Operating Manual

Amplifier system **MGC***plus*

Operation with computer or terminal

B 31.MGCPR.40 en

Contents

Safet	y instructions	7
Α	Introduction	A –1
1	Overview of documentation	A-3
1.1	How to work with this manual	A-4
1.2	Operation with computer or terminal	A-5
1.2.1	Overview of the chapters and appendix	A-6
В	Comparison of interfaces	B-1
С	RS232/RS485/422 serial interfaces	C-1
1	RS232C and RS485/422 interfaces	C-2
1.1	RS485/422 bus	C-4
D	Parallel printer port (Centronics)	D-1
1	Printer port	D-3
1.1	Handshaking procedure	D-4
E	IEEE 488-78 parallel interface	E-1
1	IEEE 488-78 bus	E-3
1.1	Data lines	E-6
1.2	Handshaking lines	E-7
1.3	Control lines	E-8
2	Controller, talker and listener functions	E-9
3	Addressing	E-10
4	Service request (SRQ)	E-11
4.1	Serial Poll (SPOLL)	E-12
4.2	Parallel poll (PPOLL)	E-13
5	Interface commands	E-14
6	IFFF 488interface function in the case of HRM devices	F_16

F	Communication with the MGCplus	F-1
1	HBM Interpreter	F-3
2	Activating the RS232C interface	F-4
2.1	Interface assignment	F-5
2.2	Setting up the interface	F-6
3	Activating the RS485 interface	F-7
3.1	Interface assignment	F-8
3.2	Setting up the interface	F-10
4	Activating the printer interface	F-12
4.1	Interface assignment	F-13
5	Activating the IEEE 488–78 interface	F-14
5.1	Interface assignment	F-16
5.2	Setting up addresses on the MGCplus	F-17
6	Connect computer and device	F-19
G	Program creation	G-1
1	IBM PC and compatibles	G-3
1.1	Communication via the RS232C interface	G-4
1.2	Communication via the RS485 interface	G-11
1.3	Communication via the IEEE interface	G-21
Н	HBM Interpreter commands	H–1
1	Important conventions	H–3
1.1	Command construction	H–7
1.1.1	Command structure	H–8
1.1.2	Data output structure (responses)	H-10
112	Description of individual commands	H_11

2	Communications behaviour	H-13
2.1	Addressing	H-13
2.2	Communication computer/MGCplus	H-20
2.3	Error handling, status register	H-24
2.4	Identification	H-38
2.5	Time and date	H-45
3	Amplifier settings	H-47
3.1	Amplifier input	H-47
3.2	Filter setting	H-53
3.3	Calibration	H-57
3.4	Tare	H–68
3.5	Analogue outputs	H-70
3.6	Peak value store	H-72
3.7	Limit value monitoring	H-80
3.8	Transfer of amplifier settings and comment	H-91
3.9	Remote control	H-94
4	Amplifier functions	H-99
4.1	Output format, measurement output	H-99
4.2	Display functions	H-107
5	Print functions	111
6	Fast data acquisition	
7	MGCpress commands	H-141
R	PC-Card hard disk	H_175

9	MGC commands (predecessor system to MGCplus)	H-191
9.1	Addressing	H-191
9.2	Communication computer/MGCplus	H-196
9.3	Amplifier input	H-200
9.4	Filter setting	H-209
9.5	Range	H-214
9.6	Taring	H-220
9.7	Analogue outputs	H-221
9.8	Peak store	H-222
9.9	Limit value monitoring	H-224
9.10	Transferring the amplifier setup and the comment	H-228
9.11	Remote control	H-229
9.12	Output format, measurement output	H-231
9.13	Display functions	H-240
9.14	Print functions	H-247
10	Profibus	H-251
11	CAN-bus	H-253
11.1	File commands	H-254
11.2	Parameter assignment for CAN data acquisition	H-256
11.3	Exchange of CAN messages	H-259
11.4	Assigning analogue output parameters	H-261
11.5	Using function keys to send CAN messages	H-264
12	Multi-channel I/O module ML78	H-265
12.1	File commands	H-265
122	Other commands	H_270

I	Global tables (parameter list)	I–′
J	Assignment command – hardware	J–'
K	Alphabetical command list	K-
ı	Command list by function	1 _

6	Table of contents
MGCplus Operation with computer or terminal	

Safety instructions

Use in accordance with the regulations

The amplifier system is to be used exclusively for measurement tasks and directly related control tasks. Use for any purpose other than the above shall be deemed to be not in accordance with the regulations.

To ensure safe operation, the device may only be operated in accordance with the information given in the Operating Manual. It is also essential to comply with the legal and safety requirements for the application concerned during use. The same applies to the use of accessories.

General dangers due to non-observance of the safety instructions

The amplifier system is a state-of-the-art device and is fail-safe. The device may give rise to further dangers if it is inappropriately installed and operated by untrained personnel.

Any person instructed to carry out installation, commissioning, maintenance or repair of the device must have read and understood the Operating Manual and in particular the technical safety instructions.

Remaining dangers

The scope of supply and list of components provided with the amplifier system cover only part of the scope of measurement technique. In addition, equipment planners, installers and operators should plan, implement and respond to the safety engineering considerations of measurement technique in such a way as to minimise remaining dangers. Prevailing regulations must be complied with at all times. There must be reference to the remaining dangers connected with measurement technique.

After setting up and password protected activities, care must be taken to ensure that any control units that may be connected remain in a safe and secure state until the switching behaviour of the amplifier system has been checked.

 $\mathsf{MGC} \textit{plus} \ \mathsf{Operation} \ \mathsf{with} \ \mathsf{computer} \ \mathsf{or} \ \mathsf{terminal}$

Any risk of remaining dangers when working with the amplifier system is pointed out in this introduction by means of the following symbols:

Symbol:

DANGER

Meaning: Maximum danger level

Warns of a **decidedly** dangerous situation in which failure to comply with safety requirements **will** lead to death or serious physical injury.

Symbol:

WARNING

Meaning: Possibly dangerous situation

Warns of a **potentially** dangerous situation in which failure to comply with safety requirements **can** lead to death or serious physical injury.

Symbol:

CAUTION

Meaning: Dangerous situation

Warns of a possibly dangerous situation in which failure to comply with safety requirements **could** cause damage to property or result in some kind of minor physical injury.

Symbol:

NOTE

Means that important information about the product or its handling is being given.

Symbol:

Meaning: CE mark

The CE mark enables the manufacturer to guarantee that the product complies with the requirements of the relevant EC guidelines (see Declaration of conformity at the end of this Operating Manual).

Meaning: Component may be damaged by electrostatic discharge

This means that the PCMCIA hard disk (optional) must be protected against static discharges by securing it in place with the fasteners provided (CP32B only).

Working safely

Error messages must only be acknowledged when the cause of the error has been removed and no further danger exists.

Conversions and modifications

The amplifier system must not be modified from the design or safety engineering point of view except with our express agreement. Any modification shall exclude all liability on our part for any resulting damage.

In particular, any repair or soldering work on motherboards is prohibited (this includes changing components other than EPROMs). When exchanging complete modules, use only original parts from HBM.

Qualified personnel

means persons entrusted with the installation, assembly, commissioning and operation of the product who possess the appropriate qualifications for their function.

This instrument must only to be installed and used by qualified personnel, strictly in accordance with the technical data and the safety requirements and regulations listed below. It is also essential to comply with the legal and safety requirements for the application concerned during use. The same applies to the use of accessories.

Safety requirements

Before commissioning, find out whether the mains voltage and current type specified on the identification plate match the mains voltage and current type at the place of use, and whether the circuit being used is adequately protected.

Insert the mains plug only into a socket with a protection switch (Protection Class I). When connecting electrical devices to low voltage: connect to separated extra—low voltage (SELV) only (safety transformer in accordance with DINVDE 0551/EN60742).

Use only the mains cable supplied, which has been provided with a ferrite core.

Before you open the device, make sure it is switched off; remove the mains plug from the socket.

Never pull the mains plug from the socket by the mains cable.

Do not operate the device, if the mains cable is damaged. If an amplifier channel is to be withdrawn, close off the plug-in unit with a blank plate.

Built-in devices must only ever be operated whilst they are within the housing provided for them.

The device complies with the safety requirements of DIN EN 61010-Part 1 (VDE 0411-Part 1); Protection Class I.

To ensure adequate immunity from interference, use only *Greenline* shielded ducting (see HBM offprint "*Greenline* shielding design, EMC-compliant measuring cable; G36.35.0")

The port connections (\leq 50V) must have an insulating strength of at least 350V(AC).

16		Safety instructions

A Introduction

	_
Λ	_つ
$\overline{}$	

1 Overview of documentation

The total product documentation for the MGC*plus* amplifier system covers the following publications:

The **Operating Manual**

explains how to operate the device manually using the AB22A/AB32 display and control panel

Operation with computer or terminal

shows you how to program and measure with a terminal or computer

The manual for the MGCplus Assistant program

describes how to assign parameters and control the MGC*plus* system with the aid of a PC and explains how to acquire measurement data

This binder contains the publication *Operation with computer or terminal*.

The Operating Manual is enclosed in a second binder. Each binder is supplied in a slip—case.

1.1 How to work with this manual

This manual is designed to help you operate the MGC*plus* device quickly with the aid of a computer. It is intended just as much for inexperienced newcomers to the world of PCs as for advanced computer users.

There are several **guidelines** available to you:

- The Table of Contents at the beginning of the manual gives you an initial overview.
- The chapters are separated by handy index tabs (dividers). Each chapter starts with a list of its contents.
- The header tells you which chapter or sub–section you are currently reading.

Example:

Commands — Communication

H-13

The footer includes the name of the manual (Operation with computer or terminal, Operating Manual, etc.).

- The page numbering is linked to capital letters which correspond to the chapter headings. Each chapter begins with page 1.
- When searching for particular commands, it is best to refer to the command overviews in chapters J and K.
- A list containing all the parameters can be found in chapter I "Global tables".

Note:

We recommend that inexperienced computer users should also read chapters B to E. Experienced computer users can skip these chapters and continue reading chapter F.

1.2 Operation with computer or terminal

This manual explains how to operate your HBM device with the aid of a terminal or computer.

- If you use a terminal it is possible to interact with the MGCplus device.
- You can make all the device settings by sending an appropriate command sequence from the computer. A computer and appropriate programs can be used to automate recurring measurement runs.

In order to match the signals emitted or required by the various items of equipment (computer, plotter, printer, measuring instruments etc.), devices have to be interconnected over interfaces. To allow devices from different manufacturers to be used, interfaces are subject to norms or standards.

Depending on the interface card, you can operate the MGC*plus* system over the following standard interfaces:

```
the RS232C (V.24) the RS485 and the printer (Centronics)<sup>1)</sup> and the IEEE 488–78 interface<sup>2)</sup> (also IEC bus interface).
```

The contents of this manual relate to firmware version P2.10 of the CP12 interface card or P1.12 of the CP32 communications processor.

- 1) only with CP32 communications processor
- 2) only with CP32 communications processor and PCMCIA-GPIB board

1.2.1 Overview of the chapters and appendix

Chapter A

Introduction

General notes on using this manual. A documentation overview shows you which documents relate entirely to the MGC*plus* system.

Chapter B

Compares and contrasts the RS232C, RS485, printer and IEEE 488–78 interfaces

Explains which interfaces are built into the MGC*plus* device and tells you the main differences.

Chapter C

RS232C and RS485 interface

Describes both interfaces and how they are assigned.

Chapter D

Printer interface (Centronics)

Describes the interface and how it is assigned.

Chapter E

IEEE 488-78 interface

Describes the interface and how its address is set up.

Chapter F

Communication with the MGCplus device

Explains how you can activate the various interfaces and how you connect the MGC*plus* device to your computer.

Chapter G

Program creation

For creating your own programs, this chapter suggests some routines for programming the interfaces of IBM-PC's and compatibles.

Chapter H

HBM Interpreter commands

Important conventions on the structure and notation of commands are introduced. The chapter ends with the complete set of HBM Interpreter commands.

Chapter I

Global tables

Summary of the value tables.

Chapter J

Overview of commands in alphabetical order

To help you find your way around more quickly, there is an overview of commands in alphabetical order.

Chapter K

Overview of commands by function

You can also refer to an overview of commands arranged by function.

A-8	Introduction → Overview of documentation
MGCplus Operation with computer or terminal	
•	

Comparison of interfaces B-1

B Comparison of interfaces

B-2 Comparison of interfaces

Up to three different interfaces can be built into the MGC*plus*, depending on the interface card.

- an RS232C, a printer and Ethernet (optional²)
- an RS485 an IEEE 488-78 (optional)

However, the device can still only be operated via one interface at a time, each of them having specific advantages, but also disadvantages.

This should make it easier for you to decide on the right interface for your application. You can find out how the interfaces work in the respective chapters.

General features of interfaces:

RS232C interface (Chapter C)

- · Serial data transfer
 - Transmission speed relatively "low".
 - In the most basic case, requires a 3-wire cable for transmission in both directions (duplex or bi-directional).
 - Only one device can be connected.

RS485 interface (Chapter C)

- · Serial data transfer
 - Transmission speed same as the RS-232-C.
 - Needs a 4-wire bus.
 - Several devices can be connected to a serial port on your computer.
 - Possible distance between MGCplus and computer up to 1000 m.

Printer port¹⁾ (Chapter D)

- Parallel data transfer
 - Transmission speed "medium".
 - Requires a special 11–wire cable (Interlink) for transmission in both directions (included as part of standard supply).
 - Only one device can be connected.
- 1) only with CP32 communications processor
- 2) In preparation

Comparison of interfaces B-3

IEEE 488-78 interface⁴⁾ (optional) (Chapter E)

- Parallel data transfer
 - Transmission speed relatively "high".
 - Several devices can work in one link-up.

Data transfer is faster in the case of parallel interfaces than serial interfaces. Furthermore, a parallel interface is advantageous for communication with several devices, as a serial bus quickly reaches the limits of its capacity here.

Link		Max. distance	Interface
from	to		
Terminal / computer	Measuring device	20 m	RS232C ¹⁾
Terminal / computer	Measuring device	endless	RS232C/modem
Computer	one or more measu- ring devices	1200 m	RS 485
Computer	Measuring device	2 m	Printer ³⁾
Computer	one or more measu- ring devices	220 m	IEEE 488-78 ^{2) 4)} (Maximum distance between individual measuring devices 2 m)

Tab. 1: Transmission path length in the case of different interfaces The interfaces are described in detail in the following two chapters.

¹⁾ By interconnecting modems, you can increase the distance as you wish.

²⁾ Extenders can be used to increase distances.

³⁾ only with CP32 communications processor

⁴⁾ only with CP32 communications processor and PCMCIA-GPIB board

C RS232/RS485/422 serial interfaces

1 RS232C and RS485/422 interfaces

Both of these interfaces are known as 'serial interfaces', as data is transferred between them bit by bit. They differ from each other in the voltage level used and in their construction; the RS232C-interface is for point-to-point connections, the RS485/422 is suitable for bus operation.

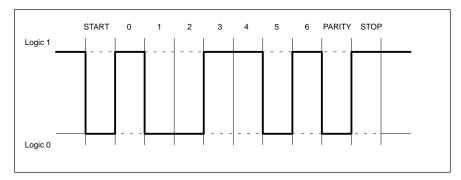


Fig. C 1: Line level of the character Y in the case of negative logic

A START bit is set before each character (data byte). Then the data bits and a STOP bit follow. As data is transferred sequentially, the transmission speed must match the reception speed.

The number of bits per second is called the baud rate. The exact baud rate of the receiver is synchronised with the START bit for each byte transferred. Then the data bits, which all have the same length, follow. Once a STOP bit is received, the receiver goes into waiting state until it is reactivated by the next START bit.

Data transfer is controlled with the software handshake X-ON (DC1) and X-OFF (DC3).

If the device is ready to transfer data, it sends the control character X-ON (DC1) via the data line. If it cannot accept any data, e.g. if the buffer is occupied, the control character X-OFF (DC3) is sent.

Characteristics of serial interfaces

Word length	8 bits
Stop bit	1
Parity	Even ²⁾
Baud rate	300 ²⁾ , 600 ³⁾ , 1200 ²⁾ , 2400 ³⁾ , 4800 ³⁾ , 9600* ²⁾ , 19 200 ²⁾ , 38400 ⁴⁾ , 57600 ⁴⁾
Software handshake	X-ON, X-OFF

^{*} Factory setting

²⁾ to be set up with DIP switches(CP12)

³⁾ to be set up with BDR command only (CP12)

 $^{^{2,3,4)}}$ to be set up with AB22A only or the command BDR (CP32)

1.1 RS485/422 bus

The bus shown here represents an extension to the RS422 interface, where, in contrast to the latter, several transmitters are allowed. Each MGC*plus* has a receiver and a transmitter and the latter can be switched on and off using SELECT commands.

You can connect up to 32 devices to this 4—wire bus. In contrast to RS232C interfaces, only **one** computer interface is necessary to connect several devices. You only need a serial converter if the computer has no RS485/422 interface (see Chapter E).

Bus cabling max. 1200 m

CP12 interface card TxD TxD-P RxD-P Pin 4 SC232/422 RxD-N Pin 9 RxD TxD-N RS485 Computer **MGC***plus* RxD-P RS232 Pin 3 **GND** TxD-P (Sub-D, RxD-N TxD-N Pin 8 9-pin) **RTS** Serial converter or TxD-P TxD-N Computer RS422 RxD-P RS485 MGCplus 1 RxD-N CP32 communications processor Pin 8 RS485 Pin 5 MGCplus 31 (Mini-DIN Pin 6 8-pin) Pin 3

Fig. C 2: The RS485/422 bus with and without a serial converter

D Parallel printer port (Centronics)

D-2	Parallel printer port (Centronics)

 $\mathsf{MGC} \textit{plus} \ \mathsf{Operation} \ \mathsf{with} \ \mathsf{computer} \ \mathsf{or} \ \mathsf{terminal}$

1 Printer port

This interface is normally used for connecting a printer to the computer system. Data is transferred parallel – i.e. in bytes (8 bits =1 byte) – and asynchronously in the handshaking procedure. It is only suitable for cable lengths of up to 2m, because of the voltage level used.

This interface was developed by the Centronics company and is to be regarded as 'quasi-standard'. As it is not subject to any Standard, both the Amphenol 36–pin connector and the 25–pin sub–D connector are permissible.

In the meantime, HBM has decided on the 25-pin sub-D connector which is more commonly available.

A special 11–pin cable¹⁾ (Interlink) is necessary for data transfer.

1) Included in standard supply of CP32 communications processor.

1.1 Handshaking procedure

All data transport on the data bus is fed via three lines (three–line handshaking procedure).

STROBEX

The MGC*plus* applies the data to the bus and communicates that is valid or available with the STROBEX signal.

ACKNX

The computer acknowledges receipt of the data with the ACKNX signal. The MGC*plus* can now send the next data item.

BUSY

If the computer is still busy processing the data received previously, this is indicated to the MGCplus with the BUSY signal. If the computer has finished processing, it signals that it is ready to receive with the ACKNX signal.



Fig. D 1: Handshaking diagram

E IEEE 488-78 parallel interface

1 IEEE 488-78 bus

The IEEE 488-78 interface was developed as a bus system for connecting computers and measuring devices. It is standardised and many manufacturers adhere to the same features.

In practice, two types of plug connector have won through: the 24–pin Amphenol connector in accordance with the US Standard and the 25–pin miniature D connector in accordance with the international Standard IEC 625.

In electrical terms, both connectors are equal, but the 24–pin version has the disadvantage of being easily confused with an RS232C connector. This is why HBM uses the 24–pin Amphenol connector on the PI12 interface card.

In the case of the PCMCIA-GPIB board (can be used with the CP32 communications processor), the 24–pin Amphenol connector is integrated into the connection cable.

This bus allows you to interconnect 15 devices in parallel to one system. Data is transferred parallel and asynchronously in the handshaking procedure.

The bus consists of 16 lines which are divided up into three groups:

- 8 data lines
- 3 handshaking lines
- 5 control lines

The bus interconnects the devices electrically. Commands and data from the device are transferred using this. The commands are split into two groups:

Device commands:

Are transferred from the controller to one or more devices where they are analysed and processed.

• Interface commands:

Are used for controlling the interface system.

If several devices are interconnected in one system, we recommend connecting them in a chain and not a star formation.

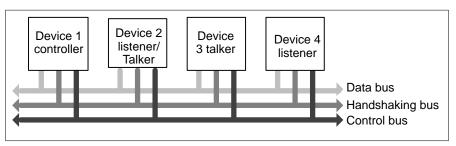


Fig. E 1: The IEEE 488-78 bus

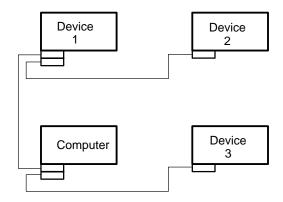


Fig. E 2: Correct wiring of devices with one another

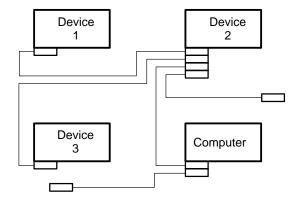


Fig. E 3: Incorrect wiring of devices with one another

1.1 Data lines

For transferring data in 8 bit lengths, the IEEE 488-78 bus uses eight data lines, DIO1 to DIO8. Interface commands are also transferred via these lines. In this case, however, at least one control line is used in addition.

1.2 Handshaking lines

All data transport on the data bus is fed via three lines (three–line handshaking procedure).

DAV

Data **V**alid signals the validity and availability of data on the databus. A signal is output by the talker to advise the listeners that the data can be accepted.

NRFD

Not Ready For Data is set by the listeners (HBM device) and advises the controller that devices are not yet ready to receive data.

NDAC

No Data Accepted indicates the status of the receiver ('listener'). They output a signal to indicate to the talker that the valid data byte has not yet been accepted. The talker cannot send another data byte until all of the listeners have accepted the byte.

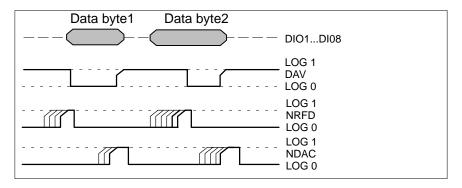


Fig. E 4: Handshaking diagram

1.3 Control lines

Control lines are necessary for the smooth flow of information via the interface:

IFC

Interface Clear puts the interface system into a precisely–defined initial status. It is sent exclusively by the controller.

SRQ

Service Request can be set by any device that is connected if it has a message for the controller. The controller can then interrupt and query the cause.

ATN

Attention can only be set by the controller and tells the devices connected whether data or interface messages are being transferred.

REN

Remote Enable switches off the front panel operation of all HBM devices that are connected.

This line must be active for remote control operation.

EOI

End Or Identify has two functions.

- It signals the end of a data transfer to the listener.
- The controller can initiate a parallel poll in conjunction with ATN.

2 Controller, talker and listener functions

Each device connected to the bus must have at least one of the following functions:

Controller

Usually a computer which activates the devices connected.

Listener

A device capable of receiving data (e.g. a printer). Several devices can be addressed simultaneously as listeners.

Talker

A device capable of transmitting data (e.g. a voltmeter). Only one talker may be active at the bus.

You can interconnect one talker (e.g. a voltmeter) and one listener (e.g. a printer) as a minimum set—up. With this, data flow is possible in one direction.

If a computer which operates as a controller is also connected to this minimum setup, measurement runs, for example, can be programmed and controlled from the computer. It is also possible to connect a number of computers which function as controllers in such a device connection setup.

However, only one computer can work as the controller. It can then hand its controller function over to another computer at any time. The devices which are connected can also be addressed with interface commands and programmed accordingly.

3 Addressing

All devices working together in a link—up must have their own separate address so that the controller can clearly distinguish between them.

As a rule, this is set on the device with a switch using numbers from 0 to 30. Each device can be addressed using its individual address.

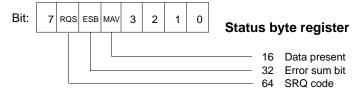
4 Service request (SRQ)

In a link—up of several measuring devices it can happen that a measurement sequence needs more time than usual. The controller waits until the end of this process. However, all other devices connected are blocked during this period. Nevertheless, in order to give other important processes the possibility of signalling, there exists the so–called 'Service Request'.

In functional terms:

A device requiring immediate processing (e.g. in the case of overtravel) sends an SRQ, upon which the controller interrupts the action currently running and determines with a serial or parallel poll which device made the SRQ. This device is then requested to release its data or give the reason for the service request. Theoretically, in an IEEE bussystem, a maximum of 14 devices can make a service request simultaneously. The controller must then find out which device is making the request by means of a serial poll.

In the case of a parallel poll, eight devices can be polled at the same time. In the case of a serial poll, as opposed to a parallel poll, the reason for the SRQ can also be transferred.


4.1 Serial Poll (SPOLL)

If a service request arises during a measurement, the computer can detect which device caused the interruption by starting a serial poll. The computer must address all the devices and query the status value. The computer can also detect the cause of the interruption in this way. A serial poll takes longer than a parallel poll.

A device must have the SR interface function in order to be able to respond to a serial poll. It must also be able to work as a talker and be able to decode the two interface commands SPE and SPD. If the controller has detected an SRQ, it must start up a serial poll routine. To do this, the devices are put into serial poll status with the command SPE. Then the devices are addressed in turn to be able to set the status byte.

If the device addressed as talker has activated the SRQ line, it must activate the data line DIO7 and release the SRQ line. The other lines, DIO1 to DIO6 and DIO8, can be used for transferring status bits. After polling the device(s), the command SPD is sent by the controller to re–establish normal status.

The status bits transferred during a serial poll have the following significance:

RQS Request Service ESB Event Status Bit MAV Message Available

4.2 Parallel poll (PPOLL)

The computer can also detect which device caused an interruption in the case of a parallel poll. However it cannot detect the cause.

The PPOLL interface function is carried out in the MGC*plus*. To do this, one of the eight DIO lines must be allocated to the devices connected. This puts the controller in a position to poll eight devices simultaneously.

In the case of a parallel poll, the controller receives no indication of the cause of the SRQ. If the controller transmits the identification command (EOI + ATN = IDY = True), the connected devices must activate the data lines allocated to them. In the case of HBM devices, activation takes place as a result of the interface command PPM.

5 Interface commands

These commands do not belong to the device commands described later. They only relate to the IEEE interface. The most important of these interface commands are listed in the following table.

These commands are to be output in ASCII code via the interface. If this does not happen automatically in the computer, an appropriate translation routine is necessary.

Universal commands	These are effective on all connected devices, if the ATN line is active.
DCL - Device clear	Puts all devices into a precisely defined on–state.
SPE - Serial Poll Enable	If a serial poll is initiated, the device addressed as talker sends its status byte.
SPD - Serial Poll Disable	Deactivates serial poll status.
Addressed commands:	These are only effective in the case of devices just addressed by the controller.
GTL - GoTo Local	Puts the addressed device back into manual status. Switches off remote control operation.
SDC - Selected Device Clear	Puts one or more devices into the defined initial status.

Addressing commands:	
TAG - talker Address group	Addresses the device as a talker.
LAG - Listener Address group	Addresses the device as a listener.
De-addressing commands:	
UNL - Unlisten UNT - Untalker	Deletes all addresses as listeners. Deletes the address of the talker last active.

6 IEEE 488interface function in the case of HBM devices

The HBM Interpreter of your device is equipped with the following interface functions:

Interface function	Abbrevia- tion	Significance
Source handshake	SH1	All functions are included.
Accepter handshake	AH1	All functions are included.
Talker	T1	All functions are included.
Listener	L1	All functions are included.
Service request (SRQ)	SR1	All functions are included.
Remote/Local	RL2	All functions are included, with the exception of the "Remote control with lock" setting.

Connector:

Cannon 24–pin connector (IEEE 488-78 standard) on the PI12 interface card or the connecting cable of the PCMCIA-GPIB board in the case of the CP32 communications processor.

Parallel poll	PP2	The configuration of the parallel poll response must take place via the HBM command PPM. After this a normal parallel poll can be executed. It is not possible to carry out a configuration using interface commands such as PPC and PPU etc.
Device Clear	DC1	All functions are included.
Device Trigger	DT1	All functions are included.
Controller	CO	No function provided.

F Communication with the MGCplus

F-2	Communication with the MGCplus

1 HBM Interpreter

The HBM Interpreter "translates" commands and associated character strings received by an interface into a code which the MGC*plus* can understand.

You can call the Interpreter over the following interfaces:

RS232C RS485 Printer and IEEE 488–78 (optional) Ethernet¹⁾ (optional)

As soon as it has been called by an interface, access over the other interfaces is disabled.

The commands and generated data are identical for all interfaces. All HBM Interpreter commands are listed in chapter H, "HBM Interpreter commands".

1) In preparation

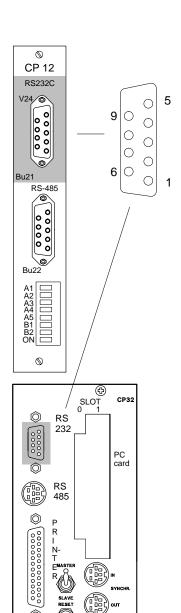
2 Activating the RS232C interface

The HBM Interpreter is activated by the following control characters:

- CTRL B (STX) computer operation without echo
- CTRL R (DC2) computer operation without echo

When one of these control characters is input, the device goes into a remote control operation status known as "Computer Control" during which nothing except its display functions can still be operated by the AB22A/AB32 operating panel.

Computer operation without echo means:


Generated data will be returned to the MGC*plus* but command characters will not.

With an RS232C interface, all generated information is output as soon as it has been fully loaded into the output buffer. You can use the following commands to deactivate the remote

DCL **or** CTRL A (SOH) or with the commands RES and RST

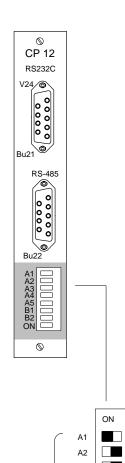
control operation status:

2.1 Interface assignment

The RS232C (V.24) and RS485 interface jacks are located on the CP12 interface card and the CP32 communications processor. The interfaces may only be used alternately.

The RS485 interface is provided for bus mode.

RS232C (V.24) interface assignment


Remotes	Assignment
1	Not used
2	RD
3	TD
4	Not used
5	RTS (internal 3kOhm at +10V) ¹⁾
6	DTR (internal 3kOhm at +10V) ¹⁾
7	Ground
8	External print enabling ²⁾ (active low, internal 10kOhm at +5V)
9	+5V
Shield	Connection to housing by connector gland

- No function on the MGC*plus* device in the case of a CP32 communications processor at +5V
- 2) Not used in the case of the CP32 communications processor

Assignment **SLOT 0**: Hard disk

Assignment SLOT 1: IEEE488 interface

2.2 Setting up the interface

Parity

You can use the eight DIP switches on the CP12 interface card to set up:

the baud rate and parity

.

Baud rate

Baud rate	B1	B2
300	ON	ON
1200	OFF	ON
9600 ¹⁾	OFF	OFF
19200	ON	OFF

Parity

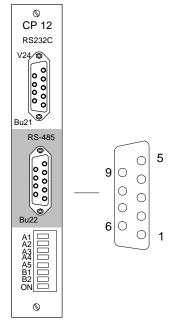
Parity	Switch position
EVEN ¹⁾	ON
NONE	OFF

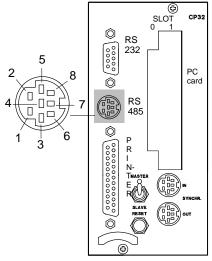
¹⁾ Factory setting

The device address has no significance for this interface (only one device is connected).

If you use a CP32 communications processor, this and other settings can be entered using the AB22A or the BDR command.

 $\label{eq:mgcplus} \mathsf{MGC} \textit{plus} \ \mathsf{operation} \ \mathsf{with} \ \mathsf{computer} \ \mathsf{or} \ \mathsf{terminal}$


3 Activating the RS485 interface


The HBM Interpreter is activated or deactivated by the same control characters as those used with the RS232C interface. Similarly, the information demanded is output as soon as it has been fully loaded into the output buffer.

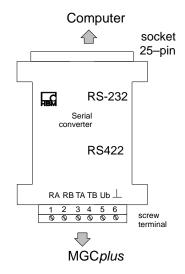
HBM devices are set up with address "1" in the factory. If several devices are operated on this bus, they must be set up with different addresses.

Particular devices are activated by using the Select command (Sxx).

