

DATENBLATT

GEN-Serie GN610B (GN611B)Isolierte Datenerfassungskarte für 1 kV 2 MS/s (200 kS/s)

CHARAKTERISTISCHE MERKMALE

- 6 Analogkanäle
- Isolierte Eingänge, symmetrisch differenziell
- Eingangsbereich ± 10 mV bis ± 1000 V
- Basis-Genauigkeit 0,02 %
- Genauigkeit Leistungsmessung 0,02 %
- Verstärkte Isolierung für 600 V eff CAT II, geprüft bis 6,4 kV
- Abtastrate 18 Bit bei 2 MS/s (200 kS/s)
- Rechenfunktionen mit Echtzeit-Formeldatenbank
- Triggern bei Echtzeitergebnissen
- Digitalereignis/Timer/Zähler
- Zertifizierter Tastkopf für 5 kV eff

Funktionen und Vorteile von GN610B/GN611B

Der isolierte symmetrisch differenzielle Eingang bietet Spannungsbereiche von ± 10 mV bis ± 1000 V. Die bis 6,4 kV geprüfte verstärkte Isolierung ermöglicht sichere Messungen bis 600 V eff CAT II (ohne Tastköpfe).

Der AA-Schutz wird durch einen mehrstufigen Ansatz erreicht. In Stufe 1 wird ein Anti-Aliasing-Filter 7. Ordnung mit einem Analog-Digital-Wandler kombiniert und erzeugt einen von Alias-Effekten freien digitalen Datenstrom mit konstanter Rate von 2 MS/s (200 kS/s).

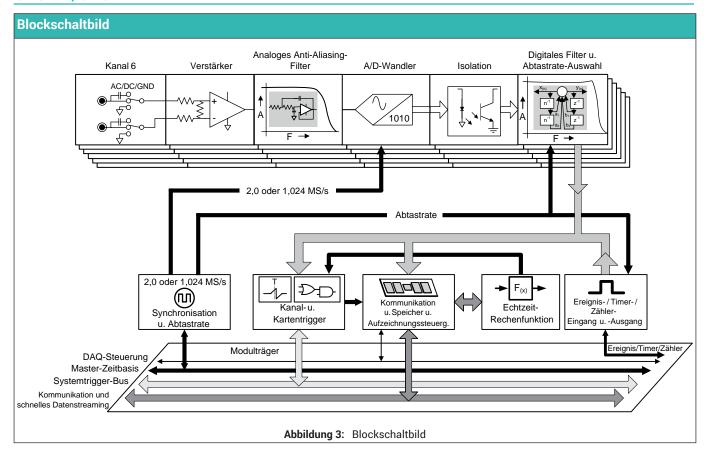
Die vier Timer/Zähler und der Drehmoment-/ Drehzahl-Adapter G070A ermöglichen eine direkte Schnittstelle zu Drehmomentaufnehmern von HBM oder zu anderen Drehmoment- und Drehzahlsensoren. Mit den Mathematik-Routinen in der Echtzeit-Formeldatenbank lässt sich nahezu jede mathematische Aufgabe in Echtzeit lösen. Die dynamische Erkennung des Nulldurchgangs ("Cycle Detect") ermöglicht Echtzeitspeicherung sowie die Digitalausgabe der Berechnungsergebnisse mit einer Latenzzeit von 1 µs, z. B. für den echten Effektivwert von allen Analog-, Drehmoment-, Winkel-, Drehzahlund Timer-/Zähler-Kanälen.

Mathematik-Routinen "von Kanal zu Kanal" erstellen Berechnungskanäle mit einer Latenzzeit von 1 µs zur Ermittlung der mechanischen Leistung und/oder der elektrischen Leistung (P, Q, S) in Mehrphasensystemen (nicht auf drei begrenzt) oder sogar für Wirkungsgradberechnungen. Echtzeit-Berechnungsergebnisse können als Trigger für Alarmaufzeichnung und -meldung an externe Systeme verwendet werden.

GN610B/GN611B

Die Fähigkeiten im Überblick			
Modell	GN610B	GN611B	
Maximale Abtastrate pro Kanal	2 MS/s	200 kS/s	
Speicher pro Datenerfassungskarte	2 GB	200 MB	
Analogkanäle	6		
Anti-Aliasing-Filter	Analoges AA-Filter mit fester Bandbreite, kombi nachgeführten AA-Filter	niert mit digitalem, auf die Abtastrate	
Auflösung des A/D-Wandlers	18 Bit		
Isolation	Kanal gegen Kanal und Kanal gegen Gehäuse		
Eingangstyp	Analog, isoliert symmetrisch differenziell		
Passive Spannungs-/Stromzangen	Nur passende Spezial-Stromzangen (z. B. Elas HVD50R)		
Aufnehmer und Sensoren	Nicht unterstützt		
TEDS	Nicht unterstützt		
Rechenfunktionen mit Echtzeit- Formeldatenbank (Option)	Umfangreiche Auswahl an benutzerprogrammierbaren Mathematik-Routinen mit Triggerung durch berechnete Ergebnisse		
Digitalereignis/Timer/Zähler	16 Digitalereignis- und 4 Timer-/Zähler-Kanäle		
Standard-Datenstreaming (CPCI bis zu 200 MB/s)	Nicht unterstützt		
Schnelles Datenstreaming (PCle bis zu 1 GB/s)	Unterstützt		
Steckplatzbreite	1		

Grundgerät-Unterstützung						
	GEN2tB	GEN4tB	GEN7tA/GEN7tB	GEN17tA/GEN17tB	GEN3iA	GEN7iA/GEN7iB
GN610B/GN611B	Ja					
GEN DAQ-API	Ja Ja ⁽¹⁾			1 (1)		
EtherCAT®	Nein Ja Nein			ein		
CAN/CAN FD	Ja Nein			ein		


⁽¹⁾ Perception beenden, um Zugriff auf GEN DAQ API zu ermöglichen.

2

Unterstützte Analogsensoren und Tastköpfe			
Messverstärker-Modus	Unterstützte Analogsensoren und Tastköpfe	Merkmale, Verkabelung und Zubehör	
Leistungsmessung	 Stromwandler Stromzangen Elektrische Spannungen, einseitig geerdet und differenziell (1) Aktive, einseitig geerdete Spannungssonden Aktive Differenzspannungssonden 	 Spannungseingang: ± 10 mV bis ± 1000 V Bürdenwiderstände Zertifizierter Tastkopf für 5 kV eff Stromzangen 	

(1) Passive 5-kV-Spannungssonde

Unterstützte digitale Sensoren (TTL-Eingangspegel)	
Eingangstyp Timer/Zähler	Unterstützte digitale Sensoren	Merkmale
Signal Richtung Rück- setzen 334 55 66 56 44 3 0 Zählung aufwärts Zählung abwärts Rücksetzen Abbildung 1: Uni- und bidirektionales Taktsignal	 Drehmomentaufnehmer von HBM Drehmomentsensoren Drehzahlsensoren Positionssensoren 	 Winkelmessung Frequenz-/Drehzahlmessung Zählung/Positionsmessung Zählfrequenz bis 5 MHz Digitale Filterung von Eingangssignalen Mehrere Rücksetzoptionen RT-FDB kann basierend auf der Winkelmessung einen Berechnungskanal für Frequenz/Drehzahl hinzufügen
Signal Richtung 1	 Drehmomentaufnehmer von HBM Drehmomentsensoren Drehzahlsensoren Positionssensoren 	 Winkelmessung Frequenz-/Drehzahlmessung Zählung/Positionsmessung Zählfrequenz bis 2 MHz Digitale Filterung von Eingangssignalen Zählen mit Einfach-, Zweifach- und Vierfach-Präzision Nachführung an Übergängen, um Drift der Zählung zu vermeiden Mehrere Rücksetzoptionen RT-FDB kann basierend auf der Winkelmessung einen Berechnungskanal für Frequenz/Drehzahl hinzufügen

Technische Daten und Messunsicherheit

Die technischen Daten werden bei einer Umgebungstemperatur von 23 $^{\circ}$ C ermittelt.

Um Verbesserungen hinsichtlich der Messunsicherheit zu erreichen, könnte das System bei einer bestimmten Umgebungstemperatur neu justiert werden, um die Auswirkungen der Temperaturdrift zu minimieren.

Die von einem Analogverstärker ausgehende Fehlerquelle folgt der Kurve = \mathbf{a} x + \mathbf{b} .

- a % des Anzeigewertfehlers; er entspricht dem Fehler, der aufgrund des Anstiegs der Eingangsspannung linear ansteigt, und wird oft als Verstärkungsfehler bezeichnet.
- **b** % des Bereichsfehlers; er entspricht dem Fehler beim Messen von 0 V und wird oft als Offsetfehler bezeichnet.

Im Hinblick auf die Messunsicherheit können diese Fehler als unabhängige Fehlerquellen betrachtet werden.

Rauschen ist keine eigenständige Fehlerquelle außerhalb der Standardwerte der technischen Daten.

Die Daten für Rauschen werden gesondert hinzuaddiert, falls eine dynamische Genauigkeit auf der Ebene des einzelnen Samples erforderlich ist.

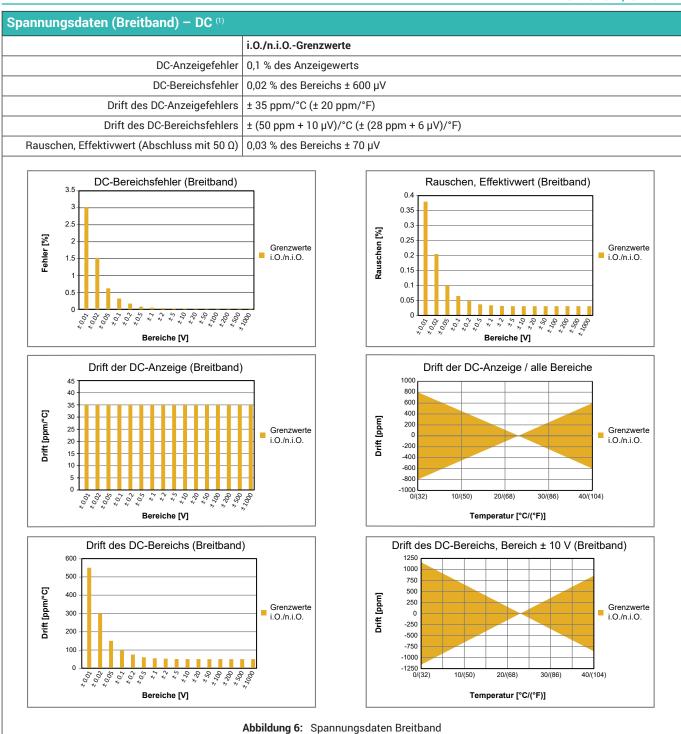
Der Effektivwert des Rauschfehlers wird nur bei der auf das einzelne Sample bezogenen Messunsicherheit addiert.

Bei der Genauigkeit der Leistung beispielsweise ist der Effektivwert des Rauschfehlers bereits in den Daten für die Leistung enthalten.

Bei den Grenzwerten für "in Ordnung/nicht in Ordnung" handelt es sich um Daten mit einer Rechteckverteilung, die Messunsicherheit ist daher gleich 0,58 * der Wert gemäß den Angaben in den technischen Daten.

Hinzufügen/Entfernen oder Auswechseln von Datenerfassungskarten

Die hier aufgeführten technischen Daten gelten für Datenerfassungskarten, die im gleichen Grundgerät, der gleichen Grundgerätekonfiguration und den gleichen Steckplätzen kalibriert und verwendet werden wie zum Zeitpunkt der ursprünglichen Kalibrierung.


Wenn Karten hinzugefügt, entfernt oder an einen anderen Platz versetzt werden, ändern sich die Wärmeverhältnisse, unter denen die Karte betrieben wird, was zu zusätzlichen Fehlern durch thermische Drift führt. Der erwartete maximale Fehler kann bis zum Zweifachen des in den technischen Daten für Anzeigewert und Messbereich angegebenen Fehlers betragen und entspricht einer um 10 dB verringerten Gleichtaktunterdrückung.

Eine Neukalibrierung nach Konfigurationsänderungen wird deshalb nachdrücklich empfohlen.

	GN610B/GN611B		
Analogeingänge			
Kanäle	6		
Anschlüsse	Vollständig isolierte 4-mm-Bananenstecker (Kunststoff), 2 pro Kanal (rot und schwarz)		
Eingangstyp	Analog, isoliert symmetrisch differenziell		
Eingangsimpedanz	$2 * 1 \ M\Omega \pm 1 \ \%$ // 33 pF $\pm 10 \ \%$ in Bereichen größer als $\pm 5 \ V$. In allen anderen Bereichen 57 pF $\pm 10 \ \%$		
Eingangsbeschaltung			
Beschaltungsmodi	AC, DC, GND		
Frequenz der AC-Beschaltung	48 Hz ± 5 Hz (-3 dB)		
Frequenzgang der AC-Kopp 31.6 31.6 31.6 31.6 1 316 1 316 1 316 Abbildun Bereiche (Impedanz 1 ΜΩ)	Frequenzgang der AC-Kopplung [%] 100 90 80 70 -20 80 70 -30 80 70 -40 -40 -40 -40 -40 -50 1000 10000 -50 -50 -50 -50 -50 -50 -50 -50 -50		
Offset	± 50 % in 1000 Schritten (0,1 %); Bereich ± 1000 V hat einen festen Offset von 0 %		
Gleichtakt (bezogen auf Systemmasse)			
Bereiche			
Gleichtaktunterdrückung (CMR)	> 80 dB bei 80 Hz (typischer Wert 100 dB) > 60 dB bei 80 Hz (typischer Wert 80 dB)		
Maximale Gleichtaktspannung	7 V eff 1000 V eff		
100 10 10 10 10 m 1 m 0.1 m	Gleichtakt-Frequenzgang -20 -40 -60 -60 -70 -80 Bereiche < ± 10 V -80 -100 -120 -120 -120 Frequenz [kHz]		
Abb	oildung 5: Typischer Gleichtakt-Frequenzgang		

GN610B/GN611B

Analogeingänge	
Überlastschutz am Eingang	
Änderung der Überspannungsimpedanz	Die Aktivierung des Überspannungsschutzsystems führt zu einer verringerten Eingangsimpedanz. Der Überspannungsschutz ist nicht aktiv, solange die Eingangsspannung unter 200 % des gewählten Eingangsbereichs oder unter 1250 V bleibt; maßgeblich ist jeweils der kleinere Wert.
Maximale zerstörungsfreie Spannung	± 2000 V DC
Maximale Überlast ohne Anzeigeskalierung	200 % des ausgewählten Bereichs
Automatische Messbereichsumschaltung	Wenn die Überlast zur Überhitzung des Messverstärkers führt, erhöht der Messverstärker seinen Bereich schrittweise um einen Faktor 10, bis keine Überlast mehr besteht. Wenn die Überlast 1000 V überschreitet, wird das Eingangssignal getrennt, und der Verstärkereingang wird geerdet. Nachdem sich die Temperatur wieder normalisiert hat, wird die Messung im ursprünglich gewählten Bereich wieder aufgenommen. Die automatische Messbereichsumschaltung kann nicht deaktiviert werden.
Erholzeit nach Überlast	Wiederherstellung einer Genauigkeit von 0,1 % nach 200 % Überlast in weniger als 5 μs

(1) Spannungsdaten (Breitband) gelten nur für GN610B.

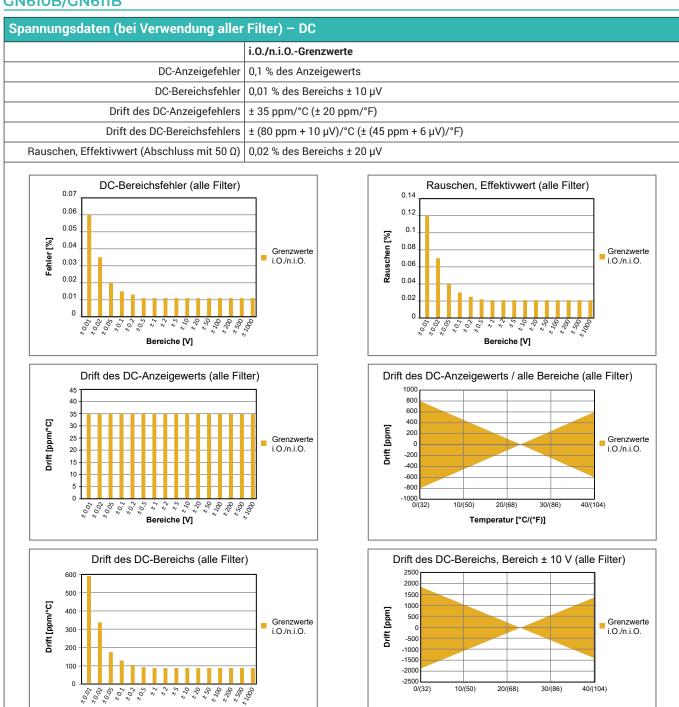


Abbildung 7: Spannungsdaten bei Verwendung aller Filter

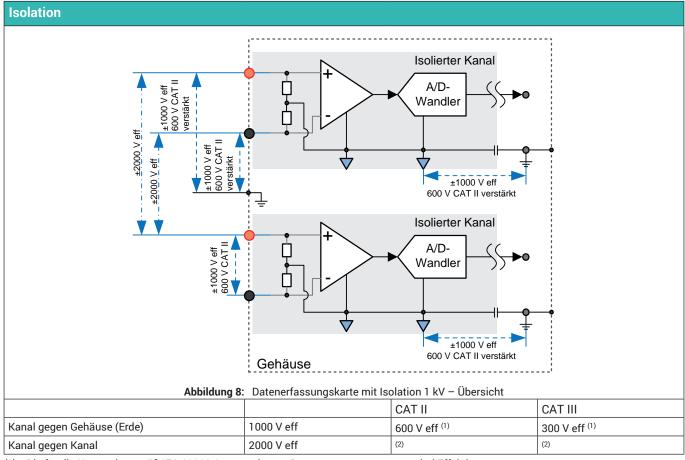
8

Bereiche [V]

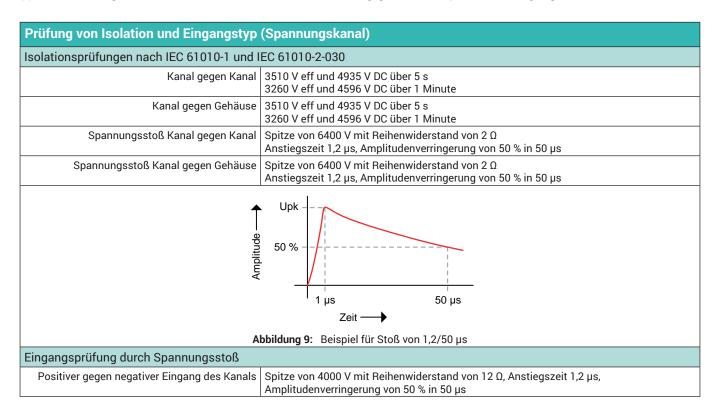
Temperatur [°C/(°F)]

Genauigkeit der Leistungsmessung, Basis-Modus - DC

Die GN610B/GN611B wird an Spannungs- und Stromeingängen bei 53 Hz mithilfe von Bürdenwiderständen kalibriert und geprüft. Während der Kalibrierung werden die Bürdenwiderstände an drei Spannungskanälen angebracht, um Strommessungen zu ermöglichen.


Die technischen Daten werden für die Bürde von 2,5 Ω angegeben. Bei Verwendung der Bürde von 1,0 Ω oder 10,0 Ω erhält man andere Strombereiche, aber gleiche Ergebnisse.

