 Hz	250 Hz
20 kS/s	Wideband	5 kHz	2 kHz	1 kHz	500 Hz	200 Hz
12.5 kS/s	Wideband	2.5 kHz	1.25 kHz	625 Hz	312.5 Hz	125 Hz
10 kS/s	Wideband	2 kHz	1 kHz	500 Hz	250 Hz	100 Hz
5 kS/s	Wideband	1.25 kHz	500 Hz	250 Hz	125 Hz	50 Hz
4 kS/s	Wideband	1 kHz	400 Hz	200 Hz	100 Hz	40 Hz
2.5 kS/s	Wideband	625 Hz	250 Hz	125 Hz	62.5 Hz	25 Hz
2 kS/s	Wideband	500 Hz	200 Hz	100 Hz	50 Hz	20 Hz
1.25 kS/s	Wideband	312.5 Hz	125 Hz	62.5 Hz	31.25 Hz	12.5 Hz
1 kS/s	Wideband	250 Hz	100 Hz	50 Hz	25 Hz	10 Hz
500 S/s	Wideband	125 Hz	50 Hz	25 Hz	12.5 Hz	5 Hz
400 S/s	Wideband	100 Hz	40 Hz	20 Hz	10 Hz	4 Hz
250 S/s	Wideband	62.5 Hz	25 Hz	12.5 Hz	6.25 Hz	2.5 Hz
200 S/s	Wideband	50 Hz	20 Hz	10 Hz	5 Hz	2 Hz
125 S/s	Wideband	31.25 Hz	12.5 Hz	6.25 Hz	3.125 Hz	1.25 Hz
100 S/s	Wideband	25 Hz	10 Hz	5 Hz	2.5 Hz	1 Hz
50 S/s	Wideband	12.5 Hz	5 Hz	2.5 Hz	1.25 Hz	0.5 Hz
40 S/s	Wideband	10 Hz	4 Hz	2 Hz	1 Hz	0.4 Hz

(1) Measured using a Fluke 5700A calibrator, DC normalized

(1) Measured using a Fluke 5700A calibrator, DC normalized

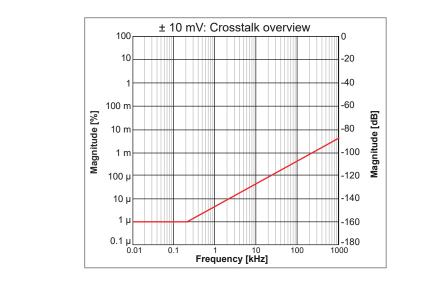
Channel to Channel Phase Match

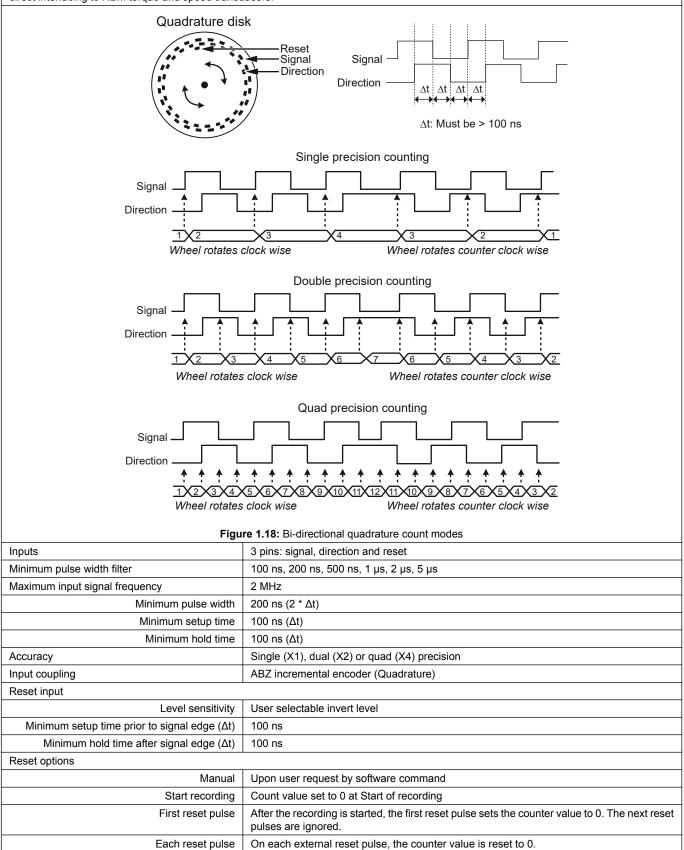
Using different filter selections (Bessel IIR/Butterworth IIR/etc.) or different filter bandwidths results in phase mismatches between channels. All specifications are typical static values and measured using a 10 kHz sine wave and 200 kS/s sample rate.

	< ±10V spans	≥ ±10V spans	Combined spans	
Bessel IIR, Filter frequency 20 kHz				
Channels on card	0.01° (3 ns)	0.04° (13 ns)	0.27° (76 ns)	
GN611B Channels within mainframe	0.01° (3 ns)	0.06° (17 ns)	0.27° (76 ns)	
Butterworth IIR, Filter frequency 50 kHz				
Channels on card	0.02° (6 ns)	0.04° (13 ns)	0.27° (76 ns)	
GN611B Channels within mainframe	0.02° (6 ns)	0.06° (17 ns)	0.27° (76 ns)	
Elliptic IIR, Filter frequency 50 kHz				
Channels on card	0.02° (6 ns)	0.04° (13 ns)	0.27° (76 ns)	
GN611B Channels within mainframe	0.02° (6 ns)	0.06° (17 ns)	0.27° (76 ns)	
GN611B channels across mainframes	across mainframes Defined by synchronization method used (None, IRIG, GPS, Master/Sync, PTP)			

Channel to Channel Crosstalk

Channel to channel crosstalk is measured with a 50 Ω termination resistor on the input and uses sine wave signals on the channel above and below the channel being tested. To test Channel 2, Channel 2 is terminated with 50 Ω and Channels 1 and 3 are connected to the sine wave generator.

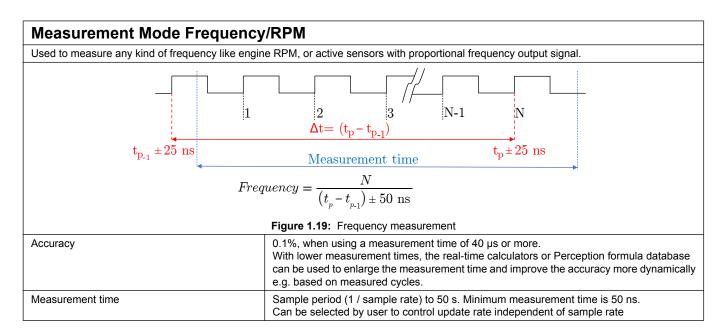



Figure 1.15: Representative Channel to Channel crosstalk

tupdate Weasurement Scaling Up/Down Reset Up/Down Reset Up/Down Reset Up/Down Reset Up/Down Reset Up/Down Count 16 bit Up/date 16 bit Up/date 16 bit Up/date 16 bit Up/date 16 bit Up/date 16 bit Up/date 16 bit Up/date Sample Rate Storage Sample Rate Storage Storage			
t Count Wn Scaling Up/Down Reset Count Angle or Count 16 bit 16 bit Update 32 bit Sample Rate Storage Sample Storage Storage Storage Storage Storage			
t scaling Up/Down Reset Count Angle or Count 16 bit Update 32 bit Sample Rate Storage Sample Storage Sample Storage Sample Storage Sample Storage			
igure 1.16: Timer/Counter block diagram			
16 per card			
TTL input level, user programmable invert level			
1 pin per input, some pins are shared with Timer/Counter inputs			
± 30 V DC continuously			
100 ns			
5 MHz			
2 per card			
TTL output levels, short circuit protected			
User selectable: Trigger, Alarm, set High or Low			
User selectable: Recording active, set High or Low			
1 high pulse per trigger (on every channel trigger of this card only) 12.8 μ s minimum pulse width 200 μ s ± 1 μ s ± 1 sample period pulse delay			
High when alarm condition of card is activated, low when not activated 200 μs \pm 1 μs \pm 1 sample period alarm event delay			
High when recording, low when in idle or pause mode Recording active output delay of 450 ns			
Output set High or Low; can be controlled by Custom Software Interface (CSI) extensions delay depends on specific software implementation			
2 per card			
TTL input levels			
3 pins: signal, reset and direction All pins are shared with digital event inputs			
Uni-directional, Bi-directional and ABZ incremental encoder (Quadrature)			
Count (C) Angle (0 to 360 degrees) Frequency (Δcount / Δt) RPM (Δcount / Δt / 60 s)			
± 25 ns (20 MHz)			
1 to n samples (User selectable maximum Δt)			
12 F2 FF Cd 2 T 3A L CAFF ±			