3.1 Interface assignment

RS485 interface assignment

Rem	otes	Assignment
CP12	CP32	
1	_	+5V
2	4	Ground
3	6	TxD-P send data (+)
4	8	RxD-P receive data (+)
5	_	Ground
6	1,2,7	Not used
7	_	Ground
8	3	TxD-N send data (-)
9	5	RxD-N receive data (-)
Shield	Shield	Connection to housing by connector gland

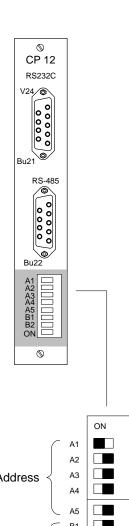

You can connect the MGC*plus* to a computer over the RS485 interface, and use it to address up to 32 devices. For this you will need a cable with a 9–pin Sub-D or 8–pin MiniDIN connector, unterminated. The unterminated cables can also be connected to the screw terminals on a Serial Converter SC232/422 (see HBM product catalogue), if the computer has no RS485/422 interface.

- Computer with 25-pin RS232 socket: connect converter directly to the computer.
- Computer with 9-pin RS232 socket:
 Fit the Kab 413 adapter plug onto the converter and connect it to the computer.

Assignment SLOT 0: Hard disk

Assignment SLOT 1: IEEE488 interface

 $\mathsf{MGC} \textit{plus}$ operation with computer or terminal


Converter assignment

Screw terminal (converter)	Wire colour (unterminated)	MGCplus	
		CP12	CP32
1	wh	8	3
2	bk	3	6
3	bu	9	5
4	rd	4	8
5	+ *	_	_
6	-*	_	_

^{*} Supply voltage (9V DC) for the serial converter.

A plug-in power pack is included among the components supplied with the converter.

3.2 Setting up the interface

Parity

ON

You can use the eight DIP switches on the CP12 interface card to set up:

the device address, the baud rate and the parity

Device address

	A1	A2	А3	A4	A5
0	OFF	OFF	OFF	OFF	OFF
1 ¹⁾	ON	OFF	OFF	OFF	OFF
2	OFF	ON	OFF	OFF	OFF
3	ON	ON	OFF	OFF	OFF
-					
31	ON	ON	ON	ON	ON

Baud rate

Baud rate	B1	B2
300	ON	ON
1200	OFF	ON
9600 ¹⁾	OFF	OFF
19200	ON	OFF

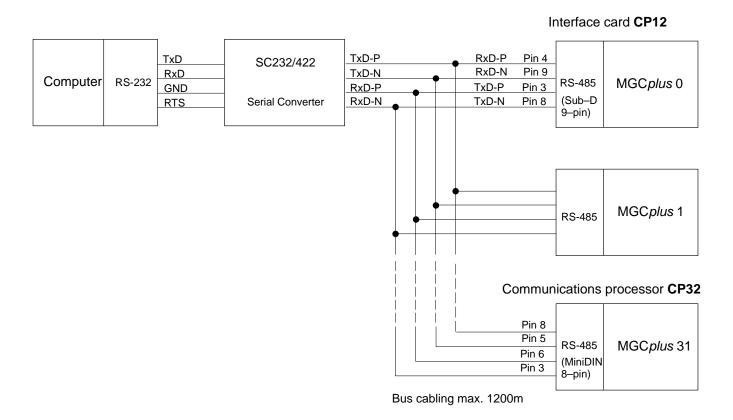
Parity

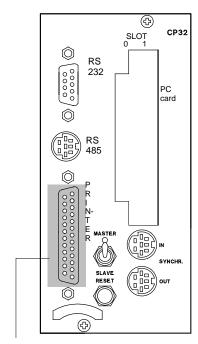
Parity	Switch position		
EVEN ¹⁾	ON		
NONE	OFF		

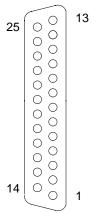
If you use a CP32 communications processor, this and other settings can be entered using the AB22A or the BDR and ADS commands.

 $\label{eq:mgcplus} \mathsf{MGC} \textit{plus} \ \mathsf{operation} \ \mathsf{with} \ \mathsf{computer} \ \mathsf{or} \ \mathsf{terminal}$

¹⁾ Factory setting




Fig. E1: RS485/422 bus with RS232C interface in the computer and Serial Converter SC232/422


4 Activating the printer interface

The HBM Interpreter is activated or deactivated by the same control characters as those used with the RS232C interface. Similarly, the information demanded is output as soon as it has been fully loaded into the output buffer.

 $\label{eq:mgcplus} \mathsf{MGC} \textit{plus} \ \mathsf{operation} \ \mathsf{with} \ \mathsf{computer} \ \mathsf{or} \ \mathsf{terminal}$

4.1 Interface assignment

Printer interface assignment

Remotes	Assignment			
1	STROBE X			
2	Data bit 0			
3	Data bit 1			
4	Data bit 2			
5	Data bit 3			
6	Data bit 4			
7	Data bit 5			
8 Data bit 6				
9	Data bit 7			
10	ACKNX			
11	BUSY			
12	PAPER END			
13	13 SELECT			
14	AUTO LINE-FEEDX			
15	ERRORX			
16	INITIALIZE PRINTERX			
17	SELECT INX			
1825	GROUND			
Shield	Connection to housing by connector gland			

Data transmission requires an 11–pin special cable (Interlink), which is included among the components supplied with the CP32 communications processor.

Assignment **SLOT 0**: Hard disk

Assignment **SLOT 1**: IEEE488 interface

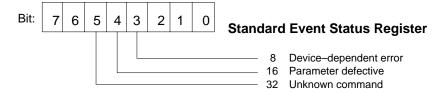
5 Activating the IEEE 488–78 interface

The interface message Remote Enable (REN, which is usually set automatically by the computer when the IEEE 488–78 interface is initialised) activates the HBM Interpreter in conjunction with the initial command.

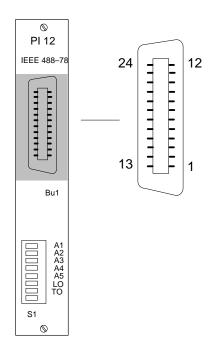
The MGC*plus* then goes into remote control mode, during which nothing except its display functions can still be operated by the AB22A/AB32 operating panel.

You may use one of the following commands to enable the operating panel again. You then exit from the HBM Interpreter.

- HBM command DCL
- Interface message DCL (Device Clear)
- Interface message GTL (Go To Local)
- Switch off the REN line


This puts the device into local status. You can now operate the MGC*plus* again using the AB22A/AB32 display and control panel. The address set up in the factory for HBM devices is 4 (see page F-17).

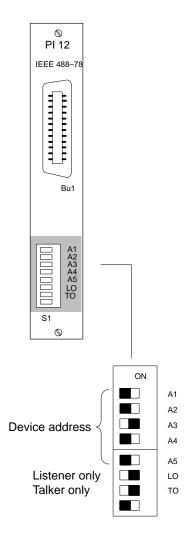
If several devices are operated on this bus, they must be set up with different addresses.


The computer must respond to the message **Data Present** with **INPUT** or **ENTER** and then accept the data. The HBM device cannot interpret the next command until all the data connected with the current command has been output.

Errors are recorded in the Standard Event Status Register and may be queried with the HBM command *ESR? .

Errors are also summarised in the Status Byte Register under an error sum bit (ESB). When the Standard Event Status Register is read out, the individual error bits and the sum bit are cleared.

5.1 Interface assignment



Assignment IEEE interface 48881)

Remotes	Assignment		
1	DIO1		
2	DIO2		
3	DIO3		
4	DIO4		
5	EOI		
6	DAV		
7	NRFD		
8	NDAC		
9	IFC		
10	SRQ		
11	ATN		
12	Shield		
13	DIO5		
14	DIO6		
15	DIO7		
16	DIO8		
17	REN		
18	Ground 6		
19	Ground 7		
20	Ground 8		
21	Ground 9		
22	Ground 10		
23	Ground 11		
24	Ground		

applies only to CP32 communications processor with PCMCIA–GPIB board (National Instruments, not included on list of components supplied)

5.2 Setting up addresses on the MGC*plus*

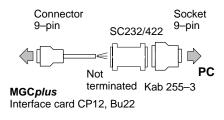
You can use the eight DIP switches on the PI12 interface card (optional) to set up:

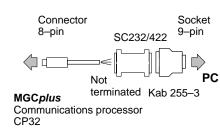
the device address and the interface configuration.

0 1 2 3 4 ¹) 5 6 7	OFF ON OFF ON OFF ON OFF ON OFF ON OFF	A2 OFF ON ON OFF OFF ON OFF OFF ON ON	A3 OFF OFF OFF ON ON ON	A4 OFF OFF OFF OFF OFF OFF	A5 OFF OFF OFF OFF OFF OFF
1 2 3 4 ¹) 5 6 7 8	ON OFF ON OFF ON OFF ON	OFF ON OFF OFF ON ON	OFF OFF ON ON ON	OFF OFF OFF OFF	OFF OFF OFF OFF
2 3 41) 5 6 7	OFF ON OFF ON OFF ON OFF	ON ON OFF OFF ON ON	OFF OFF ON ON ON ON	OFF OFF OFF	OFF OFF OFF
3 4 ¹⁾ 5 6 7 8	ON OFF ON OFF ON OFF	ON OFF OFF ON ON	OFF ON ON ON	OFF OFF OFF	OFF OFF OFF
5 6 7 8	OFF ON OFF ON OFF	OFF OFF ON	ON ON ON	OFF OFF	OFF OFF
5 6 7 8	ON OFF ON OFF	OFF ON ON	ON ON ON	OFF OFF	OFF OFF
6 7 8	OFF ON OFF	ON ON	ON ON	OFF	OFF
7 8	ON OFF	ON	ON		
8	OFF			OFF	OFF
_	_	OFF		-	011
_	ON		OFF	ON	OFF
9		OFF	OFF	ON	OFF
10	OFF	ON	OFF	ON	OFF
11	ON	ON	OFF	ON	OFF
12	OFF	OFF	ON	ON	OFF
13	ON	OFF	ON	ON	OFF
14	OFF	ON	ON	ON	OFF
15	ON	ON	ON	ON	OFF
16	OFF	OFF	OFF	OFF	ON
17	ON	OFF	OFF	OFF	ON
18	OFF	ON	OFF	OFF	ON
19	ON	ON	OFF	OFF	ON
20	OFF	OFF	ON	OFF	ON
21	ON	OFF	ON	OFF	ON
22	OFF	ON	ON	OFF	ON
23	ON	ON	ON	OFF	ON
24	OFF	OFF	OFF	ON	ON
25	ON	OFF	OFF	ON	ON
26	OFF	ON	OFF	ON	ON
27	ON	ON	OFF	ON	ON
28	OFF	OFF	ON	ON	ON
29	ON	OFF	ON	ON	ON
30	OFF	ON	ON	ON	ON
31		ı	I	ı	-

¹⁾ Factory setup

If you use a CP32 communications processor, the address can be set up using the AB22A and the command ADS.


Talker/Listener setting:


Switch	not allowed	only Listener	only Talker	Addressable ¹
LO	OFF	ON	OFF	ON
ТО	OFF	OFF	ON	ON

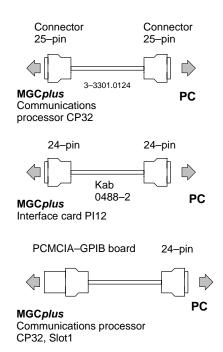
¹ Factory setting

6 Connect computer and device

Connector Socket 9-pin 9-pin Kab 255-3 MGC plus Interface card CP12, Bu21 Communications processor CP32

Connect the MGC*plus* and computer to the mains supply Leave the MGC*plus* and computer switched off at first

RS232C interface:


- Use the cable Kab 255-3 to connect the MGCplus to the computer (cable Kab 255-3 is included among the components supplied)
- Set baud rate (9600)
- Set parity (ON)
- Switch on MGCplus and computer

RS485 interface:

- Connect a cable with 9-pin connector (CP12), with 8-pin connector (CP32), unterminated, to the MGCplus and connect to the Serial Converter SC232/422; connect these to the computer directly or with the inserted adapter plug Kab 255-3 (the unterminated cable and the Serial Converter are not included in the list of components supplied)
- Set baud rate (9600)
- Set parity (ON)
- Set up address

1.MGC*plus*: bus address 1 2.MGC*plus*: bus address 2 etc.

Switch on MGCplus, computer and converter power pack

Printer interface:

- Using the cable (3–3301.0124) included among the components supplied with the CP32, connect the MGC*plus* and the computer
- Switch on MGCplus and computer

IEEE interface 488:

 Using the cable Kab 0488-2 or the PCMCIA—GPIB board cable, connect the MGC*plus* to the computer (the cable Kab 0488-2 and the board are not included with the components supplied)

Caution: Do in any case mount the supplied folding ferrites onto the connection cable!

Set up address:

1.MGC*plus*: bus address 4 2.MGC*plus*: bus address 5 etc.

Switch on MGCplus and computer

The computer and MGC*plus* are now ready to take measurements.

(Please take note of the chapter called 'Connections' in the Operating Manual).

Note:

Assignment **SLOT 0**: Hard disk

Assignment SLOT 1: IEEE488 interface

G Program creation

G-2 Program creation MGCplus Operation with computer or terminal

1 IBM PC and compatibles

In order to make getting started with program creation a little easier for you, here are the routines for programming the interfaces of IBM and compatible PCs.

- Firstly, make sure all the cables are connected
- Only when you have done this should you switch on the devices involved

G-4 Program creation

1.1 Communication via the RS232C interface

- Connect the PC to the MGCplus with the Kab255-3 cable.
- On the AB22A/AB32, set the baud rate of the RS232 interface to 9600Baud and the format to 8E1 (8 data bits, even parity, 1 stop bit).

Test program (Quick-BASIC 4.5)

Ext. triggering of a measurement run with 3 measured value lines, one measured value line pre–trigger and a total of 4 measurements. The gross signal of channels 3 and 4 and the time channel are measured and scaled.

DECLARE SUB WriteLine (w\$)

DECLARE SUB ReadOMP ()

DECLARE SUB ReadRMB ()

DECLARE SUB ReadESR ()

DIM SHARED rd\$, wert&, anzsig%, anzzln%, anzwdh%

einheit1\$ = "EUN" + CHR\$(34) + "% " + CHR\$(34) 'physic. unit % einheit2\$ = "IUN" + CHR\$(34) + "mV/V" + CHR\$(34) 'Display unitmV/V einheit3\$ = "IUN" + CHR\$(34) + "Ohm" + CHR\$(34) 'Display unit ohm

init:

OPEN "COM1:9600,N,8,1,CS,DS,CD,LF,RB256" FOR RANDOM AS #1 'Set up interface

OUT &H3FB, &H1B '8 data bits, 1 stop bit, even parity

PRINT #1, CHR\$(18) 'Call HBM Interpreter

PRINT #1, "STP" 'Terminate current measurement run

WriteLine ("SRB1") Switch on acknowledgement (default)

WriteLine ("PCS3")

'Select Channel 3 (e.g. ML10)

WriteLine ("SAD14,358")

'Ub=5V,SG full bridge low level

WriteLine ("GFV0") 'no K-Factor, basic unit mV/V

WriteLine (einheit1\$) 'Physical unit %

WriteLine ("CAP1,0,0") 'Input characteristic point 1: 0mV/V=0%

WriteLine ("CAP2,2,100") 'Input characteristic point 2: 2mV/V = 100% WriteLine ("OCP1,0,0") 'Output characteristic point 1: 0% = 0V WriteLine ("OCP2,100,10") 'Output characteristic point 2: 100% = 10V WriteLine ("CAV0,100") 'Full scale value at 100% WriteLine ("CAP0") 'Calibrate WriteLine (einheit2\$) 'Display unit mV/V WriteLine ("SFC142,955") 'Cut-off frequency 100 Hz, Bessel WriteLine ("PCS4") 'Select Channel 4 (e.g. ML35)

WriteLine ("SAD26,477")

WriteLine ("SAD26,477")

'4-line circuit, resistance 5000 ohm

WriteLine (einheit1\$)

'physic. unit %

WriteLine ("CAP1,0,0")

'Input characteristic point 1: 0 ohm = 0%

WriteLine ("CAP2,5000,100")

WriteLine ("OCP1,0,0")

WriteLine ("OCP2,100,10")

'Input characteristic point 2: 5000 ohm = 100%

Output characteristic point 1: 0% = 0V

Output characteristic point 2: 100% = 10V

WriteLine ("CAV0,100") 'Full scale value at 100%

WriteLine ("CAP0") 'Calibrate
WriteLine (einheit3\$) 'Display unit ohm

WriteLine ("SFC142,921") Cut-off frequency 0.5 Hz, Bessel

WriteLine ("PCS3,4") 'Select channels 3 and 4

WriteLine ("AIS42") 'Apply measuring signal at amplifier input WriteLine ("ICS3,110") '3 decimal places, step 1

WriteLine ("SIS3,202") 'Display gross value of Channel 3 on AB22A

WriteLine ("CAL") 'Calibrate active channels

WriteLine ("MCS3,4,17") 'Record channels 3, 4 and time channel

WriteLine ("MSS214") 'Record gross signal

WriteLine ("TRR")

WriteLine ("ICR6317") 'Sampling rate 2400 Hz (default)

WriteLine ("MBF1253") 'Measurement output format (binary, 4 byte, LSBxxxxMSB)

'Remove trigger conditions

G-6 Program creation

WriteLine ("CAP2,2,100")

WriteLine ("TRE1,3,214,6102,6005")

WriteLine ("TRD6500,151")

WriteLine ("TSV3,1,4")

anzsig% = 3

anzzln% = 3

anzwdh% = 4

ReadOMP

ReadRMB

end:

PRINT #1, "DCL"

END

SUB ReadESR

PRINT #1, "*ESR?"

LINE INPUT #1, rd\$

z\$ = INPUT\$(1, #1)

END SUB

SUB ReadOMP

PRINT "Wait for trigger!"

PRINT

'Input characteristic point 2: 2mV/V = 100%

'Start trigger event 1, channel 3, gross signal,

Ext. trigger, stat. negative

'Start trigger machine, trigger mode AND

'Start measurement (3 measured value lines,

1 measured value line pre-trigger, 4 measurements in total)

'3 signals (gross[3], gross[4], time channel)

'3 measured value lines (p1 of TSV command)

'4 repetitions (p3 of TSV command)

'Measurement ended?

'Read in measured values

'Exit HBM Interpreter

'Error routine

'Read off error status register

'Read in string incl. CR

'Input LF

'Measurement ended?

```
DO
 PRINT #1, "OMP?"
                                                  'Reading pointer status?
 LINE INPUT #1, rd$
                                                  'Read in string incl. CR
 z$ = INPUT$(1, #1)
                                                  'Input LF
 IF rd$ = "?" THEN
                                                  'Error?
   ReadESR
                                                  'Call error routine
   PRINT: PRINT "Error: "; rd$, "OMP? command"
   STOP
                                                  'Exit program
 END IF
 n\% = 0
 FOR i = 1 TO 4
                                                  'Extract number of measured value lines
   n\% = INSTR(n\% + 1, rd\$, ",")
  IF i = 3 THEN m% = n%
 NEXT i
 n\% = VAL(MID\$(rd\$, m\% + 1, n\% - m\% - 1))
LOOP UNTIL n% = anzzln% * anzwdh%
                                                  'Number of measured value lines * repetitions achieved?
END SUB
SUB ReadRMB
                                                  'Read in measured values
 rmbbef$ = "RMB?" + STR$(anzzln% * anzwdh%) + ",6409"
 PRINT #1, rmbbef$
                                                  'Read off measured values (measured value lines *
repetitions)
                                                  '# or read in ?
 z$ = INPUT$(1, #1)
 IF z$ = "?" THEN
                                                  'Error?
   z$ = INPUT$(2, #1)
                                                  'Read in CR and LF
   ReadESR
                                                  'Call error routine
   PRINT: PRINT "Error: "; rd$, "RMB? command
   STOP
                                                  'Exit program
 END IF
```

G-8 Program creation

```
z$ = INPUT$(1, #1)
                                                  'Read in 0
PRINT " Channel 3 Channel 4 Time channel"
                                                  'Header
FOR i = 1 TO anzwdh%
                                                  'Number of repetitions
FOR j = 1 TO anzzln%
                                                  'Number of measured value lines
FOR k = 1 TO anzsig%
                                                  'Total signals of all channels
 z$ = INPUT$(1, #1) + CHR$(0)
                                                  'Read in measured value status
 p\% = CVI(z\$)
 rd$ = CHR$(0) + INPUT$(3, #1)
                                                  'Read in measured value
 IF k = 1 THEN
                                                  'Channel 4
 value! = ((CVL(rd$) / 256) * 2) / 7680000
                                                  'mV/V
 PRINT USING "+##.##"; value!;
 PRINT " mV/V ";
                                                  'Channel 4
ELSEIF k = 2 THEN
  value! = ((CVL(rd$) / 256) * 5000) / 7680000
                                                  'Ohm
   PRINT USING "###.##"; value!;
   PRINT "Ohm ";
ELSE
                                                  'Time channel
   value! = ((CVL(rd$) / 256) * 416.7) / 1000000
                                                  's (1/2400Hz = 416.7\mus)
   PRINT USING "##.##"; value!;
   PRINT "s";
 END IF
NEXT k
 PRINT
NEXT j
 PRINT
NEXT i
 GET #1, , p%
                                                  'Read in 2 bytes (CRLF)
```

END SUB SUB WriteLine (w\$) 'Write routine PRINT #1, w\$ 'Output command LINE INPUT #1, rd\$ 'Read in response incl. CR z\$ = INPUT\$(1, #1) 'Input LF IF rd\$ <> "0" THEN 'Error? 'Call error routine ReadESR PRINT: PRINT "Error: "; rd\$, w\$; "command" **STOP** 'Exit program END IF **END SUB**

Explanations:

- a) The instruction OUT &H3FB, &H1B in the initialisation block is used for setting the interface to even parity.
- b) With the WriteLine () commands, a set-up command is sent to the MGC*plus* and the response to the command read in. In the event of an error message see *ESR? command this is output and the program stopped.
- c) With the commands WriteLine ("PCS3") to WriteLine("CAL"), channels 3 and 4 are parameterised and calibrated with the command WriteLine ("CAL").
- d) With the commands WriteLine ("MCS3,4,17") to WriteLine ("TRD6500,151"), the actual measurement is predefined and started with WriteLine ("TSV3,1,4").
- e) The measurement that has been started and is awaiting a trigger event can be seen as a measuring device symbol on the AB22A. In the program this message is displayed: Wait for trigger!

G-10 Program creation

f) By connecting Remote 7 (Pin 8) to the earth (Pin 1) on socket Bu2 – e.g. on the AP01 connection board – the measurement is triggered.

g) If the program runs with no errors, the following display appears on the screen, depending on the channel mismatch:

Channel 3	Channel 4	Time channel	
+2.000 mV/V	350.342Ohm	5.64s	Measured value line 1 (pre-trigger)
+2.001 mV/V	350.341Ohm	5.64s	Measured value line 2 (post-trigger)
+2.000 mV/V	350.340Ohm	5.64s	Measured value line 3 (post-trigger)
+1.999 mV/V	350.341Ohm	5.64s	2nd measurement
+2.000 mV/V	350.340Ohm	5.64s	
+2.000 mV/V	350.341Ohm	5.64s	
+2.000 mV/V	350.342Ohm	5.65s	3rd measurement
+2.000 mV/V	350.341Ohm	5.65s	
+2.000 mV/V	350.342Ohm	5.65s	
+2.001 mV/V	350.340Ohm	5.65s	4th measurement
+2.001 mV/V	350.341Ohm	5.65s	
+2.000 mV/V	350.340Ohm	5.65s	

1.2 Communication via the RS485 interface

The following test program shows a measurement session (threshold value triggering) using 2 MGC*plus* devices. Both devices must be equipped with a CP32 communications processor.

- Connect the devices with a Kab261–2 synchronisation cable. The first device must be switched to "Master" and the second one to "Slave".
- Using the synchronisation cable, connect the SYNCHR.OUT socket on the 1st device (master) to the SYNCHR.IN socket on the 2nd device (slave).
- Connect the PC to the MGCplus devices according to Chapter 6 "Connecting computer and device". The device addresses, baud rate and data format are to be set on the AB22A/AB32 in set–up mode (System, Interface, RS485...).

Test program: (Quick-BASIC 4.5)

Threshold value triggering of a measurement with 3 measured value lines, one measured value line pre—trigger and a total of 2 measurements. The gross signal of channels 3 and 4 of device no. 1 (master), the net signal of channels 2 and 3 of device no. 2 (slave) and the time channels are measured and scaled.

DECLARE SUB WriteLine (w\$)

DECLARE SUB ReadOMP ()

DECLARE SUB ReadRMB1 ()

DECLARE SUB ReadRMB2 ()

DECLARE SUB ReadESR ()

DIM SHARED rd\$, wert&, anzsig%, anzzln%, anzwdh%

einheit1\$ = "EUN" + CHR\$(34) + "% " + CHR\$(34) 'physic. unit % einheit2\$ = "EUN" + CHR\$(34) + " μ m/m" + CHR\$(34) 'physic.unit μ m/m einheit3\$ = "IUN" + CHR\$(34) + " μ m/m" + CHR\$(34) 'Display unit μ m/m einheit4\$ = "IUN" + CHR\$(34) + "mV/V" + CHR\$(34) 'Display unit mV/V'

init:

OPEN "COM1:9600,N,8,1,CS,DS,CD,LF,RB256" FOR RANDOM AS #1 Set up interface

OUT &H3FB, &H1B '8 data bits, 1 stop bit, even parity

PRINT #1, CHR\$(18); 'Call HBM Interpreter

PRINT #1, "S33" 'subsequent commands go to both devices, but only device 1 responds.

G-12 Program creation

PRINT #1, "STP" WriteLine ("SRB1") WriteLine ("S02")

device1:

PRINT #1, "S01" WriteLine ("PCS3")

WriteLine ("SAD14,358")

WriteLine ("GFV0")
WriteLine (einheit1\$)
WriteLine ("CAP1,0,0")
WriteLine ("CAP2,2,100")

WriteLine ("OCP1,0,0")

WriteLine ("OCP2,100,10")

WriteLine ("CAV0,100")

WriteLine ("CAP0")
WriteLine (einheit4\$)

WriteLine ("SFC142,955")

WriteLine ("PCS4")

WriteLine ("SAD26,477")

WriteLine (einheit1\$)

WriteLine ("CAP1,0,0")

WriteLine ("CAP2,5000,100")

WriteLine ("OCP1,0,0")
WriteLine ("OCP2,100,10")

WriteLine ("CAV0,100")

WriteLine ("CAP0")
WriteLine (einheit3\$)

WriteLine ("SFC142,921")

MGCplus Operation with computer or terminal

'Terminate current measurement run 'Switch on acknowledgement (default)

'Get response from Device 2

'Select Device 1

'Select Channel 3 (e.g. ML10)
'Ub=5V,SG full bridge low level
'no K-Factor, basic unit mV/V

'physic. unit %

'Input characteristic point 1: 0mV/V = 0%
'Input characteristic point 2: 2mV/V = 100%
'Output characteristic point 1: 0% = 0V
'Output characteristic point 2: 100% = 10V

'Full scale value at 100%

'Calibrate

'Display unit mV/V

'Cut-off frequency 100 Hz,Bessel 'Select Channel 4 (e.g. ML35) '4-line circuit, resistance 5000 ohm

'physic. unit %

'Input characteristic point 1: 0 ohm = 0%

'Input characteristic point 2: 5000 ohm = 100% 'Input output characteristic point 1: 0% = 0V 'Output characteristic point 2: 100% = 10V

'Full scale value at 100%

'Calibrate

'Display unit ohm

'Cut-off frequency 0.5 Hz, Bessel

Program creation
WriteLine ("PCS3,4")

'Select channels 3 and 4

WriteLine ("AIS42")

'Apply measuring signal at amplifier input

G-14 Program creation

WriteLine ("ICS3,110") WriteLine ("SIS3,202") WriteLine ("CAL")

WriteLine ("MCS3,4,17") WriteLine ("MSS214") WriteLine ("ICR6317") WriteLine ("MBF1253") WriteLine ("TRR")

WriteLine ("TRE1,3,214,6006,6004,1.0")

WriteLine ("TRD6500,151")

device2:

PRINT #1, "S02"
WriteLine ("PCS2")
WriteLine ("SAD14,353")
WriteLine ("GFV2")
WriteLine (einheit1\$)

WriteLine ("CAP1,0,0")
WriteLine ("CAP2,4000,100")
WriteLine ("OCP1,0,0")

WriteLine ("OCP2,100,10") WriteLine ("CAV0,100") WriteLine ("CAP0") WriteLine (einheit3\$)

WriteLine ("SFC142,955") WriteLine ("PCS3")

WriteLine ("SAD14,354") WriteLine ("GFV0") WriteLine (einheit1\$)

 $\mathsf{MGC} \textit{plus} \ \mathsf{Operation} \ \mathsf{with} \ \mathsf{computer} \ \mathsf{or} \ \mathsf{terminal}$

'3 decimal places, step 1

'Display gross value of Channel 3 on AB22A

'Calibrate active channels

'Record channels 3, 4 and time channel

'Record gross signal

'Sampling rate 2400 Hz (default)

'Measurement output format (binary, 4 byte, LSBxxxxMSB)

'Remove trigger conditions

'Start trigger event 1, Channel 3, gross signal, measurement

threshold, stat. positive, threshold value 1.0 'Start trigger machine, trigger mode AND

'Select device 2

'Select Channel 2 (e.g. ML55)

'Ub=5V,SG full bridge

'k-factor=2, basic unit μm/m

'physic. unit %

'Input characteristic point 1: 0µm/m = 0%

'Input characteristic point 2: $4000\mu m/m = 100\%$

'Output characteristic point 1: 0% = 0V'Output characteristic point 2: 100% = 10V

'Full scale value at 100%

'Calibrate

'Display unit µm/m

'Cut-off frequency 100 Hz,Bessel 'Select Channel 3 (e.g. ML55)

'Ub=5V,SG half bridge

'no K-Factor, basic unit mV/V

'physic. unit %

WriteLine ("CAP1,0,0") 'Input characteristic point 1: 0mV/V = 0%WriteLine ("CAP2,2,100") 'Input characteristic point 2: 2mV/V = 100% WriteLine ("OCP1,0,0") 'Output characteristic point 1: 0% = 0V WriteLine ("OCP2,100,10") 'Output characteristic point 2: 100% = 10V 'Full scale value at 100% WriteLine ("CAV0,100") WriteLine ("CAP0") 'Calibrate WriteLine (einheit4\$) 'Display unit mV/V WriteLine ("SFC142,955") 'Cut-off frequency 100 Hz, Bessel WriteLine ("PCS2,3") 'Select channels 2 and 3 WriteLine ("AIS42") 'Apply measuring signal at amplifier input WriteLine ("ICS1,110") '3 decimal places, step 1 WriteLine ("SIS2,203") 'Display net value of Channel 2 on AB22A WriteLine ("CAL") 'Calibrate active channels WriteLine ("MCS2,3,17") 'Record channels 2, 3 and time channel WriteLine ("MSS215") 'Record net signal WriteLine ("ICR6317") 'Sampling rate 2400 Hz (default) WriteLine ("MBF1253") 'Measurement output format (binary, 4 byte, LSBxxxxMSB) PRINT #1, "S02" 'Select device 2, trigger slave must be started first WriteLine ("TSV3,1,2") 'Start measurement (3 measured value lines, 1 measured value line pre-trigger, a total of 2 measurements) PRINT #1, "S01" 'Select device 1, trigger master WriteLine ("TSV3,1,2") 'Start measurement (3 measured value lines, 1 measured value line pre-trigger, a total of 2 measurements) anzsig% = 3 '3 signals channel X, channel Y, time channel) anzzln% = 3'3 measured value lines (p1 of TSV command) anzwdh% = 2'2 repetitions (p3 of TSV command) ReadOMP 'Measurement ended? ReadRMB1 'Read in measured values of device 1