2,5 Ω	Bürden- einstellung	1,264 A DC	800 mA DC	400 mA DC	160 mA DC	80 mA DC	40 mA DC
0 - 100 Hz Sinuswelle Scheitelfaktor CF: 1,41 Cos Phi: 1	Bürden- bereiche	440 mA eff	280 mA eff	140 mA eff	56 mA eff	28 mA eff	14 mA eff
Spannungs- einstellung	Spannungs- bereiche	Typischer Wert	Typischer Wert	Typischer Wert	Typischer Wert	Typischer Wert	Typischer Wert
40 V DC	14,1 V eff	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,1 % des Bereichs	0,02 % des Anzeigewerts + 0,1 % des Bereichs	0,02 % des Anzeigewerts + 0,15 % des Bereichs
100 V DC	35,3 V eff	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,1 % des Bereichs	0,02 % des Anzeigewerts + 0,1 % des Bereichs	0,02 % des Anzeigewerts + 0,15 % des Bereichs
200 V DC	70,7 V eff	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,1 % des Bereichs	0,02 % des Anzeigewerts + 0,1 % des Bereichs	0,02 % des Anzeigewerts + 0,15 % des Bereichs
400 V DC	141 V eff	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,1 % des Bereichs	0,02 % des Anzeigewerts + 0,1 % des Bereichs	0,02 % des Anzeigewerts + 0,15 % des Bereichs
1 kV DC	353 V eff	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,1 % des Bereichs	0,02 % des Anzeigewerts + 0,1 % des Bereichs	0,02 % des Anzeigewerts + 0,15 % des Bereichs
2 kV DC	707 V eff	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,05 % des Bereichs	0,02 % des Anzeigewerts + 0,1 % des Bereichs	0,02 % des Anzeigewerts + 0,1 % des Bereichs	0,02 % des Anzeigewerts + 0,15 % des Bereichs


Übersicht der i.O./n.i.O.-Grenzwerte für Spannungskanäle – AC

Alle Werte werden mit der in den technischen Daten angegebenen Ungenauigkeit für Spannungskanäle berechnet. Der aufgeführte Wert entspricht der maximalen Ungenauigkeit, die am Ende des Frequenzbands auftreten kann. Um genauere Werte zu erhalten, nach den Berechnungshinweisen in der Tabelle mit den technischen Daten für die Ungenauigkeit bei Spannungskanälen vorgehen.

Spannungsbereich	Signalfrequenz (f)					
	1 Hz < f ≤ 1 kHz	1 kHz < f ≤ 20 kHz	20 kHz < f ≤ 100 kHz	100 kHz < f ≤ 200 kHz	200 kHz < f ≤ 500 kHz	
i.O./n.i.OGrenzwert bei < ± 0,2	V					
Damiele 100V	0,010 %	0,010 %	0,970 %	2,170 %	10,270 %	Anzeige
Bereich < ± 0,2 V	0,060 %	0,060 %	0,060 %	0,060 %	0,060 %	Bereich
i.O./n.i.OGrenzwert bei < ± 10 \	/					
± 0,2 V ≤ Bereich < ± 10 V	0,010 %	0,010 %	0,730 %	1,630 %	9,730 %	Anzeige
	0,060 %	0,060 %	0,060 %	0,060 %	0,060 %	Bereich
i.O./n.i.OGrenzwert bei ≥ ± 10 V						
Bereich ≥ ± 10 V	0,010 %	1,962 %	3,010 %	3,462 %	9,460 %	Anzeige
	0,060 %	0,060 %	0,060 %	0,060 %	0,060 %	Bereich

- (1) Die für die Kategorie gemäß IEC 61010-1 angegebenen Bemessungsspannungen sind Effektivspannungen.
- (2) Die Bemessungsdaten von CAT II und CAT III für die Isolation Kanal gegen Kanal entsprechen keinem gültigen Verfahren.

GN610B/GN611B

Analog-Digital-Wandlung			
Abtastrate, pro Kanal	0,1 S/s bis 2 MS/s (GN610B) 0,1 S/s bis 200 kS/s (GN611B)		
Auflösung des A/D-Wandlers, ein A/D-Wandler pro Kanal	18 Bit		
Typ des A/D-Wandlers	Successive Approximation Register (SAR); Analoggeräte AD7986BCPZ		
Genauigkeit der Zeitbasis	Durch Grundgerät definiert: ± 3,5 ppm; Alterung nach 10 Jahren ± 10 ppm		

Anti-Aliasing-Filter

Hinweis zur Phasentreue der Kanäle: Zu jeder Wahl einer Filtercharakteristik und/oder einer Filterbandbreite gehört jeweils ein eigener spezifischer Phasengang. Wenn unterschiedliche Filter (Breitband / Bessel / Butterworth / Bessel IIR / Butterworth IIR / Elliptisch IIR) oder unterschiedliche Filterbandbreiten gewählt werden, kann dies zu einer Phasenverschiebung zwischen Kanälen führen.

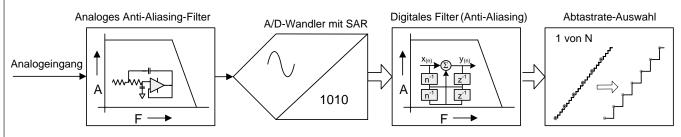


Abbildung 10: Blockschaltbild zu kombinierten analogen und digitalen Anti-Aliasing-Filtern

Alias-Effekte werden durch einen steilen analogen Anti-Aliasing-Filter mit fester Frequenz vor dem Analog-Digital-Wandler (A/D-Wandler) verhindert. Der A/D-Wandler tastet immer mit fester Abtastrate ab. Dank der festen Abtastrate des A/D-Wandlers werden keine anderen analogen Anti-Aliasing-Filterfrequenzen benötigt.

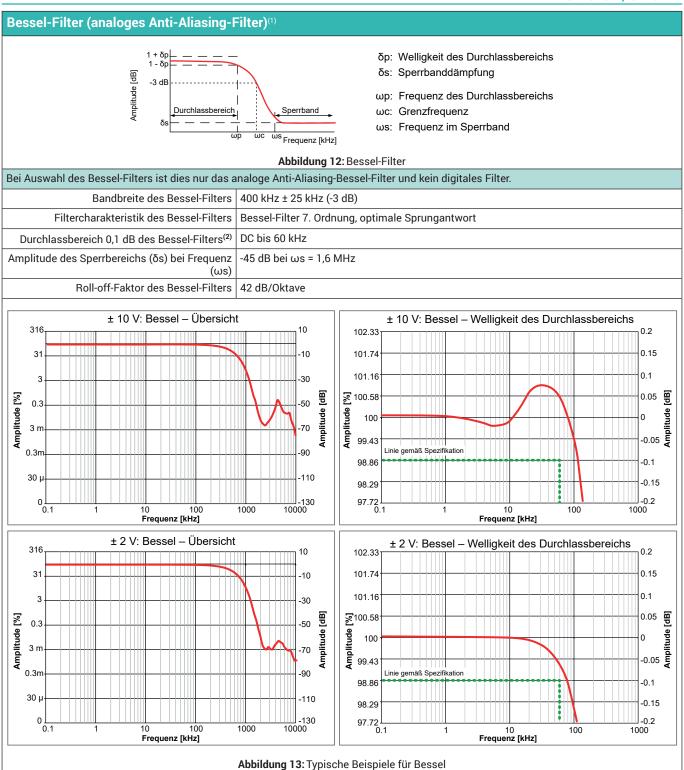
Direkt hinter dem A/D-Wandler dient ein hochpräzises digitales Filter als Anti-Aliasing-Schutz, bevor die digitale Umwandlung auf die niedrigere benutzerdefinierte Abtastrate (Downsampling) durchgeführt wird. Das digitale Filter wird auf eine Bruchzahl der benutzerdefinierten Abtastrate programmiert und automatisch auf jede vom Benutzer gewählte Abtastrate nachgeführt. Gegenüber analogen Anti-Aliasing-Filtern bietet das programmierbare digitale Filter weitere Vorteile wie ein Filter höherer Ordnung mit steil abfallender Flanke, eine größere Auswahl an Filtercharakteristiken, einen rauschfreien Digitalausgang und keine zusätzlichen Phasenlaufzeiten zwischen Kanälen, die dieselben Filtereinstellungen verwenden.

Breitband ⁽¹⁾	Bei Auswahl des Breitbandfilters befindet sich weder ein analoges Anti-Aliasing-Filter noch ein digitales Filter im Signalpfad. Deshalb ist bei der Auswahl des Breitbandfilters kein Anti-Aliasing-Schutz vorhanden. Das Breitbandfilter sollte nicht verwendet werden, wenn in einem Frequenzbereich mit aufgezeichneten Daten gearbeitet wird.
Bessel (Fc bei -3 dB) ⁽¹⁾	Mit diesem analogen Bessel-Filter können Signale mit höherer Bandbreite reduziert werden, insbesondere bei maximaler Abtastrate von 2 MS/s oder 200 kS/s. Zur Verhinderung eines Alias-Effekts ist bei niedrigeren Abtastraten das digitale IIR-Filter besser geeignet. Bessel-Filter werden üblicherweise für die Betrachtung von Signalen im Zeitbereich verwendet. Sie eignen sich am besten zur Messung von Transientensignalen oder Signalen mit scharfen Kanten wie Rechteckwellen oder Sprungantworten.
Butterworth (Fc bei -3 dB) ⁽¹⁾	Mit diesem analogen Butterworth-Filter können Signale mit höherer Bandbreite reduziert werden, insbesondere bei maximaler Abtastrate von 2 MS/s oder 200 kS/s. Zur Verhinderung eines Alias-Effekts ist bei niedrigeren Abtastraten das digitale IIR-Filter besser geeignet. Butterworth-Filter werden üblicherweise für die Arbeit mit Signalen in Form von (nahezu) Sinuswellen im Zeitbereich oder von Signalen im Frequenzbereich verwendet.
Bessel IIR (Fc bei -3dB)	Bei Auswahl des Bessel-IIR-Filters ist dies immer eine Kombination aus einem analogen Anti-Aliasing-Bessel-Filter und einem digitalen Bessel-IIR-Filter zur Verhinderung eines Alias-Effekts bei niedrigeren Abtastraten. Bessel-Filter werden üblicherweise für die Betrachtung von Signalen im Zeitbereich verwendet. Sie eignen sich am besten zur Messung von Transientensignalen oder Signalen mit scharfen Kanten wie Rechteckwellen oder Sprungantworten.
Butterworth IIR (Fc bei -3dB)	Bei Auswahl des Butterworth-IIR-Filters ist dies immer eine Kombination aus einem analogen Anti-Aliasing-Butterworth-Filter und einem digitalen Butterworth-IIR-Filter zur Verhinderung eines Alias-Effekts bei niedrigeren Abtastraten. Diese Filter eignen sich am besten, wenn im Frequenzbereich gearbeitet wird. Wenn im Zeitbereich gearbeitet wird, eignet sich dieses Filter am besten für Signale in Form von Sinuswellen (oder annähernd Sinuswellen).
Elliptisch IIR (Fc bei -0,1 dB)	Bei Auswahl des elliptischen IIR-Filters ist dies immer eine Kombination aus einem analogen Anti-Aliasing-Butterworth-Filter und einem digitalen elliptischen IIR-Filter zur Verhinderung eines Alias-Effekts bei niedrigeren Abtastraten. Diese Filter eignen sich am besten, wenn im Frequenzbereich gearbeitet wird. Wenn im Zeitbereich gearbeitet wird, eignet sich dieses Filter am besten für Signale in Form von Sinuswellen (oder annähernd Sinuswellen).

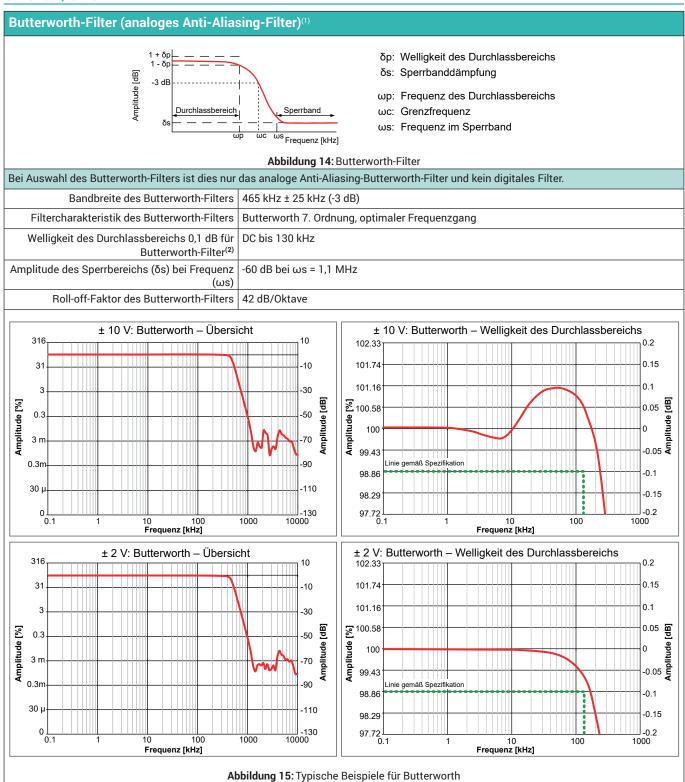
(1) Breitband- und analoge Anti-Aliasing-Filter gelten nur für GN610B.

Auswahl der für die Abtastrate geeigneten Bandbreite und Filtercharakteristik

Das digitale Filter vor der Dezimierung garantiert exzellente Phasentreue, minimales Rauschen und ein von Alias-Effekten freies Ergebnis.


	Breitband (1)	Digitale Tiefpassfilter (frei von Alias-Effekten durch Verwendung eines analogen Anti-Alias Filters vor dem A/D-Wandler)				Anti-Aliasing-
	Kein Anti- Aliassing- Filter	Butterworth IIR Elliptisch IIR	Bessel IIR Butterworth IIR Elliptisch IIR	Bessel IIR Butterworth IIR Elliptisch IIR	Bessel IIR Butterworth IIR Elliptisch IIR	Bessel IIR
Vom Benutzer wählbare Abtastraten		1/4 Fs	1/10 Fs	1/20 Fs	1/40 Fs	1/100 Fs
2 MS/s ⁽²⁾	Breitband	-	200 kHz	100 kHz	50 kHz	20 kHz
1 MS/s ⁽²⁾	Breitband	250 kHz	100 kHz	50 kHz	25 kHz	10 kHz
500 kS/s ⁽²⁾	Breitband	125 kHz	50 kHz	25 kHz	12,5 kHz	5 kHz
400 kS/s ⁽²⁾	Breitband	100 kHz	40 kHz	20 kHz	10 kHz	4 kHz
250 kS/s ⁽²⁾	Breitband	62,5 kHz	25 kHz	12,5 kHz	6,25 kHz	2,5 kHz
200 kS/s	Breitband	50 kHz	20 kHz	10 kHz	5 kHz	2 kHz
125 kS/s	Breitband	25 kHz	12,5 kHz	6,25 kHz	2,5 kHz	1,25 kHz
100 kS/s	Breitband	20 kHz	10 kHz	5 kHz	2 kHz	1 kHz
50 kS/s	Breitband	12,5 kHz	5 kHz	2,5 kHz	1,25 kHz	500 Hz
40 kS/s	Breitband	10 kHz	4 kHz	2 kHz	1 kHz	400 Hz
25 kS/s	Breitband	6,25 kHz	2,5 kHz	1,25 kHz	625 Hz	250 Hz
20 kS/s	Breitband	5 kHz	2 kHz	1 kHz	500 Hz	200 Hz
12,5 kS/s	Breitband	2,5 kHz	1,25 kHz	625 Hz	312,5 Hz	125 Hz
10 kS/s	Breitband	2 kHz	1 kHz	500 Hz	250 Hz	100 Hz
5 kS/s	Breitband	1,25 kHz	500 Hz	250 Hz	125 Hz	50 Hz
4 kS/s	Breitband	1 kHz	400 Hz	200 Hz	100 Hz	40 Hz
2,5 kS/s	Breitband	625 Hz	250 Hz	125 Hz	62,5 Hz	25 Hz
2 kS/s	Breitband	500 Hz	200 Hz	100 Hz	50 Hz	20 Hz
1,25 kS/s	Breitband	312,5 Hz	125 Hz	62,5 Hz	31,25 Hz	12,5 Hz
1 kS/s	Breitband	250 Hz	100 Hz	50 Hz	25 Hz	10 Hz
500 S/s	Breitband	125 Hz	50 Hz	25 Hz	12,5 Hz	5 Hz
400 S/s	Breitband	100 Hz	40 Hz	20 Hz	10 Hz	4 Hz
250 S/s	Breitband	62,5 Hz	25 Hz	12,5 Hz	6,25 Hz	2,5 Hz
200 S/s	Breitband	50 Hz	20 Hz	10 Hz	5 Hz	2 Hz
125 S/s	Breitband	31,25 Hz	12,5 Hz	6,25 Hz	3,125 Hz	1,25 Hz
100 S/s	Breitband	25 Hz	10 Hz	5 Hz	2,5 Hz	1 Hz
50 S/s	Breitband	12,5 Hz	5 Hz	2,5 Hz	1,25 Hz	0,5 Hz
40 S/s	Breitband	10 Hz	4 Hz	2 Hz	1 Hz	0,4 Hz

⁽¹⁾ Breitbandfilter gilt nur für GN610B.

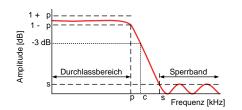

⁽²⁾ Vom Benutzer wählbare Abtastraten gelten nur für GN610B.

Breitband (kein Anti-Aliasing-Schutz)(1) Bei Auswahl des Breitbandfilters befindet sich weder ein analoges Anti-Aliasing-Filter noch ein digitales Filter im Signalpfad. Deshalb ist bei der Auswahl des Breitbandfilters kein Anti-Aliasing-Schutz vorhanden. Bandbreite des Breitbandfilters | Zwischen 900 kHz und 1500 kHz (-3 dB) Welligkeit des Durchlassbereichs (0,1 dB) DC bis 160 kHz⁽²⁾ ± 10 V: Breitband - Übersicht ± 10 V: Breitband - Welligkeit des Durchlassbereichs 316 10 102.33 0.15 101.74 31 -10 0.1 101.16 -30 0.05 Amplitude [%] -50 💆 0.3 3 n -0.05 98.86 -0.1 30 -110 0.15 98 29 97.72 0.1 -0.2 130 10000 1000 1000 100 10 100 Frequenz [kHz] 10 Frequenz [kHz] ± 2 V: Breitband – Übersicht ± 2 V: Breitband – Welligkeit des Durchlassbereichs 316 10 102.33 0.2 0.15 31 101.74 -10 101.16 0.1 -30 <u>≤</u>100.58 0.05 -50 Amplitude [%] 0.3 0 0.05 **Amplitude [** Amplitude 100 3 n 99.43 -90 gemäß Spezifikation 98.86 0.1 30 J -110 -0.15 98.29 97.72 0.1 -130 10000 1000 100 Frequenz [kHz] Frequenz [kHz] Abbildung 11: Typische Beispiele für Breitbandfilter

- (1) Breitbandfilter gilt nur für GN610B.
- (2) Gemessen mit einem Kalibrator Fluke 5700A, auf DC-Referenzwert normiert.

- (1) Analoges Anti-Aliasing- Bessel Filter gilt nur für GN610B.
- (2) Gemessen mit einem Kalibrator Fluke 5700A, auf DC-Referenzwert normiert.

- (1) Analoges Anti-Aliasing-Butterworth Filter gilt nur für GN610B.
- (2) Gemessen mit einem Kalibrator Fluke 5700A, auf DC-Referenzwert normiert.