Uni- and bi-directional input coupling is used when the direction signal is a stable signal.						
Signal Direction Reset	$\begin{array}{c} \Delta s \\ A \\$					
oount up						
	Figure 1.17: Uni- and Bi-directional timing					
Inputs	3 pins: signal, reset and direction (only used in bi-directional count)					
Minimum pulse width filter	100 ns, 200 ns, 500 ns, 1 µs, 2 µs, 5 µs					
Maximum input signal frequency	4 MHz					
Minimum pulse width (Δw)	100 ns					
Reset input						
Level sensitivity	User selectable invert level					
Minimum setup time prior to signal edge (Δ s)	100 ns					
Minimum hold time after signal edge (Δ h)	100 ns					
Reset options						
Manual	Upon user request by software command					
Start recording	Count value set to 0 at Start of recording					
First reset pulse	After the recording is started, the first reset pulse sets the counter value to 0. The next reset pulses are ignored.					
Each reset pulse	On each external reset pulse, the counter value is reset to 0.					
Direction input						
Input Level sensitivity	Only used when in bi-directional mode Low: increment counter/positive frequency High: decrement counter/negative frequency					
Minimum setup time prior to signal edge (Δs)	100 ns					
Minimum hold time after signal edge (Δh)	100 ns					

Input Coupling ABZ Incremental Encoder (Quadrature)


Typically used for tracking rotating/moving devices using a decoder with two signals that are always 90 degree phase shifted. E.g. allow for direct interfacing to HBM torque and speed transducers.

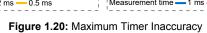
Measurement Mode Angle

In angle measurement mode the counter will use a user defined maximum angle and revert back to zero when this count value is reached. Using the reset input the measured angle can be synchronized to the mechanical angle. The real-time calculators can extract the RPM from the measured angle independent from the mechanical synchronization.

Angle options	
Reference	User selectable. Enables the use of the reset pin to reference the mechanical angle to the measured angle
Angle at reference point	User defined to specify mechanical reference point
Reset pulse	Angle value is reset to user defined "angle at reference point" value
Pulses per rotation	User defined to specify the encoder/count resolution
Maximum pulses per rotation	32767
Maximum RPM	30 * sample rate (Example: Sample rate 10 kS/s means maximum 300 k RPM)

Measurement Mode Count/Position

Count/position mode is typically used for tracking movement of device under test.

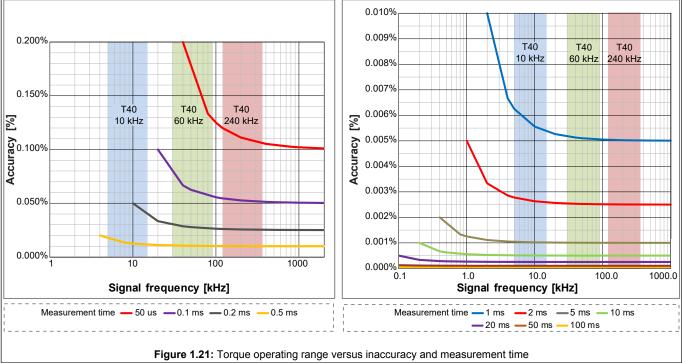

To reduce the sensitivity for count/position errors due to clock glitches use the minimum pulse width filter or enable the ABZ in stead of uni-/bipolar input coupling.

Counter range	0 to 2 ³¹ ; uni-directional count]
	-2 ³¹ to +2 ³¹ - 1; bi-directional count	

Maximum Timer Inaccuracy

Timer accuracy is a tradeoff between update rate and minimum required accuracy. This table shows the relationships between measured signal frequency, selected measurement time (update rate) and timer accuracy. The inaccuracy distribution is to be considered rectangular.

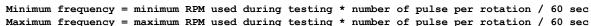
Calcula	te the inaccura	icy by using:	Inacc	vuracy = z	$\pm \left(\frac{1}{1NTEG}\right)$	(sign ER((signal)	al frequency * frequency -1)	50 ns) * measurem	$\overline{(ent\ time)}$	100%
Meas-			Higher si	gnal frequen	cies: Signa	frequency	2 MHz down	to 10 kHz)		
ure- ment	2 MHz	1 MHz	500 kHz	400 kHz	200 kHz	100 kHz	50 kHz	40 kHz	20 kHz	10 kHz
1 µs	±10.000%									
2 µs	±3.333%	±5.000%								
5 µs	±1.111%	±1.250%	±1.333%	±2.000%						
10 µs	±0.526%	±0.556%	±0.625%	±0.667%	±1.000%					
20 µs	±0.256%	±0.263%	±0.278%	±0.286%	±0.333%	±0.500%				
50 µs	±0.101%	±0.102%	±0.103%	±0.105%	±0.111%	±0.125%	±0.133%	±2.000%		
0.1 ms	±0.050%	±0.051%	±0.051%	±0.051%	±0.053%	±0.056%	±0.063%	±0.067%	±0.100%	
0.2 ms		±0.0	25%		±0.026%	±0.026%	±0.028%	±0.029%	±0.033%	±0.050%
0.5 ms			±0.010%			±0.010%	±0.010%	±0.0011%	±0.0011%	±0.0013%
1 ms			±0.0050%			±0.0051%	±0.0051%	±0.0051%	±0.0053%	±0.0056%
2 ms				±0.00)25%	1			±0.0026%	±0.0026%
5 ms					±0.0	010%				
10 ms					±0.0	005%				
20 ms					±0.0	0025%				
50 ms					±0.0	0010%				
100 ms					±0.0	005%				
Meas-			Lowe	er signal freq			cy (40 Hz to §	5 kHz)		
ure-	- 1.11-	41.11-	0.1-11-	4 1 1 1 -	500 11-	400.11-	000.11-	400.11-	50.11-	40.11-
ment	5 kHz	4 kHz	2 kHz	1 kHz	500 Hz	400 Hz	200 Hz	100 Hz	50 Hz	40 Hz
0.5 ms	±0.0133%	±0.0200%	10.04000/							
1 ms	±0.0063%	±0.0067%	±0.0100%							
2 ms	±0.0028%	±0.0029%	±0.0033%	±0.0050%						
5 ms	±0.0010%	±0.0011%	±0.0011%	±0.0013%	±0.0013%	±0.0020%				
10 ms	±0.00051%	±0.00051%	±0.00053%	±0.00056%	±0.00063%					
20 ms	±0.00025%	±0.00025%	±0.00026%	±0.00026%	±0.00028%			±0.00050%		
50 ms	±0.00010%	±0.00010%	±0.00010%	±0.00010%	±0.00010%			±0.00130%	±0.00013%	±0.000209
100 ms	±0.000050%	±0.000050%	±0.000050%	±0.000051%	±0.000051%	±0.0000519	6 ±0.000053%	±0.000056%	±0.000063%	±0.000067
						0.010%				
	0.200%					0.009%				
						0.008%				
	0.150%									
	0.150%					0.007%				
[%]					[%]	0.006%				
୍ର ଟ୍ର	0.100%			<u> </u>		0.005%				
Accuracy [%]					Accuracy					
Acc					Acc	0.004%				
	0.050%					0.003%				
						0.002%				
						0.001%				
	0.000%	10	100	10	00					
				_		0.000%	1.0	10.0	100.0	1000.0
		01	equency [kHz					l frequency [k		