'Select device 2

PRINT #1, "S02"

```
end:
PRINT #1, "S98"
                                              'subsequent command goes to both devices, but neither responds
PRINT #1, "DCL"
                                              'Exit HBM Interpreter
END
SUB ReadESR
                                              'Error routine
 PRINT #1, "*ESR?"
                                              'Read off error status register
 LINE INPUT #1, rd$
                                              'Read in string incl. CR
 z$ = INPUT$(1, #1)
                                              'Input LF
END SUB
SUB ReadOMP
 PRINT "Wait for trigger!"
 PRINT
DO
 PRINT #1, "OMP?"
                                              'Reading pointer status?
 LINE INPUT #1, rd$
                                              'Read in string incl. CR
 z$ = INPUT$(1, #1)
                                              'Input LF
 IF rd$ = "?" THEN
                                              'Error?
   ReadESR
                                               'Call error routine
   PRINT: PRINT "Error: "; rd$, "OMP? command"
   STOP
                                              'Exit program
 END IF
 n\% = 0
 FOR i = 1 TO 4
                                              'Extract number of measured value lines
   n\% = INSTR(n\% + 1, rd\$, ",")
   IF i = 3 THEN m% = n%
 NEXT i
 n\% = VAL(MID\$(rd\$, m\% + 1, n\% - m\% - 1))
LOOP UNTIL n% = anzzln% * anzwdh%
                                              'Number of measured value lines * repetitions achieved?
                                                                      MGCplus Operation with computer or terminal
```

G-18 Program creation

```
END SUB
SUB ReadRMB1
                                                     'Read in measured values of device 1
  rmbbef$ = "RMB?" + STR$(anzzln% * anzwdh%) + ",6409"
 PRINT #1, rmbbef$
                                                     'Read off measured values (lines * repetitions)
 z$ = INPUT$(1, #1)
                                                     '# or read in?
 IF z$ = "?" THEN
                                                     'Error?
                                                     'Read in CR and LF
   z$ = INPUT$(2, #1)
                                                     'Call error routine
   ReadESR
   PRINT: PRINT "Error: "; rd$, "RMB? command
   STOP
                                                     'Exit program
  END IF
 z$ = INPUT$(1, #1)
                                                     'Read in 0
  PRINT " Device 1:
 PRINT " Channel 3 Channel 4 Time channel"
                                                     'Header
FOR i = 1 TO anzwdh%
                                                     'Number of repetitions
FOR j = 1 TO anzzln%
                                                     'Number of measured value lines
FOR k = 1 TO anzsig%
                                                     'Total signals of all channels
 z$ = INPUT$(1, #1) + CHR$(0)
                                                     'Read in measured value status
 p\% = CVI(z\$)
  rd$ = CHR$(0) + INPUT$(3, #1)
                                                     'Read in measured value
 IF k = 1 THEN
                                                     'Channel 4
   value! = ((CVL(rd\$) / 256) * 2) / 7680000
                                                     'mV/V
   PRINT USING "+##.##"; value!;
   PRINT " mV/V ";
  ELSEIF K = 2 THEN
                                                     'Channel 4
   value! = ((CVL(rd$) / 256) * 5000) / 7680000
                                                     'Ohm
   PRINT USING "###.###"; value!;
   PRINT "Ohm ";
```

```
ELSE
                                                     'Time channel
  value! = ((CVL(rd$) / 256) * 416.7) / 1000000
                                                     's (1/2400Hz = 416.7\mus)
   PRINT USING "##.###"; value!;
   PRINT "s":
 END IF
NEXT k
 PRINT
NEXT j
 PRINT
NEXT i
 GET #1, , p%
                                                     'Read in 2 bytes (CRLF)
END SUB
SUB ReadRMB2
                                                     'Read in measured values of device 2
 rmbbef$ = "RMB?" + STR$(anzzln% * anzwdh%) + ",6409"
 PRINT #1, rmbbef$
                                                     'Read off measured values (lines * repetitions)
 z$ = INPUT$(1, #1)
                                                     '# or read in?
 IF z$ = "?" THEN
                                                     'Error?
   z$ = INPUT$(2, #1)
                                                     'Read in CR and LF
   ReadESR
                                                     'Call error routine
   PRINT: PRINT "Error: "; rd$, "RMB? command
   STOP
                                                     'Exit program
 END IF
                                                     'Read in 0
 z$ = INPUT$(1, #1)
 PRINT " Device 2:"
 PRINT " Channel 2 Channel 3 Time channel"
                                                     'Header
FOR i = 1 TO anzwdh%
                                                     'Number of repetitions
FOR j = 1 TO anzzln%
                                                     'Number of measured value lines
FOR k = 1 TO anzsig%
                                                     'Total signals of all channels
```

G-20 Program creation

```
z$ = INPUT$(1, #1) + CHR$(0)
                                                     'Read in measured value status
 p\% = CVI(z\$)
 rd$ = CHR$(0) + INPUT$(3, #1)
                                                     'Read in measured value
 IF k = 1 THEN
                                                     'Channel 3
   value! = ((CVL(rd$) / 256) * 2 / 2 * 4000) / 7680000
                                                     \mu m/m (2/2 = 2/k-factor)
   PRINT USING "+####.#"; value!;
   PRINT " um/m ";
 ELSEIF K = 2 THEN
                                                     'Channel 4
   value! = ((CVL(rd\$) / 256) * 2) / 7680000
                                                     'mV/V
   PRINT USING "+##.#"; value!;
   PRINT " mV/V ";
 ELSE
                                                     'Time channel
                                                     's (1/2400Hz = 416.7\mus)
   value! = ((CVL(rd$) / 256) * 416.7) / 1000000
   PRINT USING "##.##"; value!;
   PRINT "s";
 END IF
NEXT k
 PRINT
NEXT j
 PRINT
NEXT i
                                                     'Read in 2 bytes (CRLF)
 GET #1, , p%
END SUB
```

SUB WriteLine (w\$) 'Write routine PRINT #1, w\$ 'Output command LINE INPUT #1, rd\$ 'Read in response incl. CR z\$ = INPUT\$(1, #1) 'Input LF IF rd\$ <> "0" THEN 'Error? ReadESR 'Call error routine PRINT: PRINT "Error: "; rd\$, w\$; "command" **STOP** 'Exit program **END IF END SUB**

Explanation:

- a) The instruction OUT &H3FB, &H1B in the initialisation block is used for setting the interface to even parity.
- b) Both devices are prepared to receive subsequent commands with the command PRINT #1,"S33" with device 1 responding on behalf of both devices. With WriteLine ("S02") the response of device 2 must be retrieved.
- c) Device 1 is selected by using the command PRINT #1,"S01", with the WriteLine() commands a set–up command is sent to the MGC*plus* and the response to the command read in. In the event of an error message see *ESR? command this is output and the program stopped.
- d) With the commands WriteLine ("PCS3") to WriteLine("CAL"), channels 3 and 4 of device 1 are parameterised and calibrated with the latter.
- e) With the commands WriteLine ("MCS3,4,17") to WriteLine("TRD6500,151") a measurement run with device 1 is predefined.
- f) With the command PRINT #1,"S02" device 2 is selected. Further sequence of operations as under c)
- g) With the commands WriteLine ("PCS2") to WriteLine("CAL"), channels 2 and 3 of device 2 are parameterised and calibrated with the latter.

G-22 Program creation

h) With the commands WriteLine ("MCS2,3,17") to WriteLine ("MBF1253") the measurement run with device 2 is predefined.

- i) The commands PRINT #1,"S02" and WriteLine ("TSV3,1,2") or PRINT #1,"S01" and' WriteLine ("TSV3,1,2"), the measurement run finally starts, whereby device 2 (slave) must be started first.
- j) The measurement run which has been started and is awaiting a trigger event can be seen as a measuring device symbol on the AB22A screen. In the program this message is displayed: Wait for trigger!
- k) The measurement is triggered if the measured value of channel 3 (device 1) exceeds the threshold of 1,000 mV/V.
- I) If the program runs with no errors, the following display appears on the screen, depending on the channel mismatch:

Device 1:

Channel 3	Channel 4	Time channel	
+2.000mV/V	350.342Ohm	5.641s	'Measured value line 1 (pre-trigger)
+2.001mV/V	350.341Ohm	5.641s	'Measured value line 2 (post-trigger)
+2.000mV/V	350.340Ohm	5.642s	'Measured value line 3 (post-trigger)
+1.999mV/V	350.341Ohm	5.642s	'2nd measurement
+2.000mV/V	350.340Ohm	5.642	
+2.000mV/V	350.341Ohm	5.643s	
Device 2:			
01	Ob annual O	Time a shammal	

Channel 2	Channel 3	Time channel		
+1728.0μm/m	-1.1mV/V	5.721s	'Measured value line 1 (pre-trigger)	
+1728.1μm/m	-1.0mV/V	5.721s	'Measured value line 2 (pre-trigger)	
+1728.0μm/m	–1.1mV/V	5.722s	'Measured value line 3 (pre-trigger)	
+1728.1μm/m	-1.1mV/V	5.722s	'2nd measurement	
+1728.1μm/m	-1.1mV/V	5.723s		
+1728.0μm/m	-1.0mV/V	5.723s		
MGCplus Operation with computer or terminal				

1.3 Communication via the IEEE interface

The following test program shows a measurement session (threshold value triggering) using 2 MGC*plus* devices. Both devices must be equipped with a CP32 communications processor.

- Connect the devices with a Kab261–2 synchronisation cable. The first device must be switched to "Master" and the second one to "Slave".
- Using the synchronisation cable, connect the SYNCHR.OUT socket on the 1st device (master) to the SYNCHR.IN socket on the 2nd device (slave).

Also necessary for each device is a PCMCIA–GPIB board from the 'National Instruments' company (not part of standard supply).

- Plug the PCMCIA-GPIB board into Slot1 on the CP32.
- Connect the MGCplus devices and the PC with the GPIB connecting cables and then in set—up mode of the AB22A/AB32 (System, Interface, IEC...) set up the device addresses for both devices.

Device 1: Address 4 Device 2: Address 5

G-24 Program creation

Setting up the GPIB board in the PC with National Instruments GPIB-PC software to:

GPIB0

Primary GPIB Address 0 (other addresses are also possible)

Secondary GPIB Address none Timeout setting T10µs

EOS-byte 00H (other bytes also possible)

Terminate Read on EOS no
Set EOI with EOS on write no
Type of compare on EOS 7 bit
Set EOI w/last byte of write yes

GPIB-PC Model PC2A (or as appropriate)

Board is System Controller yes

Local Lockout on all devices no (yes is also an option)

Disable Auto Serial Polling yes
Disable Device Unaddressing yes

High-speed timing yes (no is also an option)

Interrupt jumper setting none

Base I/O Address 02E1H (or as appropriate)

DMA channel none Internal Clock Freq (in MHz) 8

 $\mathsf{MGC} \textit{plus} \ \mathsf{Operation} \ \mathsf{with} \ \mathsf{computer} \ \mathsf{or} \ \mathsf{terminal}$

The following set—up is to be made for HBM devices:

DEV4

Primary GPIB address: 04H Secondary GPIB address: none Timeout setting: T₁₀s EOS byte: 00H Terminate Read on EOS no Set EOI with EOS on write no Type of compare on EOS 7-bit Set EOI w/last byte Write no

DEV5

Primary GPIB-Address: 05H Secondary GPIB-Address: none Timeout setting: T10s EOS byte: 00H Terminate Read on EOS no Set EOI with EOS on write no Type of compare on EOS 7-bit Set EOI w/last byte Write no

More devices can be defined as required, as long as they are given another primary address. After these settings have been saved on exiting from IBCONF¹⁾, a warm start must be effected on the computer in order to activate the settings.

Note:

Other versions of the GPIB-PC software may possibly have another sequence for the parameters to be entered or questions that are phrased differently. In that case, the settings should be undertaken in a similar manner.

1) Configuration program for the GPIB board

G-26 Program creation

Test program: (Quick-BASIC 4.5)

Threshold value triggering of a measurement with 3 measured value lines, one measured value line pre—trigger and a total of 2 measurements. The gross signal of channels 3 and 4 of device no. 1 (master), the net signal of channels 2 and 3 of device no. 2 (slave) and the time channels are measured and scaled.

```
$INCLUDE: 'c:\at-gpib\qbasic\qbdecl4.bas'
DECLARE SUB IFinit ()
DECLARE SUB WriteLine (WR$, n%)
DECLARE SUB Load ()
DECLARE SUB ReadOMP ()
DECLARE SUB ReadRMB1 ()
DECLARE SUB ReadRMB2 ()
DECLARE SUB ReadESR ()
DIM SHARED i, j, BD%, dev%(2), n%, st%, anzsig%, anzzln%, anzwdh%
DIM SHARED RD$, WR$
einheit1$ = "EUN" + CHR$(34) + "% " + CHR$(34) + ";"
                                                                   'physic. unit %
einheit2$ = "EUN" + CHR$(34) + "um/m" + CHR$(34) + ";"
                                                                   'physic.unit μm/m
einheit3$ = "IUN" + CHR$(34) + "um/m" + CHR$(34) + ";"
                                                                   'Display unit µm/m
einheit4$ = "IUN" + CHR$(34) + "mV/V" + CHR$(34) + ";"
                                                                   'Display unit mV/V
DATA DEV4, DEV5
CLS
                                                                   'Clear screen
init:
  CALL IFinit
 IF i >= 0 THEN
   FOR i = 1 TO 2
      st\% = ILWRT(dev\%(i), "STP;", 4)
                                                                   'Terminate current measurement run
      CALL WriteLine("SRB1;", 5)
                                                                   'Switch on acknowledgement
   NEXT i
```

device1: i = 1

CALL WriteLine("PCS3;", 5)

CALL WriteLine("SAD14,358;", 10)

CALL WriteLine("GFV0;", 5)

CALL WriteLine(einheit1\$, 10)

CALL WriteLine("CAP1,0,0;", 9)

CALL WriteLine("CAP2,2,100;", 11)

CALL WriteLine("OCP1,0,0;", 9)

CALL WriteLine("OCP2,100,10;", 12)

CALL WriteLine("CAP0;", 5)

CALL WriteLine(einheit4\$, 10)

CALL WriteLine("SFC142,955;", 11)

CALL WriteLine("PCS4;", 5)

CALL WriteLine("SAD26,477;", 10)

CALL WriteLine(einheit1\$, 10)

CALL WriteLine("CAP1,0,0;", 9)

CALL WriteLine("CAP2,5000,100;", 14)

CALL WriteLine("OCP1,0,0;", 9)

CALL WriteLine("OCP2,100,10;", 12)

CALL WriteLine("CAP0;", 5)

CALL WriteLine(einheit3\$, 10)

CALL WriteLine("SFC142,921;", 11)

CALL WriteLine("PCS3,4;", 7)

CALL WriteLine("AIS42;", 6)

CALL WriteLine("ICS3,110;", 9)

CALL WriteLine("SIS3,202;", 9)

CALL WriteLine("CAL;", 4)

'Select Channel 3 (e.g. ML10)

'Ub=5V,SG full bridge low level

'no K-Factor, basic unit mV/V

'physic. unit %

'Input characteristic point 1: 0mV/V = 0%

'Input characteristic point 2: 2mV/V = 100%

'Output characteristic point 1: 0% = 0V

'Output characteristic point 2: 100% = 10V

'Calibrate

'Display unit mV/V

'Cut-off frequency 100 Hz, Bessel

'Select Channel 4 (e.g. ML35)

'4-line circuit, resistance 5000 ohm

'physic. unit %

'Input characteristic point 1: 0 ohm = 0%

'Input characteristic point 2: 5000 ohm = 100%

'Output characteristic point 1: 0% = 0V

'Output characteristic point 2: 100% = 10V

'Calibrate

'Display unit ohm

'Cut-off frequency 0.5 Hz, Bessel

'Select channels 3 and 4

'Apply measuring signal at amplifier input

'3 decimal places, step 1

'Display gross value of Channel 3 on AB22A

'Calibrate active channels

G-28 Program creation

'Record channels 3, 4 and time channel CALL WriteLine("MCS3,4,17;", 10) 'Record gross signal CALL WriteLine("MSS214;", 7) CALL WriteLine("ICR6317;", 8) 'Sampling rate 2400 Hz (default) CALL WriteLine("MBF1253;", 8) 'Measurement output format (binary, 4 byte, LSBxxxxMSB) CALL WriteLine("TRR;", 4) 'Remove trigger conditions CALL WriteLine("TRE1,3,214,6006,6004,1.0;", 25) 'Start trigger event 1, Channel 3, gross signal 'Measurement threshold, Stat. positive, threshold value 1.0 CALL WriteLine("TRD6500,151;", 12) 'Start trigger machine, trigger mode AND device2: i = 2CALL WriteLine("PCS2;", 5) 'Select Channel 2 (e.g. ML55) CALL WriteLine("SAD14,353;", 10) 'Ub=5V,SG full bridge 'K factor=2, basic unit μm/m CALL WriteLine("GFV2;", 5) CALL WriteLine(einheit1\$, 10) 'physic. unit % CALL WriteLine("CAP1,0,0;", 9) 'Input characteristic point 1: $0\mu m/m = 0\%$ CALL WriteLine("CAP2,4000,100;", 14) 'Input characteristic point 2: 4000μm/m = 100% CALL WriteLine("OCP1,0,0;", 9) 'Output characteristic point 1: 0% = 0V CALL WriteLine("OCP2,100,10;", 12) 'Output characteristic point 2: 100% = 10V CALL WriteLine("CAP0;", 5) 'Calibrate CALL WriteLine(einheit3\$, 10) 'Display unit µm/m CALL WriteLine("SFC142,955;", 11) 'Cut-off frequency 100 Hz, Bessel CALL WriteLine("PCS3;", 5) 'Select Channel 3 (e.g. ML55) CALL WriteLine("SAD14,354;", 10) 'Ub=5V,SG half bridge CALL WriteLine("GFV0;", 5) 'no K-Factor, basic unit mV/V CALL WriteLine(einheit1\$, 10) 'physic. unit %

'Input characteristic point 1: 0mV/V = 0%

MGCplus Operation with computer or terminal

CALL WriteLine("CAP1,0,0;", 9)

CALL WriteLine("CAP2,2,100;", 11) CALL WriteLine("OCP1,0,0;", 9) CALL WriteLine("OCP2,100,10;", 12) CALL WriteLine("CAP0;", 5) CALL WriteLine(einheit4\$, 10) CALL WriteLine("SFC142,955;", 11)	'Input characteristic point 2: 2mV/V = 100% 'Output characteristic point 1: 0% = 0V 'Output characteristic point 2: 100% = 10V 'Calibrate 'Display unit mV/V 'Cut-off frequency 100 Hz,Bessel
CALL WriteLine("PCS2,3;", 7)	'Select channels 2 and 3
CALL WriteLine("AIS42;", 6)	'Apply measuring signal at amplifier input
CALL WriteLine("ICS1,110;", 9)	'1 decimal place, step 1
CALL WriteLine("SIS2,203;", 9)	'Display net value of Channel 2 on AB22A
CALL WriteLine("CAL;", 4)	'Calibrate active channels
CALL WriteLine("MCS2,3,17;", 10)	'Record channels 2, 3 and time channel
CALL WriteLine("MSS215;", 7)	'Record net signal
CALL WriteLine("ICR6317;", 8)	'Sampling rate 2400 Hz (default)
CALL WriteLine("MBF1253;", 8)	'Measurement output format (binary, 4 byte, LSBxxxxMSB)
CALL WriteLine("TSV3,1,2;", 9)	'Start measurement in device 2 (slave)
	'3 measured value lines, 1 line pre-trigger, a total of 2 measurements
i = 1	
CALL WriteLine("TSV3,1,2;", 9)	'Start measurement in device 1 (master)
	'3 measured value lines, 1 line pre-trigger, a total of 2 measurements
anzsig% = 3	'3 signals channel X, channel Y, time channel)
anzzln% = 3	'3 measured value lines (p1 of TSV command)
anzwdh% = 2	'2 repetitions (p3 of TSV command)

G-30 Program creation

```
ReadOMP
                                                    'Measurement ended?
 ReadRMB1
                                                    'Read in measured values of device 1
 i = 2
                                                    'Select device 2
 ReadRMB2
                                                    'Read in measured values of device 2
end:
   FOR i = 1 TO 2
      st% = ILWRT(dev%(i), "SRB0;", 5)
                                                    'Switch off acknowledgement
      st% = ILWRT(dev%(i), "DCL;", 4)
                                                    'Exit HBM Interpreter
   NEXT i
 END IF
END
SUB IFinit
                                                    'Initialise IEEE interface
   BD% = ILFIND("GPIB0")
                                                    'Board address
   IF BD% < 0 THEN
      PRINT: PRINT "GPIB0' board not found, please check with IBCONF"
      PRINT "and carry out computer warm start."
     j = -1
   ELSE
      FOR i = 1 TO 2
                                                    '2 devices
        READ dev$
                                                    'Device names
        dev\%(i) = ILFIND(dev\$)
                                                    'Device address
        IF dev%(i) < 0 THEN
          PRINT: PRINT "Board" + dev$ + " not found, please check with IBCONF"
          PRINT "and carry out computer warm start."
          i = -1
        END IF
      NEXT i
   END IF
END SUB
```

```
SUB Load STATIC
                                                     'Read routine
   RD$ = SPACE$(80)
                                                    'Delete string
   st\% = ILRD(dev\%(i), RD\$, 80)
                                                    'Read in string
   IF st% AND &H8000 THEN
                                                     'GPIB error occurred?
      PRINT: PRINT "GPIB error device: "; i
                                                     'Time out error occurred?
      IF st% AND &H4000 THEN
        PRINT "Time out!"
         STOP
                                                     'Stop program
      END IF
   END IF
END SUB
SUB ReadESR STATIC
                                                    'Error routine
   st% = ILWRT(dev%(i), "*ESR?;", 6)
                                                     'Output command
   RD$ = SPACE$(10)
                                                    'Delete string
   st\% = ILRD(dev\%(i), RD\$, 10)
                                                    'Read in string
END SUB
SUB ReadOMP
                                                     'Measurement ended?
   PRINT "Wait for trigger!"
   PRINT
   i = 1
   DO
      CALL WriteLine("OMP?;", 5)
                                                    'Reading pointer status?
      n\% = 0
      FOR j = 1 TO 4
                                                    'Extract number of measured value lines
         n\% = INSTR(n\% + 1, RD\$, ",")
```

G-32 Program creation

```
IF j = 3 THEN m\% = n\%
      NEXT j
      n\% = VAL(MID\$(RD\$, m\% + 1, n\% - m\% - 1))
   LOOP UNTIL n% = anzzln% * anzwdh%
                                                     'Number of measured value lines * repetitions achieved?
END SUB
SUB ReadRMB1
                                                     'Read in measured values of device 1
   rmbbef$ = "RMB?" + STR$(anzzln% * anzwdh%) + ",6409;"
   CALL WriteLine(rmbbef$, 12)
                                                     'Read off measured values (measured value lines *
                                                     repetitions)
   PRINT " Device 1:"
                                                     'Header
   PRINT " Channel 3 Channel 4 Time channel"
                                                     'Header
   x = 4
   FOR j = 1 TO anzwdh%
                                                     'Number of repetitions
   FOR k = 1 TO anzzln%
                                                     'Number of measured value lines
   FOR I = 1 TO anzsig%
                                                     'Total signals of all channels
      z$ = CHR$(0) + MID$(RD$, x, 3)
                                                     'Read in measured value
      IF I = 1 THEN
                                                     'Channel 4
                                                     'mV/V
         value! = ((CVL(z\$) / 256) * 2) / 7680000
         PRINT USING "+##.###"; value!;
         PRINT " mV/V ";
      ELSEIF I = 2 THEN
                                                     'Channel 4
         value! = ((CVL(z$) / 256) * 5000) / 7680000
                                                     'Ohm
         PRINT USING "###.##"; value!;
         PRINT "Ohm ";
      ELSE
                                                     'Time channel
         value! = ((CVL(z\$) / 256) * 416.7) / 1000000 's (1/2400Hz = 416.7\mu s)
         PRINT USING "##.###"; value!;
MGCplus Operation with computer or terminal
```

```
PRINT "s";
     END IF
     x = x + 4
  NEXTI
  PRINT
  NEXT k
  PRINT
  NEXT j
END SUB
SUB ReadRMB2
                                                     'Read in measured values of device 2
  rmbbef$ = "RMB?" + STR$(anzzln% * anzwdh%) + ",6409;"
   CALL WriteLine(rmbbef$, 12)
                                                     'Read off measured values (measured value lines *
                                                     repetitions)
  PRINT " Device 2:"
                                                     'Header
  PRINT " Channel 2 Channel 3 Time channel"
                                                     'Header
  x = 4
  FOR j = 1 TO anzwdh%
                                                     'Number of repetitions
  FOR k = 1 TO anzzln%
                                                     'Number of measured value lines
  FOR I = 1 TO anzsig%
                                                     'Total signals of all channels
     z$ = CHR$(0) + MID$(RD$, x, 3)
                                                     'Read in measured value
     IF I = 1 THEN
                                                     'Channel 3
        value! = ((CVL(z$) / 256) * 2 / 2 * 4000) / 7680000
                                                                     '\mu m/m (2/2 = 2/k-Factor)
        PRINT USING "+###.#"; value!;
        PRINT " \mum/m ";
     ELSEIF I = 2 THEN
                                                     'Channel 4
                                                     'mV/V
        value! = ((CVL(z\$) / 256) * 2) / 7680000
        PRINT USING "+##.#"; value!;
```

G-34 Program creation

```
PRINT " mV/V ";
      ELSE
                                                                   'Time channel
                                                                   's (1/2400Hz = 416.7\mus)
        value! = ((CVL(z$) / 256) * 416.7) / 1000000
        PRINT USING "##.##"; value!;
        PRINT "s";
      END IF
     x = x + 4
   NEXT I
   PRINT
   NEXT k
   PRINT
   NEXT j
END SUB
SUB WriteLine (WR$, n%)
  st% = ILWRT(dev%(i), WR$, n%)
                                                                   'Output command
  CALL Load
                                                                   'Read in string
  IF LEFT\$(RD\$, 1) = "?" THEN
                                                                   'Error?
     CALL ReadESR
                                                                   'Call error routine
      PRINT: PRINT WR$; "command", "Error: "; RD$
      STOP
   END IF
END SUB
```

Program creation G-35

Explanations:

a) The same device designations must be used in the DATA instruction as were allocated for the appropriate addresses in the device map in the IBCONF file.

- b) By means of the startup routine, it is first of all established whether all the devices can be addressed under the device names assigned to them. If this is not the case, an error message appears. Nevertheless, should no data exchange be achieved with the devices, then this is pointed out by means of the message: "Time out!".
- c) In the FOR-NEXT loop, for each device separately, if a measurement run is in progress it is terminated and 'command acknowledgement' is switched on.
- d) In the program blocks "device1:" and "device2:", the set-up commands are sent to the MGCplus devices and the responses to the commands read in. In the event of an error message, see *ESR? command, this is output and the program stopped.
- e) With the commands WriteLine("MCS3,4,17;",10) to WriteLine("TRD6500,151;",12) the measurement run on Device 1 is predefined.
- f) With the commands WriteLine("MCS2,3,17;",10) to WriteLine("MBF1253;",8) the measurement run on Device 2 is predefined.
- g) The commands WriteLine("TSV3,1,2;",9) finally start the measurement run, whereby device 2 (slave) must be started first.
- h) The measurement run which has been started and is awaiting a trigger event can be seen as a measuring device symbol on the AB22A screen. In the program, the message "Wait for trigger!" appears.
- i) The measurement is triggered if the measured value of channel 3 (device 1) exceeds the threshold of 1,000 mV/V.
- j) If the program runs with no errors, the following display appears on the screen, depending on the channel mismatch:

G-36 Program creation

Device 1:			
Channel 3	Channel 4	Time channel	
+1.000mV/V	346.742Ohm	9.791s	'Measured value line 1 (pre-trigger)
+1.001mV/V	346.741Ohm	9.792s	'Measured value line 2 (post-trigger)
+1.000mV/V	346.740Ohm	9.792s	'Measured value line 3 (post-trigger)
+0.999mV/V	346.741Ohm	9.792s	'2nd measurement
+1.000mV/V	346.740Ohm	9.793s	
+1.000mV/V	346.741Ohm	9.793s	
Device 2:			
Channel 2	Channel 3	Time channel	
+1729.4μm/m	-1.1mV/V	9.84 5s	'Measured value line 1 (pre-trigger)
+1729.3μm/m	-1.0mV/V	9.845s	'Measured value line 2 (pre-trigger)
+1729.3μm/m	-1.1mV/V	9.845s	'Measured value line 3 (pre-trigger)
+1729.3μm/m	-1.0mV/V	9.846s	'2nd measurement
+1729.3μm/m	-1.1mV/V	9.846s	
+1729.3μm/m	-1.0mV/V	9.847s	

H HBM Interpreter commands

1 Important conventions

These conventions and general hints make it easier for you to work with HBM Interpreter commands.

Notation

All commands can be entered in lower or upper case letters.

Abbreviated commands

 Abbreviated commands consist of 3 to 5 characters and, depending on the command, of a list of parameters, which are comma-delimited.

e.g. PCS2(x)

Spaces (blanks)

 In the case of parameters, any prefixed or suffixed blank spaces are suppressed.

IEEE commands

• Standard IEEE commands start with an asterisk (*).

e.g. *ESE

Command types: - Set-up commands - Query commands

- Set—up and query commands are effective on all selected (i.e. active) channels (please see CHS and PCS commands in this respect).
- Query commands are used for reading off information they are identified by means of a question mark (?).

e.g. ADS?1302

Responses

• The standard response for all set-up commands is:

Response:

Acknowledge	Meaning
0	Command has been executed
?	Error

The response was omitted when writing the command.

Character strings

 Character strings must be enclosed in inverted commas when inputting them. Inverted commas are also used for the response.

e.g. UCC"TEST"(x)

Command terminator

when inputting:

• The command terminator is identified with (x). Permitted command terminators are:

in the case of the response:

- The end marker in the case of a response is (y). The end marker is always CRLF and in the case of the IEEE interface also <EOI>.
- Responses are only displayed for one channel.

I/O with numbers

- Handling numbers:
 - according to the Standard IEEE 488.2, all numeric parameters can be entered in floating decimal—point format, even if dealing with whole numbers or fixed decimal—point format.
 - The figures entered are converted into the number type of the particular parameter and, where necessary, rounded off.
- Numbers are always output with a fixed decimal point.

Interfaces

- In the case of serial and printer interfaces, communication via computer starts with the permissible control characters.
 - 'CTRL R' or 'CTRL B' and ends with 'CTRL A' or the command DCL.
- The software handshaking procedures 'CTRL Q' (X-ON) and 'CTRL S' (X-OFF) are supported.
- Each command generates a response in the case of serial and printer interfaces.

Behaviour on acknowledgement

You can choose whether or not a response is to be output from the MGC*plus* in the case of set—up commands (see SRB command). Query commands – identified by a '?' – always give rise to a response (output data).

In the case of set-up commands the following is output:

A '0' for error-free execution or

A '?' if an error occurs (also applies to unrecognised commands)

e.g. AIS42(x) O(y)

Activate Interpreter

 If the HBM Interpreters is activated, manual operation via the AB22A/AB32 display and control panel is blocked apart from a few exceptions (Display <=>).

Modifying parameters

 If parameters are modified which have an effect on the measurement itself, then a calibration is carried out after the entry which can last 1 to 3 secs., depending on the amplifier.

Norms and standards

 The Standard IEEE 488.2, which defines codes, formats and some general commands was on the whole considered as a possibility.

1.1 Command construction

All the commands used have a specific structure.

Basically there are two command types:

Set–up commands:

The MGC*plus* is set up via the computer.

Example: SBR1407,1351,1,1300(x)

O(y)

The current Interface has been set to 4800 baud, even parity and 1 STOP bit. The word length is always 8 bits.

Query commands:

Measured values or device settings are read off from the MGC*plus* and are displayed on the screen.

Example: SBR?1300(x)

1407,1351,1,1301(y)

The RS232 interface is set to 4800 baud, even parity

and 1 stop bit.

1.1.1 Command structure

Abbreviated commands Parameters End markers

*TTT? p1, p2, ...p n (x)

Example: *PRE?(x)

* only in the case of standard IEEE commands

TTT Abbreviated commands as alphabetical

characters (a ... z)

? only in the case of query commands

p1, p2...pn Parameter values, consisting of operating sign

(+/-) and figures (0...9) or character strings

(always in inverted commas " ").

A positive operating sign can also be omitted.

Separator

(x) Command terminator:

Line Feed (LF), Semi-colon (;), Carraige Return/Line Feed (CRLF) or Line Feed/Carriage Return (LFCR). In the event of operation via an IEEE488 interface, also activation of the EOI line on the

transfer of the last character.

CR ASCII characters

Carriage Return = decimal 13

LF ASCII characters

Line Feed = decimal 10

; ASCII characters

Semi-colon = decimal 59

If a supplementary parameter - e.g. parameter 2 - is left out, then at least a separator must be entered.

e.g. CAP1,,0(x)

If all of the supplementary parameters are omitted from a specific point, the input can be finished off using the command terminator.