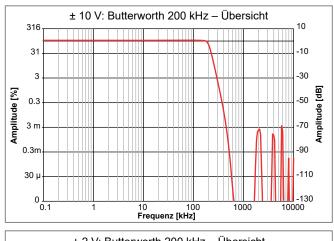

Bessel-IIR-Filter (digitales Anti-Aliasing-Filter) / (200 kHz nur für GN610B) δp: Welligkeit des Durchlassbereichs δs: Sperrbanddämpfung Amplitude [dB] ωp: Frequenz des Durchlassbereichs Durchlassbereich Sperrband ωc: Grenzfrequenz ωs: Frequenz im Sperrband Abbildung 16: Digitales Bessel-IIR-Filter Bei Auswahl des Bessel IIR-Filters ist dies immer eine Kombination aus einem analogen Anti-Aliasing-Bessel-Filter und einem digitalen Bessel-IIR-Filter. Bandbreite des analogen Anti-Aliasing-Filters 400 kHz ± 25 kHz (-3 dB) Filtercharakteristik des analogen Anti-Aliasing-Bessel-Filter 7. Ordnung, optimale Sprungantwort Filtercharakteristik des Bessel-IIR-Filters Bessel-IIR-Filter 8. Ordnung Benutzerauswahl für Bessel-IIR-Filter Automatische Nachführung auf Abtastrate geteilt durch: 10, 20, 40, 100 Der Benutzer wählt den Teilungsfaktor von der aktuellen Abtastrate, anschließend passt die Software das Filter bei der Änderung der Abtastrate an. Vom Benutzer wählbar von 0,4 Hz bis 200 kHz Bandbreite (ωc) des Bessel-IIR-Filters Durchlassbereich 0,1 dB (ωp) des Bessel-IIR-DC bis 0,14 * ωc Sperrbanddämpfung (δs) des Bessel-IIR-Filters 60 dB Wird für das Bessel-IIR-Filter die Bandbreite ωc = 200 kHz ausgewählt, tritt durch die begrenzte Amplitudendämpfung des analogen Anti-Aliasing-Filters zwischen 1,6 MHz und 1,8 MHz eine Spitze von -55 dB auf. Bei Auswahl geringerer Bandbreiten verringert das digitale Filter diese Spitze auf -60 dB. 48 dB/Oktave Roll-off-Faktor des Bessel-IIR-Filters ± 10 V: Bessel 200 kHz - Übersicht ± 10 V: Bessel 200 kHz - Welligkeit des Durchlassbereichs 316 102.33 101.74 0.15 31 -10 101.16 0.1 30 물^{100.58} 0.05 Amplitude [dB] Amplitude [%] 0.3 Amplitude 100 3 m -0.05 **E** 99.43 0.3n Linie gemäß Spezifik 98.86 -0 1 30 u 110 -0.15 98.29 -130 10000 -0.2 1000 0.1 Frequenz [kHz] Frequenz [kHz] ± 2 V: Bessel 200 kHz - Übersicht ± 2 V: Bessel 200 kHz - Welligkeit des Durchlassbereichs 316 10 102.33 31 -10 101 74 0.15 101.16 0.1 -30 <u>₹</u>100.58 0.05 Amplitude [dB] Amplitude [%] 0.3 100 3 m -0.05 E 99.43 inie gemäß Spezifik 98.86 -0.1 30 µ -110 -0.15 98.29 -0.2 130 10 10 Frequenz [kHz] 10000 1000 100 Frequenz [kHz] Abbildung 17: Typische Beispiele für Bessel IIR

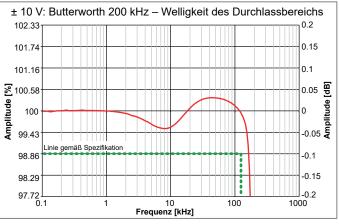
(1) Gemessen mit einem Kalibrator Fluke 5700A, auf DC-Referenzwert normiert

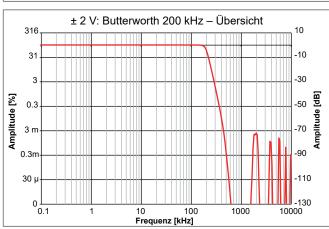
Bessel-IIR-Filter (digitales Anti-Aliasing-Filter) / (20 kHz für GN610B und GN611B) δp: Welligkeit des Durchlassbereichs δs: Sperrbanddämpfung Amplitude [dB] ωp: Frequenz des Durchlassbereichs Durchlassbereich Sperrband $\omega c \colon Grenz frequenz$ ωs: Frequenz im Sperrband Abbildung 18: Digitales Bessel-IIR-Filter Bei Auswahl des Bessel IIR-Filters ist dies immer eine Kombination aus einem analogen Anti-Aliasing-Bessel-Filter und einem digitalen Bessel-IIR-Filter. Bandbreite des analogen Anti-Aliasing-Filters 400 kHz ± 25 kHz (-3 dB) Filtercharakteristik des analogen Anti-Aliasing-Bessel-Filter 7. Ordnung, optimale Sprungantwort Filtercharakteristik des Bessel-IIR-Filters Bessel-IIR-Filter 8. Ordnung Benutzerauswahl für Bessel-IIR-Filter Automatische Nachführung auf Abtastrate geteilt durch: 10, 20, 40, 100 Der Benutzer wählt den Teilungsfaktor von der aktuellen Abtastrate, anschließend passt die Software das Filter bei der Änderung der Abtastrate an. Vom Benutzer wählbar von 0,4 Hz bis 20 kHz Bandbreite (ωc) des Bessel-IIR-Filters Durchlassbereich 0,1 dB (ωp) des Bessel-IIR-DC bis 0,14 * ωc Sperrbanddämpfung (δs) des Bessel-IIR-Filters 60 dB Roll-off-Faktor des Bessel-IIR-Filters 48 dB/Oktave ± 10 V: Bessel 20 kHz - Übersicht ± 10 V: Bessel 20 kHz - Welligkeit des Durchlassbereichs 316 102.33 10 101.74 31 101.16 -30 Amplitude [dB] **2** 100.58 0.05 0.3 Amplitude 100 3 m -0.05 99.43 Linie gemäß Spezifikation 0.3m 0.1 98.86 30 u -0.15 98.29 -130 1000 -0.2 10 Frequenz [kHz] Frequenz [kHz] ± 2 V: Bessel 20 kHz - Übersicht ± 2 V: Bessel 20 kHz - Welligkeit des Durchlassbereichs 316 102.33 10 0.15 31 101.16 0.1 3 -30 **2** 100.58 0.05 Amplitude [%] Amplitude [dB] 0.3 **Amplitude** 100 99.43 3 m inie gemäß Spezifikation 0.3m 0.1 98.86 30 µ 0.15 98.29 0 1 97.72 0.1 -0.2 10 Frequenz [kHz] 100 Frequenz [kHz] Abbildung 19: Typische Beispiele für Bessel IIR

(1) Gemessen mit einem Kalibrator Fluke 5700A, auf DC-Referenzwert normiert

Butterworth-IIR-Filter (digitales Anti-Aliasing-Filter) / (200 kHz nur für GN610B)




- p: Welligkeit des Durchlassbereichs
- s: Sperrbanddämpfung
- p: Frequenz des Durchlassbereichs
- c: Grenzfrequenz
- s: Frequenz im Sperrband


Abbildung 20: Digitales Butterworth-IIR-Filter

Bei Auswahl des Butterworth-IIR-Filters ist dies immer eine Kombination aus einem analogen Anti-Aliasing-Butterworth-Filter und einem digitalen Butterworth-IIR-Filter.

digitalen butterworth-lik-Filter.	
Bandbreite des analogen Anti-Aliasing-Filters	465 kHz ± 25 kHz (-3 dB)
Filtercharakteristik des analogen Anti-Aliasing- Filters	Butterworth 7. Ordnung, erweiterter Frequenzgang im Durchlassbereich
Filtercharakteristik des Butterworth-IIR-Filters	Butterworth-IIR-Filter 8. Ordnung
Benutzerauswahl für Butterworth-IIR-Filter	Automatische Nachführung auf Abtastrate geteilt durch: 4 ⁽¹⁾ , 10, 20, 40 Der Benutzer wählt den Teilungsfaktor von der aktuellen Abtastrate, anschließend passt die Software das Filter bei der Änderung der Abtastrate an.
Bandbreite (ωc) des Butterworth-IIR-Filters	Vom Benutzer wählbar von 1 Hz bis 250 kHz
Durchlassbereich 0,1 dB (ωp) des Butterworth- IIR-Filters ⁽²⁾	, , ,
Sperrbanddämpfung (δs) des Butterworth-IIR- Filters	75 dB
Roll-off-Faktor des Butterworth-IIR-Filters	48 dB/Oktave

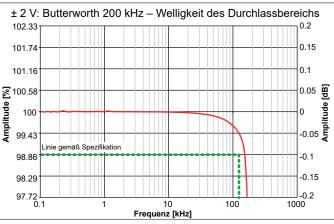


Abbildung 21: Typische Beispiele für Butterworth IIR

- (1) Teilen durch 4 nicht möglich für Abtastrate von 2 MS/s.
- (2) Gemessen mit einem Kalibrator Fluke 5700A, auf DC-Referenzwert normiert

Butterworth-IIR-Filter (digitales Anti-Aliasing-Filter) / (50 kHz für GN610B und GN611B) p: Welligkeit des Durchlassbereichs s: Sperrbanddämpfung Amplitude [dB] -3 dB Frequenz des Durchlassbereichs c: Grenzfrequenz Durchlassbereich Sperrband s: Frequenz im Sperrband Frequenz [kHz] Abbildung 22: Digitales Butterworth-IIR-Filter Bei Auswahl des Butterworth-IIR-Filters ist dies immer eine Kombination aus einem analogen Anti-Aliasing-Butterworth-Filter und einem digitalen Butterworth-IIR-Filter. Bandbreite des analogen Anti-Aliasing-Filters 465 kHz ± 25 kHz (-3 dB) Filtercharakteristik des analogen Anti-Aliasing-Butterworth 7. Ordnung, erweiterter Frequenzgang im Durchlassbereich **Filters** Filtercharakteristik des Butterworth-IIR-Filters Butterworth-IIR-Filter 8. Ordnung Benutzerauswahl für Butterworth-IIR-Filter Automatische Nachführung auf Abtastrate geteilt durch: 4, 10, 20, 40 Der Benutzer wählt den Teilungsfaktor von der aktuellen Abtastrate, anschließend passt die Software das Filter bei der Änderung der Abtastrate an. Vom Benutzer wählbar von 1 Hz bis 50 kHz Bandbreite (ωc) des Butterworth-IIR-Filters Durchlassbereich 0,1 dB (ωp) des Butterworth-DC bis 0,7 * ωc IIR-Filters (1) Sperrbanddämpfung (δs) des Butterworth-IIR-75 dB Filters Roll-off-Faktor des Butterworth-IIR-Filters 48 dB/Oktave ± 10 V: Butterworth 50 kHz - Übersicht ± 10 V: Butterworth 50 kHz - Welligkeit des Durchlassbereichs 102.33 316 10 0.2 0 15 -10 101.74 31 101.16 0.1 -30 3 <u>e</u> 0.05 **2** 100.58 Amplitude [%] Amplitude 3 m <u>و</u> 4 0.05۔ 99.43 0.3m inie gemäß Spezifikation 98.86 -0.1 30 µ -0.15 98 20 -0.2 -130 0 97.72 1000 10 Frequenz [kHz] Frequenz [kHz] ± 2 V: Butterworth 50 kHz - Übersicht ± 2 V: Butterworth 50 kHz - Welligkeit des Durchlassbereichs 316 0.15 101.74 31 -10 0.1 101.16 3 0.05 **2** 100.58 Amplitude [dB] Amplitude [%] -50 0.3 0 -0.05 **Wmblitnde** Amplitude 100 3 m 99.43 0.3m Linie gemäß Spezifikation -0 1 98 86 30 μ -0.15 98.29 -0.2 -130 97.72 0 0.1 10 Frequenz [kHz] 100 1000 0.1 100 Frequenz [kHz]

(1) Gemessen mit einem Kalibrator Fluke 5700A, auf DC-Referenzwert normiert

24/10/2023 B05213_05_G00_00

Abbildung 23: Typische Beispiele für Butterworth IIR

Elliptisches IIR-Filter (digitales Anti-Aliasing-Filter) / (200 kHz nur für GN610B) p: Welligkeit des Durchlassbereichs s: Sperrbanddämpfung Amplitude [dB] p: Frequenz des Durchlassbereichs Grenzfrequenz Durchlassbereich Sperrband Frequenz im Sperrband Abbildung 24: Digitales elliptisches IIR-Filter Bei Auswahl des elliptischen IIR-Filters ist dies immer eine Kombination aus einem analogen Anti-Aliasing-Butterworth-Filter und einem digitalen elliptischen IIR-Filter. Bandbreite des analogen Anti-Aliasing-Filters 465 kHz ± 25 kHz (-3 dB) Butterworth 7. Ordnung, erweiterter Frequenzgang im Durchlassbereich Filtercharakteristik des analogen Anti-Aliasing-Filters Filtercharakteristik des elliptischen IIR-Filters Elliptisches IIR-Filter 7. Ordnung Benutzerauswahl für elliptisches IIR-Filter Automatische Nachführung auf Abtastrate geteilt durch: 4⁽¹⁾, 10, 20, 40 Der Benutzer wählt den Teilungsfaktor von der aktuellen Abtastrate, anschließend passt die Software das Filter bei der Änderung der Abtastrate an. Bandbreite (ωc) des elliptischen IIR-Filters Durchlassbereich 0,1 dB (ωp) des elliptischen DC bis ωc (für ωc > 100 kHz gilt DC bis 0,7 * ωc aufgrund der Bandbreite des analogen Anti-Aliasing-Filters) IIR-Filters (2) Sperrbanddämpfung (os) des elliptischen IIR-75 dB **Filters** Roll-off-Faktor des elliptischen IIR-Filters 72 dB/Oktave ± 10 V: elliptisch 200 kHz - Übersicht ± 10 V: elliptisch 200 kHz - Welligkeit des Durchlassbereichs 316 10 102.33 0.2 0.15 31 -10 101.74 0.1 101 16 -30 **2**100.58 0.05 8 8 Amplitude [%] 0.3 -50 0 -0.05 **Amplitude** [Amplitude Amplitude 100 3 n 70 99.43 0.3r -0.1 98.86 30 -110 -0.15 98.29 97.72 0.1 ∭-0.2 1000 -130 10000 10 100 Frequenz [kHz] Frequenz [kHz] ± 2 V: elliptisch 200 kHz - Übersicht ± 2 V: elliptisch 200 kHz - Welligkeit des Durchlassbereichs 316 10 102.33 0.15 31 -10 101.74 101.16 -30 줄^{100.58} 0.05 Amplitude [dB] Amplitude [%] 0.3 -50 -0.05 **Amplitude [d** Amplitude 100 3 n 99.43 0.3n -0.1 98.86 30 0.15 98.29 -130 0 -0.2 1000 10 Frequenz [kHz] 10 100 Frequenz [kHz]

- (1) Teilen durch 4 nicht möglich für Abtastrate von 2 MS/s.
- (2) Gemessen mit einem Kalibrator Fluke 5700A, auf DC-Referenzwert normiert

B05213_05_G00_00 24/10/2023 21

Abbildung 25: Typische Beispiele für elliptisches IIR

Elliptisches IIR-Filter (digitales Anti-Aliasing-Filter) / (50 kHz für GN610B und GN611B) p: Welligkeit des Durchlassbereichs s: Sperrbanddämpfung Amplitude [dB] p: Frequenz des Durchlassbereichs Grenzfrequenz Sperrband Frequenz im Sperrband Abbildung 26: Digitales elliptisches IIR-Filter Bei Auswahl des elliptischen IIR-Filters ist dies immer eine Kombination aus einem analogen Anti-Aliasing-Butterworth-Filter und einem digitalen elliptischen IIR-Filter. Bandbreite des analogen Anti-Aliasing-Filters 465 kHz ± 25 kHz (-3 dB) Butterworth 7. Ordnung, erweiterter Frequenzgang im Durchlassbereich Filtercharakteristik des analogen Anti-Aliasing-Filters Filtercharakteristik des elliptischen IIR-Filters Elliptisches IIR-Filter 7. Ordnung Benutzerauswahl für elliptisches IIR-Filter Automatische Nachführung auf Abtastrate geteilt durch: 4, 10, 20, 40 Der Benutzer wählt den Teilungsfaktor von der aktuellen Abtastrate, anschließend passt die Software das Filter bei der Änderung der Abtastrate an. Vom Benutzer wählbar von 1 Hz bis 50 kHz Bandbreite (ωc) des elliptischen IIR-Filters Durchlassbereich 0,1 dB (ωp) des elliptischen DC bis ωc Sperrbanddämpfung (δs) des elliptischen IIR-75 dB Roll-off-Faktor des elliptischen IIR-Filters 72 dB/Oktave ± 10 V: elliptisch 50 kHz - Übersicht ± 10 V: elliptisch 50 kHz - Welligkeit des Durchlassbereichs 316 10 0 15 31 -10 101.74 101.16 0.1 3 -30 Waltinge [%] 100.58 0.05 Amplitude [dB] 0.3 0 0 0.05 0 -70 3 m inie gemäß Spezifikatior 0.3m 98.86 -0.1 30 µ -110 -0.15 98 29 0 -130 97.72⊥ 0.1 -0.2 1000 10 Frequenz [kHz] Frequenz [kHz] ± 2 V: elliptisch 50 kHz – Übersicht ± 2 V: elliptisch 50 kHz - Welligkeit des Durchlassbereichs 316 10 101.74 0.15 31 101.16 0 1 3 -30 **2** 100.58 0.05 \mathbb{Z} Amplitude [dB] 0 4mplitude [Amplitude Amplitude 100 3 m 99.43 0.3m -90 inie gemäß Spezifikation -0.1 30 L -0.15 98.29 0 97.72 0.1 -0.2 10 Frequenz [kHz] 1000 Frequenz [kHz] Abbildung 27: Typische Beispiele für elliptisches IIR

(1) Gemessen mit einem Kalibrator Fluke 5700A, auf DC-Referenzwert normiert

Phasentreue von Kanal zu Kanal (GN610B)

Wenn unterschiedliche Filter (Breitband / Bessel IIR / Butterworth IIR usw.) oder unterschiedliche Filterbandbreiten gewählt werden, führt dies zu einer Phasenverschiebung zwischen Kanälen. Alle hier angegebenen Daten sind typische statistische Werte, die mit einer Sinuswelle von 100 kHz und einer Abtastrate von 2 MS/s gemessen wurden.