Measurement time - 1 ms

Signal frequency [kHz] Measurement time — 50 us — 0.1 ms — 0.2 ms — 0.5 ms

-2 ms -5 ms -10 ms -20 ms -50 ms

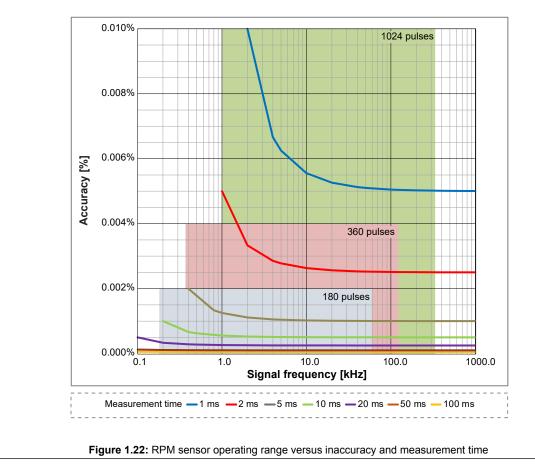

When using the Timer/Counter channels to meas calculated using the following examples based o The T40 torque transducer comes with 3 variants From the datasheets you can extract the minimu	sure torque, the measuremen n HBK T40 torque transducer s for frequency output: 10 kHz	s. 2, 60 kHz or 24	troduced by the t 0 kHz center free	
T40 Variant	-Full Scale frequency output	t	+Full Scale free	quency output
T40 - 10 kHz	5 kHz		15 kHz	
T40 - 60 kHz	30 kHz		90 kHz	
T40 - 240 kHz	120 kHz		360 kHz	
 Overlay these operating ranges on top of the tim Remains the step to balance the update rate Calculate the inaccuracy using the -Full Sca Using a minimum of 60 RPM the following in 	e (torque bandwidth) versus t ale frequency output and desi	he torque accu	racy required.	
Selected measurement time	Maximum inaccuracy: T40 - 240 kHZ	Maximum ir T40 - 60 kH		Maximum inaccuracy: T40 - 10 kHZ
50 μs (left red curve)	0.1200%	0.1500%		Not possible
100 μs (left purple curve)	0.0546%	0.0750%		Not possible
500 μs (left orange curve)	0.0101%	0.0107%		0.0125%
1 ms (right blue curve)	0.0050%	0.0052%		0.0063%
2 ms (right red curve)	0.0025%	0.0025%		0.0028%
5 ms (right grey curve)	0.0010%	0.0010%		0.0010%
For K=1 (70% probability) use the specified recta Measurement uncertainty = Maximum in				
Measurement uncertainty K=1 (About 70% probability)	Maximum inaccuracy: T40 - 240 kHZ	Maximum ir T40 - 60 kH		Maximum inaccuracy: T40 - 10 kHZ
50 μs (left red curve)	0.0696%	0.0870%		Not possible
100 μs (left purple curve)	0.0316%	0.0435%		Not possible
500 μs (left orange curve)	0.0059%	0.0062%		0.00725%
1 ms (right blue curve)	0.0029%	0.0029%		0.00365%
2 ms (right red curve)	0.00145%	0.0015%		0.00162%
5 ms (right grey curve)	0.00058%	0.0006%		0.00058%

Speed (RPM) Measurement Uncertainty using Frequency Measurements

When using the Timer/Counter channels to measure speed (RPM), the measurement uncertainty introduced by the timer inaccuracies can be calculated using the following example.

In the datasheet of the speed sensor locate the specified number of pulse per rotation to calculate the frequency range of the sensor output:

Maximum frequency - maximum KFM used during testing * number of purse per fotation / of sec					
Speed Sensor pulse per rotation	Frequency at 60 RPM	Frequency at 10 000 RPM	Frequency at 20 000 RPM		
180	180 Hz	30 kHz	60 kHz		
360	360 Hz	60 kHz	120 kHz		
1024	1024 Hz	170.7 kHz	341.3 kHz		


Overlay these operating ranges on top of the timer inaccuracy plots of Figure 1.20 will result in Figure 1.22 (see below)

• Remains the step to balance the update rate (angle position change updates per second) versus the RPM accuracy required.

• Using the graphs find the crossings of the overlayed operating frequencies with the measurement time curves.

• As examples the following crossings can be found in the graphs (at 60 RPM).

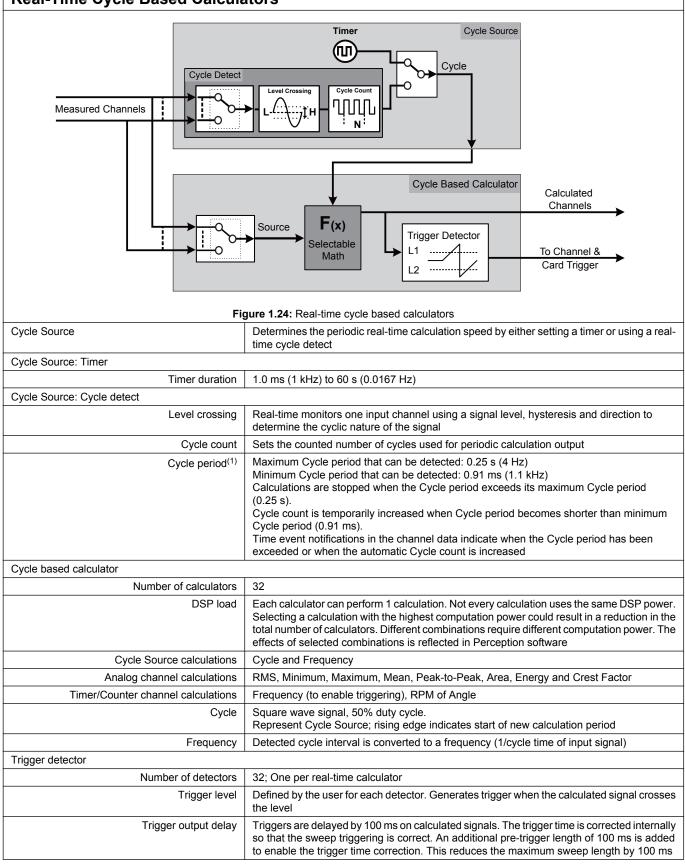
180 pulse sensor	360 pulse sensor	1024 pulse sensor
Can't record at 60 RPM	Can't record at 60 RPM	0.00256%
Can't record at 60 RPM	0.0018%	0.0010%
0.0009%	0.0006%	0.00051%
180 pulse sensor	360 pulse sensor	1024 pulse sensor
Can't record at 60 RPM	Can't record at 60 RPM	0.00148%
Can't record at 60 RPM	0.00104%	0.00059%
0.00052%	0.00035%	0.00030%
	Can't record at 60 RPM Can't record at 60 RPM 0.0009% angular distribution and the max accuracy * 0.58 (Conver 180 pulse sensor Can't record at 60 RPM Can't record at 60 RPM	Can't record at 60 RPM Can't record at 60 RPM Can't record at 60 RPM 0.0018% 0.0009% 0.0006% angular distribution and the maximum inaccuracy numbers and faccuracy * 0.58 (Conversion for rectangular diated accuracy * 0.58 (Conversion for

Simultaneous Dynamic Torque Ripple and Accurate Torque Efficiency Measurement

If a high update rate is required to measure e.g. dynamic torque ripple yet for efficiency a high accuracy is required use both a measurement time of 50 µs as well as a RT-FDB function to calcuate the mean value for each electric cycle.

The measured torque signal coming from the timer counter will be 0.15 to 0.17% accurate, while the torque calculate for the electric cycle (typically being 1 ms or less) results in 0.0075% accuracy.

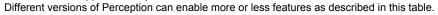
As both signals are simultaneously available, the dynamic signal allows you to analyse the torque ripple behaviour, the electric cycle signal will be extremely accurate for efficiency calculations.