These commands are always effective on all selected (active) channels (see CHS and PCS commands).

1.1.2 Data output structure (responses)

q1, q2...qn(y)

Example 1:

*IDN?(x)

HBM,MGCplus-CP32,0,P1.10(y)

Example 2:

PCS?(x)

16(y)

The responses sent by the MGC*plus* are printed *in italics* in this documentation (second line in the examples). Output values:

q1,q2...qn Numerical values with operating sign, character

strings (always in " ") or

'?' as an error message

, Separator

: Block separator

(y) End sequence (CRLF).

In the case of an IEEE interface also EOI.

1.1.3 Description of individual commands

Note:

In addition to the MGC*plus* commands, all of the MGC commands are listed (Chapter H).

In **Chapter I** you will find the global parameter list.

On the following pages, each command is listed, its structure broken down and an explanation given by means of an example.

Command

The character string which you must enter to operate the MGC*plus*.

e.g. DCL

Syntax

Command notation to which you must adhere:

e.g. SAD p1,p2(x)

Parameter

The significance of any parameters is explained:

e.g. if, in the case of the command SAD, the parameter p1=11, this means:

1V bridge excitation voltage

Effect

e.g. Explanation how the MGC*plus* is set up.

Response

The MGC*plus* responds to your input. In the case of terminal operation, you will see this response on your screen (always in the case of output commands, but only on request in the case of input commands), see also page 4.

Example

The example shows you the command input and the response from the MGC*plus*. The response is always shown in italics.

You will find the individual commands in **Chapters J and K** sorted alphabetically and listed according to function.

Related commands

All commands relating to a specific application will be executed (see also: functional list of commands). Several groups of related commands may be listed.

Communication processor

The communication processor to be used.

Amplifier type

The amplifier to be used.

MC (MC01, MC10, MC30, MC35, MC50, MC55, MC60) MLxx (ML01, ML10, ML30, ML35, ML50, ML55, ML60) MLxxB (ML01B, ML10B, ML30B, ML35B, ML50B, ML55B, ML60B)

ML801 (multi-channel amplifier) (exclusively)

ML71 (exclusively) ML77 (exclusively) ML78 (exclusively)

2 Communications behaviour

2.1 Addressing

Control characters (only in the case of RS232C / RS-485 and printer interfaces):

CTRL R: begin communication via computer (ASCII code 18 decimal)

When CTRL R is sent for the first time, there is a wait time of up to 7 seconds, depending on the device configuration, before you can send the next command (typically, this is 2-3 seconds).

CTRL B: begin communication via computer (ASCII code 2 decimal)

Once you have input one of these control characters, with a few exceptions the MGC*plus* can no longer be operated by the AB22A/AB32 display and control panel (display '<=>').

CTRL A: end communication via computer (ASCII code 01 decimal)

Once you have input this control character, the MGC*plus* can be operated by the AB22A/AB32 display and control panel again.

Device Clear

Terminate communication

Syntax: DCL (x) or in the case of RS232C / RS485 and printer interface,

control character CTRL A (ASCII code 01 decimal).

Parameter: none

Effect: remote control operation is terminated

Response: none

Note:

You cannot input another command after this one until approx. 3s have elapsed.

Related commands: ADR?, CHS, DCL, DGM, PCS, RES, *RST, Sxx

Communications processor: CP12, CP32

H-14

Address Setup

For CP32B only

Setting up the interface addresses

Syntax: ADSp1,p2(x)

Parameter:

p1	Interface
1302	RS485
1303	IEEE488
1305	Ethernet

p2	Address
0–31	for RS485 interface
0–30	for IEEE488 interface
±Ν	for Ethernet interface (in preparation)
N:	IP address (Internet protocol)

The Ethernet address (IP address) is a positive or negative integer value, which correlates to the dot notation as follows:

Conversion example

172.16.3.235 dot - long AC 10 03 E8 intel - mot. EB 03 10 AC

hex - dec -352120660

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, MBF, MCS, MRG, MSS, MVF, OMP, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?,

SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP12, CP32

ADS?

Address Setup Query For CP32B only

Output the interface addresses

Syntax: ADS?p1(x)

Parameter: p1: interface in accordance with ADS command (p1)

Response: q1(y): for address see ADS command (p2)

q1=-1, no interface card present

Communications processor: CP12, CP32

IP Address Setup

Sets the IP address for the CP32

Syntax: IPA p1(x)

Parameter: p1: IP address in point notation

Example: 172.16.3.235

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32, CP32B

IP Address Setup

Outputs the IP address for the CP32

Syntax: IPA ?(x)
Response: q1(y)

IP address in point notation

H–16 Command \rightarrow Communication

Select

Selects the MGCplus with the address xx

Syntax: S00(x) to S99(x)

Parameter: none

Effect: the Select command lets you individually address a maximum of 32

MGCplus devices interconnected on an RS422/485 bus.

There are 32 usable addresses 0...31 (set them up with switches A1-A5 on the CP12 connection board, or with the ADS command in the case of a CP32B communications processor, or with an ABxx display and control panel). In the case of the Select command, these addresses are repeated as addresses 32...63 and 64...95, i.e. the commands S00, S32, S64 correspond to MGC*plus* devices with the address 00, but have a different effect on them.

Addresses 96...99 are intended for special functions.

Address Sxx	Device with specified address Sxx		All of devi	
	Execute command	Responses	Execute command	Responses
0031	yes	yes ²⁾	no	no
3263	yes	yes ²⁾	yes	no ¹⁾
6495	yes	no ¹⁾	as for last address selected	
96	no	no	no	no
97,98	yes	no ¹⁾	yes	no ¹⁾
993)	yes	yes ²⁾	yes	yes ²⁾

¹⁾ The response to the previous command is internally stored.

²⁾ The stored response to the previous command is then output.

³⁾ Factory setting

Explanation:

S00...S31(x)

Only the device with the specified address receives commands, executes them and responds.

S32...S63(x)

All devices receive all commands and execute them. Only the device with the specified address (S32 = device 0) responds on behalf of all devices.

S64...S95(x)

The device with the specified address is set up as an additional member that receives and executes all commands but does not send a response.

S96(x)

All devices wait for Select and do not send responses.

S97 (x) or S98(x)

All devices receive and execute all commands, but do not send responses.

S99(x)

All devices on the bus are active, receive all commands and send responses (leads to collision on the bus when there are several devices). This is the default setting when devices are switched on.

Related commands: ADR?, CHS, DCL, DGM, PCS, RES, *RST, Sxx

Communications processor: CP12, CP32

RES

Reset

Execute warm restart

Syntax: RES (x)
Parameter: none
Response: none

Effect: the device executes a warm restart. Communication is terminated.

Note:

The command RES is an HBM command.

Related commands: ADR?, CHS, DCL, DGM, PCS, RES, *RST Sxx

Communications processor: CP12, CP32

*RST

Reset

Execute warm restart

Syntax: *RST (x)
Parameter: none
Response: none

Effect: the device executes a warm restart. Communication is terminated.

Note:

The command *RST is a standard IEEE command.

Related commands: ADR?, CHS, DCL, DGM, PCS, RES, *RST, Sxx

Communications processor: CP12, CP32
Amplifier type: MC, MLxx

2.2 Communication computer/MGCplus

SBR

Set Baud Rate

Set baud rate, parity and number of stop bits

Syntax: SBRp1,p2,p3,p4(x)

Parameter: p1: baud rate (see Tab.22)

p2: parity (see Tab.21)

p3: number of stop bits (1 or 2)

see 'Global Tables' (parameter list)

p4	Interface
1300	current interface
1301	RS-232
1302	RS-485

Related commands: BDR, SBR, SRB Communications processor: CP12, CP32

SBR?

Set Baud Rate Query

Output baud rate, parity and number of stop bits

Syntax: SBR?p1(x)

Parameter: p1: interface (see table 22)

Response: q1,q2,q3,q4(y)

Select Response Behavior

Select the response behaviour of the current interface

Syntax: SRB p1(x)

Parameter:

р1	Switch response output on/off
0	Switch off response output
1	Switch on response output

Effect: There are two types of command:

- a.) Query commands (e.g. MSV?) are identified by a question mark and generate output data regardless of the response behaviour selected for the interface. It is not possible to stop such data being output with a command of this kind.
- b.) Set-up commands (e.g. SRB) generate acknowledgment data (0 or ?). You can define whether such data is output with this kind of command by switching the option on or off.

After switching on the MGCplus, the following factory settings apply:

Interface	p1	Note
IEEE	0	off
RS232C	1	on
RS-485	1	on
Printer	1	on
Ethernet	1	on

The IEEE interface does not respond to set-up commands. If a response is required, the option must be switched on with this command (SRB).

Response:

Response	Meaning
0	The command is executed if SRB 1(x) has been input
?	Error if SRB 1(x) has been input
none	The command is executed
	or error if SRB 0(x) has been input
	error ii ortb o(x) rias beeri iripat

Related commands: BDR, SBR, SRB Communications processor: CP12, CP32

SRB?

Select Response Behavior Query

Output the response behaviour of the current interface

Syntax: SRB?(x)
Parameter: none

Response: q1(y)

q1	Switch response output on/off
0	off
1	on

H=24 Command \rightarrow Communication

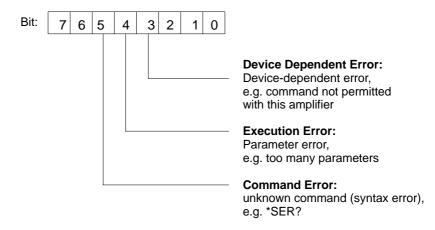
2.3 Error handling, status register

*ESR?

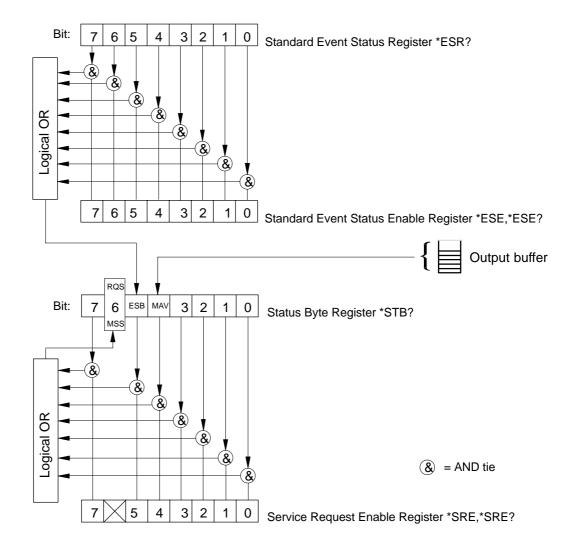
Standard Event Status Register

Output the error status register

Syntax: *ESR? (x)


Parameter: none

Effect: the contents of the Standard Event Status Registers (ESR) are


output in decimal equivalent. The Standard Event Status Register (ESR) is set when communication errors occur. Different fault causes set different bits, so that errors can be precisely identified.

Response: q1(y)

q1: 8, 16 or 32

All other bits are unassigned.

Explanations about the various registers can be found under the commands SRE, STB, ESR, ESE and in the glossary.

RQS Request Status:

Service Request has been made.

ESB Event Summary Bit:

Summary of all the Standard Event Status Register

bits released in the Standard Event

Status Enable Register.

MAV Message available:

The output buffer contains a message ready to be

retrieved.

MSS Master Summary Status

Summary of all the Status Byte Register bits released in

the Service Request Enable Register.

Related commands: *CLS, *ESE, ESR?, IST?, PPM, *PRE, *SRE, STB?, EST?

Communications processor: CP12, CP32

*ESE

Standard Event Status Enable Register

Input the ESR enable bit mask

Syntax: *ESE p1(x)

Parameter:

p1	Decimal equivalents of the 8-bit ESE register	
	0 – 255	

Effect: this command sets the ESE masks. It enables error messages to

be suppressed. An error bit is set in the Standard Event Status Register. This only causes the event summary bit (ESB) to be set in the Status Byte Register if the associated bit is set in the Standard Event Status Enable Register (see also command *ESR?). This allows you to define which causes of faults will give rise to a

Service Request.

Initial status:

255 (free), i.e. every error that occurs in the ESR gives rise to an event summary bit (ESB) in the Status Byte Register (STB).

Related commands: *CLS, *ESE, ESR?, IST?, PPM, *PRE, *SRE, STB?, EST?

Communications processor: CP12, CP32

Standard Event Status Enable Query

Output the ESR enable bit mask

Syntax: *ESE?(x)

Parameter: none

Effect: outputs the current contents of the Standard Event Status Enable

(ESE) Register.

Response: q1(y)

q1	Contents of ESE register
	0 – 255

Parallel Poll Mode

Input the parallel poll response (IEEE-488 only)

Syntax: PPM p1(x)

Parameter:

р1	Parallel poll response
0	No parallel poll response (sense = 1)
1 – 8	Parallel poll response (sense = 1)
9 – 16	Parallel poll response (sense = 0)
17	No parallel poll response (sense = 0)

Effect: specifies on which data line and at what level a device is to respond

in the event of a parallel poll. This command must be used instead

of the IEEE interface commands PPE and PPD.

Related commands: *CLS, *ESE, ESR?, IST?, PPM, *PRE, *SRE, STB?, EST?

Communications processor: CP12, CP32

 $H{=}30 \hspace{3cm} \text{Command} \rightarrow \text{Communication}$

PPM?

Parallel Poll Mode Query

Output the parallel poll response (IEEE-488 only)

Syntax: PPM?(x)

Parameter: none

Effect: the setting for the parallel poll response is output.

Response : q1(y)

q1	Parallel poll response
0	No parallel poll response (sense = 1)
1 –8	Parallel poll response (sense = 1)
9 –16	Parallel poll response (sense = 0)
17	No parallel poll response (sense = 0)

Effect: specifies the data line on which a device is to respond in the event

of a parallel poll, and the response required.

*STB?

Status Byte Register Query

Output the STB register

Syntax: *STB?(x)
Parameter: none

Effect: outputs the Status Byte Register.

The Status Byte Register contains information on whether there is a message in the output buffer, an error has occurred, or a Service

Request has been made (see also command *ESR?).

Similarly, in the event of Serial Poll over the IEEE interface, the

Status Byte Register for the addressed device is output.

Response: q1(y)

q1		Contents of STB register
16	MAV	Message available in output buffer.
32	ESB	Error sum bit set.
64	RQS	Service Request requested.

Related commands: *CLS, *ESE, ESR?, IST?, PPM, *PRE, *SRE, STB?, EST?

Communications processor: CP12, CP32

Service Request Enable Register

Input the STB enable bit mask

Syntax: *SRE p1(x)

Parameter:

p 1	Decimal equivalents of the 8-bit SRE register
	0 – 63, 128 – 191

Effect:

this command sets the SRE register bits. It allows Service Requests to the IEEE interface to be enabled or disabled.

If a bit in the Status Byte Register is set, and if the associated bit in the Service Request Enable Register is masked, this has the following effects:

- The master summary status byte (MSS) in the Status Byte Register (STB) is set.
- A Service Request (RQS) is made (see also command *ESR?).

Initial status:

191 (free), i.e. all possible status changes in the STB register give rise to an MSS bit (Master Summary Status bit) in the STB register. This leads to a Service Request.

*CLS, *ESE, ESR?, IST?, PPM, *PRE, *SRE, STB?, EST?

Related commands:

Communications processor: CP12, CP32

*SRE?

Service Request Enable Query

Output the STB enable bit mask

Syntax: *SRE?(x)

Parameter: none

Effect: outputs the current contents of the Service Request Enable (SRE)

register.

Response: q1(x)

q1	Contents of SRE register
	0 – 63, 128 – 191

*CLS

Clear Status

Clear all queues and event register

Syntax: *CLS(x)
Parameter: none

Effect: all Event Status Registers showing a sum bit in the Status Byte

Register are cleared, along with the output buffer.

Response: none Example: *CLS(x)

The ESR register, ESB bit and output buffer are cleared.

Related commands: *CLS, *ESE, ESR?, IST?, PPM, *PRE, *SRE, STB?, EST?

Communications processor: CP12, CP32

Command \rightarrow Communication H–35

*IST?

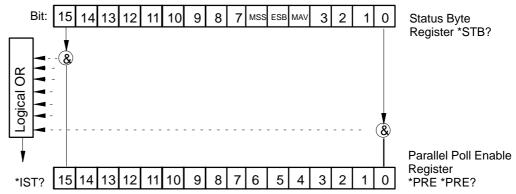
Individual Status Query

Output the response standby status in the event of parallel poll

Syntax: *IST?(x)
Parameter: none

Effect: output the response standby status in the event of parallel poll (i.e.

the sum bit from a tie of the Status Byte Register and the Parallel


Poll Enable Register).

Response: q1(y)

q1	Response standby status in the event of parallel poll	
0	The MGCplus does not respond in the event of a parallel poll query	
1	The MGC plus responds in the event of a parallel poll query	

Example: *IST?(x)1(y)

The MGC*plus* responds in the event of a parallel poll.

Related commands: *CLS, *ESE, ESR?, IST?, PPM, *PRE, *SRE, STB?, EST?

Communications processor: CP12, CP32

H=36 Command \rightarrow Communication

*PRE

Parallel Poll Enable Register

Input the PRE bit mask

Syntax: *PRE p1(x)

Parameter:

p1 Decimal equivalents of the 16-Bit PRE register
0 - 65 535

Effect: this command sets the PRE register bits. Each bit in this register is

assigned to a bit in the Status Byte Register. If a bit in the Status Byte Register and the associated bit in the Parallel Poll Enable Register are set, then in the event of a Parallel Poll query, the parallel poll response set up with the command PPM is output (see

also command *IST?).

Initial status:

65 535 (free), i.e. all possible status changes in the STB register give rise to a response in the event of a Parallel Poll query.

Example 1: *PRE0(x)

O(y)

No response in the event of parallel poll

Example 2: *PRE64(x)

O(y)

The MGCplus is required to respond in the event of Parallel Poll if

the MSS bit (Master Summary Status bit) is set.

Related commands: *CLS, *ESE, ESR?, IST?, PPM, *PRE, *SRE, STB?, EST?

Communications processor: CP12, CP32

Command \rightarrow Communication H=37

*PRE?

Parallel Poll Enable Register Query

Output the PRE bit mask Syntax: *PRE?(x) Parameter: none

Effect: outputs the current contents of the PRE register.

Response: q1(y)

q1	Decimal equivalents of the 16-Bit PRE register		
	0 – 65 535		

Example: *PRE?(x)

64(y)

Bit 6 of the PRE register is set.

The MGC*plus* responds in the event of Parallel Poll if the MSS bit (Master Summary Status bit) has been set in the Status Byte

Register.

Error Status Query

Error status output

Syntax: EST?p1(x)
Parameter: p1: 0

Cyclic query

p1	1 Error/warning status set	
p2	The content of the amplifier data has changed	

p1:

Output of the existing errors and warnings in list form, separated by commas. A maximum of 16 errors are output in a list. The most serious error is at the top of the list. The entry "additional errors" indicates that more than 16 errors are set. If the CalError bit is set in the measurement status, there is a serious error and you can

query its cause. For the error status, see table 30. see 'Global Tables' (parameter list)

Related commands: *CLS, *ESE, ESR?, IST?, PPM, *PRE, *SRE, STB?, EST?

Amplifier type: MLxxB

2.4 Identification

Amplifier Type Query

Output the amplifier type

Syntax: AMT?(x)
Parameter: none
Response: q1(y)

q1	Amplifier type
5000	ML30
5001	ML50
5002	ML01
5003	ML55
5004	ML60
5005	ML35
5006	ML10
5007	ML51
5008	ML55S6
5009	ML38

Related commands: AID?, AMT?, CBT?, DID?, *IDN?, IDS?

Amplifier type: MLxx

Amplifier Identification Query

Output the amplifier identification

Syntax: AID?(x) Parameter: none

Response: String(y): 22 characters per active amplifier

Example: AID?(x)

HBM,RD002-ML30,0,P1.30(y)

Company, device designation, serial number, version number.

Related commands: AID?, AMT?, CBT?, DID?, *IDN?, IDS?

Amplifier type: MC, ML

Command \rightarrow Communication H–39

IDS?

Identifier Settings Query

Read out parameter value identification string (global table)

Syntax: IDS?p1(x)

Parameter: p1: parameter value

Response q1(y): english language string (max. 20 characters)

Note:

The only parameter values to be defined are new additions, or those used in special versions which were not defined in the first versions of MGC*plus*.

From P4.10:67: CTRL MEAN VALUE

188: MEAN GROSS VALUE

189: MEAN NET VALUE

1150: FREQ 100kHz

others: NOT FOUND

Example: IDS?1150(x)

FREQ 100kHz(y)

Related commands: AID?, AMT?, CBT?, DID?, *IDN?, IDS?

Amplifier type: MLxx

CBT?

Connected Board Type Query

Output the connection board type

Syntax: CBT?(x)
Parameter: none

Response: q1(y): connection board

q1	Connection board type			
5500	AP01, AP03, AP04, AP07, AP11, AP12, AP13 (standard connection board)			
5501	AP05, AP06 (connection board with Zener barrier)			
5502	AP08 (charge amplifier)			
5503	AP14 (quarter bridge supplementary circuit)			
5504	AP18 (connection board with current feed for active piezoelectric transducer)			
5505	AP09 (connection board with benchmark measuring point for TC)			

Related commands: AID?, AMT?, CBT?, DID?, *IDN?, IDS?

Amplifier type: MLxx

Identification Query

Output the device identification

Syntax: *IDN?(x)
Parameter: none

Response: *String(y):* 16 characters

Example: *IDN?(x)

HBM,CP32B,0,P1.12(y)

Company, device designation, serial number, version number.

Related commands: AID?, AMT?, CBT?, DID?, *IDN?, IDS?

Communications processor: CP12, CP32

Command \rightarrow Communication H–41

DID?

Display Identification Query

Indicator identification output

Syntax: DID?(x)
Parameter: none

Response: *String(y):* display identification string (16 characters)

Example: DID?(x)

HBM,AB22A,0,P3.00(y)

Company, device designation, serial number, version number.

Related commands: AID?, AMT?, CBT?, DID?, *IDN?, IDS?

Communications processor: CP12, CP32

H-42 Command \rightarrow Communication

Select Message Language

Sett the message output

Syntax: SMLp1(x)

Parameter: p1 Language

1500 German1501 English1502 French

From firmware version P1.23, when critical internal events occur, the CP32B is able to output relevant messages on the AB22A panel, which the user has to acknowledge. You can use the SML command to set the message output language.

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP12, CP32

SML?

Select Message Language Query

Query the language setting

Syntax: SML?(x)

Response: q1 current language setting

Command \rightarrow Communication H–43

EES?

Extended Error Status

Queries the internal error status of the CP32 and the associated error texts

Syntax: EES?p1(x)

Parameter: p1 0 is there an error, a warning?

Response: q1, q2 (y)

q1 0: no error, 1: error q2 0: no warning, 1: warning

p1 1 List of all errors and warnings

Response: q1,...qn(y) Error codes (see table)

p1 ≥16000 outputs error text

Response: q1 (y)

q1: error text

Link resource conflict:

EES?16001(x) returns a binary block with the unavailable

link resources

Binary block format:

INT16 count count * {

INT8 Channel
INT8 Subchannel

INT16 Signal {

Example: EES?1(x)

1(y)

EES?16003(x)

The hard disk is full!(y)

Communications processor: CP32, CP32B

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

SNO? Serial Number Query (from P1.30)

Read out the serial number of the CP32B

Syntax: SNO?(x)
Parameter: none

Response: q1(y): serial number of the CP32B

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP12, CP32

Command \rightarrow Communication H–45

2.5 Time and date

Set Time and Date

Applies to CP32B only

Set up system time and date

Syntax: STD p1,p2(x)

Parameter:

p1	System time in the form hh:mm:ss	
p2	System date in the form dd.mm.yyyy	

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP12, CP32

STD?

Set Time and Date Query

Output the system time and date

Syntax: STD?(x)
Parameter: none
Response: q1,q2(y)

q1	System time in the form hh:mm:ss	
q2 System date in the form dd.mm.yyyy		

Example: STD?(x)

15:45:31,07.05.1997(y)

Communications processor: CP12, CP32

H-46 Command \rightarrow Communication

Configure GPIB port (from P1.30)

Set GPIB Write timeout

Syntax: CGPp1(x)

Parameter: p1: timeout as a multiple of 55ms.

0: no timeout

Note:

Compared to the other interfaces, the special feature of the GPIB Interface is that it only allows half-duplex communication. This means that once the interface has received a command, it must be switched to Send to issue a response. If the response is not answered, it will not be possible to accept and handle any further commands. So that you still have the oportunity to enter further commands without having to answer the previous response, you can use the CGP command to set up a Write timeout, after which the interface will automatically be switched back to Receive.

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP12, CP32

Configure GPIB port query (from P1.30)

Establish GPIB Write timeout

Syntax: CGP?(x)

Parameter: none

Response: q1(y): current timeout

3 Amplifier settings

Note:

Amplifier function commands only have an effect on the selected channels (see PCS command). Whenever you switch on, all channels are selected (i.e. active).

3.1 Amplifier input

AIS

Amplifier Input Signal

Select amplifier input signal

Syntax: AISp1(x)

Parameter:

p1	Input signal			
40	Internal zero signal			
41	Internal calibration signal			
42	Measurement signal			
43	Reference point (ML01, AP09)			
46	Measurement signal without excitation (AP810, AP814)			

Related commands: AIS, ASA, ASS, HPS, SAD, SAF

Amplifier type: MLxx

AIS?

Amplifier Input Signal Query

Output amplifier input signal

Syntax 1: AIS?(x)
Parameter: none

Response: q1(y): input signal

Syntax 2: AIS??(x)
Parameter: none

Response: q1, ..., qn(y): available input signals

High pass Select

Select cut-off frequency of high pass filter

Syntax: HPSp1(x)

Parameter:

p1	Filter cut-off frequencies		
1200	High pass filter off		
1201*)	0.1Hz; as from low pass: 0.2Hz Bessel, 5Hz Butterworth		
1202*)	1.0Hz; as from low pass: 2.5Hz Bessel, 5Hz Butterworth		
1203*)	1.0Hz; as from low pass: 15Hz Bessel, 40Hz Butterworth		

*) applies only to MLxxB amplifiers

Related commands: AIS, ASA, ASS, HPS, SAD, SAF

Amplifier type: MLxx, MLxxB

High pass Select Query

Output set cut-off frequency of high pass filter

Syntax 1: HPS?(x)
Parameter: none

Response: q1(y): set filter cut-off frequencies

Syntax 2: HPS??(x)

Parameter: none

Response: $q1, \dots, qn(y)$: available filter cut-off frequencies

Sensor Adaption

Select transducer adaptation

Syntax: SADp1,p2(x)

Parameter:

p1	Excitation voltage (or current) as per tables 2 to 5	
p2 Transducer type as per table 16		

Related commands: AIS, ASA, ASS, HPS, SAD, SAF

Amplifier type: MLxx

Sensor Adaption Query

Output set transducer adaptation

Syntax 1: SAD?(x)
Parameter: none
Response: q1,q2(y)

q1	Excitation voltage (or current) as per tables 2 to 5	
q2	Transducer type as per table 16	

Syntax 2: SAD??(x)

Parameter: none

Response: q1,...,qn(y): possible excitation voltage or similar as per Tab.2–5

Syntax 3: SAD?,?(x)

Response: q1..qn(y): possible transducer type as per Tab.16

Sensor Adaptation Frequency

Transducer frequency adaptation

Syntax: SAF(x)

Parameter:

p1	Glitch Filter	IDS_ON/IDS_OFF	eliminates pulse widths < 1.6 ms
p2	Frequency quad- rupling	IDS_ON/IDS_OFF	evaluates each edge
р3	F2	IDS_ON/IDS_OFF	F2 signal is evaluated
p4	zero index input	IDS_ON/IDS_OFF	enabled hardware input
р5	Transducer error input	IDS_ON/IDS_OFF	enabled hardware input
p6	Switching output 1	IDS_OFF IDS_FREQ1 (232) IDS_PULSE (235)	returns Limit1 at Limit1 returns each activated edge at Limit1 returns F1 count signal (1.6 ms) at Limit1
р7	Switching output 2	IDS_FREQ2 (233) IDS_FREQ2 (233) IDS_DIRECTION(234)	returns F2 at Limit2 returns F2 at Limit2 returns direction of rotation at Limit2 (high = pos.)

Effect:

Glitch Filter

Input signals with pulse widths < 1.6 ms are not evaluated.

Factory settings: Off.

Frequency quadrupling

All edges adjacent to F1 and F2 are evaluated. If F2 is not connected, there is frequency doubling.

Factory settings: Off.

F2 evaluation

Activates detection and evaluation of direction of rotation. Factory settings: On.

Zero index input

Hardware input for the zero index signal. Relevant for incremental transducers. In count mode, the zero index signal (falling slope) sets the counter reading to 0.

Factory settings: Off.

Transducer error input

Hardware input for transducer error detection. Low active. Factory settings: Off.

Switching output 1

Off

Normal limit value functionality at switching output Limit1 (factory settings).

F1 at Limit1:

F1 signal is applied to switching output Limit1.

F1 count signal at Limit1: F1 count signal (1.6 ms pulse width) applied to switching output Limit1.

Switching output 2

Off:

Normal limit value functionality at switching output Limit2 (factory settings).

F2 at Limit2

F2 signal is applied to switching output Limit2.

Direction of rotation signal at Limit2: high: positive direction of rotation, low: negative direction of rotation.

AIS, ASA, ASS, HPS, SAD, SAF

Amplifier type: MLxx

Related commands:

DSD

Data Set Device

Input of amplifier settings in the case of ML amplifiers

Syntax: DSDp1(x)

Parameter: p1: amplifier settings (as a hexadecimal string "___")

Effect: this command is used for reading all of the amplifier settings which

were saved with DSD? .

In the case of multi-channel amplifiers (e.g. ML801), the subchannel number must be included in the DSD string.

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, EES?, DSD, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP12, CP32

DSD?

Data Set Device Query

Output of amplifier settings in the case of ML amplifiers

Syntax: DSD?p1,p2(x)

Parameter: p1: channel number of amplifier (1...16)

p2: subchannel number (default 1)

Response: "___hexadecimal string___"(y): approx. 178 bytes=356 characters)

Effect: this command is used to save all of the amplifier settings.

Example: DSD?10,7(x)

"0a0401...."(y)

Output amplifier settings from channel 10, subchannel 7

3.2 Filter setting

Signal Filtering Characteristic

Input cut-off frequency and filter characteristics

Syntax: SFCp1,p2(x)

Parameter:

p1	Filter characteristics as per table 11
p2	Cut-off frequency as per table 17

Related commands: AFS, ASF, SFC

Amplifier type: MLxx

SFC?

Sensor Filtering Query

Output cut-off frequency and filter characteristics

Syntax 1: SFC?(x)
Parameter: none
Response: q1,q2(y)

q1	Filter characteristics
q2	Cut-off frequency

Syntax 2: SFC??(x)

Parameter: none

Response: q1,q2(y): possible filter characteristics

Syntax 3: SFC?141,?(x)

Response: q1,...,qn(y): available Butterworth frequencies

Syntax 4: SFC?142,?(x)

Response: q1,...,qn(y): available Bessel frequencies

In the following tables you will find the available cut-off frequencies with Bessel or Butterworth characteristics depending on the particular amplifier.

p1=141			Butte	erworth fred	quency (Hz))	
p2	ML01	ML10	ML30	ML35	ML38	ML50/51/55	ML60
927					1.000		
930					1.500		
932					2.500		
933					3.000		
935	5.000	5.000	5.000	5.000	5.000		5.000
936					6.000		
940					9.000		
941	10.00	10.00	10.00	10.00	10.00	10.00	10.00
945	20.00	20.00	20.00	15.00		20.00	20.00
948	40.00	40.00	40.00			40.00	40.00
953	80.00	80.00	80.00			80.00	80.00
958			200.0				
959	250.0	250.0				250.0	250.0
962	500.0	500.0				500.0	500.0
969	1000.	1000.				1000.	1000.
972						1500.	
973	2000.	2000.					2000.
974	2400.						

p1=142				Bessel freq	uency (Hz)		
p2	ML01	ML10	ML30	ML35	ML38	ML50/51/55	ML60
906					0.030		
908	0.050	0.050	0.050	0.050	0.050	0.050	0.050
914	0.100	0.100	0.100	0.100	0.100	0.100	0.100
917	0.200	0.200	0.200	0.200	0.200	0.200	0.200
921	0.500	0.500	0.500	0.500	0.500	0.500	0.500
926					0.900		
929	1.250	1.250	1.250	1.250		1.250	1.250
930					1.500		
932	2.500	2.500	2.500	2.500		2.500	2.500
935	5.000	5.000	5.000	5.000		5.000	5.000
941	10.00	10.00	10.00	10.00		10.00	10.00
945	20.00	20.00	20.00	15.00		20.00	20.00
948	40.00	40.00	40.00			40.00	40.00
955	100.0	100.0	100.0			100.0	100.0
958	200.0	200.0				200.0	200.0
961	400.0	400.0				400.0	400.0
968						900.0	900.0
969		1000					
970	1100						
1100		10000					
1140		50000					
1150*		100000					

^{*} Special version (only for SG full bridges)

SPS

Subchannel Programming Select

Subchannel selection mask

Syntax: SPS p1,..., p128 (x)

Parameter: p1,...,p1281,...128 subchannel selection

SPS 0 (x) selects all the subchannels of a module

This command sets the subchannel selection mask for display. The

modules to be set should already be selected with PCS.