	Bereiche < ± 10 V	Bereiche ≥ ± 10 V	Bereiche kombiniert	
Breitband				
Kanäle auf der Datenerfassungskarte	0,1° (3 ns)	0,1° (3 ns)	0,1° (3 ns)	
GN610B, Kanäle im Grundgerät	0,1° (3 ns)	0,1° (3 ns)	0,1° (3 ns)	
Bessel IIR, Filterfrequenz 200 kHz				
Kanäle auf der Datenerfassungskarte	0,1° (3 ns)	0,1° (3 ns)	0,1° (3 ns)	
GN610B, Kanäle im Grundgerät	0,1° (3 ns) 0,1° (3 ns)		0,1° (3 ns)	
Butterworth IIR, Filterfrequenz 200 kHz				
Kanäle auf der Datenerfassungskarte	0,2° (6 ns)	0,2° (6 ns)	0,2° (6 ns)	
GN610B, Kanäle im Grundgerät	0,2° (6 ns)	0,2° (6 ns)	0,2° (6 ns)	
Elliptisch IIR, Filterfrequenz 200 kHz				
Kanäle auf der Datenerfassungskarte	0,2° (6 ns)	0,2° (6 ns)	0,2° (6 ns)	
GN610B, Kanäle im Grundgerät	0,2° (6 ns)	0,2° (6 ns)	0,2° (6 ns)	
GN610B-Kanäle über mehrere Grundgeräte Wird durch verwendete Synchronisationsmethode definiert (Keine, IRIG, GPS, Master Sync, PTP)				

Phasentreue von Kanal zu Kanal (GN611B)

Wenn unterschiedliche Filter (Bessel IIR / Butterworth IIR usw.) oder unterschiedliche Filterbandbreiten gewählt werden, führt dies zu einer Phasenverschiebung zwischen Kanälen. Alle hier angegebenen Daten sind typische statistische Werte, die mit einer Sinuswelle von 10 kHz und einer Abtastrate von 200 kS/s gemessen wurden.

	Spannungseinstellung < ±10 V	Spannungseinstellung ≥ ±10 V	Kombinierte Einstellung	
Bessel IIR, Filterfrequenz 20 kHz				
Kanäle auf der Datenerfassungskarte	0,01° (3 ns)	0,04° (13 ns)	0,27° (76 ns)	
GN611B, Kanäle im Grundgerät	0,01° (3 ns)	0,06° (17 ns)	0,27° (76 ns)	
Butterworth IIR, Filterfrequenz 50 kHz				
Kanäle auf der Datenerfassungskarte	0,02° (6 ns)	0,04° (13 ns)	0,27° (76 ns)	
GN611B, Kanäle im Grundgerät	0,02° (6 ns)	0,06° (17 ns)	0,27° (76 ns)	
Elliptisch IIR, Filterfrequenz 50 kHz				
Kanäle auf der Datenerfassungskarte	0,02° (6 ns)	0,04° (13 ns)	0,27° (76 ns)	
GN611B, Kanäle im Grundgerät	0,02° (6 ns)	0,06° (17 ns)	0,27° (76 ns)	
GN611B-Kanäle über mehrere Grundgeräte	Wird durch verwendete Synchronisationsmethode definiert (Keine, IRIG, GPS, Master/Sync, PTP)			

Übersprechen von Kanal zu Kanal

Das Übersprechen von Kanal zu Kanal wird mit einem Abschlusswiderstand von 50 Ω am Eingang und Verwendung von Sinuswellensignalen im Kanal über und unter dem geprüften Kanal gemessen. Zum Testen von Kanal 2 wird Kanal 2 mit 50 Ω abgeschlossen, während die Kanäle 1 und 3 an den Sinuswellengenerator angeschlossen werden.

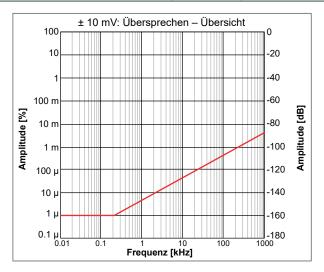
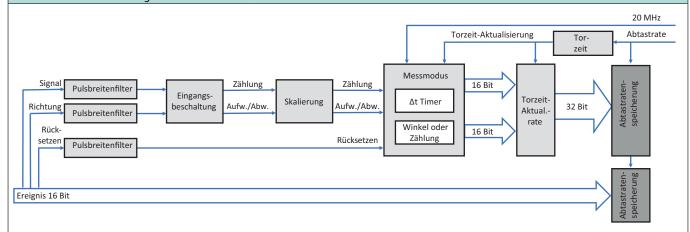
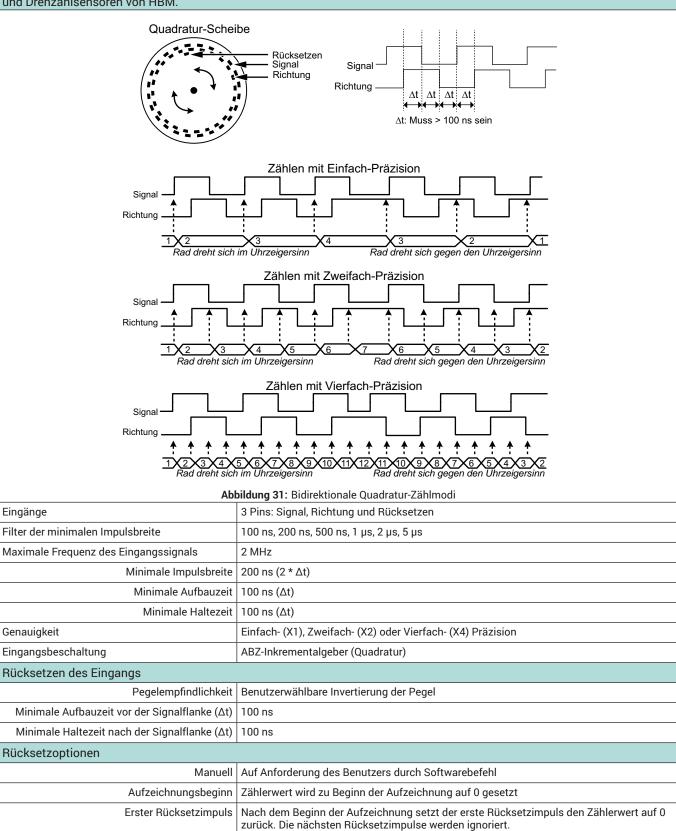



Abbildung 28: Typisches Übersprechen von Kanal zu Kanal

24

Digitalereignis/Timer/Zähler

Der Digitalereignis-/Timer-/Zähler-Anschluss befindet sich am Grundgerät. Genaue Anordnung und Anschlussbelegung siehe im Datenblatt des Grundgeräts.


Abbildung 29: E	Blockschaltbild	l Timer/Zähl	er
-----------------	-----------------	--------------	----

•	Abbituary 25: Blocksorialibilia Timel/Zariiei
Digitalereignis-Eingänge	16 pro Karte
Pegel	TTL-Eingangspegel, benutzerwählbare Invertierung der Pegel
Eingänge	1 Pin pro Eingang, einige Pins werden gemeinsam mit Timer-/Zähler-Eingängen genutzt
Überspannungsschutz	± 30 V DC kontinuierlich
Minimale Impulsbreite	100 ns
Maximale Frequenz	5 MHz
Digitalereignis-Ausgänge	2 pro Karte
Pegel	TTL-Ausgangspegel, mit Kurzschlussschutz
Ausgang Ereignis 1	Vom Benutzer wählbar: Trigger, Alarm, Setzen auf HIGH oder LOW
Ausgang Ereignis 2	Vom Benutzer wählbar: Aufzeichnung aktiv, Setzen auf HIGH oder LOW
Benutzerauswahl für Digitalereignisse an Au	ısgängen
Trigger	1 HIGH-Impuls pro Trigger (nur bei jedem Kanaltrigger dieser Karte) Impulsbreite mindestens 12,8 μs Impulsverzögerung 200 μs ± 1 μs ± 1 Messperiode
Alarm	HIGH, wenn Alarmbedingung der Karte aktiviert ist, LOW, wenn sie nicht aktiviert ist Verzögerung des Alarmereignisses 200 μ s \pm 1 μ s \pm 1 Messperiode
Aufzeichnung aktiv	HIGH während Aufzeichnung, LOW im Modus Leerlauf oder Pause Ausgabeverzögerung bei aktiver Aufzeichnung von 450 ns
Setzen auf HIGH oder LOW	Ausgang wird auf HIGH oder LOW gesetzt; kann über CSI-Erweiterungen (Customer Software Interface) gesteuert werden; Verzögerung abhängig von spezifischer Softwareimplementierung
Timer/Zähler	4 pro Karte
Pegel	TTL-Eingangspegel
Eingänge	3 Pins: Signal, Rücksetzen und Richtung Alle Pins werden gemeinsam mit Digitalereignis-Eingängen genutzt
Eingangsbeschaltung	Unidirektionale, bidirektionale und ABZ-Inkrementalgeber (Quadratur)
Messmodi	Zähler (C) Winkel (0 bis 360 Grad) Frequenz (Δ Zählung / Δ t) Drehzahl (Δ Zählung / Δ t / 60 s)
Timer-Genauigkeit	± 25 ns (20 MHz)
Messzeit	1 bis n Samples (maximales Δt vom Benutzer wählbar)
Messzeit und Aktualisierungsrate des Anzeigewerts	Die Messzeit legt die maximale Aktualisierungsrate der Messwerte fest.
Messzeit und minimale Frequenz	Minimale gemessene Frequenz oder Drehzahl = 1 / Messzeit

Eingangsbeschaltung uni- und bidirektionales Signal Uni- und bidirektionale Eingangsbeschaltung wird verwendet, wenn das Richtungssignal ein stabiles Signal ist. Signal Richtung Rücksetzen Zählung aufwärts Zählung abwärts Rücksetzen Abbildung 30: Uni- und bidirektionale Zeitsteuerung Eingänge 3 Pins: Signal, Rücksetzen und Richtung (wird nur bei bidirektionaler Zählung verwendet) 100 ns, 200 ns, 500 ns, 1 μs, 2 μs, 5 μs Filter der minimalen Impulsbreite Maximale Frequenz des Eingangssignals 4 MHz Minimale Impulsbreite (Δw) 100 ns Rücksetzen des Eingangs Pegelempfindlichkeit Benutzerwählbare Invertierung der Pegel Minimale Aufbauzeit vor der Signalflanke (Δs) 100 ns Minimale Haltezeit nach der Signalflanke (Δh) 100 ns Rücksetzoptionen Auf Anforderung des Benutzers durch Softwarebefehl Manuell Zählerwert wird zu Beginn der Aufzeichnung auf 0 gesetzt Aufzeichnungsbeginn Nach dem Beginn der Aufzeichnung setzt der erste Rücksetzimpuls den Zählerwert auf 0 Erster Rücksetzimpuls zurück. Die nächsten Rücksetzimpulse werden ignoriert. Jeder Rücksetzimpuls Bei jedem externen Rücksetzimpuls wird der Zählerwert auf 0 zurückgesetzt. Richtungseingang Empfindlichkeit des Eingangspegels Wird nur im bidirektionalen Modus verwendet. Niedrig: Zähler heraufsetzen/positive Frequenz Hoch: Zähler heruntersetzen/negative Frequenz Minimale Aufbauzeit vor der Signalflanke (Δs) 100 ns Minimale Haltezeit nach der Signalflanke (Δh) 100 ns

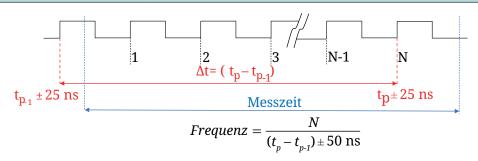
Eingangsbeschaltung ABZ-Inkrementalgeber (Quadratur)

Wird üblicherweise zum Verfolgen drehender/beweglicher Vorrichtungen mithilfe eines Decoders mit zwei Signalen verwendet, die immer um 90 Grad phasenverschoben sind. Dies ermöglicht z. B. eine direkte Schnittstelle zu Drehmomentund Drehzahlsensoren von HBM.

B05213_05_G00_00 24/10/2023 27

Jeder Rücksetzimpuls

Bei jedem externen Rücksetzimpuls wird der Zählerwert auf 0 zurückgesetzt.


Messmodus Winkel

Im Messmodus "Winkel" verwendet der Zähler einen benutzerdefinierten maximalen Winkel und kehrt zu null zurück, wenn dieser Zählerwert erreicht ist. Mithilfe der Funktion zum Zurücksetzen des Eingangs kann der gemessene Winkel mit dem mechanischen Winkel synchronisiert werden. Die Echtzeit-Rechenfunktionen können die Drehzahl unabhängig von der mechanischen Synchronisation aus dem gemessenen Winkel ableiten.

Optionen im Messmodus Winkel	
Referenz	Vom Benutzer wählbar. Damit ist es möglich, den Rücksetz-Pin für die Referenzierung des mechanischen Winkels auf den gemessenen Winkel zu verwenden.
Winkel am Referenzpunkt	Benutzerdefiniert zur Festlegung des mechanischen Referenzpunkts
Rücksetzimpuls	Der Winkelwert wird auf den benutzerdefinierten Wert von "Winkel am Referenzpunkt" zurückgesetzt.
Impulse pro Umdrehung	Benutzerdefiniert zur Festlegung der Auflösung von Inkrementalgeber/Zähler
Maximale Anzahl der Impulse pro Umdrehung	32767
Maximale Drehzahl	30 * Abtastrate (Beispiel: Abtastrate 10 kS/s bedeutet maximal 300 T min-1)

Messmodus Frequenz/Drehzahl

Dient zum Messen von Frequenzen jeder Art, z. B. Motordrehzahlen, oder von aktiven Sensoren mit proportionalem Frequenz-Ausgangssignal.

Abbildung 32: Frequenzmessung

	0,1 % bei Verwendung einer Messzeit von 40 µs oder mehr. Bei niedrigeren Messzeiten kann die Messzeit mithilfe der Echtzeit-Rechenfunktionen oder der Perception-Formeldatenbank verlängert und die Genauigkeit kann dynamischer, z. B. basierend auf den Messzyklen, verbessert werden.				
	Messperiode (1 / Abtastrate) bis 50 s. Die minimale Messzeit beträgt 50 ns. Sie kann vom Benutzer gewählt werden, um die Aktualisierungsrate unabhängig von der Abtastrate zu steuern.				

Messmodus Zählung/Position

Der Modus Zählung/Position wird üblicherweise verwendet, um die Bewegung des Messobjekts zu verfolgen. Zur Verringerung der Empfindlichkeit gegenüber Zählungs-/Positionsfehlern durch Störimpulse im Taktsignal das Filter der minimalen Impulsbreite verwenden oder statt der uni-/bipolaren Eingangsbeschaltung ABZ verwenden.

Zählerbereich	0 bis 2 ³¹ ; unidirektionale Zählung				
	-2 ³¹ bis +2 ³¹ - 1; bidirektionale Zählung				

Maximale Timer-Ungenauigkeit

20 ms

50 ms

100 ms

±0,00025 %

±0,00010 %

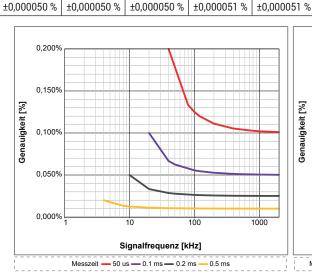
±0,00025 %

±0,00010 %

Die Timer-Genauigkeit ergibt sich aus einem Kompromiss zwischen der Aktualisierungsrate und der geforderten Mindestgenauigkeit. Diese Tabelle stellt die Beziehungen zwischen der gemessenen Signalfrequenz, der ausgewählten Messzeit (Aktualisierungsrate) und der Timer-Genauigkeit dar. Die Ungenauigkeitsverteilung ist als rechteckig zu betrachten.

Berechnung der Ungenauigkeit:	Ungenauigkeit = ±	(Signalfrequenz * 50 ns)	* 100 %
		INTEGER ((Signalfrequenz -1) * Messzeit)	U

	(Line 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1									
Mes-	Höhere Signalfrequenzen: Signalfrequenz (von 2 MHz bis 10 kHz)									
sung	2 MHz	1 MHz	500 kHz	400 kHz	200 kHz	100 kHz	50 kHz	40 kHz	20 kHz	10 kHz
1 µs	±10,000 %									
2 µs	±3,333 %	±5,000 %								
5 µs	±1,111 %	±1,250 %	±1,333 %	±2,000 %						
10 µs	±0,526 %	±0,556 %	±0,625 %	±0,667 %	±1,000 %					
20 µs	±0,256 %	±0,263 %	±0,278 %	±0,286 %	±0,333 %	±0,500 %				
50 µs	±0,101 %	±0,102 %	±0,103 %	±0,105 %	±0,111 %	±0,125 %	±0,133 %	±2,000 %		
0,1 ms	±0,050 %	±0,051 %	±0,051 %	±0,051 %	±0,053 %	±0,056 %	±0,063 %	±0,067 %	±0,100 %	
0,2 ms		±0,0	25 %		±0,026 %	±0,026 %	±0,028 %	±0,029 %	±0,033 %	±0,050 %
0,5 ms	±0,010 % ±0				±0,010 %	±0,010 %	±0,0011 %	±0,0011 %	±0,0013 %	
1 ms			±0,0050 %			±0,0051 %	±0,0051 %	±0,0051 %	±0,0053 %	±0,0056 %
2 ms				±0,00)25 %				±0,0026 %	±0,0026 %
5 ms					±0,00	010 %				
10 ms					±0,00	005 %				
20 ms					±0,00	025 %				
50 ms					±0,00	010 %				
100 ms					±0,00	005 %				
Mes-			Nied	rigere Signalf	requenzen: S	ignalfrequenz	(40 Hz bis 5	kHz)		
sung	5 kHz	4 kHz	2 kHz	1 kHz	500 Hz	400 Hz	200 Hz	100 Hz	50 Hz	40 Hz
0,5 ms	±0,0133 %	±0,0200 %								
1 ms	±0,0063 %	±0,0067 %	±0,0100 %							
2 ms	±0,0028 %	±0,0029 %	±0,0033 %	±0,0050 %						
5 ms	±0,0010 %	±0,0011 %	±0,0011 %	±0,0013 %	±0,0013 %	±0,0020 %				
10 ms	±0,00051 %	±0,00051 %	±0,00053 %	±0,00056 %	±0,00063 %	±0,00067 %	±0,00100 %			

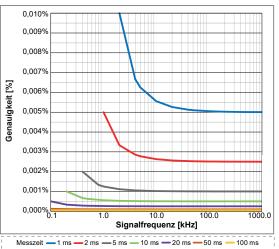

±0,00028 %

±0,00010 %

±0,00029 %

±0,00011 %

±0,000051 %



±0,00026 %

±0,00010 %

±0,00026 %

±0,00010 %

±0,00033 %

±0,00011 %

±0,000053 %

±0,00050 %

±0,00130 %

±0,000056 %

±0,00013 %

±0,000063 %

±0,00020 %

±0,000067 %

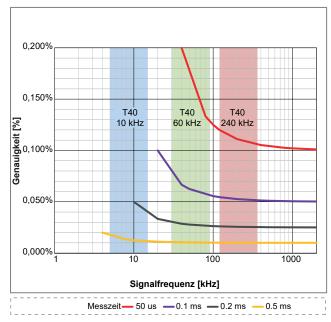
Abbildung 33: Maximale Timer-Ungenauigkeit

Unsicherheit der Drehmomentmessung bei Verwendung von Frequenzmessungen

Wenn die Timer/Zähler-Kanäle zum Messen des Drehmoments verwendet werden, kann die durch die Timer-Ungenauigkeiten eingeführte Messunsicherheit anhand der folgenden Beispiele berechnet werden, die auf den Drehmomentaufnehmern HBK T40 basieren. Der Drehmomentaufnehmer T40 bietet 3 Varianten für den Frequenzausgang: Mittenfrequenz von 10 kHz, 60 kHz oder 240 kHz. Aus den Datenblättern sind die Minimal- und Maximalwerte des Frequenzausgangs zu entnehmen, wie in der nachstehenden Tabelle angegeben.

T40-Variante	Frequenzausgang, Messbereichsendwert -	Frequenzausgang, Messbereichsendwert +
T40 - 10 kHz	5 kHz	15 kHz
T40 - 60 kHz	30 kHz	90 kHz
T40 - 240 kHz	120 kHz	360 kHz

Werden diese Betriebsbereiche den Kurvenzügen der Timer-Ungenauigkeit von Abbildung 33 überlagert, ergibt dies Abbildung 34 (siehe unten).