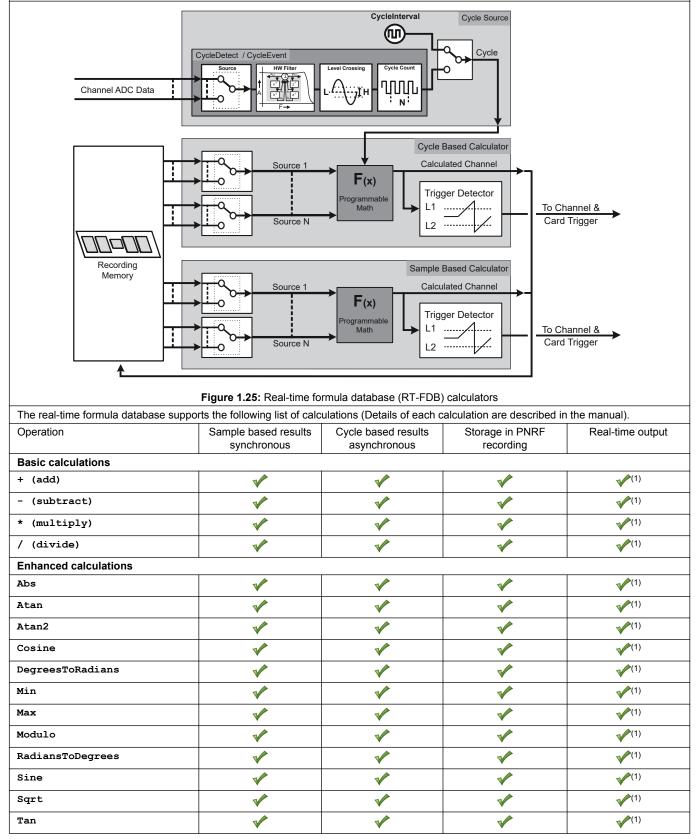

Torque sensor Timer	ec RT	T-FDB math on timer ycleMean (M_raw ; 1 ms) T-FDB math on cycle ycleMean (M_raw ; Cycle_Master)	M_raw M_inst
Figure 1.23:	Simultaneous dynamic and acc	urate torque calculations Dynamic response	Accuracy
•		,	Lowest
M_raw	Torque ripple	Highest	
M_inst	Torque mean	Average	Average
М	Efficiency calculation	Lowest	Highest

Alarm Output	
Selection per card	User selectable On/Off
Analog channel alarm modes	
Basic	Above or below level check
Dual	Outside or within bounds check
Analog channel alarm levels	
Levels	Maximum 2 level detectors
Resolution	16 bit (0.0015%) for each level
Event channel alarm modes	High or low level check
Cross channel alarms	Logical OR of alarms from all measured channels
Alarm output	Active during valid alarm condition, output supported through mainframe
Alarm output level	High or low user selectable
Alarm output delay	515 μ s ± 1 μ s + maximum 1 sample period. Default 516 μ s, compatible with standard behavior. Minimum selectable delay is the smallest delay available for all acquisition cards used within the mainframe. Delay equal to Trigger Out delay.

Triggering	
Channel trigger/qualifier	1 per channel; fully independent per channel, software selectable either trigger or qualifier
Pre- and post-trigger length	0 to full memory
Maximum trigger rate	400 triggers per second
Maximum delayed trigger	1000 seconds after a trigger occurred
Manual trigger (Software)	Supported
External Trigger In	
Selection per card	User selectable On/Off
Trigger In edge	Rising/Falling mainframe selectable, identical for all cards
Minimum pulse width	500 ns
Trigger In delay	± 1 μs + maximum 1 sample period
Send to External Trigger Out	User can select to forward External Trigger In to the External Trigger Out BNC
External Trigger Out	•
Selection per card	User selectable On/Off
Trigger Out level	High/Low/Hold High; mainframe selectable, identical for all cards
Trigger Out pulse width	High/Low: 12.8 μs Hold High: Active from first mainframe trigger to end of recording Pulse width created by mainframe; For details, please refer to the mainframe datasheet
Trigger Out delay	Selectable (10 μ s to 516 μ s) ± 1 μ s + maximum 1 sample period Default 516 μ s, compatible with standard behavior. Minimum selectable delay is the smallest delay available for all acquisition cards used within the mainframe
Cross channel triggering	
Measurement channels	Logical OR of triggers from all measured signals Logical AND of qualifiers from all measured signals
Calculated channels	Logical OR of triggers from all calculated signals (RT-FDB) Logical AND of qualifiers from all calculated signals (RT-FDB)
Analog channel trigger levels	
Levels	Maximum 2 level detectors
Resolution	16 bit (0.0015%) for each level
Direction	Rising/Falling; single direction control for both levels based on selected mode
Hysteresis	0.1 to 100% of Full Scale; defines the trigger sensitivity
Pulse detect/reject	Disable/Detect/Reject selectable. Maximum pulse width 65 535 samples
Analog channel trigger modes	
Basic	POS or NEG crossing; single level
Dual Level	One POS and one NEG crossing; two individual levels, logical OR
Analog channel qualifier modes	
Basic	Above or below level check. Enable/Disable trigger with single level
Dual	Outside or within bounds check. Enable/Disable trigger with dual level
Event channel trigger	
Event channels	Individual event trigger per event channel
Levels	Trigger on rising edge, falling edge or both edges
Qualifiers	Active High or Active Low for every event channel

On-board Memory	
Per card	200 MB (100 MS @ 16 bits, 50 MS @ 18 bits storage)
Organization	Automatically distributed amongst channels enabled for storage or real-time calculations
Memory diagnostics	Automatic memory test when system is powered on but not recording
Storage sample size	User selectable 16 or 18 bits 16 bits, 2 bytes/sample 18 bits, 4 bytes/sample


Real-Time Cycle Based Calculators



(1) Cycle period range depends on signal wave shape and hysteresis setting. Specified for Sine wave with 25% Full Scale hysteresis.

Real-time Formula Database Calculators (Option to be ordered separately)

The real-time formula database (RT-FDB) option offers an extensive set of math routines to enable almost any real-time mathematical challenge. The database structure enables the user to define a list of mathematical equations similar to the Perception review formula database. The maximum supported sample rate is 2 MS/s.

Operation	Sample based results synchronous	Cycle based results asynchronous	Storage in PNRF recording	Real-time output
Boolean calculations				
Equal	✓	✓	V	√
GreaterEqualThan	✓	✓	✓	×
GreaterThan	✓	✓	V	×
LessEqualThan	v	✓	V	×
LessThan	v	✓	V	v
NotEqual	✓	V	V	×
InsideBand	×	V	V	
OutsideBand	×	V	V	
And	√	V	V	×
Or	√	 ✓	 ✓	✓
Xor	· · · · · · · · · · · · · · · · · · ·	 ✓	 ✓	 ✓
Not	√	 ✓		· · · · · · · · · · · · · · · · · · ·
Cycle based calculations	· ·	Ť	•	•
CycleArea		✓	V	×
CycleBusDelay		V	V	×
CycleCount		V	V	×
CycleCrestFactor		V	V	×
CycleEnergy		V	V	×
CycleFundamentalPhase		V	V	(2)
CycleFundamentalRMS		V	×	×
CycleFrequency		V	×	×
CycleMax		 ✓	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
CycleMean		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
CycleMin		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
CyclePeak2Peak		√	 ✓	×
CyclePhase		√	· · · · · · · · · · · · · · · · · · ·	· · ·
CycleRMS		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·
CycleRPM		✓ ✓		· · · · · · · · · · · · · · · · · · ·
CycleSampleCount		· · ·		· · · · · · · · · · · · · · · · · · ·
CycleTHD ⁽²⁾		×		(2)
Cycle source		•	•	•
CycleDetect ⁽⁴⁾		V	V	
CycleEvent		V	V	
CycleInterval				