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, EES?, DSD, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32, CP32B

SPS?

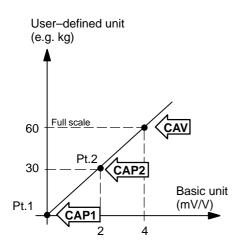
Subchannel Programming Select Query

Subchannel selection mask output

Syntax: SPS?p1(x)

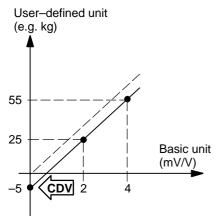
Parameter: p1: output mode

0 existing subchannels1 selected subchannels

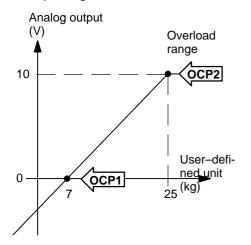

Response: *q1,...,q128*

List of existing or selected ML channels

3.3 Calibration


Define two points to determine the input characteristic. Each point is specified by the input signal in the basic unit (mV/V) and in the desired user–defined unit (e.g. kg).

Example for a sequence of calibration commands:


EUN"kg"	Specify user-defined unit, e.g. kg
CAP1,0,0	Enter two points for the calibration straight line
CAP2,2,30	Point 1: 0kg at 0mV/V
, ,	Point 2: 30kg at 2mV/V
	Specify full scale
CAV0,60	The measuring range is to include 60 kg (the first parameter is insignificant)
CAP0	Activate calibration values in the amplifier
	Response: 0 Characteristic has been set
	Response: ? Amplifier range has been exceeded (upper/lower limit)

Use the CDV command for shifting the input characteristic's zero point (in user-defined unit). A positive parameter shifts the zero point into the negative range, a negative one into the positive range.

CDV5	Point 1: -5kg at 0mV/V

A characteristic can be assigned to the input and also to the output. Define two points to determine the output characteristic. Each point is specified by the input signal in the user-defined unit (e.g. kg) and the output signal in Volt.

OCP1,7,0	7kg are to yield 0V at the output
OCP2,25,10	25kg are to yield 10V at the output
CAP0	Activate calibration values in the amplifier
	Response: 0 Characteristic has been set
	Response: ? Amplifier range has been exceeded (upper/lower limit)

Special characteristics of the ML01B, ML35B amplifier modules:

The ML01B and ML35B amplifier modules enable a thermocouple or resistance thermometer linearization to be activated. If active, the resulting basic unit always is "°C".

If "°C ", "°F " or "K " have been selected as the user-defined unit, you will obtain a fix input calibration straight line for the appropriate conversion. All input calibration point inputs will be ignored!

The characteristic can be shifted (CDV) and the analog output can be scaled (OCP) as described.

Autocal

Switch on/off cyclical autocalibration

Syntax: ACLp1(x)

Parameter:

p1	Autocalibration
0	Off
1	On

Related commands: ACL, CAL, CAN, CAP, CAV CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MC, MLxx

ACL?

Autocal Query

Output status of cyclical autocalibration

Syntax 1: ACL?(x)
Parameter: none

Response: q1(y): current status of cyclical autocalibration

Syntax 2: ACL??(x)

Parameter: none

Response: q1, q2(y): possible stati of cyclical autocalibration

CAN

Cal Not

Suppression of cyclical autocalibration

Syntax: CANp1(x)

Parameter:

р1	Suppression of cyclical autocalibration
0	NO
1	YES

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MLxx

CAN?

Cal Not Query

Output suppression of cyclical autocalibration

Syntax 1: CAN?(x)
Parameter: none

Response: q1(y): suppression of cyclical autocalibration

Syntax 2: CAL??(x)
Parameter: none
Response: q1,q2(y)

Possible stati for the suppression of cyclical autocalibration

CAL

Calibrate

Calibrate amplifier

Syntax: CAL(x)
Parameter: none

Note:

With all active amplifiers, this command triggers calibration that

freezes measurement value updating for 1...3s.

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MC, MLxx

CAV

Calibration value

Enter full scale

Syntax: CAVp1, p2(x)
Parameters: p1: insignificant

p2: full scale in user-defined unit

Effect: Use the CAV command for entering the full scale of the input cha-

racteristic. (Afterwards the CAP0 command must be transmitted!).

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MLxxB

Shunt Calibration Switch shunt on/off

Only with XM001

Syntax: SCLp1(x)

Parameter:

p1	Switching on shunt
0	Off
1	On

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MC, MLxx

SCL?

Shunt Calibration Query

Output status of shunt switch setting

Syntax 1: SCL?(x)
Parameter: none

Response: q1(y):current status of shunt switch setting

Syntax 2: SCL??(x)

Parameter: none

Response: q1,q2(y): possible stati of shunt switch setting

Calibration Dead Load Value

Enter zero displacement of input (transducer) characteristic

Syntax: CDVp1,p2(x)

Parameter: p1: zero point value in displayed units

without p1: current measured value is set to p2

No parameters:

current measured value is set to the target value entered with CDT

Effect: additional zero point value which shifts the total

characteristic curve.

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MLxx

CDV?

Calibration Dead Load Value

Output zero displacement of input characteristic

Syntax 1: CDV?(x)

Parameter: none

Response: q1(y): current zero point value in displayed units

Syntax 2: CDV??(x)

Parameter: none

Response: q1,q2(y): permissible range for zero point value in displayed units

Calibration Dead Load Target

Enter target value for zero displacement of input characteristic (for CDV command)

Syntax: CDTp1(x)

Parameter: p1: target value should be set to that of current measured value

Effect: value in displayed units, to which the amplifier is to be set using a

remote control contact (RIF command) or the command CDV (no

parameters). Factory setting 0.

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MLxx

Calibration Dead Load Target Query

Output target value for zero displacement of input characteristic (for CDV command)

Syntax: CDT?(x)
Parameter: none

Response: q1(y): target value to which the current measured value is set

Calibration Point

Input of transducer (input) characteristic points

Syntax: CAPp1,p2,p3(x)

Parameter: p1: point number (1 or 2)

p2: measurement signal (unit depending on amplifier), if no input

value, then the current measured value is adopted

p3: display value

Special case: p1= 0: calibration values are active in the amplifier

Effect: the input characteristic curve is defined by 2 points. The input

signal and associated display value must be entered for each point.

Example ML55: 0mV/V=0%; 2mV/V=100%

With the input CAP0(x), the calibration is executed. If the values lie within the permitted range, they are accepted into the calibration

table and if not, an error message appears.

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MLxx

Calibration Point Query

Output of input (transducer) characteristic points

Syntax: CAP? < p1 > (x)

Parameter: p1: number of point (1 or 2)

Response: q1,q2,q3(y)

q1: point number (1 or 2)

q2: measurement signal (unit depends on amplifier)

q3: value in displayed units

Output Calibration Point

Define analogue output characteristic points (setting up of analogue output)

Syntax: OCPp1,p2,p3(x)

Parameter: p1: point number (1 or 2)

p2: value in displayed units

p3: voltage at analogue output

Effect: the output characteristic is defined by 2 points. The output signal

and associated display value must be entered for each point.

Example: 0%=0V; 100%=10V

With the input CAP0(x), the calibration is executed. If the values lie within the permitted range, they are accepted into the calibration

table and if not, an error message appears.

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MLxx

Output Calibration Point Query

Output analogue output characteristic points (setting up of analogue output)

Syntax: OCP?p1(x)

Parameter: p1: number of point (1 or 2)

Response: q1,q2,q3(y)

q1: point number (1 or 2)q2: value in displayed units

q3: voltage value

Indication Scaling Values Query

Output display scaling values

Syntax: ISV?(x)
Parameter: none
Response: q1,q2(y)

q1: display zero point

q2: input range

Both values are output in floating format.

Displayed measured value = (raw binary value/7680000) x input

range minus display zero point

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MLxx

MVA?

Measuring Value Absolute Query

Output absolute measured value (gross)

Syntax: MVA?(x)
Parameter: none
Response: q1(y)

Current gross value (unit depends on amplifier), output in floating

format

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MLxx

EUN

Engineering Unit

Input of physical unit

Syntax: EUNp1(x)

Parameter: p1: "Unit" (max. 4 characters)

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MLxx

EUN?

Engineering Unit Query

Output of physical unit

Syntax: EUN?(x)
Parameter: none

Response: q1(y): "Unit"

IUN

Indication Unit

Input of unit to be displayed

Syntax: IUNp1(x)

Parameter: p1: "Unit" (max. 4 characters)

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MLxx

Indication Unit Query

Output of unit displayed

Syntax: IUN?p1(x)

Parameter:

p1	Unit
0	3 possible units
1	Unit (from EUN or IUN)

Response: q1(y): "3 possible units" or "Unit (from EUN or IUN)"

GFV

Gauge Factor Value

Input K-Factor

Syntax: GFVp1(x)
Parameter: p1: K-Factor

p1=0: No K-Factor

Related commands: ACL, CAL, CAN, CAP, CAV, CDT, CDV, EUN, GFV, ISV?, IUN,

MVA?, OCP, SCL

Amplifier type: MC, MLxx

GFV?

Gauge Factor Value Query

Read off K-Factor

Syntax: GFV?(x)

Parameter: none

Response: q1(y): K-Factor

3.4 Tare

TAV

Tare value

Enter tare value

Syntax: TAVp1,p2(x)

Parameter: p1: tare value in displayed units (floating)

without p1: current measured value is set to p2

without parameters:

Current measured value is set to value entered with TAT. The input is possible from -109% to +109% of the input range. The tare value

should only be set up after calibration.

Effect: tare value which displaces the total characteristic curve

Related commands: TAR, TAT, TAV

Amplifier type: MLxx

TAV?

Tara Value Query

Output tare value

Syntax 1: TAV?(x)
Parameter: none

Response: q1(y): tare value in displayed units

Syntax 2: TAV??(x)
Parameter: none
Response: q1,q2(y)

Input range for tare value –109% to +109% of end value (floating)

Tare target

Enter target tare value (for TAV command)

Syntax: TATp1(x)

Parameter: p1: target value to which the current measured value is to be set

(floating)

Effect: value in displayed units, to which the amplifier is to be set using a

remote control contact (RIF command) or the command TAV (no

parameters). Factory setting 0.

TIP: always set CDT and TAT to the same value.

Related commands: TAR, TAT, TAV

Amplifier type: MLxx

TAT?

Tare Target Query

Output target tare value (for TAV command)

Syntax: TAT?(x)
Parameter: none

Response: q1(y): target value, to which the current measured value is set

(floating).

3.5 Analogue outputs

OSP

Output Signal Path

Define signal source (gross, net, peak values) for analogue outputs

Syntax: OSPp1,p2(x)

Parameter: p1: analogue output (1 or 2)

p2: signal (as per Tab.14) valid only for MLxxB see 'Global Tables' 'Global Tables' (parameter list)

Related commands: OPS, OSP, SAO

Amplifier type: MLxx

OSP?

Output Signal Path Query

Output signal sources of analogue outputs

Syntax 1: OSP?p1(x)

Parameter: p1: analogue output (1 or 2)

Response: q1,q2(y)

q1: analogue output (1 or 2)

q2: signal as per Tab.14

Syntax 2: OSP??(x)

Parameter: none

Response: q1,q2(y): available analogue outputs (1 and 2)

Syntax 3: OSP?,?(x)

Parameter: none

Response: q1,...,qn(y): possible settings (see Tab.14)

see 'Global Tables' (parameter list)

See OCP and OCP? commands

SAO

Set Analogue Output

Define signal source (user-defined) for the analogue outputs

Syntax 1: SAOp1,p2(x)

Parameter: p1: analogue output (1 or 2)

p2: voltage of -10,000 to +10,000 (see Tab. 14)

see Global Tables (parameter list)

Related commands: OPS, OSP, SAO

Amplifier type: MLxxB

3.6 Peak value store

PSM

Peak Store Mode

Set up peak value store

Syntax: PSMp1,p2,p3(x)

Parameter: p1: peak value store (1 or 2)

p2	Input signal, mode
180	Minimum gross
181	Minimum net
182	Maximum gross
183	Maximum net

p3: time constant of the envelope curve function in seconds,

set-up range from 0.01 to 10001; 0 means OFF.

Related commands: CPV, HPV, MPV, MVC, PCM, PSM, PVS

Amplifier type: MLxx

PSM?

Peak Store Mode Query

Output peak value store settings

Syntax 1: PSM?p1(x)

Parameter: p1: peak value store (1 or 2)

Response: q1,q2,q3(y)

q1: peak value store 1 or 2

q2: input signal, mode

q3: time constant of the envelope curve function in seconds

Syntax 2: PSM??(x)

Parameter: none

Response: q1,q2(y): available peak value stores (1 and 2)

Syntax 3: PSM?,?(x)

Parameter: none

Response: q1...q4(y): possible input signals, modes (see PSM command)

Syntax 4: PSM?,,?(x)

Parameter: none

Response: q1,q2(y)

possible range of envelope curve decay time (0,0,10001.0)

Clear Peak Value

Clear peak value store

Syntax: CPVp1(x)

Parameter:

p1	Clears
with- out	Peak value stores 1 and 2
1	Peak value store 1
2	Peak value store 2

Note:

On clearing, peak value stores are set to the current measured

value

Related commands: CPV, HPV, MPV, MVC, PCM, PSM, PVS

Amplifier type: MC, MLxx

Clear Peak Value Query

Which peak value stores can be cleared

Syntax: CPV??(x)

Parameter: none

Response: q1,q2(y): available peak value stores (1 and 2)

Mode Peak Value

Enter peak value store mode

Syntax: MPVp1(x)

Parameter: p1=1: peak value store 1 or peak value store 2

p2=1: current/instantaneous value

p2=0: peak value (Default)

Whenever you switch on, the mode is set to "peak value".

Related commands: CPV, HPV, MPV, MVC, PCM, PSM, PVS

Amplifier type: MLxx

MPV?

Mode Value Query

Read out peak value store mode

Syntax1: MPV?p1(x)

Parameter: p1: peak value store 1 or 2

Response: q1,q2(y):

q1: peak value store 1 or 2

q2: 1: current/instantaneous value

0: peak value

Syntax 2: MPV??(x)

1,2(y): available peak value stores (1 or 2)

Syntax 3: MPV?,?(x)

0,1(y): possible modes (0= peak value,

1= current/instantaneous value)

The command returns the peak value store mode, which can be set by the CPV remote control functions or by the MPV command.

Hold Peak Value

Suspend/enable peak value store updating

Syntax: HPVp1,p2(x)

Parameter: p1: peak value store 1 or peak value store 2

p2=1: suspend updating

p2=0: enable updating (default)

Whenever you switch on, the status is set to "enable updating".

Related commands: CPV, HPV, MPV, MVC, PCM, PSM, PVS

Amplifier type: MLxx

Hold Value Query

Read out peak value store updating

Syntax1: HPV?p1(x)

Parameter: p1: peak value store 1 or 2

Response: q1,q2(y):

q1: peak value store 1 or 2q2: 1: updating suspended0: updating enabled

Syntax 2: HPV??(x)

1,2(y): available peak value stores (1 or 2)

Syntax 3: HPV?,?(x)

0,1(y): possible activation (0= enable, 1= suspend)

The command returns the peak value store status, which can be set by the HLD remote control functions or by the HPV command.

Peak Combine Mode

Combine peak value stores

Syntax: PCMp1(x)

Parameter:

p1	Type of combination of both peak value stores to a third peak value store
0	Not combined
186	Peak value store3=Peak value store1 – Peak value store2
187	Peak value store3 = (Peak value store1 + Peak value store2)/2 [Mean value]
188 ¹⁾	Peak value store3 = integral gross signal [mean value]
189 ¹⁾	Peak value store3 = integral net signal [mean value]

The mean-value calculation (integration) is possible with these amplifiers: ML01 (not in the case of linearisation), ML10, ML30, ML35 (not in the case of linearisation), ML50, ML51, ML55, ML55S6, ML60 (not in counting mode). It is not possible with the ML38.

These functions calculate the mean value from up to 4.29 billion measured values. The additions rate is defined via the low-pass filter that is set up and is 1200 Hz from 5 Hz Bessel or 10 Hz Butterworth. In the case of 0.05 Hz Bessel it is reduced to 18.75 Hz. In this way, mean-value calculations from 41 to 2651 days are possible. The reaction time on starting and stopping is approx. 2ms with fast low-pass filters and approx. 100ms in the case of 0.05 Hz Bessel. Mean-value calculation is controlled via a remote control contact – see RIF command,

Level 0V: Start mean-value calculation Level 5V: Stop mean-value calculation

reversed logic in the case of AP12 and AP13

or the command MVCp1)x)

p1=1: Start mean-value calculation p1=0: Stop mean-value calculation

The reaction time with an MVC command, irrespective of filtering, is approx.

Related commands:

CPV, HPV, MPV, MVC, PCM, PSM, PVS

Amplifier type: MLxx

PCM?

Peak Combine Mode Query

Output combination of peak value stores

Syntax 1: PCM?(x)

Parameter: none

Response: q1(y): set combination

Syntax 2: PCM??(x)

Parameter: none

Response: q1,...,q5(y): possible combinations (see PCM command)

Mean Value Control

Start or stop mean-value calculation (integration)

Syntax: MVCp1(x)

Parameter: p1=1: start mean-value calculation

p1=0: stop mean-value calculation

Effect: start or stop mean-value calculation (integration) selected with the

PCM command.

Related commands: CPV, HPV, MPV, MVC, PCM, PSM, PVS

Amplifier type: **MLxx**

Mean Value Control Query

Query status of mean-value calculation

none

Syntax: MVC?(x)Parameter:

Response: *q1(y):* status of mean-value calculation

3.7 Limit value monitoring

Set Output

Set limit switch outputs

Syntax: SOPp1,p2(x)

Parameter: p1: select the limit switch output (1...4)

p2: status of output (OFF =0 or ON=1)

Note:

This command is only active if the relevant limit switch

monitoring is switched off.

Related commands: LIV, LVD, LVL, LVS, SLC, SOP, LSS?

Amplifier type: MLxx

SOP?

Set Output Query

Output of set limit switch outputs

Syntax 1: SOP?p1(x)

Parameter: p1: select limit switch output (1...4)

Response: q1,q2(y)

q1: number of limit switch output q2: status, to which the output is set.

Syntax 2: SOP??(x)

Parameter: none

Response: q1,q2(y): available limit switch outputs (1...4)

Syntax 3: SOP?,?(x)

Parameter: none

Response: q1,q2(y): available stati OFF=0, ON=1

Limit Value Delay

Enter settling time for limit switch thresholds

Syntax: LVDp1,p2,p3,p4,p5,p6,p7,p8,p9(x)

Parameter: p1: time from 0 to 60000ms

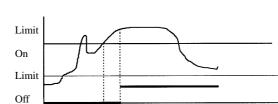
p2...p9: limit switch thresholds which should be affected by the settling time

p2p9	Limit value switching thresholds
200	No switching threshold
206	Activation threshold Limit1
207	Deactivation threshold Limit1
208	Activation threshold Limit2
209	Deactivation threshold Limit2
210	Activation threshold Limit3
211	Deactivation threshold Limit3
212	Activation threshold Limit4

Deactivation threshold Limit4

213

Note:


You can enter the thresholds in any order.

Example: LVD100,206,207(x)

O(y)

settling time 100ms for the activation and deactivation threshold of limit switch 1.

Related commands: LIV, LVD, LVL, LVS, SLC, SOP, LSS? Amplifier type: MLxx

LVD?

Limit Value Delay Query

Read out settling time for limit switch thresholds

Syntax1: LVD?(x)
Parameter: none

Response: q1,q2,q3...,q9(y)

q1: settling time in ms

q2...q9: limit switch thresholds, see LVD command

Syntax 2: LVD??(x)

0,60000(y)

available input area for settling time

Syntax 3: LVD?,?(x)

 $200,\!206,\!207,\!208,\!209,\!210,\!211,\!212,\!213(y))$

Possible switching thresholds for limit switches

Limit Value Switch

Parameterise limit switches

Syntax: LVSp1,p2,p3,p4,p5,p6,p7(x)

Parameter: p1: numbers of limit switches (1...4)

p2: OPERATION (ON =1 or OFF=0)

рЗ	Input signal
214	Gross, dynamic
215	Net, dynamic
204	Peak value 1
205	Peak value 2
217	Combined peak value

p4	Direction
130	Above limit
131	Below limit

p5: level in displayed units (floating)

p6: hysteresis in displayed units (floating)

р7	Output logic
135	Positive logic
136	Negative logic

Related commands: LIV, LVD, LVL, LVS, SLC, SOP, LSS?

Amplifier type: MLxx

LVS?

Limit Value Switch Query

Output parameter assignment of limit switches

Syntax1: LVS?p1(x)

Parameter: p1: numbers of limit switches (1...4)

Response: q1...q7(y)

q1: number of limit switch (1...4)q2: enabled status (ON=1, OFF=0)

q3: input signal

q4: operating direction (see LVS command)

q5: level in displayed units (floating)

q6: hysteresis in displayed units (floating)

q7: output logic (see LVS command)

Syntax 2: LVS??(x)

Parameter: none

Response: q1,q2(y): available limit switches (1..4)

Syntax 3: LVS?,?(x)

Parameter: none

Response: q1, q2(y): possible enabled stati OFF=0 or ON=1

Syntax 4: LVS?,,?(x)

Parameter: none

Response: q1,q2,q3,q4,q5(y): available input signals (see LVS command)

Syntax 5: LVS?,,,?(x)

Parameter: none

Response: q1,q2(y): possible operating direction (see LVS command)

Syntax 6: LVS?,,,,?(x)

Parameter: none

Response: q1,q2(y): possible input range of level (floating)

Syntax 7: LVS?,,,,?(x)

Parameter: none

Response: q1,q2(y): possible input range of hysteresis (floating)

Syntax 8: LVS?,,,,,?(x)

Parameter: none

Response: q1,q2(y): possible output logic (see LVS command)

Limit Value Level

Input limit value level

Syntax: LVLp1,p2(x)

Parameter: p1: numbers of limit switches (1...4)

p2: level in displayed units (floating)

Related commands: LIV, LVD, LVL, LVS, SLC, SOP, LSS?

Amplifier type: MLxx

LVL?

Limit Value Level Query

Output limit value level

Syntax 1: LVL?p1(x)

Parameter: p1: numbers of limit switches (1...4)

Response: q1,q2(y)

q1: number of limit switch (1...4)

q2: level in displayed units (floating)

Syntax 2: LVL??(x)

Parameter: none

Response: q1,q2(y): available limit switches (1...4)

Syntax 3: LVL?,?(x)

Parameter: none

Response: q1,q2(y): possible input range of level (floating)

Set Logic Combination

Combination of limit value outputs

Syntax: SLCp1,p2,p3,p4,p5,p6(x)

Parameter:

p1	Limit value output for result of combination
0	Function switched off
14	Limit value output 14

p2	Combination parameter 1
300	Does not go into combination
301	Limit1
302	Limit1 inverted
309	Remote contact 1
310	Remote contact 1 inverted

р3	Combination parameter 2
300	Does not go into combination
303	Limit2
304	Limit2 inverted
311	Remote contact 2
312	Remote contact 2 inverted

p4	Combination parameter 3
300	Does not go into combination
305	Limit3
306	Limit3 inverted
313	Remote contact 3
314	Remote contact 3 inverted

Related commands: LIV, LVD, LVL, LVS, SLC, SOP, LSS?

Amplifier type: MLxx

р5	Combination parameter 4
300	Does not go into combination
307	Limit4
308	Limit4 inverted
315	Remote contact 4
316	Remote contact 4 inverted

p6	Combination type
151	AND
152	OR
153	EXOR
154	NAND
155	NOR
156	EXNOR

The type of combination applies to all combination parameters. You can never create more than one combination.

Example:

SLC3,301,304,313,300,152(x)

If one of the conditions, Limit1 or Limit2 inverted or remote contact 3 is satisfied, the result is stored in Limit3 and limit value output 3 switches to H signal (5V).

SLC?

Set Logic Combination

Output combination of limit value outputs

Syntax 1: SLC?(x)

Parameter: none

Response: q1,q2,q3,q4,q6(y): combination currently set up

Syntax 2: SLC??(x)

Parameter: none

Response: $q1, \dots, q5(y)$: possible settings for limit value output

Syntax 3: SLC?,?(x)

Parameter: none

Response: $q1, \dots, q5(y)$: possible settings for combination parameter 1

Syntax 4: SLC?,,?(x)

Parameter: none

Response: $q1, \dots, q5(y)$: possible settings for a combination parameter 1

Syntax 5: SLC?,,,?(x)

Parameter: none

Response: $q1, \dots, q5(y)$: possible settings for combination parameter 3

Syntax 6: SLC?,...,?(x)

Parameter: none

Response: q1, ..., q5(y): possible settings for combination parameter 4

Syntax 7: SLC?,,,,?(x)

Parameter: none

Response: $q1, \dots, q6(y)$: possible settings for combination type

LSS?

Limit Switch Status Query

Query limit value status

Syntax: LSS?(x)

Parameter: p1: LIV1-Status OFF or ON: 0 or 1
p2: LIV2-Status OFF or ON: 0 or 1
p3: LIV3-Status OFF or ON: 0 or 1

p4: LIV4-Status OFF or ON: 0 or 1

Related commands: LIV, LVD, LVL, LVS, SLC, SOP, LSS?

Amplifier type: MLxxB

3.8 Transfer of amplifier settings and comment

Transmit Device Data

Save or read amplifier settings and comment

Syntax: TDDp1,p2(x)

Parameter:

p1	Amplifier settings			
0	Load factory setup			
1	Load parameter set (Recall Data)			
2	Save parameter set (Save Data)			
3	Read external parameter set (Recall Data Ext)			
4	Save external parameter set (Save Data Ext)			
5	Load comment			
6	Save comment			
7	Load external comment (Recall Comment Ext)			
8	Save external comment (Save Comment Ext)			

p2	Parameter set	
18	Required parameter set (only in the case of p1= 1,2,5 and 6)	
9	9 External EEPROM (only in the case of p1=3, 4, 7 and 8)	

The active parameter set always stays in the RAM. The amplifier continuously remembers the last input of p2, so that a subsequent TDD command without p2 works on the parameter set selected previously. After a set-up this parameter is set to 1.

Related commands: MDD, TDD, UCC

Amplifier type: MC, MLxx

TDD?

Transmit Device Data Query

Query, where amplifier set-up comes from

Syntax: TDD?p1(x)

Parameter:

p1	Amplifier setting	
0	Source of amplifier set-up data	
1	Active parameter set	
3	Test, whether XM001 is present	

Response: q1(y): in the case of p1=0

q1	Source of amplifier set-up data	
0	Factory setup	
1	Parameter set (Recall)	
2	User	

q1(y): in the case of p1=1

q1	Active parameter set	
0	Parameter set 18	

q1(y): in the case of p1=3

q1	Test, whether XM001 is present	
0	XM001 present	
-1	XM001 not present	

UCC

User Channel Comment

Input comment

Syntax: UCCp1(x)

Parameter: p1: any string "_____", max. 45 characters

Related commands: MDD, TDD, UCC

Amplifier type: MC, MLxx

UCC?

User Channel Comment Query

Output comment

Syntax: UCC?(x)

Parameter: none

Response: "__(String)__"(y): stored string, 45 characters

Amplifier type: MC, MLxx

3.9 Remote control

Local Remote

Local/Remote switching

Syntax: LORp1(x)

Parameter:

p1	Status
0	REMOTE
1	LOCAL

Effect: activates/deactivates remote control contacts (1...8).

Related commands: LOR, RFP, RIF, RIP?, DFL

Amplifier type: MC, MLxx

LOR?

Local Remote

Output Local/Remote status

Syntax 1: LOR?(x) Parameter: none

Response: q1(y): current status

Syntax 2: LOR??(x)

Parameter: none

Response: q1,q2(y): possible stati (see LOR command)

Remote Input Function

Assign remote control contact functions

Syntax: RIFp1,p2(x)

Parameter: p1: number of remote control contacts (1...8)

	F		
p2	Function		
50	No function		
51	Autocalibration On/Off		
52	Tare		
53	Current value/Peak value1		
54	Hold Peak value1		
55	Current value/Peak value2		
56	Hold Peak value2		
57	Zeroing amplifier		
58	Shunt On/Off		
59	Print On/Off		
60	Switch on calibration signal		
61	Switch on zero signal		
62	Operating sign change		
63	Select parameter set – Bit1		
64	Select parameter set – Bit2		
65	Select parameter set – Bit4		
66	Remote/Local		
67	Start/Stop Integration		

Note:

Remote contacts are activated/deactivated with the LOR command.

Related commands: LOR, RFP, RIF, RIP?, DFL

Amplifier type: MLxx

Remote Input Function Query

Output allocation of remote control contacts

Syntax 1: RIF?p1(x)

Parameter:

p1	o1 Remotes	
18	Number of remote 18	

Response: q1,q2(y)

q1: number of remote contact (1...8) q2: function (see RIF command)

Syntax 2: RIF??(x) Parameter: none

Response: q1,q2(y): available remote contacts (1...8)

Syntax 3: RIF?,?(x)

Parameter: none

Response: q1,...,qn(y): available functions (see RIF command)

RIP?

Read Input

Output status of remote contacts

Syntax: RIP?(x)
Parameter: none

Response q1(y): status of the remote control contact inputs (8 bit binary

coded, at q1=255 all inputs to "H").

Note:

This command is not affected by the local/remote switch

setting.

Related commands: LOR, RFP, RIF, RIP?, DFL

Amplifier type: MLxx

Direct Function Lock

Disable function key

Syntax: DFLp1,(x)

Parameter:

p1	
0 bits	Zeroing function using function key AB22, remote contact and command CDV without first parameter, disabled
1 bits	Taring function using function key AB22, remote contact and command TAV without first parameter, disabled

Related commands: LOR, RFP, RIF, RIP?, DFL

Amplifier type: MLxxB

DFL?

Direct Function Lock Query

Output status of the function key

Syntax: DFL?(x)

Parameter: p1

Response q1(y): **0 bits**

q2(y): 1 bits

4 Amplifier functions

Note:

Amplifier function commands only have an effect on the selected channels (see PCS command). Whenever you switch on, all channels are selected (i.e. active).

4.1 Output format, measurement output

Input Sampling Rate

Specify measurement transfer rate

Syntax: ISR p1(x)

Parameter: p1

Divisor for the data transfer rate in the case of measurement output via an interface.

The display of measured values on the AB22A/AB32 operator

panel must be switched off (see SIS command).

The relationship between the parameter p1 and the output rate comes from the calculation below.

Note:

With B amplifiers, the ISR command no longer affects the sample times for peak value stores and limit-value monitoring. The sample times are only defined by the filter frequency.

The default value when you switch on is always 1.

The following calculation applies when establishing the input value for p1:

p1 = Internal cycle frequency
Measurement transfer rate

The internal cycle frequency depends on the low pass cut-off frequency selected:

Low pass cut-off frequency (Hz)	Internal cycle frequency (Hz)	
from 1.25	600	
0.5	300	150*
0.2	75	75*
0.1	37.5	37.5*
0.05	18.75	18.75*

^{*} when linearising thermocouples or resistance thermometers

The value for the measurement transfer rate depends on the number of amplifier channels selected with the CHS command. The following maximum values must not be exceeded:

Number of amplifiers	max. Measurement transfer rate					
	4 byte format	2 byte format				
1	150	200				
2	50	55				
3	38	50				
4	35	45				
5	29	40				
6	26	35				
7	22	31				
8	20	29				
9	18	26				
10	17	24				
11	15	22				
12	14	21				

Example:

Measurement transfer rates in the case of a low pass cut-off frequency greater than 1.25Hz and binary measurement output in 4 byte format.