- Im letzten Schritt ist noch die Aktualisierungsrate (Drehmomentbandbreite) mit der erforderlichen Genauigkeit des Drehmoments abzustimmen.
- Die Ungenauigkeit wird unter Verwendung des Frequenzausgangs für den Messbereichsendwert und der gewünschten Messzeit berechnet.
- Mit einem Mindestwert von 60 min-1 werden die folgenden Ungenauigkeiten berechnet.

Ausgewählte Messzeit	Maximale Ungenauigkeit: T40 - 240 kHz	Maximale Ungenauigkeit: T40 - 60 kHz	Maximale Ungenauigkeit: T40 - 10 kHz
50 μs (rote Kurve links)	0,1200 %	0,1500 %	Nicht möglich
100 μs (violette Kurve links)	0,0546 %	0,0750 %	Nicht möglich
500 μs (orangefarbene Kurve links)	0,0101 %	0,0107 %	0,0125 %
1 ms (blaue Kurve rechts)	0,0050 %	0,0052 %	0,0063 %
2 ms (rote Kurve rechts)	0,0025 %	0,0025 %	0,0028 %
5 ms (graue Kurve rechts)	0,0010 %	0,0010 %	0,0010 %

Für K=1 (Wahrscheinlichkeit 70 %) wird mit der angegebenen Rechteckverteilung und den Werten der maximalen Ungenauigkeit folgende Berechnung durchgeführt:

Messunsicherheit = Maximale Ungenauigkeit * 0,58 (Umrechnung für Rechteckverteilung)

Messunsicherheit K=1 (Wahrscheinlichkeit ca. 70 %)	Maximale Ungenauigkeit: T40 - 240 kHz	Maximale Ungenauigkeit: T40 - 60 kHz	Maximale Ungenauigkeit: T40 - 10 kHz
50 μs (rote Kurve links)	0,0696 %	0,0870 %	Nicht möglich
100 μs (violette Kurve links)	0,0316 %	0,0435 %	Nicht möglich
500 μs (orangefarbene Kurve links)	0,0059 %	0,0062 %	0,00725 %
1 ms (blaue Kurve rechts)	0,0029 %	0,0029 %	0,00365 %
2 ms (rote Kurve rechts)	0,00145 %	0,0015 %	0,00162 %
5 ms (graue Kurve rechts)	0,00058 %	0,0006 %	0,00058 %

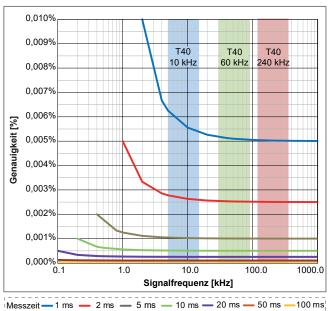


Abbildung 34: Drehmoment-Betriebsbereich gegenüber Ungenauigkeit und Messzeit

Unsicherheit der Drehzahlmessung (min-1) bei Verwendung von Frequenzmessungen

Wenn die Timer/Zähler-Kanäle zum Messen der Drehzahl (min-1) verwendet werden, kann die durch die Timer-Ungenauigkeiten eingeführte Messunsicherheit anhand des folgenden Beispiels berechnet werden.

Mit der im Datenblatt des Drehzahlsensors angegebenen Anzahl der Impulse pro Umdrehung wird der Frequenzbereich des Sensorausgangs berechnet:

Min. Frequenz = bei der Prüfung verwendete minimale Drehzahl * Anzahl Impulse pro Umdrehung / 60 s Max. Frequenz = bei der Prüfung verwendete maximale Drehzahl * Anzahl Impulse pro Umdrehung / 60 s

Drehzahlsensor, Impulse pro Umdrehung	Frequenz bei 60 min-1	Frequenz bei 10.000 min-1	Frequenz bei 20.000 min-1
180	180 Hz	30 kHz	60 kHz
360	360 Hz	60 kHz	120 kHz
1024	1024 Hz	170,7 kHz	341,3 kHz

Werden diese Betriebsbereiche den Kurvenzügen der Timer-Ungenauigkeit von Abbildung 33 überlagert, ergibt dies Abbildung 35 (siehe unten).

- Im letzten Schritt ist noch die Aktualisierungsrate (Drehmomentbandbreite) mit der erforderlichen Genauigkeit des Drehmoments abzustimmen.
- Aus den Diagrammen lassen sich die Schnittpunkte aus der Überlagerung der Betriebsfrequenzen mit den Kurven der Messzeiten bestimmen.
- Als Beispiele können aus den Diagrammen die folgenden Schnittpunkte (bei 60 min-1) bestimmt werden.

Ausgewählte Messzeit	Sensor mit 180 Impulsen	Sensor mit 360 Impulsen	Sensor mit 1024 Impulsen
2 ms (rote Kurve)	Aufzeichnung bei 60 min-1 nicht möglich	Aufzeichnung bei 60 min-1 nicht möglich	0,00256 %
5 ms (graue Kurve)	Aufzeichnung bei 60 min-1 nicht möglich	0,0018 %	0,0010 %
10 ms (grüne Kurve)	0,0009 %	0,0006 %	0,00051 %

Für K=1 (Wahrscheinlichkeit 70 %) wird mit der angegebenen Rechteckverteilung und den Werten der maximalen Ungenauigkeit folgende Berechnung durchgeführt:

Messunsicherheit = Maximale Ungenauigkeit * 0,58 (Umrechnung für Rechteckverteilung)

110000000000000000000000000000000000000			,
Messunsicherheit K=1 (Wahrscheinlichkeit ca. 70 %)	Sensor mit 180 Impulsen	Sensor mit 360 Impulsen	Sensor mit 1024 Impulsen
2 ms (rote Kurve)	Aufzeichnung bei 60 min-1 nicht möglich	Aufzeichnung bei 60 min-1 nicht möglich	0,00148 %
5 ms (graue Kurve)	Aufzeichnung bei 60 min-1 nicht möglich	0,00104 %	0,00059 %
10 ms (grüne Kurve)	0,00052 %	0,00035 %	0,00030 %

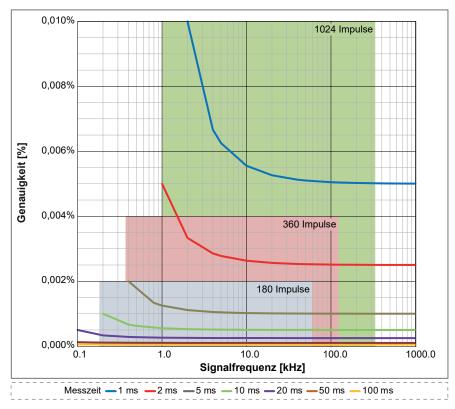
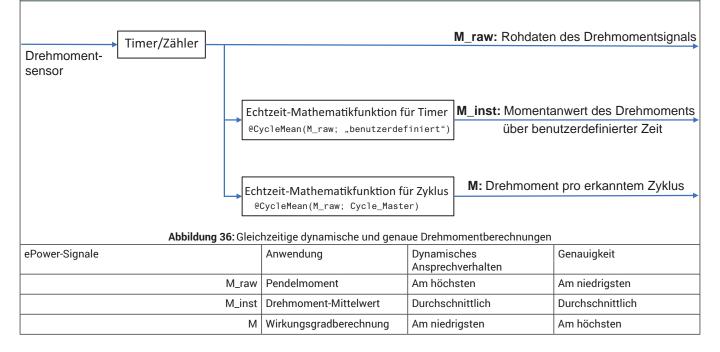


Abbildung 35: Drehzahl-Betriebsbereich (min-1) des Sensors gegenüber Ungenauigkeit und Messzeit

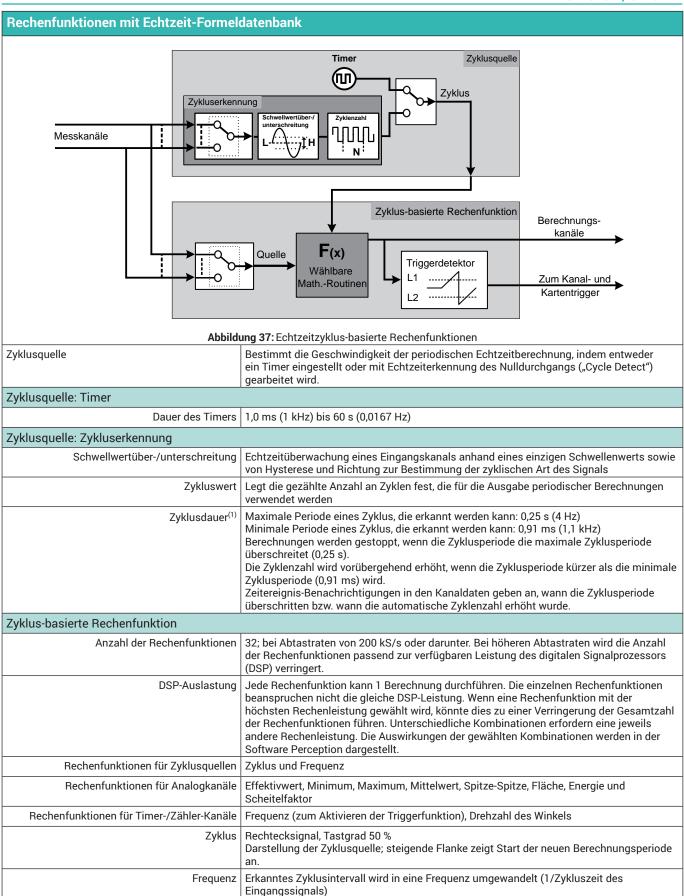

805213_05_G00_00 24/10/2023 31

Gleichzeitige Messung von dynamischem Pendelmoment und genauem Drehmoment-Wirkungsgrad

Wenn z. B. zum Messen eines dynamischen Pendelmoments eine hohe Aktualisierungsrate benötigt wird, aber auch für den Wirkungsgrad eine hohe Genauigkeit gefordert ist, wird mit einer Messzeit von 50 µs gearbeitet und außerdem eine RT-FDB-Funktion zur Berechnung des Mittelwerts für jeden elektrischen Zyklus angewendet.

Das gemessene Drehmomentsignal aus dem Timer/Zähler hat dann eine Genauigkeit von 0,15 bis 0,17 %, während die Drehmomentberechnung für den elektrischen Zyklus (üblicherweise 1 ms oder weniger) eine Genauigkeit von 0,0075 % ergibt.

Da beide Signale gleichzeitig verfügbar sind, ermöglicht das dynamische Signal eine Analyse des Pendelmomentverhaltens; das Signal des elektrischen Zyklus bietet eine sehr hohe Genauigkeit für Wirkungsgradberechnungen.



Alarmausgang	
Alarmmodi von Ereigniskanälen	Prüfung, ob HIGH- oder LOW-Pegel
Kanalübergreifende Alarme	Logisches ODER der Alarme von allen gemessenen Kanälen
Alarmausgang	Aktiv, solange die Alarmbedingung gültig ist; Ausgabe wird über Grundgerät unterstützt
Pegel des Alarmausgangs	HIGH oder LOW, vom Benutzer wählbar
Verzögerung des Alarmausgangs	515 µs ± 1 µs + maximal 1 Messperiode Standardeinstellung 516 µs, kompatibel mit Standardverhalten. Die minimale wählbare Verzögerung ist die kleinste Verzögerung, die für alle im Grundgerät verwendeten Datenerfassungskarten verfügbar ist. Die Verzögerung ist gleich der Verzögerung des Triggerausgangs.
Auswahl pro Karte	Ein/Aus, vom Benutzer wählbar
Alarmmodi von Analogkanälen	
Basis	Prüfung, ob über oder unter einem Pegel
Dual	Prüfung, ob außerhalb oder innerhalb der Grenzen
Alarmpegel von Analogkanälen	
Pegel	Maximal 2 Pegeldetektoren
Auflösung	16 Bit (0,0015 %) für jeden Pegel

	GNOIDE
Triggerung	
Kanaltrigger/Abfragekriterium	1 pro Kanal; vollständig unabhängig für jeden Kanal, über Software wählbar entweder als Trigger oder Abfragekriterium
Länge von Prä- und Post-Trigger	0 bis voller Speicher
Maximale Triggerrate	400 Trigger pro Sekunde
Maximal verzögerter Trigger	1000 Sekunden nach Eintreten eines Triggers
Manueller Trigger (Software)	Unterstützt
Externer Triggereingang	
Auswahl pro Karte	Ein/Aus, vom Benutzer wählbar
Flanke des Triggereingangs	Steigend/fallend am Grundgerät wählbar, für alle Karten identisch
Minimale Impulsbreite	500 ns
Verzögerung des Triggereingangs	± 1 µs + maximal 1 Messperiode
Senden an externen Triggerausgang	Benutzerauswahl für Weiterleitung des externen Triggereingangs an den externen BNC- Triggerausgang
Externer Triggerausgang	
Auswahl pro Karte	Ein/Aus, vom Benutzer wählbar
Pegel des Triggerausgangs	HIGH/LOW/HIGH halten; am Grundgerät wählbar, für alle Karten identisch
Impulsbreite des Triggerausgangs	HIGH/LOW: 12,8 µs HIGH halten: Aktiv vom ersten Trigger des Grundgeräts bis zum Aufzeichnungsende Die Impulsbreite wird vom Grundgerät erzeugt; Einzelheiten sind dem Datenblatt des Grundgeräts zu entnehmen
Verzögerung des Triggerausgangs	Wählbar (10 µs bis 516 µs) ± 1 µs + maximal 1 Messperiode Standardeinstellung 516 µs, kompatibel mit Standardverhalten. Die minimale wählbare Verzögerung ist die kleinste Verzögerung, die für alle im Grundgerät verwendeten Datenerfassungskarten verfügbar ist.
Kanalübergreifendes Triggern	
Messkanäle	Logisches ODER der Trigger von allen Messsignalen Logisches UND der Abfragekriterien von allen Messsignalen
Berechnungskanäle	Logisches ODER der Trigger von allen Berechnungssignalen (RT-FDB) Logisches UND der Abfragekriterien von allen Berechnungssignalen (RT-FDB)
Triggerpegel von Analogkanälen	
Pegel	Maximal 2 Pegeldetektoren
Auflösung	16 Bit (0,0015 %) für jeden Pegel
Richtung	Steigend/fallend; nur eine Richtungssteuerung für beide Pegel basierend auf ausgewähltem Modus
Hysterese	0,1 bis 100 % des Endwerts; definiert die Empfindlichkeit des Triggers
Impuls erkannt/unterdrückt	Wählbare Optionen sind Deaktivieren/Erkennen/Unterdrücken. Maximale Pulsbreite 65.535 Samples
Modi von Analogkanal-Triggern	
Basis	Durchgang von positivem (POS) oder negativem (NEG) Bereich; nur ein Pegel
Dual (zwei Pegel)	Ein Durchgang durch positiven (POS) und ein Durchgang durch negativen (NEG) Bereich; zwei einzelne Pegel, logisches ODER
Modi von Analogkanal-Abfragekriterien	
Basis	Prüfung, ob über oder unter einem Pegel. Aktiviert/deaktiviert Trigger mit einem einzigen Pegel.
Dual	Prüfung, ob außerhalb oder innerhalb der Grenzen. Aktiviert/deaktiviert Trigger mit zwei Pegeln.
Ereigniskanal-Trigger	
Ereigniskanäle	Je ein eigener Ereignistrigger pro Ereigniskanal
Pegel	Trigger auf steigender Flanke, fallender Flanke oder auf beiden Flanken
Abfragekriterien	Aktiv HIGH oder Aktiv LOW für jeden Ereigniskanal

GN610B/GN611B

Onboard-Speicher	
Pro Karte	2 GB (1 GS mit 16-Bit-, 500 MS mit 18-Bit-Speicherung) (GN610B) 200 MB (100 MS mit 16-Bit-, 50 MS mit 18-Bit-Speicherung) (GN611B)
Organisation	Automatische Verteilung auf aktivierte Kanäle für Speicherung und Echtzeitberechnungen
Speicherdiagnose	Automatischer Speichertest, wenn System eingeschaltet ist, aber keine Aufzeichnung erfolgt
Benötigter Speicher pro Sample	Vom Benutzer wählbar, 16 oder 18 Bit 16 Bit, 2 Byte/Sample 18 Bit, 4 Byte/Sample

GN610B/GN611B

Rechenfunktionen mit Echtzeit-Formeldatenbank		
Triggerdetektor		
Anzahl der Detektoren	32; einer pro Echtzeit-Rechenfunktion	
Triggerschwelle	Wird vom Benutzer für jeden Detektor definiert. Erzeugt einen Trigger, wenn das berechnete Signal die Schwelle überschreitet.	
Verzögerung des Triggerausgangs	Bei berechneten Signalen sind Trigger um 100 ms verzögert. Die Triggerzeit wird intern korrigiert, damit die Segment-Triggerung korrekt ist. Damit die Triggerzeit korrigiert werden kann, wird eine zusätzliche Vorlauflänge von 100 ms hinzugefügt. Dadurch verringert sich die maximale Segmentlänge um 100 ms.	

⁽¹⁾ Der Bereich der Zyklusperiode hängt von der Wellenform des Signals und der Hystereseeinstellung ab. Die hier angegebenen technischen Daten entsprechen einer Sinuswelle mit einer Hysterese von 25 % des Endwerts.

Rechenfunktionen der Echtzeit-Formeldatenbank (Option, gesondert zu bestellen)

Die Option Echtzeit-Formeldatenbank (RT-FDB) bietet eine umfangreiche Sammlung von Mathematik-Routinen, mit denen sich nahezu jede mathematische Aufgabe in Echtzeit lösen lässt. Die Datenbankstruktur bietet dem Benutzer die Möglichkeit, eine Liste mathematischer Gleichungen ähnlich der Formeldatenbank für Auswertung und Wiedergabe (Review) in Perception zu definieren.

Die unterstützte maximale Abtastrate beträgt 2 MS/s.

Wie in den Bedienungsanleitungen zu den Grundgeräten der GEN-Serie beschrieben, stehen mit unterschiedlichen Perception-Versionen mehr oder auch weniger Funktionen zur Verfügung.

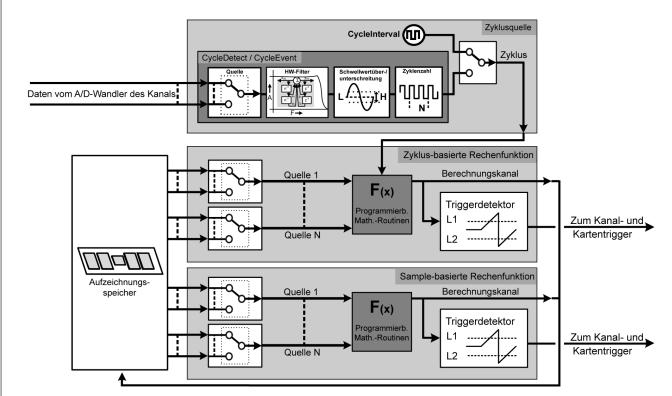
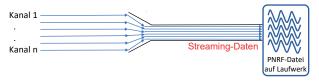


Abbildung 38: Rechenfunktionen der Echtzeit-Formeldatenbank (RT-FDB)

Die Echtzeit-Formeldatenbank unterstützt die folgende Liste von Rechenfunktionen (Einzelheiten zu jeder Rechenfunktion werden im Handbuch beschrieben).