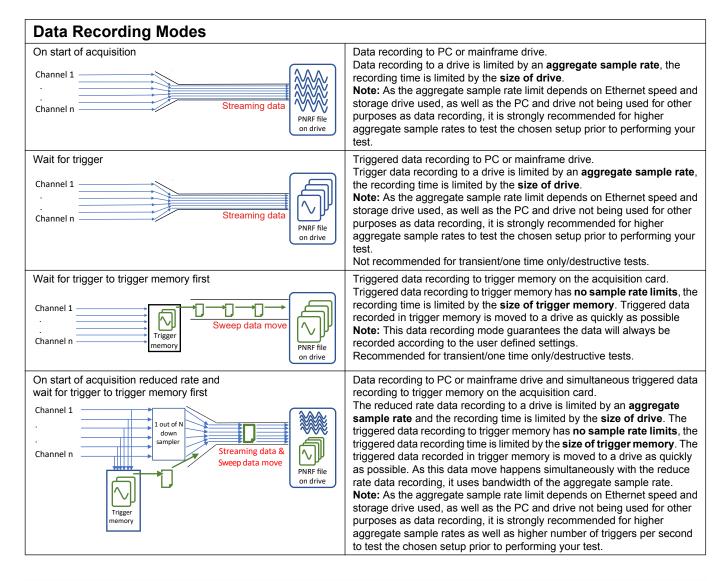
Operation	Sample based results synchronous	Cycle based results asynchronous	Storage in PNRF recording	Real-time output
Hardware based signal filtering	Synchronous	asynchronous	recording	
HWFilter ⁽⁴⁾	×		×	
Software based signal filtering	v		•	
FilterBesselBP	V		×	
FilterBesselHP	· · · · · · · · · · · · · · · · · · ·			
FilterBesselLP	· · · · · · · · · · · · · · · · · · ·			
FilterButterworthBP	· · · · · · · · · · · · · · · · · · ·			
FilterButterworthHP	· · ·		 ✓	
FilterButterworthLP	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
FilterChebyshevBP	✓		 ✓	
FilterChebyshevHP	×		✓	
FilterChebyshevLP	×		V	
Special category calculation				
HarmonicsIEC61000	V		V	
Integrate	V		V	
Signal transformation				
DQZeroTransformation (Park) $^{(3)}$	~		~	(1)
${\tt SpaceVectorTransformation}^{(3)}$	V		V	
SpaceVectorInverse Transformation ⁽³⁾	~		~	
Signal generation				1
SineWave	V		V	
Ramp	√		~	
Trigger functions				
TriggerOnBooleanChange			Trigger mark	
TriggerOnLevel			Trigger mark	

(1) Only cycle based results can be used for real-time output. Use the CycleMean calculation on recorded channel data or sample based results to enable the real-time output of this data.

The time required to calculate the output depends on maximum cycle length and sample rate. Depending on the selected settings the (2) output latency will increase. HBM refers to these calculations as not deterministic. All real-time output published values (deterministic and/or not deterministic) will always have the same latency.

(3) This formula is only available if the eDrive license is added to Perception.

The output of HWFilter is used for CycleDetect. (4)


Real-time Statstream®

Patent Number : 7,868,886

Real-time extraction of basic signal parameters.

Supports real-time live scrolling and scoping waveform displays as well as real-time meters while recording. During recording reviews, it enhances speed for displaying and zooming extremely large recordings and it reduces the calculation time for statistical values on large data sets.

Analog channels	Maximum, Minimum, Mean, Peak to Peak, Standard Deviation and RMS values
Event/Timer/Counter channels	Maximum, Minimum and Peak to Peak values

Data Recording Compare	d				
	Aggregate sample rate limit	Maximum recorded data	Direct recording to drive	Trigger memory first	Trigger required to start recording
On start of acquisition	Yes	Free drive space	Yes	No	No
Wait for trigger	Yes	Free drive space	Yes	No	Yes
Wait for trigger to trigger memory first	No	Trigger memory	No	Yes	Yes
On start of acquisition reduced rate and	Reduced rate: Yes	Free drive space	Yes	No	No
wait for trigger to trigger memory first	Sample rate: No	Trigger memory	No	Yes	Yes
Aggregate sample rate limits when using	streaming data		•		
Streaming data	The maximum aggregat drive, Ethernet speed, I When an aggregate sat selected, the memory of recording is suspended transferred to a drive. V	PC drive and other PC mple rate is higher that on each acquisition card (no data is recorded to	parameters. n the aggregate st d acts as a FIFO. emporarily). Durin	reaming rate of the As soon as this Fil g this period, the F	e system is FO fills up, the TFO memory is

transferred to a drive. When all FIFO's are empty, the recording is automatically resumed. User notifications are added to the recording file for post recording identification of suspended recording.

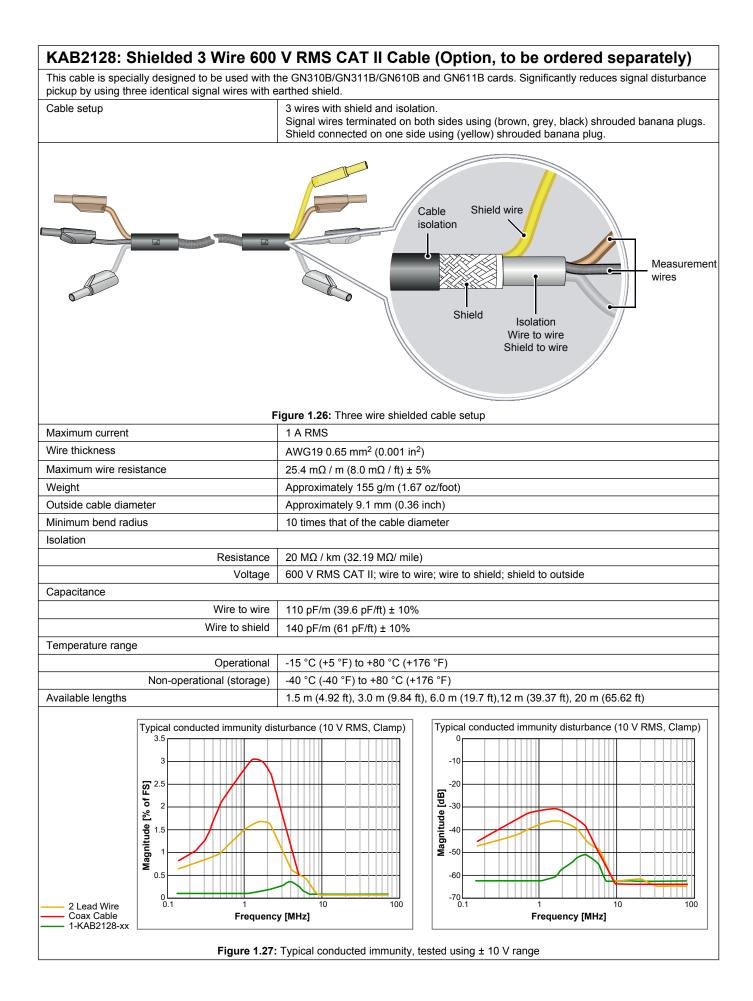
Triggered Recording	Definitions					
The details in this table apply to: Wait for trigger Wait for trigger to trigger mem On start of acquisition reduced		gger to trigger memory	∕ first			
Sweep		Trie	iger	Stop-t	rigger	
		Pre-trigger		n-trigger	Post-trigger	•
						•
			Sw	veep		•
	Defined by a trigge trigger signal.	er signal, pre- and post	-trigger dat	ta and optio	nally between-trigger	data and/or stop-
Triggered data segments						
Pre-trigger data	Note: If a trigger si	r to a trigger signal. ignal is received befor pre-trigger data record ger.				
Post-trigger data		r a trigger or stop-trigg ng of the post-trigger d n.		re-started o	or delayed depending	on the " <i>post-trigger</i>
Between-trigger data		to re-trigger(s) or whil een-trigger data is not				the trigger or stop-
Trigger signals						
Trigger signal	See table section "	e pre-trigger and start Post-trigger begins on be set up on external B formulas.	for more	details.	-	well as using simple
Stop-trigger signal	See table section "	ne post-trigger data re Post-trigger begins on als can be set up on e	for more	details.		
Post-trigger begins on			· ·			
First trigger		Pre-trigger: 10.00		Trigger Post	t-trigger: 20.00 ms	
		4				
	Any trigger receive Between-trigger da	nal ends the pre-trigge ed during the post-trig ata does not exist in th p contains pre- and th	ger data re is mode.	cording is ig		ne post-trigger data.
Every trigger			Trigger Trigg	aer 1	Frigger	
		Pre-trigger: 10.00 ms			Post-trigger: 20.00 ms	•
						•
	Any trigger receive All recorded post-tr	ds the pre-trigger data ed during the post-trig rigger data recorded a ep contains pre-, betwe	ger data ree t the time o	cording rest of the trigger	arts the recording of p is added to the betwe	oost-trigger data.
Stop-trigger			Trigger		Stop-trigger	
		Pre-trigger: 10.00 ms		n-trigger	Post-trigger: 20.00 ms	•
						•
	stop-trigger then en Any trigger receive Any stop-trigger r	ends the pre-trigger dates the between-trigger dates the between-trigger dates during the between eceived during the preserved during the preserved sp contains pre-, between	er data reco -trigger and -trigger and	ording and s d post-trigge d post-trigge	tarts the post-trigger or data recording is igner ar data recording is igner	data recording. nored.