ISR value	Number of amplifiers											
	1	2	3	4	5	6	7	8	9	10	11	12
60	10	10	10	10	10	10	10	10	10	10	10	10
40	15	15	15	15	15	15	15	15	15	15		
30	20	20	20	20	20	20	20	20				
25	24	24	24	24	24	24						
20	30	30	30	30								
15	40	40										
14	150*											

^{*} Maximum measurement transfer rate for one channel.

The following commands start an output of 6 channels in a time raster of 20 samples/s:

Command	Function	
PCS1,2,3,4,5,6(x)	Select channels 16	
SIS1,200(x)	Switch off AB22A/AB32 display	
ISR30(x)	Measurement transfer rate of 20 per second	
MVF1253(x)	Output format 4 byte binary LSBMSB	
RMV?214,0(x)	Continues measurement output gross signal, dynamic	
STP(x)	Stop measurement output	

Related commands: Amplifier type: CDW, CMR, COF, IMR, ISR, MSV?, RMV?, STP, TEX MC

ISR?

Input Sampling Rate Query

Output of measurement transfer rate

Syntax: ISR?(x)
Parameter: none

Response: q1(y): measurement transfer rate (see ISR command table)

STP

Stop

Terminate measurement output and data acquisition

Syntax: STP(x)
Parameter: none
Response: none

Related commands: CDW, CMR, COF, IMR, ISR, MSV?, RMV?, STP, TEX

Communications processor: CP12, CP32

RMV?

Read Measurement Value

Output of measured value

Syntax: RMV?p1,p2,p3(x)

Parameter: p1: signal (after Tab.14, apart from values 200, 201, 216)

p2: number of measured values 1...65535; 0=Send continuously
p3: sequence time in seconds (0.1s to 60.0s). Output time in seconds between measured values (only in the case of binary

output).

Effect: the measured value of the required signal p1 is output. The output

format depends on the last MVF and TEX command. You use the PCS command to specify from which channel the measured values

are to be output.

Response: *measured value(y):*output format see MVF command.

Note:

This command is identical to the MSV? command right up to signal

encoding (p1).

Example: see MSV? command

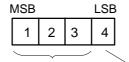
Related commands: CDW, CMR, COF, IMR, ISR, MSV?, RMV?, STP, TEX

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

Measuring Value Format


Specify measurement output format (for RMV? command)

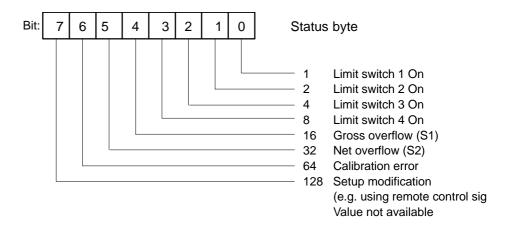
Syntax: MVF p1(x)

Parameter:

p1	Measurement output format
1250	Measured value, channel, status (ASCII format)
1251	Measured value (ASCII format)
1252	4 byte binary measurement output (MSB XX XX LSB)
1253	4 byte binary measurement output (LSB XX XX MSB)
1254	2 byte binary measurement output (MSB LSB)
1255	2 byte binary measurement output (LSB MSB)

4 byte output:

3 byte measured value 1 byte status


7 680 000 ADC units = full scale value (unit)

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS,

SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

2 byte output

2 byte measured value

30000 ADC units = full scale value (unit)

Note:

This command always applies to all channels of a device.

Note:

With ASCII format, the measured values are output scaled, with binary format in ADC units.

MVF?

Measuring Value Format Query

Query measurement output format

Syntax: MVF?(x)
Parameter: none

Response: q1(y): code number of output format (see MVF command).

TEX

Define Terminator

Define measured value separator

Syntax: TEX p1,p2(x)

Parameter:

p1	Parameter separator
	1 - 126
	Default: 44, ASCII ","

p2	Block separator
	1 - 126
	Default: 13, ASCII "CR"

Related commands: CDW, CMR, COF, IMR, ISR, MSV?, RMV?, STP, TEX

Communications processor: CP12, CP32

TEX?

Define Terminator Query

Output measured value separator

Syntax: TEX?(x)
Parameter: none

Response: q1,q2(y): parameter separator, block separator

4.2 Display functions

2.Indication Set-up

Enter display adaptation (decimal places, step)

Syntax: ICSp1,p2(x)

Parameter: p1: number of decimal places (0...6)

p2: step (as per Tab.8)

Related commands: ENU, IAD, ICS, ISS, SIS, STL

Amplifier type: MLxx

3.Indication Set-up Query

Output display adaptation (decimal places, step)

Syntax 1: ICS?(x)
Parameter: none
Response: q1,q2(y)

q1: number of decimal places (0..6)

q2: step (as per Tab.8)

Syntax 2: ICS??(x)
Parameter: none

Response: q1,q2(y): possible decimal places (0...6)

Syntax 3: ICS?,?(x)
Parameter: none

Response: q1,q2(y): possible steps as per Tab.8

SIS

Select Indication Signal

Selection of channel and signal display on AB22A/AB32

Syntax: SIS p1, p2, p3 (x)

Parameter: p1: channel number (1...16)

p2: signal code number

p2	Signal that is to be displayed
200	no measured value
202	Gross (S1)
203	Net (S2)
204	Peak value 1 (S3)
205	Peak value 2(S4)
206*	Limit switch 1 (Limit1)
208*	Limit switch 2 (Limit2)
210*	Limit switch 3 (Limit3)
212*	Limit switch 4 (Limit4)

*) Only if limit switches are on

p3: subchannel

Related commands: ENU, IAD, ICS, ISS, SIS, STL

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

Select Indication Signal Query

Output of channel and signal display on AB22A/AB32

Syntax: SIS?(x)
Parameter: none

Response: q1,q2,q3(y):

Channel number, signal code number, subchannel

Status LED

Selection of status/level display

Syntax: STLp1(x)

Parameter:

p1	Display status
0	Level display
1	Status display

Related commands: ENU, IAD, ICS, ISS, SIS, STL

Amplifier type: MC, MLxx

Status LED Query

Output status/level display

Syntax 1: STL?(x)
Parameter: none

Response: q1(y): current status of display

Syntax 2: STL??(x)

Parameter: none

Response: q1,q2(y): possible status of displays

5 Print functions

Print Format

Define print format

Syntax: PRFp1,p2,p3,p4,p5(x)

Parameter:

p1p5	Signals that are to be printed
200	No signal
202	Gross (S1)
203	Net (S2)
204	Peak value 1 (S3)
205	Peak value 2 (S4)
216	Limit switches (status)
217	Combined peak value (S5)
No para- meters	Print function off

A maximum of five signals can be printed. The printing sequence is always:

Gross, net, peak value 1, peak value 2, combined peak value, limit value status, regardless of the input sequence.

Note

The set-up affects the printed output via the AB22A/AB32 as well as the LPR command.

Related commands: LPR, PFS, PRF, PRT, SPP

Amplifier type: MLxx

H-114 Command → Print functions

PRF?

Print Format Select Query

Query the print format

Syntax 1: PRF?(x)

Parameter: none

Response: q1,q2,q3,q4,q5(y): signals that are to be printed

Syntax 2: PRF??(x)

Parameter: none

Response: $q1, \dots, qn(y)$

Signals that are available to be printed (p1 ...p5)

Command \rightarrow Print functions H-115

Set Printer Port

Define the output interface

Syntax: SPPp1(x)

Parameter:

p1	Interface
1301	RS232
1302	RS485
1306	Printer (Centronics)

Related commands: LPR, PFS, PRF, PRT, SPP

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP12, CP32

SPP?

Set Printer Port Query

Determine the output interface

Syntax: SPP?(x)
Parameter: none

Response: q1(y): output interface (printer port – see command SPP)

H-116 Command → Print functions

Line Print

Print measured values

Syntax: LPRp1(x)

Parameter:

p1	Signals that are to be printed
202	Gross (S1)
203	Net (S2)
204	Peak value 1 (S3)
205	Peak value 2 (S4)
216	Limit switches (status)

If p1 is not sent, the signals which are output are those that were defined with the aid of command PRF or via the AB22A/AB32 menu "Print, Select".

Related commands: LPR, PFS, PRF, PRT, SPP

Communications processor: CP32

6 Fast data acquisition

The following commands are supported only by the CP32B.

MCS

Measuring Channel Select

Channel selection for the channels that are to be recorded

Syntax: MCSp1,...,p18(x)

Parameter: p1,...,p18: channel numbers (1...16,17 and 18=time stamp)

MCS(x) re-releases reserved resources

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

MCS?

Measuring Channel Select Query

Output the channel selection for the channels to be recorded

Syntax: MCS?p1(x)

Parameter: p1: output mode

0: existing ML channels1: active channels

Response: q1,...,q18(y):

List of the existing or active ML channels

MCS cannot be used for selecting during data acquisition.

Channels 17 and 18 are the internal time stamps for the CP32. They are two 24-bit counters, incremented at 76.8kHz. With measurement output in floating format the time stamps are scaled in seconds. When a recording is made to the hard disk, the scaling

factors contained in the file header are specified.

Channel 18 extends the time stamp from 24 to 48 bits. It counts the overflows from channel 17. The time stamps can only be selected together, that is, both must always be recorded.

With effect from Version 1.40, the MCS command will reserve the required link resources. It is possible, in this type of situation, that an ML77 will not be able to measure all the channels which have been assigned parameters, as they can no longer be downloaded by using the links. The MCS command can fail as well, as an ML77 has reserved other resources. An external PC should re-release the resources when exiting communication (MSC(x)).

SMS

Subchannel Measurement Select

Set subchannel mask

Syntax: SMS p1,..., p128 (x)

Parameter: p1,...,p128

1,...128 subchannel selection

SMS 0 (x) selects all the existing subchannels

This command sets the subchannel selection mask for display. The

modules to be set should already be selected with PCS.

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

SMS?

Subchannel Measurement Select Query

Query subchannel mask

Syntax: SMS?p1(x)

Parameter: p1: output mode

0 existing subchannels1 selected subchannels

Response: *q1,..., q128*

List of existing or selected ML channels

TRE

Trigger Event

Set up the trigger conditions

Syntax TREp1,...,p8(x)

Parameter: p1: number of the trigger event

1...4: start trigger events5...8: stop trigger events

9: measuring rate trigger Start Event

10: measuring rates Stop Event

p2: channel

1...16: amplifier channel

p3: amplifier signal (see MSS command)

p4:

p4	Trigger event/Mode
0	none (off)
6006	Measured value threshold
6007	Measured value window
6008	Limit switch1
6009	Limit switch2
6010	Limit switch3
6011	Limit switch4
6102	External trigger (Remote 7)

p5:

р5	Edge
6004	Static positive (≥ or within)
6005	Static negative (≤ or outside)
6002	Dynamic positive
6003	Dynamic negative

p6: threshold value 1p7: threshold value 2

Threshold value Define physical quantity in float

p8: subchannel If p8 is omitted, subchannel 1 is used.

Noto:

Triggering can only occur on an amplifier channel which is also being used for data acquisition (see MCS command).

In the case of "External Trigger" (6102) and "Static Negative" (6005), measurement and/or recording only continues so long as remote contact 7 is connected with 0V (24V for the AP12 and AP13) and until the number of measurements is reached (TSV command, parameter p3).

In the case of "External Trigger" (6102) and "Dynamic Positive" (6002), each positive signal edge at remote contact 7 (negative edge for the AP12 and AP13) causes a measurement run to be started and/or recorded. The number of pulses must correspond to the number of measurements (TSV command, parameter p3).

ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD, IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

MGCplus Operation with computer or terminal

Related commands:

TRE?

Trigger Event Query

Output the trigger conditions

Syntax: TRE?p1(x)

Parameter: p1: trigger event (1...10)

0: separated by ': ', all events are output where mode ≠ 0. Inactive events are suppressed. If no events are active,

the response is '0'.

1,...,10: the selected event is output.

Response: q1,...,q7: q1,...,q7(y): p1=0

q1,...,q7(y): p1=1...10

q1: number of the trigger event (1...10)

q2: channel number (1...16)

q3: amplifier signal

q4: mode q5: edge

q6: threshold value 1

q7: threshold value 2

q8: subchannel

Note:

The threshold values are specified in float (ASCII string) as a physical quantity. In the case of window triggers, threshold value 1 always indicates the mathematically smaller threshold value. If trigger events are defined that refer to channels or signals which are off, they have no effect. If channels or signals of this kind are included later in the data acquisition session, these trigger events take effect.

TRR

Trigger Remove

Delete the trigger conditions

Syntax: TRR(x)Parameter: none Response: q1(y)

0: command successfully executed

1: error occurred

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

MSS

Measuring Signal Select

Measuring signal selection for the channels to be recorded

Syntax: MSS p1, p2, p3, p4, p5, p6 (x)

Parameter:

p1p6	Signal that is to be recorded
214	Gross, dynamic
215	Net, dynamic
204	Peak value 1
205	Peak value 2
217	Combined peak value
289	Status of the remote contacts

Note:

Up to a measuring rate of 2400Hz (see ICR command), all 4 signals can be recorded, but only 1 can be recorded at higher sampling rates.

Related commands: ADS, CFS, CGP,

ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD, IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

Measuring Signal Select Query

Output the measurement signal selection for the channels to be recorded

Syntax: MSS?(x)
Parameter: none

Response: list[i]: list[j]:...: list[k]

list [x]

q1,...,q6(y) signals of a channel

Trigger Definition

Define the trigger-event links

Syntax: TRDp1,p2,p3(x)

Parameter:

p1	Trigger machine
6500	Start trigger machine
6501	Stop trigger machine
6502	Measuring rate trigger machine

p2	Trigger mode
0	Never
151	AND (for type 6502 On, since only one event)
152	OR (for type 6502 On, since only one event)
6100	Immediate (trigger is immediately active)

р3	Number
0,, N	Only analysed for the measurement rate trigger definition. If a measuring rate trigger is initiated, the "Number" of measured values is recorded at measuring rate 2 (ICR command), before the measuring rate trigger machine re-checks the measuring rate stop trigger event.

Related commands:

ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD, IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

TRD?

Trigger Definition Query

Output the trigger-event links

Syntax: TRD?p1(x)

Parameter:

p1	Trigger link
0	Setup for all trigger machines
6500	Setup for the start trigger machine
6501	Setup for the stop trigger machine
6502	Setup for the measuring rate trigger machine

Response: q1,q2,q3:q1,q2,q3:q1,q2,q3(y): p1=0

q2,q3(y): p1=6500,6501 oder 6502

q1: Trigger machineq2: Trigger mode

q3: Number

TSV

Trigger Setup Value

Define and start the triggered measurement

Syntax: TSVp1,p2,p3(x)

Parameters p1: number of measured value lines

1,...,n: number of measured value lines in a measurement

session consisting of a pre-trigger and a post-trigger

section

p2: pre-trigger measured value lines

1,...,n: number of measured value lines in the pre-trigger

section

p3: number of measurements

1,...,n: number of consecutive measurements

0: an infinite number of consecutive measurements

(limited only by the size of the system memory)

Effect: the command sets the parameters and starts data acquisition.

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS,

SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

Trigger Setup Value Query

Output information on started or recorded measurement

Syntax: TSV?(x)
Parameters none

Response: q1,q2,q3(y)

q1: number of measurements already recorded

q2: number of measured value lines already recorded in started

measurement session

q3: trigger status of the started measurement session

0: write pre-trigger

q4: number of recorded measurements including the

measurements already read out.

MRG

Measurement Rate Group

Define the measurement rate groups

This command assigns a measurement rate group to a selected channel or subchannel. Up to 3 synchronous and one asynchronous measurement rate groups are supported. The measured values of the various groups are stored in separate FIFO buffers and must be read out separately over the interface. When saving on the PCMCIA hard disk, the data of the various groups is saved in separate files.

Syntax: MRG p1 (x)

Parameter: p1: 0..3 measurement rate group

0..2 synchronous measurement rate groups3 asynchronous measurement rate groups

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

MRG?

Measurement Rate Group Query

Output the measurement rate groups

Syntax: MRG? (x) Response: q1,q2(y)

q1: measurement rate group

q2: position of the measured value of this channel in the

output stream

SRP

Set Recording Parameters

Define data acquisition parameters

Syntax SRPp1,...,p7(x)

Parameter: p1: 1...N Number of measured value lines in a single

measurement

Pre-trigger and post-trigger

p2: 1...N Number of pre-trigger measured value lines

(post-trigger can be 0)

p3: 1...N Number of consecutive measurements

0: an infinite number of consecutive measurements

p4: status of output redirection to hard disk

0: output redirection to HD inactive1: output redirection to HD active

p5: name of measurement file on the hard disk

p6: number of measured values for output job on the hard disk

p7: output mode for hard disk data acquisition (only 6409

reasonable, see RMB command)

Effect: this command defines the parameters (TSV, IHD and RMB?

commands) for triggered data acquisition without starting the

measurement.

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

SRP?

Set Recording Parameters Query

Read out data acquisition parameters

Syntax: SRP?(x)
Parameters none

Response: q1,q2,...,q7(y): parameters set with SRP

Output Measuring Pointer

Position the reading pointer

Syntax: OMP p1, p2, p3 (x)

Parameter:

p1	Output position
6401	from the start of the single measurement actually addressed
6403	from the start of the next single measurement; release previous measurements
6404	from the trigger point of the single measurement actually addressed
6405	from the end of the single measurement actually addressed
6406	from the current reading pointer position

p2: -N....N Long offset relevant to mode

(measured value lines)

p3: 0,...,2 Measurement rate group 3 Asynchronous FIFO

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

OMP?

Output Measuring Pointer Query

Output the reading pointer information

Syntax: OMP?p1(x)

Parameter: p1: 0,...,2 Measurement rate group

3 Asynchronous FIFO

Response: q1,q2,q3,q4,q5(y)

q1: position in the single measurement actually addressed

q2: number of measured value lines already recorded in the currently started measurement

q3: absolute position in all recorded measurements

q4: number of measured value lines in all recorded measurements

q5: data recording status

0: data acquisition not running1: data acquisition running

If the measurement rate group is not specified, the measurement rate group 0 is addressed.

RMB?

Read Measuring Buffer

Output the measurement data

Syntax: RMB?p1,p2,p3(x)

Parameters p1: number of measured value lines to be output

p2	Mode
6400	from the start of the whole measured value memory
6406	from the current reading pointer position
6407	from the current reading pointer; release everything prior
6408	read newest values (reading pointer is unchanged)
6409	read from the current reading pointer; release everything in- cluding the block that has been read

p3: 0,...,2 Measurement rate group 3 Asynchronous FIFO

If the measurement rate group is not specified, the measurement rate group 0 is addressed.

Response:

#0 measured values (y): for output format see MBF command

Note:

In the case of floating formats, a gross overflow is coded as 2e20, a net overflow as 3e20 and a calibration error as 4e20. In the case of the time channel, when the output is in binary format the measured value (ticks) must be multiplied by 1/measuring rate. Output in floating format is expressed in ms in the case of measurement rates up to 1Hz, and in seconds in the case of measurement rates from 2s upwards.

Example: se

see the MSV? command, output in binary format

Related commands:

ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD, IPA, MBF, MCS, MRG, MSS, MVF, OMP, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

MBF

Measuring Output Format

Define the measurement output format (for the RMB? command)

Syntax: MBFp1, p2 (x)

Parameter:

p1	Output format
1252	4 bytes binary MSBLSB
1253 ^{*)}	4 bytes binary LSBMSB
1254	2 bytes binary MSB LSB
1255	2 bytes binary LSB MSB
1256	4 bytes floating MSBLSB
1257	4 byte floating LSBMSB

^{*)} Default

p2: 0,...,2 Measurement rate group

If parameter p2 is omitted, the setting affects all measurement groups.

Note:

ADC units are used when scaling data in floating format and outputting data in binary format (7 680 000 ADC units correspond to the full scale value).

Related commands:

ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD, IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

MBF?

Measuring Buffer Format Query

Query measurement output format

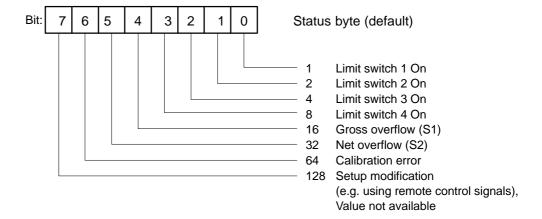
Syntax: MBF?p1(x)

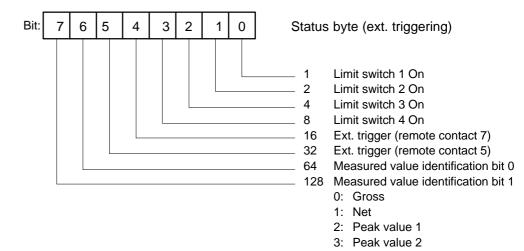
Parameter: p1: 0,...,2 Measurement rate group

Response: q1(y)

q1:Output format

If parameter p1 is omitted, you are given the output format of


measurement rate group 0.


4 byte binary output:

3 byte measured value 1 byte status

7 680 000 ADC units = full scale value (unit)



2 byte binary output (without status byte):

2 byte measured value

30 000 ADC units = full scale value (unit)

4 byte floating format (without status byte):

4 byte measured value

Measured values are scaled for output

Internal Channel Recording rate

Set up the measurement rates

Syntax: ICR p1, p2, p3 (x)

Parameter: p1: measuring rate 1 (in accordance with Tab.27)

p2: measuring rate 2 (in accordance with Tab.27)

p3: 0, ...,2 Measurement rate group

Effect: sets up two measurement rates, with toggling between them in the

event of a defined measuring rate trigger event (see TRE

command).

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

Internal Channel Recording Rate Query

Output the measurement rate setting

Syntax: ICR?p1,p2(x)

Parameter: p1 0,1 Mode

p2: 0,...,2 Measurement rate group

Response: q1,q2(y):

p1=0; Measuring rate 1, Measuring rate 2

q1(y): p1=1; current measuring rate

Note

In the case of the query command, if parameter p1 is omitted, the command works in the same way as p1=0. This provides compatibility with older versions. If parameter p3 or p2 (query) is omitted, the command affects measurement rate group 0.

RMS?

Read Master Switch

Position of the master/slave switch on the CP32B communications processor

Syntax: RMS?(x)
Parameter: none

Response: q1(y): position of the Master/Slave switch (1=Master, 0=Slave)

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

Transmit Configuration Data

Save or read CP32B interface configuration

Syntax: TCD p1 (x)

Parameter:

p1	CP32B configuration
0	Load factory setup
1	Load configuration (Recall Data)
2	Save configuration (Save Data)

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

HCF?

Hardware Configuration Query

Determine the hardware configuration

Syntax: HCF?(x)
Parameter: none

Response: q1,q2,q3(y):

q1: AB22A (1=present, 0=not present)

q2: PCMCIA hard disk in slot 0 (1=present, 0= not present)q3: size of the internal measured value memory (bytes)

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

SCM

Start and Configure Measurement

Start, stop and save measurements

Syntax: SCMp1,p2, p3(x)

Parameters p1: mode

0 stop measurement

1 start measurement with current data acquisition

parameters

2 save current data acquisition parameters

3 read data acquisition parameter set

p2: data acquisition parameter no. (1...16)

p3: recording status (for p1=2 only)

0: halt 1: record

Effect: saves programmed measurements with the "fast data acquisition"

commands.

Note:

Measurements can also be started or stopped using a function key

on the AB22A/AB32. Parameters are saved to file

"HDCNFDAT.BIN" on the hard disk.

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

SCM?

Start and Configure Measurement Query

Read out the number of saved measurement programs

Syntax: SCM?(x)
Parameters none
Response: q1,q2(y

q1: the number of saved measurement programs q2: recording status of the current parameter set

TRG

Trigger Command

Initiate one-time trigger (software trigger)

Syntax: TRGp1(x)

Parameter:

p1	Trigger machine
6500	Start trigger machine (default)
6501	Stop trigger machine
6502	Measuring rate trigger machine

Response: q1(y)

q1 = 0: command successfully executed

q1 = ?: last software trigger has not yet been initiated

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

7 MGCpress commands

Command structure

Scaling

All the force and displacement coordinates used in the commands described below are non-scaled values in the range -30000 to +30000. 30000 corresponds to the input range of the allocated measurement channel: $scaled\ value = (non-scaled\ value)/30000*input\ range$

Example:

Command: FDA? <LF>

Response: 15000,20400<CR><LF>

Force channel input range: 2000N

Displacement channel input range: 25.00mm

Force= 15000/30000*2000N = 1000N

Displacement = 20400/30000*25.00mm = 17.00mm

Data format

Unless specifically stated otherwise, all parameters are input and output as ASCII strings. If there are several parameters, these are separated by commas. The end of the command can be marked by ';',<LF>,<CR><LF> or <LF><CR>. Responses to commands always end with <CR><LF>.

Example:

Command: FDH?0 <LF>

Response: 2594,125<CR><LF>

Additional details of the command structure can be found in the MGCplus Operating Manual "Operation with computer or terminal"

• The ARRAY format:

This format is used to output binary data

1. Byte: '#'

2. Byte: length (as ASCII char.) of the following length specification in byte:

'1','2' or '3'

3. – 5.Byte: number (as ASCII) of the following bytes: '0' ...'246'

following bytes: binary data

Example:

#212<b0><b1><b2><b3><b4><b5><b6><b7><b8><b9><b10><b1 1><CR><LF>

1.Byte: '#' Start character

2.Byte: '2' Length of the following length specification = 2

3. – 4. Byte : number of following bytes = 12 5. – 16. Byte: <b0>..<b11> = 12 byte binary data

16., 17.Byte: <CR><LF> = end identifier

• HEXSTR format:

Binary data is transmitted as an ASCII string

Example:

"AA55AA55AA55AA55"<CR><LF>

10 bytes are transmitted as a string (the quotation marks are transmitted as well)

Caution!:

In ARRAY and HEXSTR formats, int, long and floating values are transmitted in Motorola format, i.e. the most significant byte first!

CTRL-R (ASCII code 18 decimal)

This control character activates operation via the RS232 interface.

AID?

Amplifier Identification Query

Amplifier identification output

Syntax: AID? Parameter: none

Effect: outputs the amplifier identification

Response: string of 20 characters

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Amplifier type: MC, MLxx

BDR

Set Baud Rate

The CP12 uses this command to switch over the baud rate on the internal bus

Syntax BDRp1,p2,p3

Parameters p1: baud rate (19200,9600,1) With p1 == 1, the CP12 will query

whether the ML85 supports baud rate 19200. A '0' is sent as a response, the baud rate of the serial interface is not modified.

p2: parity (0 = none, 1 = odd, 2 = even)

p3: stop bits (1,2)

Effect: switches over the baud rate of the ML85 serial interface

Response: 0: command successfully executed

?: error

Related commands: BDR, SBR, SRB Communications processor: CP12, CP32

Device Clear

Terminate communication

Syntax: DCL or CTRL A

Parameter: none

Effect: remote control operation is terminated

Response: none

Communications processor: CP12, CP32

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

DSD

Data Set Device (from Version P4.00, with CP32B only)

Save setup

Syntax: DSDp1

Parameter: p1 amplifier setup data, queried from the amplifier with the MDD?

command (format HEXSTR) 178 bytes = 356 characters (see

below)

Effect: this command is used to save the complete setup.

Response: 0: command successfully executed

?: error

Communications processor: CP12, CP32

Contents of the parameter string:

- content of the parameter cannig			
Offset	Type	Contents	
0	char	Channel number	
1 char		Amplifier code	
2	char	Parameter set number	
3	char	Width	
4	int	End position	
6	int	Timeout time	
8	int	Lefthand displacement end window	
10	int	Righthand displacement end window	
12	int	Block force or Fmin	
14	int	Settling time	
16	int	Lefthand displacement range window	
18	int	Righthand displacement range window	
20	int	Bottom force range window	
22	int	Top force range window	
24	int	Lefthand displacement thread-in window	
26	int	Righthand displacement thread-in window	
28	int	Bottom force thread-in window	
30	int	Top force thread-in window	
32	char	Status thread-in window (see FDW)	
33	int	Lefthand displacement fitting window[2]	
35	int	Righthand displacement fitting window[2]	
37	int	Bottom force fitting window[2]	
39	int	Top force fitting window[2]	
41	int	Bottom right force fitting window[2]	
43	int	Top right force fitting window[2]	
45	char	Status fitting window[2] (see FDW)	

Contents of the parameter string (contd.):

Offset	Туре	Contents		
46	Window Data for fitting window[3] (structure as fitting win			
59	Window	Data for fitting window[4] (structure as fitting window[2]		
72	Window	Data for fitting window[5] (structure as fitting window[2]		
85	Window	Data for fitting window[6] (structure as fitting window[2]		
98	Window	Data for fitting window[7] (structure as fitting window[2]		
111	char	Abort condition (MessEnd)		
112	int	delta_s		
114	int	delta_t		
116	int	Force value for transducer test		
118	int	Position for transducer test		
120	char	Delta value as ‰ for max. permitted deviation (see FDS)		
121	char Print format (see PFS)			
122	2 int Alarm force			
124 int		Alarm displacement		
126	char	WidthF (see FDS) (from Version 4.00)		
127	char	WidthS (see FDS) (from Version 4.00)		
128	char[48]	reserve		

Related commands:

AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW, MDD, PFS, PRQ, PSC, RES, TDD, UCC

DSD?

Data Set Device Query (from Version P4.00, with CP32B only)

Syntax: DSD?p1

Parameter: p1 Channel number of amplifier

Effect: outputs the amplifier setup parameters

Response: hexadecimal string 176 bytes = 356 characters (HEXSTR format)

Communications processor: CP12, CP32

FDA

Force Displacement Alarm

Set alarm limits for the /ALARM output

Syntax: FDA p1,p2,p3

Parameter:

Par	Meaning
p1	(int) maximum force (-30000 30000)
p2	(int) position (-30000 30000)
р3	(int) minimum force (-30000 30000) (from Version P4.10)

Effect: sets the limit values for force and position; undershooting or

overshooting these values triggers an alarm. (If the lefthand

displacement limit of the range window is higher than the righthand

one, an alarm is triggered by undershooting position p2.)

Response: 0: command successfully executed

?: error

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Amplifier type: ML85...

FDA?

Force Displacement Alarm Query

Set alarm limits for the /ALARM output

Syntax: FDA? Parameter: none

Effect: outputs the limit values for force and position; undershooting or

overshooting these values triggers an alarm.

Response:

Par	Meaning
q1	(int) maximum force (-30000 30000)
q2	(int) position (-30000 30000)
q3	(int) minimum force (-30000 30000) (from Version P4.10)

FDR?

Force Displacement Buffer Query

Query measured values in compressed or non-compressed form

Syntax: FDB?p1,p2,p3,p4 Parameter: for p1 = 0...2:

Par	Meaning
p1	(char) type of diagram 0 : "force/displacement", 1 : "force/time",
	2 : "displacement/time"
p2	(char) number of measurement pairs for compression
р3	(int) lower range limit for range to be compressed (x value)
p4	(int) upper range limit for range to be compressed (x value)

Effect: transmission of measurement pairs

Response: a1,a2

a1	Number of transmitted measurement pairs
a2	Array of measured values

Parameter: for p1 = 3, 4:

Par	Meaning
p1	Type of measurement output 3: HEXSTR format, 4: ARRAY format
	ARRAT IOIIIIAL
p2	Number of required measurement block (049)

Effect: output of 15 measurement triples at a time from the measurement

store (force, displacement, time) as 16-bit integer values

Response: a1,a2(for p1 = 3 as HEXSTR, for p1 = 4 as ARRAY)

Parameter: for p1 = 5:

Par	Meaning
p1	Index for measurement store

Effect: output of a measurement triple at a specific index as decimal values

Response: a1(force),a2(displacement),a3(time)

Parameter: for p1 = 6:

Par	Meaning
p1	0: displacement, 1: time

Effect: search output of a measurement triple from the measurement store

for a given displacement coordinate or a given time

Response: a1(force),a2(displacement),a3(time)

Overall evaluation result

The evaluation result for the overall measurement can be queried as an integer value.

0x8000 = Initialisation value (neither OK nor NOK)

0 = result OK

All other values= result NOK

Bit	Meaning
0	1: Thread-in window NOK
1	1: Fitting window 2 NOK
2	1: Fitting window 3 NOK
3	1: Fitting window 4 NOK
4	1: Fitting window 5 NOK
5	1: Fitting window 6 NOK
6	1: Fitting window 7 NOK
7	1: End window NOK
14	Cumulative message: NOK

Individual window evaluation result

The evaluation result of each window can be queried as an integer value.