WCIGCIIIII	in anabach beschieben).					
Gruppe		Verfügbare RT-FDB-Funktionen				
Grundre- chenarten						
	+ (Addieren)	* (Multiplizieren)				
	- (Subtrahieren)	/ (Dividieren)				
Boolesche Funktionen						
	AlarmOnLevel	Not	ToAsyncBoolean			
	And	NotEqual	TriggerArmOnBooleanChange			
	Equal	OneShotTimer	TriggerOnBooleanChange			
	GreaterEqualThan	Or	TriggerOnLevel			
	GreaterThan	OutsideBand	Xor			
	InsideBand	SetAlarm				
		StartStopTriggerOnBooleanChange				
		StopTriggerOnBooleanChange				

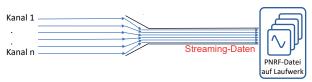
805213_05_G00_00 24/10/2023 37


GN610B/GN611B

Rechenfu	nfunktionen der Echtzeit-Formeldatenbank (Option, gesondert zu bestellen)						
Gruppe		Verfügbare RT-FDB-Funktionen					
Zyklus							
	CycleArea	CycleFundamentalPhase	CycleNOP				
	CycleBusDelay	CycleFundamentalRMS	CyclePeak2Peak				
	CycleCount	CycleHarmonicPhase	CyclePhase				
	CycleCrestFactor	CycleHarmonicRMS	CycleRMS				
	CycleDetect	CycleInterval	CycleRPM				
	CycleEnergy	CycleMax	CycleSampleCount				
	CycleEvent	CycleMean	CycleStdDev				
	CycleFrequency	CycleMin	CycleTHD				
			ExternalCycleEvent				
eDrive							
	AronConversion	EfficiencyValue	SpaceVector				
	DQ0Transformation	HarmonicsIEC61000	SpaceVectorInv				
	EfficiencyMode	PowerLoss					
Erweiterte Funktionen							
	Abs	LessEqualThan	RadiansToDegrees				
	Atan	LessThan	SampleCount				
	Atan2	Max	Sin				
	Cos	Min	Sqrt				
	DegreesToRadians	Minus	Tan				
	Integrate	Modulo					
	IntegrateGated	PureDFT					
Feldbus- Funktionen							
	SetScalarFromFieldbus						
Filterfunk- tionen							
	FilterBesselBP	FilterButterworthBP	FilterChebyshevBP				
	FilterBesselHP	FilterButterworthHP	FilterChebyshevHP				
	FilterBesselLP	FilterButterworthLP	FilterChebyshevLP				
	HWFilter						
Mathe- matische Funktionen							
	NumSamplesMean	TimedMean					
	NumSamplesStdDev	TimedStdDev					
Signalge- nerierung							
	Ramp						
	Sinewave						
	•						

Echtzeit-Statstream®					
Aufzeichnung. Während des Durchsehens von Aufzeichnu	Echtzeit. kopdarstellung von Kurven in Echtzeit sowie Echtzeitanzeigen während der ungen beschleunigt dies Anzeige- und Zoomfunktionen sehr großer nungszeit für statistische Werte bei großen Datensätzen.				
Analogkanäle	Maximum, Minimum, Mittelwert, Spitze-Spitze, Standardabweichung und Effektivwerte				
Ereignis-/Timer-/Zähler-Kanäle	Maximum, Minimum und Werte Spitze-Spitze				

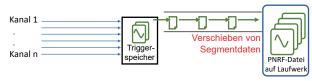
Datenaufzeichnungsmodi


Bei Messstart

Datenaufzeichnung auf PC- oder Grundgerät-Laufwerk. Die Datenaufzeichnung auf ein Laufwerk ist durch eine Gesamtabtastrate begrenzt, die Aufzeichnungszeit ist durch die Größe des Laufwerks begrenzt.

Hinweis: Da die Grenze der Gesamtabtastrate von der Ethernet-Geschwindigkeit und dem zum Speichern verwendeten Laufwerk sowie davon abhängt, ob der PC und das Laufwerk auch für andere Zwecke als die Datenaufzeichnung genutzt werden, wird nachdrücklich empfohlen, für höhere Gesamtabtastraten die gewählte Konfiguration vor der Durchführung der eigentlichen Prüfung zu testen.

Warten auf Trigger

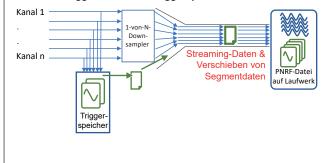


Getriggerte Datenaufzeichnung auf PC- oder Grundgerät-Laufwerk. Die getriggerte Datenaufzeichnung auf ein Laufwerk ist durch eine Gesamtabtastrate begrenzt, die Aufzeichnungszeit ist durch die Größe des Laufwerks begrenzt.

Hinweis: Da die Grenze der Gesamtabtastrate von der Ethernet-Geschwindigkeit und dem zum Speichern verwendeten Laufwerk sowie davon abhängt, ob der PC und das Laufwerk auch für andere Zwecke als die Datenaufzeichnung genutzt werden, wird nachdrücklich empfohlen, für höhere Gesamtabtastraten die gewählte Konfiguration vor der Durchführung der eigentlichen Prüfung zu testen.

Nicht empfohlen für Transienten/nur einmalige/zerstörende Prüfungen.

Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren


Getriggerte Datenaufzeichnung in den Triggerspeicher auf der Eingangskarte.

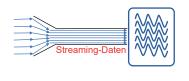
Bei der getriggerten Datenaufzeichnung in den Triggerspeicher gibt es **keine Abtastratenbegrenzungen**, die Aufzeichnungszeit ist durch die **Größe des Triggerspeichers** begrenzt. Im Triggerspeicher aufgezeichnete getriggerte Daten werden so schnell wie möglich auf ein Laufwerk verschoben.

Hinweis: Dieser Datenaufzeichnungsmodus garantiert, dass die Daten immer gemäß den vom Benutzer definierten Einstellungen aufgezeichnet werden.

Empfohlen für Transienten/nur einmalige/zerstörende Prüfungen.

Bei Messstart reduzierte Rate und Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren

Datenaufzeichnung auf PC- oder Grundgerät-Laufwerk und gleichzeitig getriggerte Datenaufzeichnung in den Triggerspeicher auf der Eingangskarte.


Die Datenaufzeichnung mit reduzierter Rate auf ein Laufwerk ist durch eine Gesamtabtastrate begrenzt, und die Aufzeichnungszeit ist durch die Größe des Laufwerks begrenzt. Bei der getriggerten Datenaufzeichnung in den Triggerspeicher gibt es keine Abtastratenbegrenzungen, die Zeit der getriggerten Datenaufzeichnung ist durch die Größe des Triggerspeichers begrenzt. Die im Triggerspeicher aufgezeichneten getriggerten Daten werden so schnell wie möglich auf ein Laufwerk verschoben. Da das Verschieben dieser Daten gleichzeitig mit der Datenaufzeichnung mit reduzierter Rate erfolgt, nimmt es Bandbreite der Gesamtabtastrate in Anspruch.

Hinweis: Da die Grenze der Gesamtabtastrate von der Ethernet-Geschwindigkeit und dem zum Speichern verwendeten Laufwerk sowie davon abhängt, ob der PC und das Laufwerk auch für andere Zwecke als die Datenaufzeichnung genutzt werden, wird nachdrücklich empfohlen, für höhere Gesamtabtastraten sowie für eine höhere Anzahl von Triggern pro Sekunde die gewählte Konfiguration vor der Durchführung der eigentlichen Prüfung zu testen.

805213_05_G00_00 24/10/2023 39

Vergleich der Datenaufzeichnung							
	Begrenzung der Gesamtabtastrate	Maximal aufgezeichnete Daten	Direkte Aufzeichnung auf Laufwerk	Zuerst Triggerspeicher	Trigger zum Starten der Aufzeichnung erforderlich		
Bei Messstart	Ja	Freier Speicher auf Laufwerk	Ja	Nein	Nein		
Warten auf Trigger	Ja	Freier Speicher auf Laufwerk	Ja	Nein	Ja		
Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren	Nein	Triggerspeicher	Nein	Ja	Ja		
Bei Messstart reduzierte Rate und Warten auf Trigger, um zuerst	Reduzierte Rate: Ja	Freier Speicher auf Laufwerk	Ja	Nein	Nein		
Triggerspeicher zu aktivieren	Abtastrate: Nein	Triggerspeicher	Nein	Ja	Ja		

Begrenzungen der Gesamtabtastrate bei Verwendung von Streaming-Daten

Die maximale Gesamt-Streaming-Rate pro Grundgerät ist definiert durch Typ und SSD (Solid State Drive) des Grundgeräts, die Ethernet-Geschwindigkeit, das PC-Laufwerk und andere PC-Parameter. Wenn eine Gesamtabtastrate gewählt wird, die höher als die Gesamt-Streaming-Rate des Systems ist, arbeitet der Speicher auf jeder Eingangskarte nach dem FIFO-Prinzip. Sobald dieser FIFO-Speicher voll ist, wird die Aufzeichnung ausgesetzt (vorübergehend werden keine Daten aufgezeichnet). Während dieser Zeit wird der FIFO-Speicher auf ein Laufwerk übertragen. Wenn alle FIFO-Speicher leer sind, wird die Aufzeichnung automatisch wieder aufgenommen. Um eine ausgesetzte Aufzeichnung nach Abschluss der Aufzeichnung kenntlich zu machen, werden Benutzerbenachrichtigungen zur Aufzeichnungsdatei hinzugefügt.

GN610B/GN611B Definitionen für getriggerte Aufzeichnungen Die Angaben in dieser Tabelle gelten für. Warten auf Trigger Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren Bei Messstart reduzierte Rate und Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren Segment Stopp-Trigge Prä-Trigger Post-Trigger Zwischen-Trigger Segment Definiert durch ein Triggersignal, Prä- und Post-Trigger-Daten und optional Zwischen-Trigger-Daten und/ oder ein Stopp-Triggersignal. Getriggerte Datensegmente Prä-Trigger-Daten Daten, die vor einem Triggersignal aufgezeichnet werden. Hinweis: Wenn ein Triggersignal empfangen wird, bevor die vollständige Länge der Prä-Trigger-Daten aufgezeichnet wurde, wird der Trigger akzeptiert, und die aufgezeichneten Prä-Trigger-Daten werden automatisch auf die zum Zeitpunkt des Triggers verfügbaren Prä-Trigger-Daten reduziert. Nach einem Trigger- oder Stopp-Triggersignal aufgezeichnete Daten. Post-Trigger-Daten Hinweis: Die Aufzeichnung der Post-Trigger-Daten kann je nach Auswahl für "Post-Trigger beginnt bei" erneut gestartet oder verzögert werden. Zwischen-Trigger-Daten Daten, die aufgrund eines bzw. mehrerer erneuter Trigger oder beim Warten auf den Stopp-Trigger aufgezeichnet werden. Die Länge der Zwischen-Trigger-Daten ist nicht festgelegt, sondern wird basierend auf der Zeitsteuerung der Trigger- oder Stopp-Triggersignale hinzugefügt. **Triggersignale** Triggersignal Dieses Signal beendet die Prä-Trigger- und startet die Post-Trigger-Datenaufzeichnung. Weitere Einzelheiten siehe im Tabellenabschnitt "Post-Trigger beginnt bei". Ein Triggersignal kann für einen externen Eingangstrigger, für Analog- und Digitalkanäle sowie mithilfe einfacher bis komplexer Formeln aus der Echtzeit-Formeldatenbank (RT-FDB) konfiguriert werden. Stopp-Triggersignal Dieses Signal startet die Post-Trigger-Datenaufzeichnung, wenn sich das System im Modus "Post-Trigger beginnt bei Stopp-Trigger" befindet. Weitere Einzelheiten siehe im Tabellenabschnitt "Post-Trigger beginnt bei". Ein Stopp-Triggersignal kann für einen externen Eingangstrigger und mithilfe einfacher bis komplexer Formeln aus der Echtzeit-Formeldatenbank (RT-FDB) konfiguriert werden. Post-Trigger beginnt bei Erstem Trigger Trigger Post-Trigger: 20,00 ms Prä-Trigger: 10,00 ms Das erste Triggersignal beendet die Prä-Trigger-Datenaufzeichnung und startet die Aufzeichnung der Post-Trigger-Daten. Jeder Trigger, der während der Post-Trigger-Datenaufzeichnung empfangen wird, wird ignoriert. In diesem Modus gibt es keine Zwischen-Trigger-Daten. Das daraus resultierende Segment enthält Prä- und Post-Trigger-Daten. Jedem Trigger Trigger Trigger Prä-Trigger: 10,00 ms Post-Trigger: 20,00 ms

Aufzeichnung von Post-Trigger-Daten erneut.

den Zwischen-Trigger-Daten hinzugefügt.

Trigger-Daten

Der erste Trigger beendet die Prä-Trigger-Datenaufzeichnung und startet die Aufzeichnung der Post-

Alle aufgezeichneten Post-Trigger-Daten, die zum Zeitpunkt des Triggers aufgezeichnet sind, werden zu

Jeder Trigger, der während der Post-Trigger-Datenaufzeichnung empfangen wird, startet die

Das daraus resultierende Segment enthält Prä-, Zwischen- und Post-Trigger-Daten.

Definitionen für getriggerte	Aufzeichnungen				
Stopp-Trigger			Trigger	Stopp-Trigger	
		Prä-Trigger: 10,00 ms	Zwischen-Trigger	Post-Trigger: 20,00 ms	
				·	
	Datenaufzeichnung startet die Post-Trig Jeder Trigger , der w wird ignoriert. Jeder Stopp-Trigger wird ignoriert.	. Der Stopp-Trigger be ger-Datenaufzeichnui ährend der Zwischen-	endet dann die Zwisc ng. Trigger- und Post-Tri -Trigger- und Post-Tr	und startet die Zwische chen-Trigger-Datenaufz gger-Datenaufzeichnun igger-Datenaufzeichnur d Post-Trigger-Daten.	eichnung und g empfangen wird,

Triggerspeicher bei der Aufzeichnung g	Triggerspeicher bei der Aufzeichnung gefüllt				
	, sodass sich dieser Speicher leicht füllen kann, wenn hohe Abtastraten in ndet werden. In diesem Abschnitt wird erklärt, wie Trigger gehandhabt werden, t ist.				
Post-Trigger beginnt bei	Auswahl der Segmentaufzeichnung				
Erstem Trigger	Ein neues Segment wird erst aufgezeichnet, wenn zum Zeitpunkt des Empfangs eines Triggersignals sowohl die Prä- als auch die Post-Trigger-Daten in den freien Triggerspeicher passen. Wenn nicht genug freier Triggerspeicher verfügbar ist, werden nur die Triggerzeit und die Triggerquelle aufgezeichnet (keine Aufzeichnung von Prä- bzw. Post-Trigger-Daten).				
Jedem Trigger	Ein neues Segment wird nach denselben Regeln gestartet, die auch für den Modus beim ersten Trigger gelten. Wenn während der Post-Trigger-Aufzeichnung ein neuer Trigger empfangen wird, wird das Segment nur mit neuen Post-Trigger-Daten erweitert, wenn die zusätzlichen Post-Trigger-Daten in den verfügbaren freien Triggerspeicher passen. Wenn nicht genug Triggerspeicher verfügbar ist, werden die bereits aufgezeichneten Prä-, Zwischen- und Post-Trigger-Daten für den (die) zuvor empfangenen Trigger aufgezeichnet.				
Stopp-Triggersignal	Ein neues Segment wird erst aufgezeichnet, wenn zum Zeitpunkt des Empfangs eines Triggersignals sowohl die Prä-, als auch 2,5 ms Zwischen- und die Post-Trigger-Daten in den freien Triggerspeicher passen. Wenn kein Stopp-Triggersignal empfangen wird, bevor der Triggerspeicher aufgefüllt ist, wird die Segmentaufzeichnung automatisch zu dem Zeitpunkt gestoppt, an dem der Triggerspeicher vollständig gefüllt ist.				

Begrenzungen bei getriggerter Aufzeichnung

- Die Angaben in dieser Tabelle gelten für.

 Warten auf Trigger

 Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren

Bei Messstart reduzierte Rate und Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren						
	Warten auf	Trigger, um zuerst Triggerspeicher zu aktivieren				
		tart reduzierte Rate und Warten auf zuerst Triggerspeicher zu aktivieren	Warten auf Trigger			
Getriggerte Datenaufzeichnung	Begrenzte Au	ıfzeichnungszeit	Nutzung der	verfügbaren Laufwerksgröße		
Abtastrate	Unbegrenzte	Abtastraten		mittlere Abtastraten om verwendeten System)		
Kanalzahl	Unbegrenzte	Kanalzahl		mittlere Kanalzahlen om verwendeten System)		
Maximale Anzahl an Segmenten						
Im Triggerspeicher	2000		Nicht zutreffend			
In PNRF-Aufzeichnungsdatei	200.000		1			
Segment-Parameter	Minimum	Maximum	Minimum	Maximum		
Prä-Trigger-Länge	0	Triggerspeicher der Eingangskarte	0	Verfügbarer freier Speicher auf Laufwerk		
Post-Trigger-Länge	0	Triggerspeicher der Eingangskarte	0	0		
Segmentlänge	10 Samples	10 Samples Triggerspeicher der Eingangskarte		Verfügbarer freier Speicher auf Laufwerk		
Maximale Segmentrate	400/s		Nicht zutreffend			
Mindestzeit zwischen Triggern	2,5 ms		Nicht zutreffend			
Totzeit zwischen Segmenten	0 ms		Nicht zutreffend			

Detailangaben zur Da	tenerfassu	ing (GN61	OB) (1)						
16-Bit-Auflösung									
Datenaufzeichnungs- modus	Bei Messstart und Warten auf Trigger			Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren		Bei Messstart reduzierte Rate und Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren			
	Aktiv	vierte Messka	anäle	Aktiv	vierte Messka	anäle	Aktiv	vierte Messka	anäle
	1 Kn.	6 Kn.	6 Kn. u. Ereign.	1 Kn.	6 Kn.	6 Kn. u. Ereign.	1 Kn.	6 Kn.	6 Kn. u. Ereign.
Max. Triggerspeicher	n	icht verwend	et	1 GS	166 MS	142 MS	800 MS	133 MS	113 MS
Max. Trigger-Abtastrate	n	icht verwend	et		2 MS/s			2 MS/s	
Max. reduzierter FIFO	1 GS	166 MS	142 MS	n	icht verwend	et	199 MS	33 MS	28 MS
Max. (reduzierte) Abtastrate		2 MS/s nicht verwendet		et	Trigger-Abtastrate / 2		re / 2		
Max. reduzierte Gesamt- Streaming-Rate	2 MS/s 4 MB/s	12 MS/s 24 MB/s	14 MS/s 28 MB/s	n	icht verwend	et	2 MS/s 4 MB/s	12 MS/s 24 MB/s	14 MS/s 28 MB/s
18-Bit-Auflösung									
Datenaufzeichnungs- modus		Bei Messstar und arten auf Trig	•	Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren			Bei Messstart reduzierte Rate und Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren		um zuerst
	Aktiv	vierte Messka	anäle	Aktivierte Messkanäle		Aktivierte Messkanäle			
	1 Kn.	6 Kn.	6 Kn. u. Ereign. Timer/ Zähler	1 Kn.	6 Kn.	6 Kn. u. Ereign. Timer/ Zähler	1 Kn.	6 Kn.	6 Kn. u. Ereign. Timer/ Zähler
Max. Triggerspeicher	n	icht verwend	et	500 MS	83 MS	44 MS	400 MS	66 MS	35 MS
Max. Trigger-Abtastrate	nicht verwendet		2 MS/s		2 MS/s				
Max. reduzierter FIFO	500 MS	83 MS	44 MS	nicht verwendet		99 MS	16 MS	10 MS	
Max. (reduzierte) Abtastrate	2 MS/s		nicht verwendet		et	Trigger-Abtastrate / 2			
Max. reduzierte Gesamt- Streaming-Rate	2 MS/s 8 MB/s	12 MS/s 48 MB/s	18 MS/s 72 MB/s	2 MS/s 12 MS/s 18 MS/s nicht verwendet 8 MB/s 48 MB/s 72 MB/s					

⁽¹⁾ Verwendete Terminologie ist auf die Software Perception abgestimmt.