Trigger Memory Filled While Recording

The trigger memory is limited in size and can easily get filled when using high sample rates combined with high trigger rates. This section explains how triggers are handled when the trigger memory is completely filled.

Post-trigger begins on	Sweep recording selection
First trigger	A new sweep is only recorded if both pre- and post-trigger data fits in the free trigger memory at the time a trigger signal is received. When not enough free trigger memory is available, only the trigger time and trigger source get recorded (No pre- or post data is recorded).
Every trigger	A new sweep is started using the same rules as for the first trigger mode. If during the post- trigger recording a new trigger is received, the sweep is only extended with new post-trigger data if the additional post-trigger data fits the available free trigger memory. When not enough trigger memory is available, the already recorded pre-, between and post-trigger data for the previously received trigger(s) will be recorded.
Stop-trigger signal	A new sweep is only recorded if both pre-, 2.5 ms between and post-trigger data fits in the free trigger memory at the time a trigger signal is received. If no stop-trigger signal is received before the trigger memory fills up, the sweep recording is automatically stopped at the time the trigger memory is completely filled.

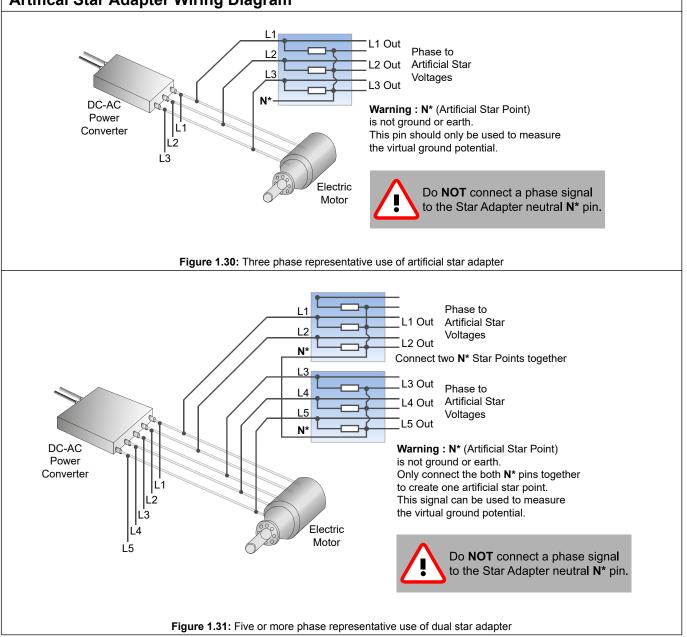
Triggered Recording	Limits				
 The details in this table apply to: Wait for trigger Wait for trigger to trigger mem On start of acquisition reduced 		or trigger to trigger memory first			
	Wait for	trigger to trigger memory first			
		cquisition reduced rate and wait for ger to trigger memory first] ,	Wait for trigger	
Triggered data recording	Limited record	ing time	Use available siz	ze of drive	
Sample rate	Unlimited sam	ple rates	Low to medium sample rates (Depending on system used)		
Channel count	Unlimited char	nnel count	Low to medium channel counts (Depending on system used)		
Maximum number of sweeps	1				
In trigger memory	2000		Not applicable		
In PNRF recording file	200 000		1		
Sweep parameters	Minimum	Maximum	Minimum	Maximum	
Pre-trigger length	0	Trigger memory of acquisition card	0	Available free drive space	
Post-trigger length	0	Trigger memory of acquisition card	0	0	
Sweep length	10 samples	Trigger memory of acquisition card	1 minute	Available free drive space	
Maximum sweeps rate	400/s	•	Not applicable		
Minimum time between-triggers	2.5 ms		Not applicable		
Dead time between sweeps	0 ms		Not applicable		

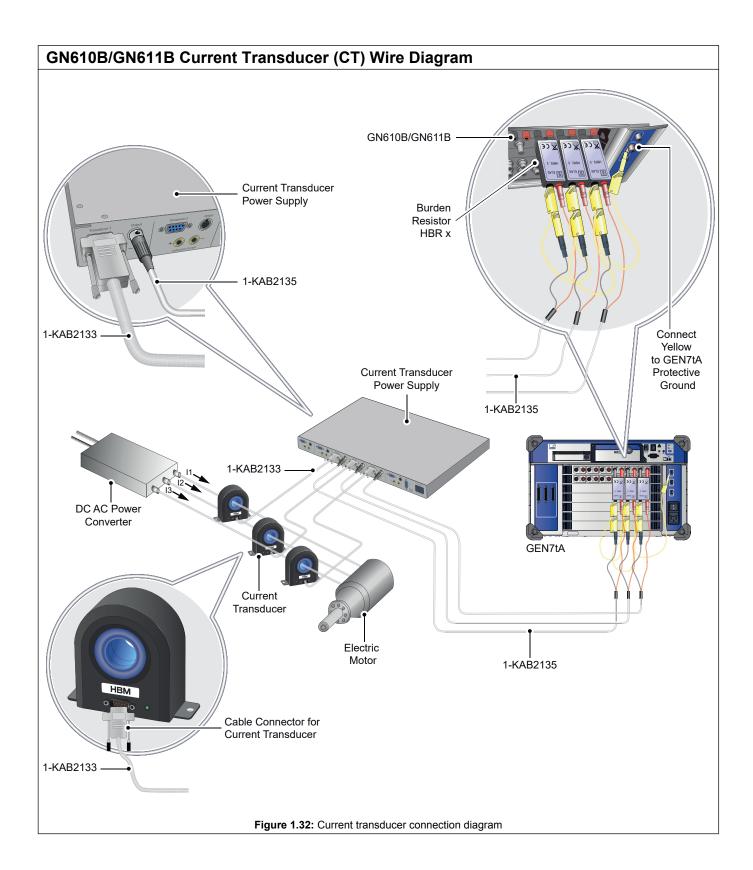

Data Recording	Details								
16 Bit Resolution									
Data Recording Mode	Wait for tri	gger to trigg first	er memory		On start of acquisition & wait for trigger		On start of acquisition reduced rate and wait for trigger to trigger memory first		
	Er	Enabled channels		En	Enabled channels		Enabled channels		
	1 Ch	6 Ch	6 Ch & events	1 Ch	6 Ch	6 Ch & events	1 Ch	6 Ch	6 Ch & events
Max. trigger memory	100 MS	16 MS	14 MS		not used		80 MS	13 MS	11 MS
Max. trigger sample rate		200 kS/s			not used			200 kS/s	
Max. reduced FIFO		not used		100 MS	16 MS	14 MS	18 MS	3 MS	2.5 MS
Max. reduced rate		not used			200 kS/s		Sweep sample rate / 2		te / 2
Max. aggregate reduced streaming rate		not used		0.2 MS/s 0.4 MB/s	1.2 MS/s 2.4 MB/s	1.4 MS/s 2.8 MB/s	0.2 MS/s 0.4 MB/s	1.2 MS/s 2.4 MB/s	1.4 MS/s 2.8 MB/s
18 Bit Resolution						1		1	
Data Recording Mode	Wait for tri	gger to trigg first	er memory		art of acqui & ait for trigg		rate and w	of acquisition ait for trigge memory firs	r to trigger
	Er	abled chann	els	En	abled chann	els	Enabled channels		
	1 Ch	6 Ch	6 Ch & events & Timer/	1 Ch	6 Ch	6 Ch & events & Timer/	1 Ch	6 Ch	6 Ch & events & Timer/
May trigger memory	-		Counter	I Ch		Counter	-		Counter
Max. trigger memory	50 MS	8 MS	5 MS		not used		40 MS	6.5 MS 200 kS/s	4 MS
Max. trigger sample rate Max. reduced FIFO	200 kS/s			50 MS	8 MS	5 MS	9 MS	200 KS/S	1 MS
	not used				200 kS/s	SIVI C			
Max. reduced rate		not used		0.0 MO/		4.0.100		ep sample ra	
Max. aggregate reduced streaming rate		not used		0.2 MS/s 0.8 MB/s	1.2 MS/s 4.8 MB/s	1.8 MS/s 7.2 MB/s	0.2 MS/s 0.8 MB/s	1.2 MS/s 4.8 MB/s	1.8 MS/s 7.2 MB/s