0x8000 = Initialisation value (neither OK nor NOK)

0 = result OK

All other values= result NOK

The individual bits contain additional information on the cause of the error

Bit	Meaning
0	Displacement coordinate of the first measured value inside the window
1	Displacement coordinate of the last measured value inside the window
2	End force too low
3	End of force/displacement characteristic not in end window
4	Lefthand displacement coordinate of window not in plot
5	Righthand displacement coordinate of window not in plot
6	Undershooting lower diagonal window limit
7	Overshooting upper diagonal window limit
8	Minimum force too low
9	Minimum force too high
10	Maximum force too low
11	Maximum force too high
12	Start of force/displacement characteristic not in thread-in window
13	End force too high
14	Cumulative message: window NOK

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Amplifier type: ML85...

Force Displacement Evaluation Start/Stop

Start/Stop evaluation

Syntax: FDEp1

Parameter: p1 = 0: stop measurement, 1: start measurement

Effect: start and stop measurement by software

Response: 0: command successfully executed

?: error

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Amplifier type: ML85...

FDE?

Force Displacement Evaluation Query

Query evaluation results

Syntax: FDE?p1,p2

Parameter: p1,p2 see table

Effect: this command is used to transmit the status of the last

measurement

Response:

p1	p2	Response
0	-	[status] [anz_messw]
1	_	[Auswertung]
2	_	[meßdauer]
3	0	[GesErgebnis] [endweg] [endkraft] [Nachlauf] [KoordDiff]
3	17	[ErgFenster]
3	8	[ErgEndfnstr]
4		[GrundEnde] [AlarmWert]

Auswertung: structure in ARRAY format (see below)

AlarmWert: (int) value which led to triggering of ALARM output

anz_messw: (int) number of measured values recorded

endkraft: (int) last force measured value

endweg: (int) last displacement measured value

ErgFenster: (int) fitting window evaluation result

ErgEndFnstr: (int) end window evaluation result

GesErgebnis (int) overall result of the evaluation (0 = OK, 0x8000 = initialisation)

value, >0 = NOK (see page H-152)

GrundEnde: reason for terminating measurement:

1: righthand displacement limit of range window reached

2: maximum measurement duration reached

3: settling time reached

4: measurement suspended by external STOP input

5: measurement suspended by FDE0 command

6: standstill detected

7: measurement store full

8: measurement store pointer error (internal error)

9: alarm force overshoot

10: alarm displacement overshoot

KoordDiff: (int) difference between absolute and relative displacement

coordinates

(endweg - EndPos)

meßdauer: (int) duration of the press-fit operation as 1/2400 s

Nachlauf (int) displacement change while settling time counter is running

status: (char): bit 0,1: 0 = stop, 1 = measurement running", 2 = "evaluation complete"

- bit 2: parameter set has changed (deleted automatically by command FDE?0 query from CP32B) (from P4.11)
- bit 3: new measured values (deleted automatically by command FDE?0 query from CP32B) (from P4.11)
- bit 4: parameter set has changed (deleted automatically by command FDE?0 or FDH? query from AB22) (from P4.11)
- bit 5: new measured values (deleted automatically by command FDE?0 or FDH? query from AB22) (from P4.11)
- bit 6: parameter set has changed (deleted automatically by command FDE?0 query from external interface) (from P4.11)
- bit 7: new measured values (deleted automatically by command FDE?0 query from the external interface) (from P4.11)

Contents of the [Auswertung] structure

O#	Tuna	Contents
Off set	Туре	Contents
0	int	Overall result of the last measurement run:0=OK,>0=NOK
2	int	End displacement (position when measurement completed)
4	int	End force (force when measurement completed)
6	int	Overshoot (displacement change while settling time counter is running)
8	int	Total number of press-fit processes performed
10	int	Number of flawed press-fit processes
12		Result end window
14	int	Minimum force in end window
16	int	Maximum force in end window
18	int	Displacement coordinate for minimum force in end window
20	int	Displacement coordinate for maximum force in end window
22	int	Block difference (actual end position–preset end position)
24		Result window[0]
26		Minimum force in window[0]
28		Maximum force in window[0]
30		Displacement coordinate for minimum force in window[0]
32		Displacement coordinate for maximum force in window[0]
34	WINDO	Data for window[1] (structure as window[0])
44	WINDO	Data for window[2] (structure as window[0])
54	WINDO	Data for window[3] (structure as window[0])
64	WINDO	Data for window[4] (structure as window[0])
74	WINDO	Data for window[5] (structure as window[0])
84	WINDO	Data for window[6] (structure as window[0])
94	char	Parameter set number (from P4.10)
95	char	reserved

FDH

Force Displacement Histogram

Delete statistics buffer

Syntax: FDHp1 Parameters p1

p1	Effect
0	Deletes the 'press-fit processes' and 'error' counters
17	Deletes the respective histogram values for fitting windows 17
8	Deletes the histogram values for the end window
9	Deletes the entire statistics buffer (08 combined)

Effect: see table

Response: 0: command successfully executed

? error

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Amplifier type: ML85...

FDH?

Force Displacement Histogram Query

Query the statistics buffers

Syntax: FDH?p1

Parameters p1 (see table)

Effect: see table

Response:

p1	Response	
0	[ges_zahl] [fehler_zahl]	
17	[histo] [mittel] [s-abb] [zahl] [io]	
8	[end_histo] [io]	

end_histo: (u int[9]) end position histogram: shows the distribution of the end

points inside the end window

fehler_zahl: (u int) number of flawed press-fit processes

ges_zahl: (u int) total number of all press-fit processes performed

histo: (u int[2][9]) histogram values for the minima and maxima of the

measured forces

io: (u int) number of press-fit processes evaluated with "OK" in this

window

mittel: (u int) mean values for the minima and the maxima of the measured

forces

s-abb: (u int) standard deviations for the minima and the maxima of the

measured forces

zahl: (u int) number of the press-fit processes, where the measurement

curve runs right through the window

FDI?

Force Displacement IO Query

Output of the IO port status

Syntax: FDI? Parameters none

Effect: outputs the status of the IO port

Response:

p1	Response
_	[Eingänge] [Ausgänge]

Bit	Input (int)	Output (int)
0	PRINT	BUSY
1	CLEAR	N OK
2	CHECK	OK
3	NF	/ALARM
4	P2	/WARN
5	P1	/THR
6	P4	No.1
7	START	No.2
8	→0← F	No.8
9	→0← s	No.4
10	CAL	-

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Amplifier type: ML85...

FDS

Force Displacement Setup

Press-fit measurement run control

Syntax: FDSp1,p2,p3,p4,p5,p6

Effect: see table

Response: 0: command successfully executed

?: error

Parameter p1, p2, p3, p4, p5, p6	Description
0 [max_t] [weite] [MessEnd] [delta_s] [delta_t]	Abort conditions
1 [x0] [y0] [delta0]	Transducer test window
2 [WeiteF] [WeiteS]	ΔF and Δs for data acquisition (from Version P4.00)

delta_s: (int) displacement difference for standstill recognition

delta_t: (int) time difference for standstill recognition

Result: (int) 0 = transducer test OK, 1 = transducer test not OK

max_t: (int) timeout time, after which measurement is aborted

MessEnd: (char) bit 0...2: abort criterion: 0 = block force+settling time,

1 = standstill recognition, 2 = external stop signal,

3 = target position+settling time

bit 3: relative displacement coordinates:

0 = relative to the end position

1 = relative to the calculated start position

bit 4: displacement coordinate output:

0 = absolute, 1 = relative

weite: (char) value from 1...255: (see WeiteF and WeiteS); this parameter

is also used for data compression of the time axis (command FDB?)

WeiteF (int) (0...255) determines the DF, to be used to record a new

measurement pair.

 $DF = (F_{top range window} - F_{bottom range window}) * WeiteF/750 (from Version P4.00)$

If WeiteF = 0, the value "weite" is used to calculate DF

(compatibility with older versions).

(int) (0...255) determines the Ds, to be used to record a new WeiteS

measurement pair.

Ds = (s_{righthand range window} - s_{lefthand range window}) * WeiteS/750

(from Version P4.00)

If WeiteS = 0, the value "weite" is used to calculate Ds

(compatibility with older versions).

displacement value of the zero position (transducer test) x0:

y0: force value of the zero position (transducer test)

delta0 permitted deviation as ‰ from the specified zero position

(transducer test)

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Amplifier type: ML85...

FDS?

Force Displacement Setup Query

Query the setup

Syntax: FDS? p1

Parameters p1

Effect: outputs the setup

Response:

p1	Output
0	[max_t] [weite] [MessEnd] [delta_s] [delta_t]
1	[x0] [y0] [delta0] [Ergebnis]
2	[WeiteF] [WeiteS]

For descriptions of the output parameters, see FDS

FDW

Force Displacement Window

Change window limits

Syntax: FDWp1,p2,p3,p4,p5,p6,p7

Effect: see table

Response: 0: command successfully executed

?: error

Param	eter p1, p2, p3, p4, p5, p6, p7	Meaning
[0]	[xl] [xr] [yu] [yo]	Window limits, range window
[1]	[ZustEin] [xl] [xr] [yu] [yo]	Window limits, thread-in window
[27]	[Zustand] [xl] [xr] [yu] [yo] [yur] [yor]	Window limits, fitting windows 27
[8]	[xl] [xr] [f_block] [t_setz] [EndPos]	Window limits, end window

EndPos: (int) start position or end position (depending on abort criterion

selected (see FDS)

f_block: (int) block force or F_{min}

t_setz: (int) settling time in 1/2400 sec (once the minimum force is reached

in the end window, measurement is aborted after expiry of the

settling time)

xl: (int) lefthand displacement value

xr: (int) righthand displacement value

yo: (int) top force value

yor: (int) top right force value (for diagonal windows)

yu: (int) bottom force value

yur: (int) bottom right force value (for diagonal windows)

Zustand: bit 0: 0 = inactive

1 = active

bit 1,2:0 = absolute force

1 = force relative to the minimum force measured in Window2 (not permitted for fitting windows 0 and 1)

2 = force relative to the maximum force measured in Window2 (not permitted for fitting windows 0 and 1)

3 = not permitted

bit 4: 0 = absolute displacement coordinates

1 = relative displacement coordinates (not permitted for fitting window 0)

bit 5,6: 0 = curve shape evaluation

1 = Fmin evaluation

2 = Fmax evaluation

3 = mean value evaluation

ZustEin: 0 = inactive

1 = active

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Amplifier type: ML85...

FDW?

Force Displacement Window Query

Query window limits

Syntax: FDW?p1

Parameter: p1 see table

Effect: this command is used to transmit the full status of the last

measurement

Response: see table

p1	Response
0	[xl] [xr] [yu] [yo]
1	[Zustand] [xl] [xr] [yu]
27	[Zustand] [xl] [xr] [yu] [yo] [yur] [yor]
8	[Zustand] [xl] [xr] [f_block] [t_setz] [EndPos]

For descriptions of the output parameters, see FDW

Amplifier type:

ML85...

MDD

Memory Device Data (with CP32B only)

Save setup

Syntax: MDDp1

Parameter: p1 amplifier setup data, fetched from the amplifier with the DSD?

command (as hexadecimal string) 123 bytes = 246 characters (see

below)

Effect: this command is used to save the complete setup.

Response: 0: command successfully executed

?: error

CAUTION!

Not all the parameters are transmitted!! The command is merely available for reasons of compatibility -> use DSD

Contents of the parameter string:

Offset	Type	Contents
0	char	Channel number
1	char	Amplifier code
2	char	Parameter set number
3	char	Width
4	int	End position
6	int	Timeout time
8	int	Lefthand displacement end window
10	int	Righthand displacement end window
12	int	Block force or F _{min}
14	int	Settling time
16	int	Lefthand displacement range window
18	int	Righthand displacement range window
20	int	Bottom force range window
22	int	Top force range window
24	int	Lefthand displacement thread-in window
26	int	Righthand displacement thread-in window
28	int	Bottom force thread-in window
30	int	Top force thread-in window
32	char	Status thread-in window (see FDW)
33	int	Lefthand displacement fitting window[2]
35	int	Righthand displacement fitting window[2]
37	int	Bottom force fitting window[2]
39	int	Top force fitting window[2]
41	int	Bottom right force fitting window[2]

Offset	Туре	Contents	
43	int	Top right force fitting window[2]	
45	char	Status fitting window[2] (see FDW)	
46	Window	Data for fitting window[3] (structure as fitting window[2]	
59	Window	Data for fitting window[4] (structure as fitting window[2]	
72	Window	Data for fitting window[5] (structure as fitting window[2]	
85	Window	Data for fitting window[6] (structure as fitting window[2]	
98	Window	Data for fitting window[7] (structure as fitting window[2]	
111	char	Abort condition (MessEnd)	
112	int	delta_s	
114	int	delta_t	
116	int	Force value for transducer test	
118	int	Position for transducer test	
120	char	Delta value as ‰ for max. permitted deviation (see FDS)	
121	char	Print format (see PFS)	
122	int	Alarm force	

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Communications processor: CP12, CP32

MDD?

Memory Device Data Query (with CP32B only)

Putputs setup parameters

Syntax: MDD?p1

Parameter: p1 Channel number of amplifier

Effect: outputs the amplifier setup parameters

Response: hexadecimal string 123 bytes = 246 characters (HEXSTR format)

CAUTION!

Not all the parameters are transmitted!! The command is merely available for reasons of compatibility -> use DSD

PFS

Print Format Select Specifies Print Format

Syntax: PFSp1

Parameter:

p1	Information
1	Number of the press-fit process and the overall result
2	End force and end position
4	Individual window result
8	Force minima and maxima of the individual windows
16	Target values for minimum and maximum force for each measurement
32	Target values for minimum and maximum force only for windows with NOK result
64	Automatic print request after each measurement run
128	Automatic print request after each measurement run, only if overall result NOK

You can set any combinations from the above table, by adding code numbers.

Effect: specifies information to be printed. The setting affects the print

output through the external PRINT input on the ML85 and through

an internal print request.

Response: 0: command successfully executed

?: error

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Amplifier type: MC, MLxx

PFS?

Print Format Select Query

Output Print Format

Syntax: PFS? Parameter: none

Effect: outputs information to be printed.

Response: p1: information which has been set (for coding see PFS command)

PRQ

Printer Request

Initiate printing

Syntax: PRQ Parameter: none

Effect: this command initiates printing (same effect as PRINT input)

Response: 0: command successfully executed

?: error

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

PRQ?

Printer Request Query

Query print request

Syntax: PRQ? Parameter: none

Effect: the CP 12 uses this command to establish which press-fit channel

has an existing print request. The query deletes the request flag in

the channel concerned.

Response: 0: no print request exists

1: a print request exists

PSC

Press Select Channels

Select press-fit controller channels for recording

Syntax: PSC p1,..., p16 (x)

Parameter: p1,...,p16

Controller channels whose evaluations are to be recorded.

PSC 0 (x) deselects all channels!

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Communications processor: CP32

PSC?

Press Select Channels Query

Syntax: PSC?p1(x)

Parameter: p1: output mode

0: available controller channels1: selected controller channels

Response: *q1,...q16:*

List of existing or active controller channels

RES

Reset

Execute warm restart

Syntax: RES Parameter: none

Effect: the device executes a warm restart. Communication is terminated.

Response: none

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Communications processor: CP12, CP32

TDD

Transmit Device Data

Syntax: TDDp1,p2

Parameter:

p1	Amplifier setups	
0	$ROM \longrightarrow$	RAM (Setup Factory Data)
1	EEPROM o	RAM (Recall Data)
2	$RAM \longrightarrow$	EEPROM (Save Data)
5	EEPROM o	RAM (Recall Comment)
6	$RAM \qquad \rightarrow \qquad$	EEPROM (Save Comment)

p2: parameter set number under which the present amplifier setting is to be saved (1...8). p2 is accepted as the current parameter set number

Effect: cold start/warm start and data storage to the EEPROM

Response: 0: command successfully executed

?: error

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Amplifier type: MC, MLxx

TDD?

Transmit Device Data Query

Syntax: TDDp1

Parameter:

p1	Response	
0	As per table below	
1	Number of the current parameter set	

Effect: Queries the origin of the currently active parameter setting

Response: for p1 = 0

0	Setup
1	Internal EEPROM
2	User input
?	Error

for p1 = 1: number of the current parameter set (1...8)

UCC

User Channel Comment

Enter comment

Syntax: UCCp1

Parameter: p1 Any string "___" (45 characters)

Effect: you can use this command to file any comment in the evaluation

channel

Response: 0: command successfully executed

?: error

Related commands: AID?, BDR, DCL, DSD, FDA, FDR?, FDE, FDH, FDI?, FDS, FDW,

MDD, PFS, PRQ, PSC, RES, TDD, UCC

Amplifier type: MC, MLxx

UCC?

User Channel Comment Query

Output comment

Syntax: UCC? Parameter: none

Effect: you can use this command to read out any comment filed in the

evaluation channel

Response: "_____" (string with 45 characters)

8 PC-Card hard disk

CFS

Compression Factor Set (from P1.30)

Enter compression factor

Syntax: CFSp1(x)

Parameter: p1: comment selection

p1	Compression factor
0	off
48032768	avail. setting range

Effect: while a data set (file.mea) is being recorded to the PCMCIA HDD,

this command is used to create a second, accelerated data set, to be filed under the file name file.sto. This data set contains a min/max value pair for every so many measured values, in

accordance with the compression factor.

Example: measured values to be recorded = 1000, selected compression

factor = 500 gives 1000/500 = 2 min/max value pairs.

Note:

A value pair is not filed for measured values which are left over (< 480), or if the compression factor selected is too high (CF >

number of measured values).

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

CFS?

Compression Factor Set Query (from P1.30)

Read out compression factor

Syntax: CFS?(x)
Parameter: none

Response: q1(y): compression factor

CMF

Comment Measurement File (from P1.30)

Put comments in measurement file

Syntax: CMFp1,p2(x)

Parameter: p1: comment selection

0 p2 becomes the active comment

1...n comment from the Comments.txt file becomes the active

comment

-1 p2 becomes the comment of the active data acquisition

setup

p2: comment, "___ASCII string___" (max. 80 characters)

Effect: the active comments on the measurement and on the data

acquisition setup are put at the start of the measurement file when

a measurement run is recorded on the PCMCIA hard disk.

Note:

A selection of comments on the measurement run is put in the file Comments.txt. They must be available on a line basis (max. 80 characters/line). The data acquisition setup comments are put in these automatically.

CMF?

Comment Measurement File Query (from P1.30)

Read out comments on the measurement run or on the data acquisition setup

Syntax: CMF?p1(x)

Parameter:

p1	Comment	
0	Active comment	
1n	from file Comments.txt	
-116	-116of data acquisition setup 116	
-17	-17of data acquisition setup 0 (FLASH)	
-18of active data acquisition setup		

Response: "__comment___"(y): max. 80 characters

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Delete Measurement File

Delete a file from the PCMCIA hard disk

Syntax: DELp1(x)

Parameter: p1: complete file name without wildcards

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, MBF, MCS, MRG, MSS, MVF, OMP, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?,

SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Directory of hard disk

Output of a directory of the measurement files on the hard disk or the specific parameters of one file, or of the hard disk itself.

Syntax: DIR?p1,p2(x)

Parameter: p1: mode

1: hard disk information

2: file information

3: directory information

p2: file name with or without wildcards ("xxx.*xx")

Response: p1 = 3: q1(y)

q1: file name

In order to receive the next file name, the command must be repeated without p2.

p1 = 2: q1,q2,q3(y)

q1: time of file creation

q2: date of file creation

q3: file size

p1 = 1: q1,q2(y)

q1: capacity of PCMCIA hard disk in bytes

q2: capacity available on PCMCIA hard disk

Example: DIR?3,file.mea(x)

cdateo.mea(y)

DIR?2,bfile.mea(x)

14:06,22.01.97,567084(y)

DIR?1(x)

170350600,95048364(y)

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Integrate Hard-Disk

Divert the measurement output to the PCMCIA hard disk

Syntax: IHDp1,p2(x)
Parameters p1: mode

0: close measurement file (file name may be omitted)1: open the measurement file with the specified name (the file is freshly created, i.e. if a file with this name already

exists it will be overwritten)

p2: file name

Name of the measurement file to be recorded, with extension in accordance with DOS convention (xxxxxxxx.xxx)

If working with various measurement rates (see MRG command in), a separate measurement file is created for each measurement rate group. The file names are assigned as follows:

Group 0: NAME.MEA
Group 1: NAME.ME1
Group 2: NAME.ME2
Group 3: NAME.ME3

If working with data reduction, the file names for the reduced data records are assigned as follows:

Group 0: NAME.ST0 Group 1: NAME.ST1 Group 2: NAME.ST2

There is no data reduction for the asynchronous group.

IHD?

Integrate Hard-Disk Query

Output the data diversion information

Syntax: IHD?p1(x)

Parameter: p1: 0,...,2 measurement rate group

3 asynchronous group

Response: q1,q2,q3,q3,q4,q5,q6(y)

q1: status of the measurement file (1=open, 0=closed) q2: status of the recording (1=running, 0=not running)

q3: size of the measurement file (bytes)

q4: number of measured value lines in the measurement file /

channel in the measurement file

q5: name of the measurement file

q6: number of measured value lines to be recorded

(RMB? command)

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Programming Channel Select

Channel select for the immediately following set-up commands

Syntax: PCSp1,p2,...,p16(x)

Parameter: p1,p2,...,p16: channel numbers (1...16)

Related commands: ADR?, CHS, DCL, DGM, PCS, RES, RST, Sxx

Communications processor: CP12, CP32

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

PCS?

Programming Channel Select Query

Output channel selection for set-up commands

Syntax: PCS?p1(x)

Parameter:

p1	Output mode
0	Existing channels
1	active channels

Response: q1,...,q16(y): list of existing or active channels

Press Data to Hard Disk (with effect from P1.30)

Save press-fit data to CP32B-HDD/activate press-fit controller print monitoring

Syntax: PHDp1,p2(x)

Parameter: p1: data acquisition mode

0: finish data acquisition (p2 not required)

1: start recording. A set of files is defined under the specified base name (p2). For each press-fit controller, a file is defined with all the relevant parameters, to which the evaluations are saved. The file names are formed as follows:

base name.channel number (using DOS conventions).

2: Print monitoring of the press-fit controller selected by the

PSC command starts.

p2: base file name without extension

Effect: a file is created for each press-fit controller, for saving all the

relevant setup parameters and press data. The individual file

names comprise "base name.channel number".

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

PHD?

Press data to Hard Disk Query (from P1.30)

Read press data from the CP32B HDD

Syntax: PHD?p1(x)

Parameter: p1: 1...16 Channel number of an evaluating channel (ML85/3)

Response: q1,q2,q3,q4(y):

q1: 0,1, 2 Monitoring inactive, data acquisition active,

print monitoring active

q2: N Size of the recording file of channel p1

(for q1 = 1 only)

q3: N Number of press-fit operations already saved for

channel p1 (for q1=1 only)

q4: File name full file name for channel p1 (for q1=1 only)

RHD?

Read from Hard Disk

Output of a measurement file via the active interface

Syntax: RHD?p1,p2,p3(x)

Parameter: p1: name of the measurement file to be read

p2: number of bytes to be sent (from P1.30)

0: output entire file

p3: start position inside the file (from P1.30)

0: output file from the beginning

Response: Binary data(y): file size (4 bytes binary) + measurement data

(header + n measured value lines)

Data recording format:

Header: (512 bytes, 4351 bytes from P1.30)

File ID (6001) (4 byte binary LSB...MSB)
Number of channels (4 byte binary LSB...MSB)

Size of the measured value lines

in bytes (4 byte binary LSB...MSB)

Number of measured value lines

in the file (4 byte binary LSB...MSB)

Data format (4 byte binary LSB...MSB)

Measuring rate (4 byte binary LSB...MSB)

Data offset (4 byte binary LSB...MSB)

Reserved (4 byte binary LSB...MSB)

1x per channel (including time stamps)

Channel number Scale factor	(4 byte binary LSBMSB) (4byte floating LSBMSB)
Data offset (tare)	(4byte floating LSBMSB)
Unit	(4byte ASCII)
Measuring signal bit field	(4 byte binary LSBMSB)
Bit 0 = Gross, dynamic Bit 1 = Net, dynamic Bit 2 = Peak value 1 Bit 3 = Peak value 2	
Channel comment	(47 byte ASCII) ¹⁾ : UCC?
Channel comment	(178 byte) ^{1):DSD?}
Date and time string	(25 byte ASCII)
Comment on measurement	(80 byte) ¹⁾ : CMF?
Comment on the active data acquisition setup	(80 byte) ¹⁾ : CMF?

¹⁾ from P1.30

Note:

The measurement file can be output during data acquisition, to the same file. During the transfer, the current measurement will be buffered in FIFO memory. If the FIFO is full, the measurement run will be terminated.

Data:

n measured values* (format as specified in the header)

^{*)} n=[time stamp + sum of the signals (as selected with the MSS command) of all the measurement channels (as selected with the MCS command) x measured value lines (as specified for the RMB? command)]

Example:

pcs1(x) Select channel 1
mss214(x) Select gross signal
pcs2(x) Select channel 2

mss214,204(x) Select gross signal and peak value signal1 mcs1,2,17(x) Record channels 1, 2 and time channel

•

Start measurement

Redirect measurement output to hard disk!

.

rmb?3,6406(x) Save 3 measured value lines to hard disk

.

 $n=[1 + Gross(1) + Gross(2) + PVS1(2)] \times 3 = 12 data$

Related commands:

ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD, IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

SHD

Send File to Hard Disk

Transmit file to CP32B HDD

Syntax: SHDp1,p2,p3(x)
Parameter: p1 block number

p2: file name with extension

p3: data block "___hexadecimal string___" (128 bytes = 256

characters)

Effect: With p1 = 1, the file is created and the first data block (p3) saved.

With p1 = 2...n, the next data blocks are transmitted.

p1 = 0 closes the file. (p2, p3 not required)

Example: SHD1,test.txt,"30313233343536373839"(x)

File test.txt is created and the first data block is transmitted.

SHD0(x) Close file

Response: q1(y)

0: without error

?: error

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS, SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

SRP

Set Recording Parameters

Define data acquisition parameters

Syntax: SRPp1,...,p7(x)

Parameter: p1: 1...n Number of measured value lines in an individual

measurement, consisting of a pre-trigger and a post-trigger

p2: 1...n Number of measured value lines in the pre-trigger

(post-trigger can be 0)

p3: 1...n Number of consecutive measurements

0: an infinite number of consecutive measurements

p4: status of output redirection to the hard disk

0: output redirection to HDD inactive

1: output redirection to HDD active

p5: name of measurement file on the hard disk

p6: number of measured values for output job on the hard disk

p7: output mode for hard disk data acquisition (only 4609

reasonable, see RMB command)

Effect: this command defines the parameters (TSV, IHD and RMB?

commands) for triggered data acquisition without starting the

measurement.

Related commands: ADS, CFS, CGP, CMF, DEL, DIR, DSD, EES?, HCF?, ICR, IHD,

IPA, LPR, MBF, MCS, MRG, MSS, MVF, OMP, PCS, PHD, PSC, RHD?, RMB?, RMS?, RMV?, SBR, SCM, SHD, SIS, SML, SMS,

SNO?, SPP, SPS, SRP, STD, TCD, TRD, TRE, TRG, TRR, TSV

Communications processor: CP32

SRP?

Set Recording Parameters Query

Read out data acquisition parameters

Syntax: SRP?(x)

Parameter: none

Response: q1,q2,...,q7(y): the parameters set with SRP

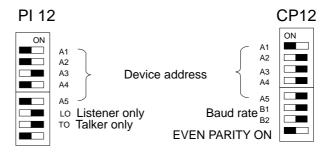
9 MGC commands (predecessor system to MGC*plus*)

9.1 Addressing

Note:

The commands from the predecessor system (MGC) are supported by MGC*plus* and are also described in this Operating Manual.

217G-Address Query Output device address


Only valid for CP12/CP13

Syntax: ADR?(x)
Parameter: none

Effect: depending on the interface selected, outputs the relevant address

for the MGC*plus* device. This address is set with switches (A1-A5) on the CP12 connection board for the RS485 interface and on the PI12 connection board for the IEEE interface. Both address

settings are required for bus control.

Response: q1(y): device address 0...31

Note:

Amplifier set-up and function commands only have an effect on the selected channels. Whenever you switch on all channels are selected (active).

Related commands: ADR?, CHS, DCL, DGM, PCS, RES, RST, Sxx

Communications processor: CP12, CP32

 $\label{eq:mgcplus} \mathsf{MGC} \textit{plus} \ \mathsf{Operation} \ \mathsf{with} \ \mathsf{computer} \ \mathsf{or} \ \mathsf{terminal}$

218G-Define group mem Only valid for AB12

Allocate group addresses

Syntax: DGMp1(x)

Parameter: p1

0...9

Effect: each amplifier can be allocated to a group. You can carry out the

allocation either from the AB12 (Version P13) or from the external computer. You can allocate 10 group addresses (0...9). Amplifier plug-in modules up to and including version P14, have the group address 0, which means that they are all addressed. If the "ALL" key is activated, the only amplifiers to respond are those with a group number which is identical to the group number of the channel

currently selected.

This division into groups only takes effect if operation is through the AB12. The grouping has no meaning for computer control, where

all the amplifiers work as if they had group address 0.

Related commands: ADR?, CHS, DCL, DGM, PCS, RES, RST, Sxx

Amplifier type: MC

DGM? 219G-Define Group Member Query

Output the amplifier group address

Syntax: DGM?(x)
Parameter: none

Response: q1(y): group address

220G-Channel Select

Select amplifier channels

Syntax: CHS p1(x)

Parameter:

p1	Channel coding value	
	1 – 65535	

Channel combinations are set by adding the relevant channel coding values.

Channel coding value p1	Channel number
1	1
2	2
4	3
8	4
16	5
32	6
64	7
128	8
256	9
512	10
1024	11
2048	12
4096	13
8192	14
16384	15
32768	16
65535	all channels

Related commands: ADR?, CHS, DCL, DGM, PCS, RES, RST, Sxx

Communications processor: CP12, CP32

CHS?

221G-Channel Select Query

Output the amplifier channels

Syntax: CHS?p1(x)

Parameter:

ſ	p1 Existing / selected channel numbers	
	0	Existing channels
ĺ	1	Selected channels

Response: q1(y)

Channel coding value q1	Channel number
1	1
2	2
4	3
8	4
16	5
32	6
64	7
128	8
256	9
512	10
1024	11
2048	12
4096	13
8192	14
16384	15
32768	16
65535	all channels

Channel combinations are represented by adding the relevant channel coding values.

9.2 Communication computer/MGCplus

222G-Baud Rate

Set baud rate, parity bit and number of stop bits for the serial interfaces

Syntax: BDRp1,p2,p3,p4(x)

Parameter:

Baud rate	
300	
600	
1200	
2400	
4800	
9600 ¹⁾	
19 200	
38400 ²⁾	
57600 ²⁾	

p2	PARITY
0	no
1	Odd
2	Even ¹

р3	stop bits
1	1 stop bit ¹⁾
2	2 stop bits

p4	Interface
0	The interface from which MGC <i>plus</i> is operated
1	RS-232
2	RS-485

- 1) Factory setup
- 2) only with CP32B

The word length for transmission is always 8 bits. If you use the CP12 connection board, the serial interfaces are always configured to match the switch positions.

Related commands: BDR, SBR, SRB Communications processor: CP12, CP32

BDR?

223G-Baud Rate Query

Output baud rate, parity bit and number of stop bits for the serial interfaces

Syntax: BDR? p1(x)

Parameter:

p1	Interface
0	The interface, from which MGCplus is operated
1	RS-232
2	RS-485

Response: q1,q2,q3,q4(y):

q1	baud rate *
q2	parity *
q3	stop bits *
q4	Interface identification *

^{*)} see tables (p1...p4) for the BDR command

224G-Internal Byte Quer Only valid for CP12/CP1

Query baud rates/address switch

Syntax: IBY? p1(x)

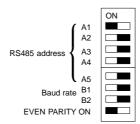
Parameter:

p1	p1	
1	Output DIP switch positions	
2	Perform RAM test in the CP12	

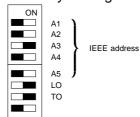
Effect: on the CP12 or PI12 connection boards, you will find an eightfold

DIP switch for setting the address and the interface configuration. The IBY? command outputs the ON/OFF position of the switches

as decimal numbers.