Detailangaben zur Datenerfassung (GN611B) (1)									
16-Bit-Auflösung									
Datenaufzeichnungs- modus	Bei Messstart und Warten auf Trigger		Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren		Bei Messstart reduzierte Rate und Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren				
	Aktiv	vierte Messka	anäle	Aktiv	ierte Messka	anäle	Aktiv	vierte Messka	anäle
	1 Kn.	6 Kn.	6 Kn. u. Ereign.	1 Kn.	6 Kn.	6 Kn. u. Ereign.	1 Kn.	6 Kn.	6 Kn. u. Ereign.
Max. Triggerspeicher	ni	icht verwend	et	100 MS	16 MS	14 MS	80 MS	13 MS	11 MS
Max. Trigger-Abtastrate	n	icht verwend	et		200 kS/s			200 kS/s	
Max. reduzierter FIFO	100 MS	16 MS	14 MS	ni	cht verwend	et	18 MS	3 MS	2,5 MS
Max. (reduzierte) Abtastrate		200 kS/s		ni	cht verwend	et	Trigo	ger-Abtastrat	e / 2
Max. reduzierte Gesamt- Streaming-Rate	0,2 MS/s 0,4 MB/s	1,2 MS/s 2,4 MB/s	1,4 MS/s 2,8 MB/s	ni	cht verwend	et	0,2 MS/s 0,4 MB/s	1,2 MS/s 2,4 MB/s	1,4 MS/s 2,8 MB/s
18-Bit-Auflösung	<u> </u>								
Datenaufzeichnungs- modus		Bei Messstar und arten auf Trig		Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren		Bei Messstart reduzierte Rate und Warten auf Trigger, um zuerst Triggerspeicher zu aktivieren		um zuerst	
	Aktiv	vierte Messka	anäle	Aktivierte Messkanäle			Aktivierte Messkanäle		
	11/	6.14	6 Kn. u. Ereign. Timer/	1.1/	6.14	6 Kn. u. Ereign. Timer/	1.1/	6.14	6 Kn. u. Ereign. Timer/
Max. Triggerspeicher	1 Kn.	6 Kn.	Zähler	1 Kn. 50 MS	6 Kn. 8 MS	Zähler 5 MS	1 Kn. 40 MS	6 Kn.	Zähler 4 MS
	nicht verwendet		30 1013		3 1013	40 1013	.,.	4 1013	
Max. Trigger-Abtastrate	nicht verwendet		200 kS/s			200 kS/s	I		
Max. reduzierter FIFO	50 MS	8 MS	5 MS	nicht verwendet		et	9 MS	1,5 MS	1 MS
Max. (reduzierte) Abtastrate		200 kS/s		nicht verwendet		Trigger-Abtastrate / 2			
Max. reduzierte Gesamt- Streaming-Rate	0,2 MS/s 0,8 MB/s	1,2 MS/s 4,8 MB/s	1,8 MS/s 7,2 MB/s	0,2 MS/s 1,2 MS/s 1,8 MS/s nicht verwendet 0,8 MB/s 4,8 MB/s 7,2 MB/s					

 $^{(1) \}quad \text{Verwendete Terminologie ist auf die Software Perception abgestimmt}.$

GN610B/GN611B

Umgebungsbedingungen				
Temperaturbereich				
Im Betrieb	0 °C bis +40 °C (+32 °F bis +104 °F)			
Nicht im Betrieb (Lagerung)	-25 °C bis +70 °C (-13 °F bis +158 °F)			
Überhitzungsschutz	Automatische Abschaltung bei Überhitzung bei Innentemperatur von 85 °C (+185 °F) Warnmeldungen an den Benutzer bei 75 °C (+167 °F)			
Relative Luftfeuchtigkeit	0 % bis 80 %; nicht kondensierend (im Betrieb)			
Schutzart	IP20			
Höhenlage	Max. 2000 m (6562 ft) über dem Meeresspiegel (im Betrieb)			
Schocken: IEC 60068-2-27				
Im Betrieb	Halbsinus 10 g/11 ms; 3 Achsen, 1000 Schocks in positiver und negativer Richtung			
Nicht im Betrieb	Halbsinus 25 g/6 ms; 3 Achsen, 3 Schocks in positiver und negativer Richtung			
Schwingen: IEC 60068-2-64				
Im Betrieb	1 g eff, ½ h; 3 Achsen, Zufallsschwingungen 5 bis 500 Hz			
Nicht im Betrieb	2 g eff, 1 h; 3 Achsen, Zufallsschwingungen 5 bis 500 Hz			
Umweltprüfungen im Betrieb				
IEC 60068-2-1, Kälte, Prüfung Ad	-5 °C (+23 °F) über 2 Stunden			
Trockene Wärme, IEC60068-2-2, Prüfung Bd	+40 °C (+104 °F) über 2 Stunden			
Feuchte Wärme, IEC 60068-2-3, Prüfung Ca	+40 °C (+104 °F), Luftfeuchtigkeit > 93 % rF über 4 Tage			
Umweltprüfungen, nicht im Betrieb (Lageru	ng)			
IEC 60068-2-1, Kälte, Prüfung Ab	-25 °C (-13 °F) über 72 Stunden			
IEC 60068-2-2, Trockene Wärme, Prüfung Bb	+70 °C (+158 °F), Luftfeuchtigkeit< 50 % rF über 96 Stunden			
Temperaturwechsel IEC 60068-2-14, Prüfung Na	-25 °C bis +70 °C (-13 °F bis +158 °F) 5 Zyklen, Änderung innerhalb von 2 bis 3 Minuten, Haltezeit 3 Stunden			
Feuchte Wärme, zyklisch IEC 60068-2-30, Prüfung Db, Variante 1	+25 °C/+40 °C (+77 °F/+104 °F), Luftfeuchtigkeit >95/90 % rF 6 Zyklen, Zyklusdauer 24 Stunden			

Harmonisierte Norm	Harmonisierte Normen für CE- und UKCA-Konformität gemäß den folgenden Richtlinien(1)					
	Niederspannungsrichtlinie (NSR): 2014/35/EU Richtlinie über die elektromagnetische Verträglichkeit (EMV): 2014/30/EU					
Elektrische Sicherheit						
EN 61010-1 (2017)	Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte - Allgemeine Anforderungen					
EN 61010-2-030 (2017)	Besondere Bestimmungen für Prüf- und Messstromkreise					
Elektromagnetische V	erträglichkeit					
EN 61326-1 (2013)	Elektrische Mess-, Steuer-, Regel- und Laborgeräte - EMV-Anforderungen - Teil 1: Allgemeine Anforderungen					
Störaussendung						
EN 55011	Industrielle, wissenschaftliche und medizinische Geräte - Funkstörungen Leitungsgeführte Störgrößen: Klasse B; abgestrahlte Störgrößen: Klasse A					
EN 61000-3-2	Grenzwerte für Oberschwingungsströme: Klasse D					
EN 61000-3-3	Begrenzung von Spannungsänderungen, Spannungsschwankungen und Flicker in öffentlichen Niederspannungs- Versorgungsnetzen					
Störfestigkeit						
EN 61000-4-2	Prüfung der Störfestigkeit gegen die Entladung statischer Elektrizität; Kontaktentladung ± 4 kV/Luftentladung ± 8 kV: Bewertungskriterium B					
EN 61000-4-3	Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder; 80 MHz bis 2,7 GHz mit 10 V/m, 1000 Hz AM: Bewertungskriterium A					
EN 61000-4-4	Prüfung der Störfestigkeit gegen schnelle transiente elektrische Störgrößen/Burst Netz ± 2 kV mit Koppelnetzwerk. Kanal ± 2 kV mit kapazitiver Koppelzange: Leistungskriterium B					
EN 61000-4-5	Prüfung der Störfestigkeit gegen Stoßspannungen Netz \pm 0,5 kV/ \pm 1 kV Leitung gegen Leitung und \pm 0,5 kV/ \pm 1 kV/ \pm 2 kV Leitung gegen Masse; Kanal \pm 0,5 kV/ \pm 1 kV mit Koppelnetzwerk: Bewertungskriterium B					
EN 61000-4-6	Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder 150 kHz bis 80 MHz, 1000 Hz AM; 10 V eff am Netz, 3 V eff am Kanal, beide mit Zange: Bewertungskriterium A					
EN 61000-4-11	Prüfung der Störfestigkeit gegen Spannungseinbrüche, Kurzzeitunterbrechungen und Spannungsschwankungen Spannungseinbrüche: Bewertungskriterium A; Unterbrechungen: Bewertungskriterium C					

(1) Like The manufacturer declares on its sole responsibility that the product is in conformity with the essential requirements of the applicable UK legislation and that the relevant conformity assessment procedures have been fulfilled.

Manufacturer.

Hottinger Brüel & Kjaer GmbH Im Tiefen See 45 64293 Darmstadt Germany Importer:

Hottinger Bruel & Kjaer UK Ltd.
Technology Centre Advanced Manufacturing Park
Brunel Way Catcliffe
Rotherham
South Yorkshire
\$60 5WG
United Kingdom

Karten GN610B/GN611B Nur als Bezugskontakt. Kann nicht als Eingang verwendet werden. Sicherheit Anwendung Die 3-Phasen-Signale L1, L2 und L3 können mit den Eingängen L1, L2, L3 des Adapter den künstlichen Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt allegende Spannung. Abbildung 39: Schaltskizze Gewicht 170 g (6 02) Werkstoff des Gehäuses Polyurethan, vakuumgeformt Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt könebenehander installiert werden. Temperaturbereich Gebrauchstemperaturbereich 0 °C bis +40 °C (+32 °F bis +104 °F) Nicht im Betrieb (Lagerung) 19.0 mm 16.0 mm 10.074*) (0.62*)	CITOTOD/CITOTID					
Maximale Eingangsspannung 1000 V DC (707 V eff) zwischen jeder der Phasen Kapazität 250 pf. (min: 225 pf.; max: 275 pf.) Widerstand 0.3 MO (min: 0.297 MO; max: 0.303 MO) Eingänge 3. Sicherheits-Bananenstecker, 4 mm Ausgänge 6. Kontaktstifte für Sicherheits-Bananenstecker, 4 mm, zum direkten Anschluss an dir Karten (NS1018/cNK611 B Künstlicher Sternpunkt Nur als Bezugskontakt. Kann nicht als Eingang verwendet werden. Sicherheit Erfüllt (EG 61010-1, 600 V CAT II I Anwendung Die 3-Phasen-Signale L1, L2 und L3 können mit den Eingängen L1, L2, L3 des Adapter den Künstlichen Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt anliegende Spannung Abbildung 39: Schaltskizze Gewicht 170 g (e az) Werkstoff des Gehäuses Anordnung Eis können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611 B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt könnenenlander in stalliert werden. Temperaturbereich Gebrauchstemperaturbereich 0 ° C bis +40 ° C +32 °F bis +104 °F) Nicht im Betrieb (Lagerung) 25 °C bis +70 °C (-13 °F bis +158 °F)	G068: Adapter für künstlichen Sternpun	G068: Adapter für künstlichen Sternpunkt (Option, gesondert zu bestellen)				
Komponenten pro Phase Kapazităt 250 pF (min: 225 pF) max: 275 pF) Widerstand 0,3 Mo (min: 0,297 Mo), max: 0,303 Mo) 3; Sicherheits Bananenstecker, 4 mm Ausgänge 6; Kontaktstifte für Sicherheits Bananenstecker, 4 mm, zum direkten Anschluss an die Karen (N6100 K/0611 B) Nur als Bezugskontakt. Kann nicht als Eingang verwendet werden. Erfüllt (EC 61010-1, 600 V CAT II Anwendung Die 3-Phasen Signale 1, 1, 2 und 1,3 können mit den Eingängen L1, 1,2, 1,3 des Adapter den Künstlichen Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt anliegende Spannung. Abbildung 39: Schaltskizze Gewicht 170 g (6 oz) Werkstoff des Gehäuses Anordnung Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt könebeneinander installiert werden. Temperaturbereich Gebrauchstemperaturbereich O **C bis +40 **C (+32 **F bis +104 **F) Nicht im Betrieb (Lagerung) 25 **C bis +70 **C (-13 **F bis +158 **F) 19,0 mm 16,0 mm (0,74*) (0,62*) 19,0 mm 16,0 mm (0,74*) (0,62*)	Der Adapter für künstlichen Sternpunkt erzeugt einen künstlichen Sternpunkt für die Messung von 3-Phasen-Signalen.					
Widerstand 0.3 Mú (min: 0.297 Mú; max: 0.303 Mú) Eingänge 3; Sicherheits-Bananenstecker, 4 mm Ausgänge 6; Kontaktstiffe für Sicherheits-Bananenstecker, 4 mm, zum direkten Anschluss an dis Karten GN5 108/GN61 B Künstlicher Stempunkt Nur als Bezugskontakt. Kann nicht als Eingang verwendet werden. Eirfüllt IEC 61010-1, 600 V CAT II Anwendung Die 3-Phasen-Signale L1, L2 und L3 können mit den Eingängen L1, L2, L3 des Adapter den künstlichen Stempunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt anliegende Spannung. Abbildung 39: Schaltskitze Gewicht 170 g (6 oz) Werkstoff des Gehäuses Polyurethan, vakuumgeformt Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt könebeneinander installiert werden. Temperaturbereich Gebrauchstemperaturbereich 0 °C bis +40 °C (+32 °F bis +104 °F) Nicht im Betrieb (Lagerung) -25 °C bis +70 °C (-13 °F bis +158 °F)	Maximale Eingangsspannung	1000 V DC (707 V eff) zwischen jeder der Phasen				
Ausgänge 6; Kontaktstifte für Sicherheite-Bananenstecker, 4 mm, zum direkten Anschluss an dis Karten CN810B/SN611B Künstlicher Sternpunkt Nur als Bezugskontakt. Kann nicht als Eingang verwendet werden. Erfüllt IEC 61010-1, 600 V CAT II Anwendung Die 3-Phasen-Signale L1, L2 und L3 können mit den Eingängen L1, L2, L3 des Adapter den künstlichen Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt anliegende Spannung. Abbildung 39: Schaltskizze Gewicht 170 g (6 oz) Werkstoff des Gehäuses Polyurethan, vakuumgeformt Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611 B mit Adaptem für künstlichen Sternpunkt könebeneinander installiert werden. Temperaturbereich Gebrauchstemperaturbereich 0 °C bis +40 °C (+32 °F bis +104 °F) Nicht im Betrieb (Lagerung) 25 °C bis +70 °C (-13 °F bis +158 °F)	Komponenten pro Phase					
Karten GN610B/GN611B Nur als Bezugskontakt. Kann nicht als Eingang verwendet werden. Sicherheit Anwendung Die 3-Phasen-Signale L1, L2 und L3 können mit den Eingängen L1, L2, L3 des Adapter den künstlichen Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Stempunkt anliegende Spannung. Abbildung 39: Schaltskizze Gewicht 170 g (6 oz) Werkstoff des Gehäuses Polyurethan, vakuumgeformt Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611 B mit Adaptern für künstlichen Sternpunkt könebeneinander installiert werden. Temperaturbereich Gebrauchstemperaturberech of C+32 °F bis +104 °F) Nicht im Betrieb (Lagerung) 19.0 mm 16.0 mm (0.74*) (0.62*) 19.0 mm 16.0 mm (0.74*) (0.62*) 19.0 mm 16.0 mm (0.74*) (0.62*)	Eingänge	3; Sicherheits-Bananenstecker, 4 mm				
Sicherheit Erfüllt IEC 61010-1, 600 V CAT II Anwendung Die 3-Phasen-Signale L1, L2 und L3 können mit den Eingängen L1, L2, L3 des Adapter den künstlichen Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt anliegende Spannung. L1 L2 L3 Abbildung 39: Schaltskizze Gewicht 170 g (6 oz) Werkstoff des Gehäuses Polyurethan, vakuumgeformt Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt könebeneinander installiert werden. Temperaturbereich Gebrauchstemperaturbereich 0 °C chis +40 °C (+32 °F bis +104 °F) Nicht im Betrieb (Lagerung) 19,0 mm 16,0 mm (0.74*) (0.62*) 19,0 mm 16,0 mm (0.74*) (0.62*)	Ausgänge	6; Kontaktstifte für Sicherheits-Bananenstecker, 4 mm, zum direkten Anschluss an die Karten GN610B/GN611B				
Anwendung Die 3-Phasen-Signale L1, L2 und L3 können mit den Eingängen L1, L2, L3 des Adapter den künstlichen Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlich Sternpunkt anliegende Spannung. Abbildung 39: Schaltskizze Gewicht 170 g (6 oz) Werkstoff des Gehäuses Polyurethan, vakuumgeformt Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt könebeneinander installiert werden. Temperaturbereich Gebrauchstemperaturbereich O°C bis +40°C (+32°F bis +104°F) Nicht im Betrieb (Lagerung) 19,0 mm 16,0 mm (0.74°) (0.62°)	Künstlicher Sternpunkt	Nur als Bezugskontakt. Kann nicht als Eingang verwendet werden.				
den künstlichen Sternpunkt werbunden werden. Der Anschlüss N* ist die am künstlich Sternpunkt anliegende Spannung. L1 Abitut L2 Abitut L2 L3 BB P P P P P P P P P P P P P P P P P P	Sicherheit	Erfüllt IEC 61010-1, 600 V CAT II				
Abbildung 39: Schaltskizze Gewicht 170 g (6 oz) Werkstoff des Gehäuses Polyurethan, vakuumgeformt Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt kön nebeneinander installiert werden. Temperaturbereich Gebrauchstemperaturbereich 0 °C bis +40 °C (+32 °F bis +104 °F) Nicht im Betrieb (Lagerun) -25 °C bis +70 °C (-13 °F bis +158 °F)	Anwendung	Die 3-Phasen-Signale L1, L2 und L3 können mit den Eingängen L1, L2, L3 des Adapters für den künstlichen Sternpunkt verbunden werden. Der Anschluss N* ist die am künstlichen Sternpunkt anliegende Spannung.				
Abbildung 39: Schaltskizze Gewicht 170 g (6 oz) Werkstoff des Gehäuses Polyurethan, vakuumgeformt Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt könebeneinander installiert werden. Temperaturbereich Gebrauchstemperaturbereich 0 °C bis +40 °C (+32 °F bis +104 °F) Nicht im Betrieb (Lagerung) -25 °C bis +70 °C (-13 °F bis +158 °F) 19,0 mm 16,0 mm (0,74") (0.62") (0.94")	L1	L2 L3				
Abbildung 39: Schaltskizze Gewicht 170 g (6 oz) Werkstoff des Gehäuses Polyurethan, vakuumgeformt Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt könebeneinander installiert werden. Temperaturbereich Gebrauchstemperaturbereich 0 °C bis +40 °C (+32 °F bis +104 °F) Nicht im Betrieb (Lagerung) -25 °C bis +70 °C (-13 °F bis +158 °F) 19,0 mm 16,0 mm (0.74°) (0.62°) (0.94°)		シートシートシー				
Gewicht Werkstoff des Gehäuses Polyurethan, vakuumgeformt Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt könebeneinander installiert werden. Temperaturbereich Gebrauchstemperaturbereich Gebrauchstemperaturbereich 0 °C bis +40 °C (+32 °F bis +104 °F) Nicht im Betrieb (Lagerung) -25 °C bis +70 °C (-13 °F bis +158 °F) 19,0 mm 16,0 mm (0.74") (0.62") (0.94") (0.		t I out I out I				
Werkstoff des Gehäuses Polyurethan, vakuumgeformt Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt könebeneinander installiert werden. Temperaturbereich Gebrauchstemperaturbereich 0 °C bis +40 °C (+32 °F bis +104 °F) Nicht im Betrieb (Lagerung) -25 °C bis +70 °C (-13 °F bis +158 °F) 19,0 mm 16,0 mm (0.74") (0.62") 19,0 mm 16,0 mm (0.74") 10,0 mm 16,0 m	Cowight					
Anordnung Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt könebeneinander installiert werden. Temperaturbereich Gebrauchstemperaturbereich 0 °C bis +40 °C (+32 °F bis +104 °F) Nicht im Betrieb (Lagerung) -25 °C bis +70 °C (-13 °F bis +158 °F) 19,0 mm 16,0 mm (0.74°) (0.62°)						
Gebrauchstemperaturbereich 0 °C bis +40 °C (+32 °F bis +104 °F) Nicht im Betrieb (Lagerung) -25 °C bis +70 °C (-13 °F bis +158 °F) 19,0 mm 16,0 mm (0.74") (0.62") (0.94") (0.74") (0.62") (0.94") (0.74") (0.62") (0.94") (0.74") (0.62") (0.74"		Es können jeweils zwei Adapter in eine Karte GN610/GN611/GN610B/GN611B eingesteckt werden. Zwei oder mehr Karten GN610B/GN611B mit Adaptern für künstlichen Sternpunkt können				
Nicht im Betrieb (Lagerung) -25 °C bis +70 °C (-13 °F bis +158 °F) 19,0 mm 16,0 mm (0.74") (0.62") (0.94") Artificial Star (0.94") Artificial Star (0.94") (0.94") (0.94") (0.94") (0.94") (0.94")	Temperaturbereich					
19,0 mm 16,0 mm (0.74") (0.62") Artificial Star (1.9088) (**100**) **Solve Co-2558** 1-9088 **The Martificial Star (1.9088) **	Gebrauchstemperaturbereich	0 °C bis +40 °C (+32 °F bis +104 °F)				
(0.74") (0.62") (0.94") (0.94") (0.94") (0.94") (0.94") (0.94") (0.94") (0.94") (0.94") (0.94")	Nicht im Betrieb (Lagerung)	-25 °C bis +70 °C (-13 °F bis +158 °F)				
### Artificial Star 1-G068 C	(0.74") $(0.62")$ $(0.94")$					
Abbildung 40: Adapter für künstlichen Sternpunkt	Abbi	ildung 40: Adapter für künstlichen Sternpunkt				