Environmental Specifications	
Temperature Range	
Operational	0 °C to +40 °C (+32 °F to +104 °F)
Non-operational (Storage)	-25 °C to +70 °C (-13 °F to +158 °F)
Thermal protection	Automatic thermal shutdown at 85 °C (+185 °F) internal temperature User warning notifications at 75 °C (+167 °F)
Relative humidity	0% to 80%; non-condensing; operational
Protection class	IP20
Altitude	Maximum 2000 m (6562 ft) above sea level; operational
Shock: IEC 60068-2-27	
Operational	Half-sine 10 g/11 ms; 3-axis, 1000 shocks in positive and negative direction
Non-operational	Half-sine 25 g/6 ms; 3-axis, 3 shocks in positive and negative direction
Vibration: IEC 60068-2-64	
Operational	1 g RMS, 1/2 h; 3-axis, random 5 to 500 Hz
Non-operational	2 g RMS, 1 h; 3-axis, random 5 to 500 Hz
Operational Environmental Tests	
Cold test IEC 60068-2-1 Test Ad	-5 °C (+23 °F) for 2 hours
Dry heat test IEC 60068-2-2 Test Bd	+40 °C (+104 °F) for 2 hours
Damp heat test IEC 60068-2-3 Test Ca	+40 °C (+104 °F), humidity > 93% RH for 4 days
Non-Operational (Storage) Environmental Tests	
Cold test IEC 60068-2-1 Test Ab	-25 °C (-13 °F) for 72 hours
Dry heat test IEC 60068-2-2 Test Bb	+70 °C (+158 °F) humidity < 50% RH for 96 hours
Change of temperature test IEC 60068-2-14 Test Na	-25 °C to +70 °C (-13 °F to +158 °F) 5 cycles, rate 2 to 3 minutes, dwell time 3 hours
Damp heat cyclic test IEC 60068-2-30 Test Db variant 1	+25 °C/+40 °C (+77 °F/+104 °F), humidity > 95/90% RH 6 cycles, cycle duration 24 hours

Harmonized Standards for CE Compliance, According to the Following Directives

Low Voltage Directive (LVD): 2014/35/EU Electromagnetic Compatibility Directive (EMC): 2014/30/EU


Electrical Safety						
EN 61010-1 (2010)	Safety requirements for electrical equipment for measurement, control, and laboratory use - General requirements					
EN 61010-2-030 (2010)	Particular requirements for testing and measuring circuits					
Electromagnetic Compa	atibility					
EN 61326-1 (2013)	Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements					
Emission						
EN 55011	Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics Conducted disturbance: class B; Radiated disturbance: class A					
EN 61000-3-2	Limits for harmonic current emissions: class D					
EN 61000-3-3	Limitation of voltage changes, voltage fluctuations and flicker in public low voltage supply systems					
Immunity						
EN 61000-4-2	Electrostatic discharge immunity test (ESD); contact discharge ± 4 kV/air discharge ± 8 kV: performance criteria B					
EN 61000-4-3	Radiated, radio-frequency, electromagnetic field immunity test; 80 MHz to 2.7 GHz using 10 V/m, 1000 Hz AM: performance criteria A					
EN 61000-4-4	Electrical fast transient/burst immunity test Mains ± 2 kV using coupling network. Channel ± 2 kV using capacitive clamp: performance criteria B					
EN 61000-4-5	Surge immunity test Mains ± 0.5 kV/± 1 kV Line-Line and ± 0.5 kV/± 1 kV/± 2 kV Line-earth Channel ± 0.5 kV/± 1 kV using coupling network: performance criteria B					
EN 61000-4-6	Immunity to conducted disturbances, induced by radio-frequency fields 150 kHz to 80 MHz, 1000 Hz AM; 10 V RMS @ mains, 3 V RMS @ channel, both using clamp: performance criteria A					
EN 61000-4-11	Voltage dips, short interruptions and voltage variations immunity tests Dips: performance criteria A; Interruptions: performance criteria C					



The artificial star adapter create	an artificial star point to measure 3-phase signals
Maximum input voltage	1000 V DC (707 V RMS) between each of the phases
Inputs	3; 4 mm safety banana plugs
Outputs	6; 4 mm safety banana pins; plugs straight into GN610B/GN611B cards
Artificial star N	Reference plug only. Not to be used as input
Safety	Compliant with IEC61010-1 600 V CAT II
Application use	The 3-phase signals L1, L2 and L3 can be connected with inputs L1, L2, L3 of the artifician star adapter. The connection N* is the voltage present on the artificial "star point".
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Woight	Figure 1.28: Electrical schematic
Weight Material housing	170 g (6 oz) Polyurethane, vacuum resin casting
Setup	Two boxes can be plugged into a single GN610B/GN611B card
•	Two or more GN610B/GN611B cards with Artificial star adapters fit next to each other
Temperature range	
•	nal temperature 0 °C to +40 °C (+32 °F to +104 °F)
Non-oper	tional (storage) -25 °C to +70 °C (-13 °F to +158 °F)
	19.0 mm 16.0 mm (0.74") (0.62") (0.94") ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
	106.7 mm (4.20 ^m)

Figure 1.29: Artificial star adapter

Ordering Information					
Article		Description	Order No.		
Basic 1 kV ISO 200 kS/s		 6 channels, 18 bit, 200 kS/s, ± 10 mV to ± 1000 V input range, 200 MB RAM, 1 kV isolated balanced differential input. (600 V RMS CAT II isolation), 4 mm fully isolated banana plugs. Real-time cycle based calculations with triggering on calculated results Supported by Perception V6.72 and higher. This card is not supported by GEN2i, GEN5i, GEN7t and GEN16t mainframes. 	1-GN611B		

Option, to be ordered separately					
Article		Description	Order No.		
GEN DAQ real- time formula database calculators	Cacated Channel	Option to enable enhanced real-time calculators. Setup uses a user configurable formula database similar to the Perception formula database. All calculations are performed by the DSP of the acquisition card. Triggering possible on many of the results of the calculations. Calculated cycle based results can be real-time transferred to the GEN DAQ API, USB-to-CAN-FD or EtherCAT [®] option. EtherCAT [®] output supports true real-time 1 ms latency.	1-GEN-OP-RT- FDB		

Special Voltage Probes, to be ordered separately					
Article		Description	Order No.		
5 kV RMS, 20 MΩ, 50:1 differential probe		5 kV RMS, 20 MΩ, 50:1, 0.2% high precision, differential probe to be used in combination with GN610B, GN611B (HVD50R-61x), GN310B and GN311B (HVD50R-31x) acquisition cards. The built-in earthing monitor system increases safety of the user and protects the GEN series inputs for isolation overloads.	HVD50R-61x HVD50R-31x Ordered from custom systems ⁽¹⁾		
5 kV RMS High Voltage Cable		The High Voltage Cable (HVC) is an extension for measurement cables with voltages up to 5 kV RMS. This device is designed to be connected with a cable on the input terminal of the high precision differential probe HVD10, HVD50R-61x and HVD50R-31x. The HVC is designed according IEC 61010-031:2015 compliant to 1000 V RMS CAT IV and 1500 V DC CAT IV.	HVC Ordered from custom systems ⁽¹⁾		

(1) Contact custom systems at: <u>customsystems@hbm.com</u> Request quote/information for special products for GEN series.

