Wärmeausdehnungskoeffizient bestimmen

Jede DMS-Viertelbrücke zeigt bei Temperaturänderung ein Messsignal, die "scheinbare Dehnung". Die scheinbare Dehnung einer DMS-Messstelle, die einer Temperaturdifferenz Δϑ ausgesetzt wird, lässt sich wie folgt beschreiben:

$$\varepsilon_s = \left(\frac{\alpha_r}{k} + \alpha_b + \alpha_m\right) \times \Delta \vartheta / \tag{1}$$

Dabei sind:

 $\varepsilon_{\rm S}$ Scheinbare Dehnung des DMS

α_r Temperaturkoeffizient des elektrischen Widerstandes

α_b Wärmeausdehnungskoeffizient des Messobjektes

α_m Wärmeausdehnungskoeffizient des Messgitterwerkstoffes

k k-Faktor des DMS

 $\Delta \vartheta$ Temperaturdifferenz, die die scheinbare Dehnung auslöst

Auf jeder DMS-Packung von HBM ist die scheinbare Dehnung als Funktion der Temperatur als Diagramm und zusätzlich als Polynom gegeben.

Diese Angaben ergeben natürlich nur dann sinnvolle Ergebnisse, wenn der thermische Längenausdehnungskoeffizient des zu testenden Werkstoffs mit der Angabe auf der DMS-Packung übereinstimmt.

Es gilt dann:

$$\varepsilon_a = \varepsilon_m + \varepsilon_s \tag{2}$$

Bestimmung des thermischen Längenausdehnungskoeffizienten α

Die scheinbare Dehnung kann aber durchaus auch für messtechnische Zwecke genutzt werden, wenn der Wärmeausdehnungskoeffizient αm bestimmt werden soll. In diesem Fall lässt sich die folgende Formel verwenden.

$$\varepsilon_a = \varepsilon_m + \varepsilon_s + (\alpha_b - \alpha_{DMS}) \cdot \Delta \vartheta \tag{3}$$

Umgestellt ergibt sich:

$$\alpha_b = \frac{\varepsilon_a - \varepsilon_s}{\varDelta \vartheta} + \alpha_{DMS} \tag{4}$$

 ε_a am Messverstärker angezeigte Dehnung

 ε_b die durch die mechanische Belastung ausgelöste Dehnung

α_{DMS} thermischer Längenausdehnungskoeffizient laut DMS-Packung

Im praktischen Versuch wurden auf einem Aluminiumwerkstück vier HBM DMS des Typs LG11-6/350 installiert, die auf Stahl (α=10,8 10-6/K) angepasst sind.

Dabei wurde die Vierleiterschaltung verwendet, die Kabeleinflüsse eliminiert. Der Werkstoff hat laut Herstellerangabe α =23,00 *10-6/K für T= 0 ... 100°C.

ϑ (°C)	ε _a (*10 ⁻⁶)	ε _s (*10 ⁻⁶)	ε _a -ε _s (*10-6)	α _b (*10 ⁻⁶)/K
-10	-396,9	-38,017	-358,883	
0	-254,35	-16,9	-237,45	22,9433
10	-122,5	-5,003	-117,497	22,7953
20	0	-1,084	1,084	22,6581
30	118,75	-3,901	122,651	22,9567
40	232,4	-12,212	244,612	22,9961
50	344,32	-24,775	369,095	23,2483
60	453,27	-40,348	493,618	23,2523
70	562,12	-57,689	619,809	23,4191
80	671,6	-75,556	747,156	23,5347
90	781,82	-92,707	874,527	23,5371

ϑ (°C)	ε _a (*10 ⁻⁶)	ε _s (*10 ⁻⁶)	ε _a -ε _s (*10-6)	α _b (*10 ⁻⁶)/K
100	894,07	-107,9	1001,97	23,5443
110	1010,45	-119,893	1130,343	23,6373
120	1132,32	-127,444	1259,764	23,7421

Tab. 1.1 Messergebnisse eines auf ferritischen Stahl angepassten DMS, installiert auf Aluminium

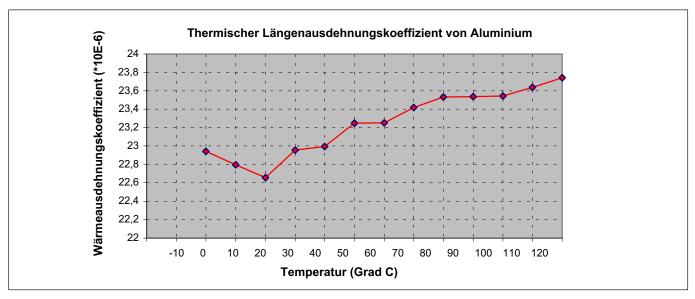


Abb. 1 Ermittlung des thermischen Längenausdehnungskoeffizienten von Aluminium

Berechnet man das α m für das angegebene Intervall, so erhält man 23,19 *10⁻⁶/K, was einer Abweichung zum theoretischen Wert von 0,19 *10⁻⁶/K (0,84 %) entspricht.

Um das Experiment durchzuführen ist es notwendig, zunächst mehrere DMS (um experimentelle Sicherheit zu erlangen) auf dem Untersuchungsobjekt zu installieren. In Messgitterrichtung muss die Probe plan sein.

Im nächsten Schritt ermittelt man die Dehnungen in Abhängigkeit von der Temperatur. Dabei ist darauf zu achten, dass sich ein thermisches Gleichgewicht eingestellt hat.

Zunächst wird ϵ a- ϵ s errechnet. Um den thermischen Längenausdehnungskoeffizienten zu bestimmen subtrahiert man zwei errechnete Werte (ϵ a- ϵ s) voneinander und teilt diese durch das entsprechende Temperaturintervall. Hierzu ist noch der Wärmeausdehnungskoeffizient α_{DMS} nach Packungsangabe zu addieren.

Beispiel:

Im Intervall von 20 bis 40 Grad errechnet sich der Wärmeausdehnungskoeffizient wie folgt (nach Gleichung (4)).

$$\frac{(232, 4\cdot 10^{-6} - (-12, 212\cdot 10^{-6} - 1, 084\cdot 10^{-6}))}{(40-20)K} + 10, 8\cdot 10^{-6}/K = 23, 08\cdot 10^{-6}/K$$

Während dieser Messung ist das DMS-Kriechen ein unerwünschter Effekt. Im Interesse einer maximalen Genauigkeit empfiehlt es sich deshalb, HBM-DMS der Serie G zu verwenden, die serienmäßig über drei verschiedene Kriechanpassungen verfügen und dabei den DMS mit der größten Umkehrstellenlänge zu verwenden.

Weiterhin ist bei Messtemperaturen über 60 °C eine Installation mit heiß härtenden Klebstoffen empfehlenswert.

Änderungen vorbehalten. Alle Angaben beschreiben unsere Produkte in allgemeiner Form. Sie stellen keine Beschaffenheits- oder Haltbarkeitsgarantie dar.

Hottinger Baldwin Messtechnik GmbH

Im Tiefen See 45 · 64293 Darmstadt · Germany Tel. +49 6151 803-0 · Fax +49 6151 803-9100 E-Mail: info@hbm.com · www.hbm.com