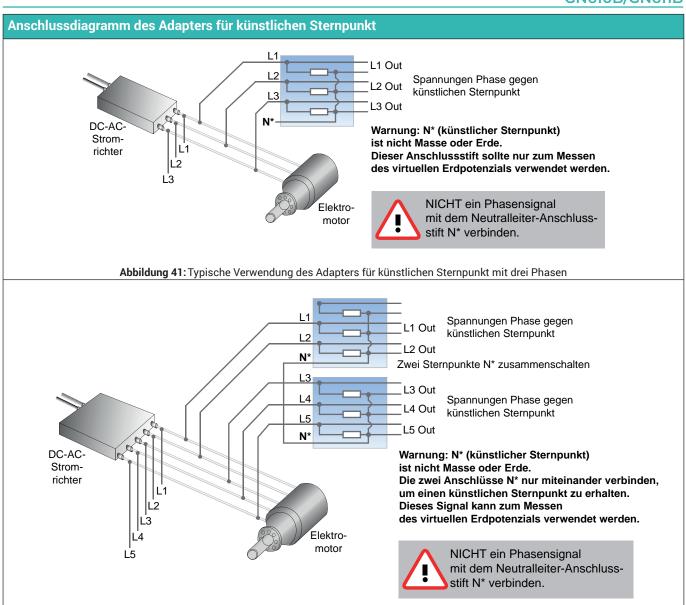
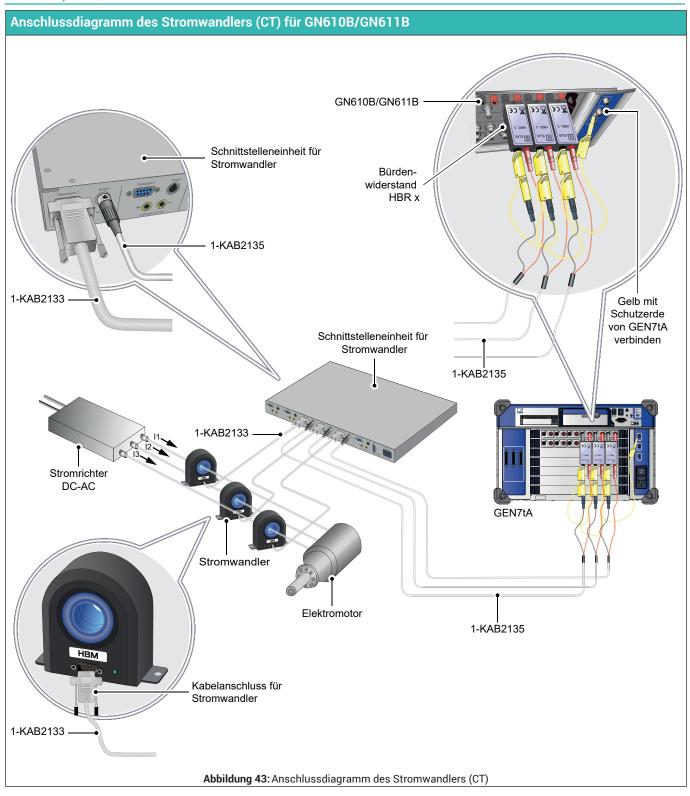



Abbildung 42: Typische Verwendung des Adapters für künstlichen Sternpunkt mit fünf oder mehr Phasen

Stromwandler, gesondert zu bestellen

Stromwandler mit extrem stabiler, hochgenauer Fluxgate-Technologie für nicht-intrusive, isolierte Messung

Abbildung 44: HBM Stromwandler, Schnittstelleneinheit und Kabel

· · · · · · · · · · · · · · · · · · ·					
Übersicht über die Stromwandler-Familie					
Тур	Stromstärke, max.	Bandbreite (-3 dB)	Größe der Öffnung	Bestell-Nr.	
CTS50ID	75 A DC / 50 A eff	1000 kHz	27,6 mm	1-CTS50ID	
CTS200ID	300 A DC / 200 A eff	500 kHz	27,6 mm	1-CTS200ID	
CTS400ID	600 A DC / 400 A eff	300 kHz	27,6 mm	1-CTS400ID	
CTS600ID	900 A DC / 600 A eff	500 kHz	27,6 mm	1-CTS600ID	
CTM1200ID	1500 A DC / 1200 A eff	400 kHz	45,0 mm	1-CTM1200ID	
CTT50ID	75 A DC / 50 A eff	2000 kHz	20,7 mm	1-CTT50ID	
CTT100ID	150 A DC / 100 A eff	2000 kHz	20,7 mm	1-CTT100ID	
CTT200ID	285 A DC / 200 A eff	2000 kHz	20,7 mm	1-CTT200ID	
CTN1000ID	1500 A DC / 1000 A eff	400 kHz	41,0 mm	1-CTN1000ID	

Schnittstellen und Kabel für Stromwandler (CTs), gesondert zu bestellen			
Artikel		Beschreibung	Bestellnummer
CT-Schnittstellen- einheit	CPUS CPUS CPUS CPUS CPUS CPUS CPUS CPUS	Schnittstelleneinheit für bis zu sechs Stromwandler. 9-polige D-Sub-Eingangsanschlüsse nach Industriestandard. Mehrpolige XLR-Ausgangsanschlüsse. Unterstützt Zugang zu Wicklung für die Wandlerkalibrierung über 4-mm-Bananenstecker. LEDs an der Vorderseite zeigen Normalbetrieb jedes Wandlers an. Eingangsspannung 100 bis 240 V AC, 50/60 Hz AC. Eingangsspannung 120 bis 370 V DC. Montage in 19"-Rack, 1 HE.	1-CTPSIU-6-1U
CT-Kabel		Stromwandler-Anschlusskabel nach Industriestandard. Geschirmtes, niederohmiges 9-adriges Kabel mit 9-poligen D-SUB-Steckverbindern an beiden Enden. Unterstützt Leistungs-, Status- und Stromausgang und Kalibriereingang. Längen: 2, 5, 10 und 20 m (6, 16, 32 und 65 ft)	1-KAB2133-2 1-KAB2133-5 1-KAB2133-10 1-KAB2133-15 1-KAB2133-20
Eingangskabel mit Bananensteckern		Geschirmtes Kabel für Stromkanäle von 1-GN31xB. LEMO-Breakout-Kabel mit 4-mm-Bananensteckern für Gleichstrom (blau), Spannung als Strom (rot), isolierte Masse/Rückstrom (schwarz) und Schirm (gelb). Das Kabel ist geschirmt, um die typischen Auswirkungen der elektromagnetischen Störungen zu minimieren, die von Stromversorgungen mit hoher Schaltleistung erzeugt werden. Erhältliche Länge: 1 m (3.3 ft)	1-KAB2136-1

Bestellinformationen				
Artikel		Beschreibung	Bestellnummer	
Basis-Karte 1 kV ISO 2 MS/s		6 Kanäle, 18 Bit, 2 MS/s, Eingangsbereich ± 10 mV bis ± 1000 V, 2 GB RAM, symmetrisch differenzieller Eingang, Isolationsspannung 1 kV (600 V eff CAT II), vollständig isolierte Bananenstecker, 4 mm. Echtzeitzyklus-basierte Rechenfunktionen Echtzeitberechnungen mit Triggerung durch berechnete Ergebnisse. Unterstützt von Perception V6.72 und höher.	1-GN610B	
Basis-Karte 1 kV ISO 200 kS/s		6 Kanäle, 18 Bit, 200 kS/s, Eingangsbereich ± 10 mV bis ± 1000 V, 200 MB RAM, symmetrisch differenzieller Eingang, Isolationsspannung 1 kV (600 V eff CAT II), vollständig isolierte Bananenstecker, 4 mm. Echtzeitzyklus-basierte Rechenfunktionen Echtzeitberechnungen mit Triggerung durch berechnete Ergebnisse. Unterstützt von Perception V6.72 und höher.	1-GN611B	

Option, gesondert zu bestellen				
Artikel		Beschreibung	Bestellnummer	
Rechenfunktionen der GEN DAQ-Echtzeit- Formeldatenbank	Fox Traper Daniel 12	Option für erweiterte Echtzeit-Rechenfunktionen. Setup verwendet eine benutzerkonfigurierbare Formeldatenbank ähnlich der Formeldatenbank von Perception. Alle Rechenfunktionen werden vom DSP der Datenerfassungskarte ausgeführt. Bei vielen der Berechnungsergebnisse ist Triggerung möglich. Berechnete zyklusbasierte Ergebnisse können in Echtzeit an die API des GEN DAQ-Systems, USB-zu-CAN-FD oder die EtherCAT®-Option übertragen werden. Der EtherCAT®-Ausgang unterstützt echte Echtzeit-Latenz von 1 ms.	1-GEN-OP-RT-FDB	

Spezial-Spannungssonden, gesondert zu bestellen				
Artikel		Beschreibung	Bestellnummer	
Differenzieller Tastkopf, 5 kV eff, 20 MΩ, 50:1	90	Differenzieller Hochpräzisions-Tastkopf für 5 kV eff, 20 MΩ, 50:1, 0,2 % zur Verwendung in Kombination mit den Datenerfassungskarten GNGN610B, GN611B (HVD50R-61x), GN310B und GN311B (HVD50R-31x). Das integrierte Erdungsüberwachungssystem erhöht die Sicherheit für den Anwender und schützt die Eingänge der GEN-Serie vor Lasten, die die Isolierung übersteigen würden.	HVD50R-61x HVD50R-31x Bestellung über den Support (Custom Systems) ⁽¹⁾	
Hochspannungs- kabel 5 kV eff		Das Hochspannungskabel (HVC) dient als Verlängerung für Messkabel mit Spannungen bis 5 kV eff. Die Verlängerung wird an ein Kabel an der Eingangsklemme des differenziellen Hochpräzisions-Tastkopfs HVD10, HVD50R-61x und HVD50R-31x angeschlossen. Das HVC entspricht IEC 61010-031:2015 und erfüllt die Anforderungen für 1000 V eff CAT IV und 1500 V DC CAT IV.	HVC Bestellung über den Support (Custom Systems) ⁽¹⁾	

⁽¹⁾ Kontakt für Anfragen: customsystems@hbkworld.com
Fordern Sie ein Angebot/Informationen zu Spezialprodukten für die GEN-Serie an.

Zubehör, gesondert zu bestellen				
Artikel Beschreibung		Bestellnummer		
Adapter für künstlichen Sternpunkt	A transmission with the state of the state o	Der Adapter für künstlichen Sternpunkt ist eine Aufsteck- Schnittstellenkarte zur Messung von 3-Phasen-Signalen mit den Datenerfassungskarten GN610/GN611/GN610B/GN611B. Dieser Adapter erzeugt einen virtuellen/künstlichen Sternpunkt beim Messen von 3-Phasen-Signalen.	1-G068	
1000 V CAT IV / 1500 V DC CAT III Isolierte geschirmte Prüfleitungen, 3-adrig		Das Kabel verfügt über Bananenstecker mit Sicherheitsummantelung für. 3-Phasen-Messung (schwarz/braun/grau) oder Neutralleiter gegen Leitung in Einphasensystemen Kabelschirmanschluss (gelb) Das Kabel ist geschirmt, um die typischen Auswirkungen der von Hochleistungsinvertern erzeugten elektromagnetischen Störungen zu minimieren, sowie zur Minimierung der Störaussendungen während der Anstiegszeiten der mit diesem Kabel gemessenen Umschaltspannungen von Invertern. Erhältliche Längen: 1,5 m (4.92 ft), 3,0 m (9.84 ft), 6,0 m (19.7 ft), 12 m (39.4 ft), 20 m (65.6 ft)	1-KAB2139-1.5 1-KAB2139-3 1-KAB2139-6 1-KAB2139-12 1-KAB2139-20	
Kabel XLR zu Bananenstecker für GN61XB		Anschlusskabel für CT-Schnittstelleneinheit an DAQ-Eingangskarte GN61xB für 1 kV. Ausgestattet mit Bananensteckern zum Anschluss eines Stromausgangs an die GEN DAQ-Karte. Erfordert einen zusätzlichen Bürdenwiderstand vor der Karte GN61xB zur Umwandlung von Strom in Spannung. Länge 2 m (6 ft)	1-KAB2135-2	

Bürdenwiderstände für GN610B/GN611B, gesondert zu bestellen

Bürdenauswahl für GN610B/GN611B

Hinweis: Bei Verwendung der Serie CTS/CTM in Kombination mit den Eingangskarten GN610B/GN611B wird ein Bürdenwiderstand für die Umwandlung des CT-Ausgangsstroms in eine Spannung benötigt. Bei der Auswahl der Bürde sind mehrere technische Daten zu berücksichtigen: die maximale Leistung der Bürde, die maximale Spannung, die der CT mit konstantem Strom steuern kann, die Leitungsimpedanz der verwendeten Kabeladern usw. Einzelheiten sind der Bedienungsanleitung des Stromwandlers zu entnehmen.

Modell	Empfohlene Bürde	Empfindlichkeit mV/A	Skalierung A/V
CTT50ID	HBR 2,5 Ω	5,0	200
CTT100ID	HBR 1,0 Ω	2,0	500
CTT200ID	HBR 1,0 Ω	0,5	2000
CTN1000ID	HBR 1,0 Ω	0,6667	1500
CTS50ID	HBR 2,5 Ω	5,0	200
CTS200ID	HBR 1,0 Ω	2,0	500
CTS400ID	HBR 1,0 Ω	0,5	2000
CTS600ID	HBR 1,0 Ω	0,6667	1500
CTS1200ID	HBR 1,0 Ω	0,6667	1500
CTS1200ID-CD3000	HBR 1,0 Ω	0,6667	1500

	, -	-,		
Artikel		Beschreibung		Bestell-Nr.
Präzisions- Bürdenwiderstand HBR 0,25 Ω, 1 W	HAROLE HAROLE CE	Niederohmiger Hochpräzisions-Bürde 0,02 %. Der interne 4-Leiter-Anschlus die von den durch den Bürdenwiderst verursacht wird. Verwendung von Sic Eingangsstecker und Ausgangskonta Datenerfassungskarten GN610B/GN	s verringert die Ungenauigkeit, and verlaufenden Strömen eherheits-Bananensteckern für akte. Direkt kompatibel mit den	Bestellung über den Support (Custom Systems) ⁽¹⁾
Präzisions- Bürdenwiderstand HBR 0,5 Ω, 1 W	Marco o	Niederohmiger Hochpräzisions-Bürde 0,02 %. Der interne 4-Leiter-Anschlus die von den durch den Bürdenwiderst verursacht wird. Verwendung von Sic Eingangsstecker und Ausgangskonta Datenerfassungskarten GN610B/GN	s verringert die Ungenauigkeit, and verlaufenden Strömen cherheits-Bananensteckern für akte. Direkt kompatibel mit den	Bestellung über den Support (Custom Systems) ⁽¹⁾
Präzisions- Bürdenwiderstand HBR 1 Ω, 1 W	HEM ELAS HERELO TRANSPORTER	Niederohmiger Hochpräzisions-Bürde Der interne 4-Leiter-Anschluss verring von den durch den Bürdenwiderstand verursacht wird. Verwendung von Sic Eingangsstecker und Ausgangskonta Datenerfassungskarten GN610B/GN	gert die Ungenauigkeit, die I verlaufenden Strömen Herheits-Bananensteckern für akte. Direkt kompatibel mit den	Bestellung über den Support (Custom Systems) ⁽¹⁾
Präzisions- Bürdenwiderstand HBR 2,5 Ω, 1 W	Mana S	Niederohmiger Hochpräzisions-Bürdo 0,02 %. Der interne 4-Leiter-Anschlus die von den durch den Bürdenwiderst verursacht wird. Verwendung von Sic Eingangsstecker und Ausgangskonta Datenerfassungskarten GN610B/GN	s verringert die Ungenauigkeit, and verlaufenden Strömen eherheits-Bananensteckern für akte. Direkt kompatibel mit den	Bestellung über den Support (Custom Systems) ⁽¹⁾
Präzisions- Bürdenwiderstand HBR 10 Ω, 1 W	HORTO HORTO	Niederohmiger Hochpräzisions-Bürde 0,02 %. Der interne 4-Leiter-Anschlus die von den durch den Bürdenwiderst verursacht wird. Verwendung von Sic Eingangsstecker und Ausgangskonta Datenerfassungskarten GN610B/GN	s verringert die Ungenauigkeit, and verlaufenden Strömen eherheits-Bananensteckern für akte. Direkt kompatibel mit den	Bestellung über den Support (Custom Systems) ⁽¹⁾

Kontakt für Anfragen: <u>customsystems@hbkworld.com</u>.
 Fordern Sie ein Angebot/Informationen zu Spezialprodukten für die GEN-Serie an.

Hottinger Brüel & Kjaer GmbH

Im Tiefen See 45 · 64293 Darmstadt · Germany Tel. +49 6151 803-0 · Fax +49 6151 803-9100 www.hbkworld.com · info@hbkworld.com