Accessories, to be ordered separately				
Article		Description	Order No.	
Artificial star adapter		The artificial star adapter is a plug-on interface card to measure 3-phase signals with the GN610/GN611/GN610B/GN611B cards. This adapter is intended for measuring 3-phase signals while creating a virtual/artificial star point.	1-G068	
1000 V CAT IV / 1500 V DC CAT III 3-wire Isolated shielded test leads		Brown/Grey/Black lead set combined within shielded housing (Yellow). 1000 V RMS CAT IV / 1500 V DC CAT III, 5 A RMS safety-shrouded banana plugs. Typically used for three-phase voltage measurements using the GN310B/GN311B/GN610B/ GN611B cards. The earthed shield reduces high frequency emissions. Available lengths: 1.5 m (4.92 ft), 3.0 m (9.84 ft), 6.0 m (19.7 ft),12 m (39.4 ft)	1-KAB2139-1.5 1-KAB2139-3.0 1-KAB2139-6.0 1-KAB2139-12.0	
XLR to Banana cable for GN61XB		CT interface unit to GN61xB DAQ 1kV card connection cable. Uses XLR and banana connectors for a current output connection to the GEN DAQ card. Requires an additional burden resistor in front of the GN61xB card to convert current to voltage. Length 2 m (6 ft)	1-KAB2135-2	

Current Transducers Interface and Cables, to be ordered separately				
Article		Description	Order No.	
CT Interface unit	C	100 - 240 V AC 50/60 Hz AC input voltage. 120 - 370 V DC input voltage. 1U height 19" rack mountable.	1-CTPSIU-6-1U	
CT cables		Industry standard current transducer connection cable. Shielded, low ohmic 9 wire cable with D-SUB 9 connectors on both ends. Supports power, status, current output and calibration current input. Lengths: 2, 5, 10 and 20 meters (6, 16, 32 and 65 ft)	1-KAB2133-2 1-KAB2133-5 1-KAB2133-10 1-KAB2133-15 1-KAB2133-20	

Current Transdu	cers, to be ordered	d separately		
	Figure 1 33: HBN	A current transducers, power		
Current Transducer Fam	-			
Туре	Maximum current	Bandwidth (-3 dB)	Ratio Primary : Secundary	Aperture size
CTS50ID	75 A DC / 50 A RMS	1000 kHz	1 : 500	27.6 mm
CTS200ID	300 A DC / 200 A RMS	500 kHz	1 : 500	27.6 mm
CTS400ID	600 A DC / 400 A RMS	300 kHz	1 : 2000	27.6 mm
CTS600ID	900 A DC / 600 A RMS	500 kHz	1 : 1500	27.6 mm
CTM1200ID	1500 A DC / 1200 A RMS	400 kHz	1 : 1500	45.0 mm
CTM1200ID-CD3000	1500 A DC / 1200 A RMS	15 kHz	1 : 1500	45.0 mm
Article		Description		Order No.
75 A DC or 50 A RMS current transducer 300 A DC or 200 A RMS current transducer		Ultra-stable, high-precision fluxgate technology current transducer. Non-intrusive isolated 75 A DC or 50 A RMS up to 1 MHz AC current measurements.		1-CTS50ID
		Ultra-stable, high-precision fluxgate technology current transducer. Non-intrusive isolated 300 A DC or 200 A RMS up to 500 kHz AC current measurements.		1-CTS200ID
600 A DC or 400 A RMS current transducer			Ultra-stable, high-precision fluxgate technology current transducer. Non-intrusive isolated 600 A DC or 400 A RMS up to 300 kHz AC current measurements.	
900 A DC or 600 A RMS current transducer		Ultra-stable, high-precision fluxgate technology current transducer. Non-intrusive isolated 900 A DC or 600 A RMS up to 500 kHz AC current measurements.		1-CTS600ID
1500 A DC or 1200 A RMS, 400 kHz current transducer		Ultra-stable, high-precision fluxgate technology current transducer. Non-intrusive isolated 1500 A DC or 1200 A RMS up to 400 kHz AC current measurements.		1-CTM1200ID
1500 A DC or 1200 A RMS, 15 kHz current transducer		Ultra-stable, high-precision fluxgate technology current transducer with calibration winding. Non-intrusive isolated 1500 A DC or 1200 A RMS up to 15 kHz AC current measurement		1-CTM1200ID-CD3000

 Contact custom systems at: <u>customsystems@hbm.com</u> Request quote/information for special products for GEN series.

GN610B/GN611B Burden Resistors, to be ordered separately

Burden selection for GN610B/GN611B

Note: When using the CTS/CTM series together with GN610B/GN611B cards a burden resistor is required to convert the CT output current to a voltage. When selecting the burden several specifications need to be taken into account: maximum power of the burden, maximum voltage the CT can drive with constant current, the wire impedance of the cables used etc. See the CT operating manual for more details.

Model	Recommended burden		mV/A sensitivity A/V scaling		
CTS50ID	HBR 2.5 Ω		5.0	200	
CTS200ID	HBR 1.0 Ω		2.0	500	
CTS400ID	HBR 1.0 Ω	ΗΒR 1.0 Ω		2000	
CTS600ID	HBR 1.0 Ω		0.6667	1500	
CTS1200ID HBR 1.0 0			0.6667	1500	
CTS1200ID-CD3000	HBR 1.0 Ω		0.6667	1500	
Article		Description	Description		Order No.
HBR 0.25 Ω, 1 W precision burden resistor		$0.25 \ \Omega 1 \ W$, 0.02% high precision, low thermal drift burden resistor. Internally uses 4 wire connection to reduce inaccuracy caused by the currents running to the burden resistor. Using banana input connectors and banana output pins. Directly compatible with GN610B/GN611B acquisition cards.			Ordered from custom systems ⁽¹⁾
HBR 0.5 Ω, 1 W precision burden resistor		$0.5 \ \Omega 1 \ W$, 0.02% high precision, low thermal drift burden resistor. Internally uses 4 wire connection to reduce inaccuracy caused by the currents running to the burden resistor. Using banana input connectors and banana output pins. Directly compatible with GN610B/GN611B acquisition cards.			Ordered from custom systems ⁽¹⁾
HBR 1 Ω, 1 W precision burden resistor	HEAR HEARTO HEAR	1 Ω , 1 W, 0.02% high precision, low thermal drift burden resistor. Internally uses 4 wire connection to reduce inaccuracy caused by the currents running to the burden resistor. Using banana input connectors and banana output pins. Directly compatible with GN610B/GN611B acquisition cards.			Ordered from custom systems ⁽¹⁾
HBR 2.5 Ω, 1 W precision burden resistor		2.5 Ω , 1 W, 0.02% high precision, low thermal drift burden resistor. Internally uses 4 wire connection to reduce inaccuracy caused by the currents running to the burden resistor. Using banana input connectors and banana output pins. Directly compatible with GN610B/GN611B acquisition cards.		Ordered from custom systems ⁽¹⁾	
HBR 10 Ω, 1 W precision burden resistor	ecision burden resistor. Internally uses 4 wire connection to redu			on to reduce inaccuracy ourden resistor. Using output pins. Directly	Ordered from custom systems ⁽¹⁾

(1) Contact custom systems at: <u>customsystems@hbm.com</u> Request quote/information for special products for GEN series.

©Hottinger Brüel & Kjaer GmbH. All rights reserved. All details describe our products in general form only. They are not to be understood as express warranty and do not constitute any liability whatsoever.

Hottinger Brüel & Kjaer GmbH

Im Tiefen See 45 · 64293 Darmstadt · Germany Tel. +49 6151 803-0 · Fax: +49 6151 803-9100 E-mail: info@hbm.com · www.hbm.com

measure and predict with confidence