Response: q1,q2(y): for querying the switch position (p1=1)

	DIP switch on the CP12 connection boar	
q2	DIP switch on the PI12 connection board	


q1(y): for RAM test (p1=2)

q1	
0	No errors in RAM
others	Address of defective memory location

Example 1: the positions of the DIP switch on the CP12 connection board correspond to the factory setting.

The positions of the DIP switch on the PI12 connection board correspond to the factory setting.

IBY?1(x) 129,100(y)

Note:

129 = 1 + 128 (Address 1, 9600 Baud, Even Parity)

100 = 4 + 32 + 64 (Address 4, Addressable)

Example 2: IBY?2(x)

O(y)

RAM test ran without error.

Example 3: IBY?2(x)

8192(y)

RAM location 8192 (corresponds to 2000 Hex) contains errors.

Related commands: BDR, IBY?, SBR, SRB

Communications processor: CP12

9.3 Amplifier input

225G-Amplifier Sensor Adaptation

Enter excitation voltage and transducer type

Syntax: ASA p1,p2,p3(x)

Parameter:

р1	Bridge excitation voltage	
1	1V (ML10, ML30, ML50, ML55)	
2	2.5V (ML10, ML30, ML38, ML50, ML55)	
3	5V (ML10, ML30, ML38, ML50)	
4	10V (ML10)	

no meaning for ML01

Applicable to the ML60: amplitude range for input frequency signal

	ML60	ML35	ML01 and ML10 with AP08
p1	Input amplitude	Measurement type	Decay time
1	typ. 5V	3-wire measurement	Short
2	higher than 100mV	4-wire measurement	Medium
3	_	_	Long

Related commands: AIS, ASA, ASS, HPS, SAD

Amplifier type: MC

Parameter:

p2	Transducer type	Amplifier type
0	DC 10V	ML01
1	S/G full bridge	ML10, ML30, ML38, ML55
2	SG half bridge	ML10, ML55
3	Inductive full bridge	ML50, ML51, ML55
4	Inductive half bridge	ML50, ML51, ML55
5	DC 20mA	ML01
6	Thermocouple type J	ML01
7	Thermocouple type K	ML01
8	Thermocouple type T	ML01
9	Thermocouple type S	ML01
10	DC 75mV	ML01
11	Not used	Not used
12	02kHz	ML60
13	020kHz	ML60
14	0200kHz	ML60
15	Pulse counting	ML60
16	500Ω	ML35
17	5000Ω	ML35
18	Pt10	ML35
19	Pt100	ML35
20	Pt1000	ML35
21	Input range 0.1nC	ML01 and ML10 with AP08
22	Input range 1.0nC	ML01 and ML10 with AP08
23	Input range 10.0nC	ML01 and ML10 with AP08
24	Input range 100.0nC	ML01 and ML10 with AP08
25	Full bridge Low (to 30.6mV/V)	ML10
26	Half bridge Low (to 30.6mV/V)	ML10

p2	Transducer type	Amplifier type
27	Full bridge High (to 3060mV/V)	ML10
28	Half bridge High (to 3060mV/V)	ML10
29	SG full bridge 120Ω	ML30 and ML55 with AP14
30	SG full bridge 350Ω	ML30 and ML55 with AP14
31	SG full bridge 700Ω	ML30 and ML55 with AP14
32	SG half bridge 120 Ω	ML30 and ML55 with AP14
33	SG half bridge 350Ω	ML30 and ML55 with AP14
34	SG half bridge 700Ω	ML30 and ML55 with AP14
35	SG quarter bridge 120Ω, 4-wire circuit	ML30 and ML55 with AP14
36	SG quarter bridge 350Ω , 4-wire circuit	ML30 and ML55 with AP14
37	SG quarter bridge 700Ω , 4-wire circuit	ML30 and ML55 with AP14
38	SG quarter bridge 120Ω, 3-wire circuit	ML30 and ML55 with AP14
39	SG quarter bridge 350Ω , 3-wire circuit	ML30 and ML55 with AP14
40	SG quarter bridge 700Ω, 3-wire circuit	ML30 and ML55 with AP14
41	Input range 0.1nC	ML01 and ML10 with AP18
42	Input range 1.0V	ML01 and ML10 with AP18
43	Input range 10.0V	ML01 and ML10 with AP18

Parameter:

р3	Shunt connection
0	Off
1	On

only allowed for ML10, ML30, ML38, ML50, ML51, ML55, ML60 for ML01 with AP08 and ML35 only 0 (Shunt off)

ASA?

226G-Amplifier Sensor Adaptation Query

Output excitation voltage and transducer type

Syntax: ASA? p1(x)

Parameter:

Ī	p1	
	0	Output the bridge excitation voltage and transducer type settings
	1	Output table of possible settings for excitation voltage and transducer type

Response: ASA?0(x) q1,q2,q3(y)

Ī	q1	Bridge excitation voltage	
ĺ	q2	Transducer type	
ĺ	q3	Shunt connection	

ASA?1(x) q1,q2,q3(y)

q1	Possible bridge excitation voltage	
q2	Possible transducer type	
q3	Shunt connection	

These responses are dependent on the amplifier.

Re- sponse for ASA? q2	Transducer type	Amplifier type
0	DC 10V	ML01
1	S/G full bridge	ML10, ML30, ML38, ML55
2	SG half bridge	ML10, ML55
3	Inductive full bridge	ML50, ML51, ML55
4	Inductive half bridge	ML50, ML51, ML55
5	DC 20mA	ML01
6	Thermocouple type J	ML01
7	Thermocouple type K	ML01
8	Thermocouple type T	ML01
9	Thermocouple type S	ML01
Α	DC 75mV	ML01
В	Not used	Not used
С	02kHz	ML60
D	020kHz	ML60
Е	0200kHz	ML60
F	Pulse counting	ML60
G	500Ω	ML35
Н	5000Ω	ML35
I	Pt10	ML35
J	Pt100	ML35
K	Pt1000	ML35
L	Input range 0.1nC	ML01 and ML10 with AP08
М	Input range 1.0nC	ML01 and ML10 with AP08
N	Input range 10.0nC	ML01 and ML10 with AP08

Re- sponse for ASA? q2	Transducer type	Amplifier type
0	Input range 100.0nC	ML01 and ML10 with AP08
Р	Full bridge Low (to 30.6mV/V)	ML10
Q	Half bridge Low (to 30.6mV/V)	ML10
R	Full bridge High (to 3060mV/V)	ML10
S	Half bridge High (to 3060mV/V)	ML10
Т	SG full bridge 120Ω	ML30 and ML55 with AP14
U	SG full bridge 350Ω	ML30 and ML55 with AP14
V	SG full bridge 700Ω	ML30 and ML55 with AP14
W	SG half bridge 120Ω	ML30 and ML55 with AP14
Х	SG half bridge 350Ω	ML30 and ML55 with AP14
Υ	SG half bridge 700Ω	ML30 and ML55 with AP14
Z	SG quarter bridge 120Ω, 4-wire circuit	ML30 and ML55 with AP14
А	SG quarter bridge 350Ω , 4-wire circuit	ML30 and ML55 with AP14
В	SG quarter bridge 700Ω , 4-wire circuit	ML30 and ML55 with AP14
С	SG quarter bridge 120Ω , 3-wire circuit	ML30 and ML55 with AP14
D	SG quarter bridge 350Ω , 3-wire circuit	ML30 and ML55 with AP14
Е	SG quarter bridge 700Ω , 3-wire circuit	ML30 and ML55 with AP14
f	Input range 0.1nC	ML01 and ML10 with AP18
g	Input range 1.0V	ML01 and ML10 with AP18
Н	Input range 10.0V	ML01 and ML10 with AP18

Example: ASA?1(x)

"01.002.505.0","1",0 (y)

p1	bridge excitation voltage (V)
01.0	1.0
02.5	2.5
05.0	5.0

The index corresponds to the excitation voltage to be set (each element in the table is 4 characters in size).

Transducer type for this amplifier:

p2	Transducertype	
1	Only strain gauge full bridge possible	

Each element corresponds to the transducer type to be set (see allocation of code numbers to transducer type. Each element in the table is 1 character in size).

Shunt:

р3	Shunt connection
0	Shunt is off

227G-Amplifier Signal Select

Select amplifier input signal

Syntax: ASS p1(x)

Parameter:

p1	Input source
0	Internal zero signal (zero)
1	Internal calibration signal (calib)
2	Measurement signal (measure)
3	Measures the temperature reference point (ML01 only).

Note:

This command triggers the calibration of all amplifiers and only allows further communication after 1-3 seconds.

Related commands: AIS, ASA, ASS, HPS, SAD

Amplifier type: MC

MGCplus Operation with computer or terminal

for all amplifiers

ASS?

228G-Amplifier Signal Select Query

Output the input signal type

Syntax: ASS?(x)
Parameter: none

Effect: outputs the type of amplifier input signal.

Response: q1(y)

q1	Input signal source for the amplifier	
0	Amplifier input is switched to the zero signal.	
1	Amplifier input is switched to the calibration signal.	
2	Amplifier input is switched to the measurement signal.	
3	Amplifier input is switched to temperature reference point (ML01 only).	

9.4 Filter setting

Amplifier Filtering Select

Filter switching (fc 1/2)

Syntax: AFS p1(x)

Parameter:

p1	Filter code number
1	fc1

CAUTION

Only one more filter available.

Related commands: AFS, ASF, SFC

Amplifier type: MC

Amplifier Filtering Select Query

Output the filter setting

Syntax: AFS?(x)
Parameter: none

Effect: outputs the set filter

Response: q1(y)

q1	Filter code number
1	fc1

Amplifier Signal Filtering

Input cut-off frequency and filter characteristics

Syntax: ASF p1,p2,p3(x)

Parameter:

р1	Filter code number
1	fc1
2	fc1

p2	filter frequency
1n	Code number for the frequency value (corresponds to the index from the frequency table, which can be output using the command ASF?0).

р3	Filter characteristics
0	Bessel
1	Butterworth

CAUTION

Only one more filter available. Parameter p1=2 affects filter 1.

Related commands: AFS, ASF, SFC

Amplifier type: MC

Amplifier Signal Filtering Query

Output cut-off frequency and filter characteristics

Syntax: ASF? p1(x)

Parameter:

p1	Filter code number
0	Frequency table (Bessel and Butterworth)
1	Filter fc1
2	Filter fc1

Response: If p1=0 q1,q2(y)

q1 Table Bessel frequencies
q2 Table Butterworth frequencies

If p1≠0 q1,q2,q3(y)

q1	Filter number fc1
q2	Cut-off frequency of filter fc1
q3	Filter characteristics (0 = Bessel, 1 = Butterworth)

CAUTION

Only one more filter available. Parameter p1=2 affects filter 1.

In the following tables you will find the available cut-off frequencies with Bessel or Butterworth characteristics depending on the particular amplifier.

The index corresponds to the frequency to be set (each element in the table is 5 characters long).

Index	Bessel frequency (Hz)								
	ML01	ML10	ML30	ML35	ML38	ML50/51/55	ML60		
1	0.050	0.050	0.050	0.050	0.030	0.050	0.050		
2	0.100	0.100	0.100	0.100	0.050	0.100	0.100		
3	0.200	0.200	0.200	0.200	0.100	0.200	0.200		
4	0.500	0.500	0.500	0.500	0.200	0.500	0.500		
5	1.250	1.250	1.250	1.250	0.500	1.250	1.250		
6	2.500	2.500	2.500	2.500	0.900	2.500	2.500		
7	5.000	5.000	5.000	5.000	1.500	5.000	5.000		
8	10.00	10.00	10.00	10.00		10.00	10.00		
9	20.00	20.00	20.00	20.00		20.00	20.00		
10	40.00	40.00	40.00			40.00	40.00		
11	100.0	100.0	100.0			100.0	100.0		
12	200.0	200.0				200.0	200.0		
13	400.0	400.0				400.0	400.0		
14	1100.	1000.				900.0	550.0		

Index	Butterworth frequency (Hz)						
	ML01	ML10	ML30	ML35	ML38	ML50/51/55	ML60
1	5.000	5.000	5.000	5.000	1.000	5.000	5.000
2	10.00	10.00	10.00	10.00	1.500	10.00	10.00
3	20.00	20.00	20.00	20.00	2.500	20.00	20.00
4	40.00	40.00	40.00		3.000	40.00	40.00
5	80.00	80.00	80.00		5.000	80.00	80.00
6	250.0	250.0	200.0		6.000	250.0	250.0
7	500.0	500.0			7.000	500.0	500.0
8	1000.	1000.			10.00	1000.	1000.
9	2000.	2000.				1500.	
10	2400.						

9.5 Range

Calibration Dead Weight

Start zeroing/enter zero value (balance)

Syntax: CDW(x) or CDW p1(x)

Parameter:

q1	Zero value in ADC units
	7 680 000 ADC units correspond to the currently set full scale value (range). With linearised measurement of thermocouples and Pt10, Pt100, Pt1000 (°C; °F), the output value multiplied by 1/2560 corresponds to the zero value in degrees.

Note:

If the value read out with CDW?1 (zero value plus gross signal S1) is sent for p1, the currently applied measurement signal is set to zero. With linearised measurement of thermocouples, only the analogue output is set to zero. The setting has no effect on the display value.

You also have the opportunity to set basic detuning to zero, by calculating the zero value to be entered in accordance with the following equation:

Zero value (ADC units) = $\frac{7 680 000 \text{ x basic detuning (unit)}}{\text{Full scale value (unit)}}$

This is advisable, for example, if you want to measure a relative pressure with an absolute pressure transducer.

Related commands: CDW, CMR, COF, IMR, ISR, MSV?, RMV?, STP, TEX Amplifier type: MC

Example:

The MGC*plus* is equipped with ML30 amplifiers. Absolute pressure transducers (SG full bridge transducers) are connected.

Transducer data:

Nominal sensitivity 2mV/V Range 5bar

You should use the CDW command to enter a zero value, so that 0V is applied at the amplifier output.

How do you do this?

Action Command

• Select Unit bar ENU1,"BAR"(x)

• Set full scale value 2mV/V IMR1,2.0(x)

• Set input range 5bar IAD1,5000,3,1(x)

The transducer will now measure 1bar at ambient pressure. Now use the following equation to calculate which value you have to enter to balance basic detuning.

Zero value = 7 680 000 x 1bar / 5bar = 1 536 000

Now enter: CDW1536000(x) *0(y)*

The ambient pressure is now balanced.

CDW?

Calibration Dead Weight Query

Output the zero value

Syntax: CDW? p1(x)

Parameter:

р1	Zero value code number
0	Zero value
1	Zero value plus current measured value (gross, S1)

Response: q1(y)

q1	Zero value in ADC units
	7 680 000 ADC units correspond to the currently set full scale value (range). With linearised measurement of thermocouples and Pt10, Pt100, Pt1000 (°C; °F, K), the output value multiplied by 1/2560 corresponds to the zero value in degrees.

Example 1: CDW?1(x)

10000(y)

Outputs zero value and gross signal (S1).

CDW 10 000(x) would now set this signal to zero.

Example 2: thermocouple measurement, PT10, PT100, PT1000

CDW?0(x) 256000(y)

Zero value = 256 000 / 2560 = 100 degrees

Change Measuring Range

Range switch (range 1/2)

Syntax: CMR p1(x)

Parameter:

р1	Range code number
1	Range 1

CAUTION

Only one more range available.

Related commands: CDW, CMR, COF, IMR, ISR, MSV?, RMV?, STP, TEX

Amplifier type: MC

CMR?

Change Measuring Range Query

Output the range

Syntax: CMR?(x)

Parameter: none

Effect: outputs the selected range.

Response: q1(y)

q1	Range code number
1	Range 1

Input Measuring Range

Enter the full scale values

Syntax: IMR p1,p2(x)

Parameter:

р1	Range code number
1	Range 1
2	Range 1

p2	Full scale value in mV/V
	With linearised measurement of thermocouples, the full scale value should
	be entered in degrees.

For ML60:

p2	Full scale value in kHz

CAUTION

Only one more range available. Parameter p1=2 affects range 1.

Related commands: CDW, CMR, COF, IMR, ISR, MSV?, RMV?, STP, TEX

Amplifier type: MC

IMR?

Input Measuring Range Query

Output the full scale values

Syntax: IMR? p1(x)

Parameter:

p1	Range code number
0	The gross signal (S1) in ADC units
1	Range 1
2	Range 1
3	Maximum and minimum full scale values which can be set

Response: q1,q2(y)

p1=0	q1=0, q2	Gross signal (S1) in ADC units
p1=1	q1	1 = range code number,
p1=2	q2	the set full scale value for range 1
p1=3	q1	maximum full scale value which can be set (dependent on amplifier)
	q2	minimum full scale value which can be set (dependent on amplifier)

CAUTION

Only one more range available. Parameter p1=2 affects range 1.

9.6 Taring

TAR

229G-Tare Instruction

Start taring/enter tare value

Syntax: TARp1(x)

Parameter: p1: tare value in ADC units

Input without parameters: the current measured value is adopted as

the tare value.

Related commands: TAR, TAT, TAV

Amplifier type: MC

TAR?

230G-Tare Value Query

Output tare value

Syntax: TAR?(x)
Parameter: none

Response: q1(y): tare value in ADC units

Note:

You can use the following equation to convert the tare value to the relevant unit:

Tare value (unit) = $\frac{\text{Full scale value (unit)} \text{ x tare value (ADC units)}}{7 680 000}$

Conversion for thermocouples and Pt10, Pt100, Pt1000 (°C, °F, K):

Value in degrees = $\frac{q1}{2560}$

9.7 Analogue outputs

Output Path Select

Allocate analogue outputs

Syntax: OPS p1,p2(x)

Parameter:

p1	Output
1	Vo1
2	Vo2

p2	Signal					
0	no connection					
1	Gross (S1)					
2	Net (S2)					
3	Peak value store 1 (S3)					
4	Peak value store 2 (S4)					

Related commands: OPS, OSP, SAO

Amplifier type: MC

OPS?

Output Path Select Query

Query allocation of analogue outputs

Syntax: OPS? p1(x)

Parameter: p1: code number of the required output (see OPS command).

Response: q1,q2(y)

q1: code number of the output (see OPS command).

q2: code number of the allocated signal (see OPS command).

9.8 Peak store

Peak Value Select

Input the peak value store setup

Syntax: PVS p1,p2,p3,p4(x)

MC

Parameter:

р1	Peak value store
1	Peak value 1 (S3)
2	Peak value 2 (S4)

p2	Peak value determination (always applies to both peak value stores)				
0	Off				
1	On				

р3	Signal
-1	-Gross (-S1)
-2	-Net (-S2)
+1	+Gross (+S1)
+2	+Net (+S2)

p4	Envelope curves
0	Envelope function off
160000	Time constant in ms

Related commands:

CPV, HPV, MPV, PCM, PSM, PVS

Amplifier type:

Peak Value Select Query

Output the peak value store setup

Syntax: PVS?p1(x)

Parameter: p1: code number of the peak value store (see PVS command).

Response: q1,q2,q3,q4(y)

q1	Code number of the peak value store						
q2	Peak value determination On/Off						
q3	Code number of the signal with polarity						
q4	Time constant for envelope function in ms						

9.9 Limit value monitoring

231G-Limit Value

Input the limit value switching thresholds

Syntax: LIVp1,p2,p3,p4,p5(x)

Parameter: p1: number of limit switches (1...4)

p2: operation (On=1 or Off=0)

р3	Input signal				
1	Gross (S1)				
2	Net (S2)				
3	Peak value 1 (S3)				
4	Peak value 2 (S4)				
5	Combined peak value				

p4: activation level in ADC units p5: deactivation level in ADC units

Note:

Updating rate of limit switches: 1.2 kHz

Related commands: LIV, LVD, LVL, LVS, SLC, SOP

Amplifier type: MC

Example 1: LIV1,1,2,3840000,3072000(x)

O(y)

Limit switch 1 is set to limit value monitoring (On), net input signal (S2) and to switching points +5V (make contact) or +4V (break contact). Hyptoresis 1V

contact). Hysteresis 1V.

Example 2: for linearised measurement of thermocouples:

LIV1,1,2,512000,256000(x)

O(y)

Limit switch 1 is set to limit value monitoring (On), net input signal (S2) and to switching points 200 degrees (make contact) or 100 degrees (break contact). Hysteresis 100 degrees.

Note:

You can use the following equations to convert the switching points to ADC units

Switching point (ADC units) =
$$\frac{7 \ 680 \ 000 \ x \ switching point (unit)}{\text{Full scale value (unit)}}$$

With linearised measurement of thermocouples and resistance thermometer (°C, °F, K):

Switching point (ADC units) = Switching point (Grad) x 2560

Limit Value Query

Output the limit value switching thresholds

Syntax: LIV? p1,p2(x)

Parameter:

p1	Limit switches (status)				
0	Query the signal value of p2 (output in ADC units)				
14	14				

p2	Signal code number, if p1=0					
1	Gross (S1)					
2	Net (S2)					
3	Peak value 1 (S3)					
4	Peak value 2 (S4)					
5	Combined peak value					

Response: q1,q2,q3,q4,q5(y) or q6(y)

q1	Limit switches (status)						
q2	Limit value monitoring On/Off						
q3	Limit switch input signal						
q4	Switching point 1 (make contact) in ADC units						
q5	Switching point 2 (break contact) in ADC units						
q6	Level value of signal p2 in ADC units						

Note:

You can use the following equations to convert the switching points or the level values into the selected unit.

Switching point (units) =
$$\frac{\text{Full scale value (unit)}}{7 680 000} \times \text{switching point (ADC units)} = \\ \frac{\text{Full scale value (unit)}}{7 680 000} \times \text{level value (ADC units)}$$

With linearised measurement of thermocouples and resistance thermometer (°C, °F, K) the output value multiplied by 1/2560 corresponds to the level value in degrees.

9.10 Transferring the amplifier setup and the comment

Memory Device Data

Input the amplifier setup data

Syntax: MDD p1(x)

Parameter: p1

Amplifier setup data, retrieved from the amplifier with the command MDD?, as a hexadecimal string "____", (approx. 123 bytes = 246

characters).

Effect: the command is used to save and recall entire setups. If you want

to change individual parameters, please use the relevant command (e.g. IMR). Amplifier setup parameters are recalled to the amplifier channel, this is then followed by a warm start. The amplifier channel number which is the intended destination for the setup data, is

coded in the setup data.

Related commands: MDD, TDD, UCC Communications processor: CP12, CP32

MDD?

Memory Device Data Query

Output the amplifier setup data

Syntax: MDD? p1(x)

Parameter: p1: channel number of amplifier (1-16)

Effect: outputs the amplifier setup parameters

Response: "__hexadecimal string___"(y): approx. 123 bytes =246 characters)

9.11 Remote control

RFP

Remote Function Programming

Assign the remote functions

Syntax:	RFP " "(x)		
		- Pin 9	Bu2 of the connection boards
Parameter:		- Pin2	Duz of the conficction boards

Code num- ber	Function Function	ML01	ML35	ML38	ML10/30/50/51/55 ML55S6	ML60
0	Autocalibration Off/On	ACAL	ACAL	ACAL	ACAL	ACAL
1	Initiate taring	TARE	TARE	TARE	TARE	TARE
2	Switch range 2/1	NOP?3)	NOP?	NOP?	NOP?	NOP?
3	Switch frequency 2/1	NOP?	NOP?	NOP?	NOP?	NOP?
4	Current value/peak value 1	CPV1	CPV1	CPV1	CPV1	CPV1
5	Peak value 1 (HOLD)	HLD1	HLD1	HLD1	HLD1	HLD1
6	Current value/Peak value 2	CPV2	CPV2	CPV2	CPV2	CPV2
7	Peak value 2 (HOLD)	HLD2	HLD2	HLD2	HLD2	HLD2
8	Zero amplifier	ZERO	ZERO	ZERO	ZERO	ZERO
9	REMOTE/LOCAL-switchover	REMT	REMT	REMT	REMT	REMT
Α	Shunt on/off	NOP1)	NOP	SHNT	SHNT	SHNT ²⁾
В	Print On/Off	PRNT	PRNT	PRNT	PRNT	PRNT
С	Switch on calibration signal	CAL	CAL	CAL	CAL	CAL
D	Activate zero signal	NULL	NULL	NULL	NULL	NULL
Е	Operating sign change	NOP	INV	_	INV	INV
F	Trigger for measurement store	NOP	NOP	_	NOP	NOP

 $[\]overline{}^{1)}$ NOP = no function

MC

Note:

the REMOTE-LOCAL switching option is always available

even if the device has LOCAL status.

Related commands:
Amplifier type:

LOR, RFP, RIF, RIP?, DFL

²⁾ Activates the calibration signal of the torque shaft

³⁾ Functions no longer supported by MGC*plus*, are acknowledged with NOP?.

RFP?

Remote Function Programming Query

Query assignment of remote functions

Syntax: RFP? p1(x)

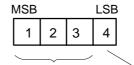
Parameter:

p1	
0	Output assignment of remote functions
1	Output table of available functions

Response: "....."(y): maximum of 64 characters

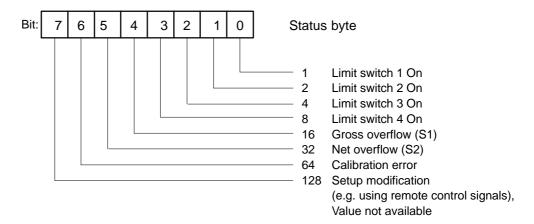
9.12 Output format, measurement output

Change Output Format


Define the measured value output format (for MSV? command)

Syntax: COF p1(x)

Parameter:


p1	Measurement output format
0	Measured value, channel, status (ASCII format)
1	Measured value (ASCII format)
2	4 byte binary measurement output (MSB XX XX LSB)
3	4 byte binary measurement output (LSB XX XX MSB)
4	2 byte binary measurement output (MSB LSB)
5	2 byte binary measurement output (LSB MSB)

4 byte output:

3 byte measured value 1 byte status

7 680 000 ADU units = final scale value (unit) In the case of thermocouples and the units $^{\circ}$ C, $^{\circ}$ F, K corresponds to the output value multiplied by 1 / 2560 of the measured value in degrees.

2 byte output

2 byte measured value

30 000 = final scale value (unit)

In the case of thermocouples and the units ${}^{\circ}C, {}^{\circ}F, K$ corresponds to the output value multiplied by 1 / 10 of the measured value in degrees.

Note:

This command always applies to all channels of a device.

Note:

With ASCII format, the measured values are output scaled, with binary format in ADC units.

Related commands: CDW, CMR, COF, IMR, ISR, MSV?, RMV?, STP, TEX

Communications processor: CP12, CP32

COF?

Measuring Value Format Query

Query measurement output format

Syntax: COF?(x)

Parameter: none

Response: q1(y): code number of output format (see COF command).

Measuring Signal Value Query

Output the measured value

Syntax: MSV? p1,p2,p3(x)

Parameter:

p1	Signal		
1	S1	Gross	
2	S2	Net	
3	S3	Peak value 1	
4	S4	Peak value 2	
5	Limit1	Make contact	
6	Limit1	Break contact	
7	Limit2	Make contact	
8	Limit2	Break contact	
9	Limit3	Make contact	
10	Limit3	Break contact	
11	Limit4	Make contact	
12	Limit4	Break contact	
13	S1	Gross, dynamic	
14	S2	Net, dynamic	

with display filtering

without display filtering

p2	Number of measured values
0	Continuous sending
1 65 535	Default = 1

Parameter: p3

Sequence time in seconds 0.1s to 60.0s. Output time in seconds between measured values (only in the case of binary output).

Effect: the measured value of the required signal (p1) is output. The output

format depends on the last COF and TEX command. You use the PCS command to specify from which channel the measured values

are to be output.

Response: *measured value(y)*:output format see COF command.

```
Example 1:
               Output in full format ASCII
               PCS3,5(x)
                             'Select Channels 3 and 5
               O(y)
               TEX44,59(x) Separator ',' and ';'
               O(y)
               COF<sub>0</sub>(x)
                          Full-format ASCII (measured value, channel, status)
               O(y)
               Fetch a gross measured value (S1).
               MSV?1(x)
               9.998,3,0,8.888,5,0(y)
                                    Status byte
                                    channel
                                    measured value (e.g. 9.998kg)
               Fetch 3 net measured values (3 measured values each from
               channels 3 and 5).
               MSV?2,3(x)
               9.998,3,0,8.888,5,0;9.999,3,0,8.889,5,0;9.998,3,0,8.888,5,0(y)
               For thermocouples:
               Fetch a measured value.
               MSV?1(x)
               100.00,3,0,200.00,5,0(y)
                                     Status byte
                                     channel
                                     measured value (e.g. 100 degrees)
```

Example 2: Output in short-format ASCII

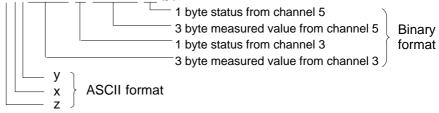
Short-format ASCII (measured value only), channels as in example 1. Fetch one gross measured value from channels 3 and 5. COF1(x) O(y)

MSV?1(x) 9.998,8.888(y)

Fetch 3 net measured values. MSV?2,3(x) 9.998,8.888;9.998,8.888;9.998,8.888(y)

Send gross measured value continuously MSV?1,0 9.998,8.888;9.998,8.888;.......

STP(x)Abort output


Example 3: Output in 4 byte binary format

Binary 4 byte format, the same channels as in example 1. One gross measured value from channels 3 and 5 COF2(x)

0(y)

MSV?1(x)

#18ffeedd00aabbcc00(y)

- z: Identification for binary output
- x: specifies the number of decimal places of y (x=0 for continuous output)
- y: specifies the number of binary bytes to follow (not applicable to continuous output)

```
e.g.: x = 1 y = 8 (outputs 8 binary bytes)
 x = 2 y = 16 (outputs 16 binary bytes)
```

Example 3.1: Continuous output

Gross measured value from channels 3 and 5 are output

continuously. MSV?1,0(x)

#0ffeedd00aabbcc00...
STP(x) Abort output

Example 3.2: Continuous output in a fixed time frame

Channel 1 selected

PCS1(x) *0(y)*

Binary measurement output (4 byte)

COF2(x) *0(y)*

Continuously output gross measured value with a 0.1s (100ms) repetition time. 10 measured value are output every second.

MSV?1,0,0.1(x) #0ffeedd00ffeedd00... STP(x) Abort output

Related commands: CDW, CMR, COF, IMR, ISR, MSV?, RMV?, STP, TEX

Communications processor: CP12, CP32

9.13 Display functions

Note:

The commands in this "Display functions" chapter affect how the measured values are displayed on the AB22A/AB32 display and control panel.

Engineering Unit

Input of unit

Syntax: ENU p1,"p2"(x)

Parameter:

р1	Range for which the unit applies
1	Range 1
2	Range 1

p2	The required unit as a string
	4 characters

CAUTION

Only one more range available. Parameter p1=2 affects range 1.

Related commands: ENU, IAD, ICS, ISS, SIL

Amplifier type: MC

ENU?

Engineering Unit Query

Output of unit

Syntax: ENU? p1(x)

Parameter:

p1	Unit
0	Unit of the range currently set
1	Unit of range 1
2	Unit of range 1
3	Table of possible units

Response: q1,q2(y)

q1: range no. (range 1/2)

q2: a string comprising a maximum of 4 characters. The string characters can be found in the table on the next page.

When p1=3, the string length corresponds to the table of possible units

Significance:

MV/V	=	mV/V	PSI	=	PSI
V	=	V	uM	=	μm
G	=	g	MM	=	mm
KG	=	kg	CM	=	cm
Т	=	Т	М	=	M
KT	=	kt	INCH	=	inch
TONS	=	tons	NM	=	Nm
LBS	=	lbs	FTLB	=	ftlb
N	=	N	INLB	=	inlb
KN	=	kN	uM/M	=	μm/m
BAR	=	bar	M/S	=	m/s
mBAR	=	mbar	M/SS	=	m/s ²
PA	=	PA	p/o	=	%
PAS	=	PAS	p/oo	=	%0
HPAS	=	HPAS	PPM	=	ppm
KPAS	=	KPAS	NC	=	nC
UMIN	=	U/min	PC	=	рС
*pC	=	Grad C	V_IN	=	V
*pF	=	Grad F	MW	=	MW
*K	=	Kelvin	KW	=	kW
*V	=	V	W	=	Watt
mV	=	mV	mA	=	mA
Α	=	Α			

^{*} With thermocouples, only these marked units will be output for the table of possible units.

```
Possible units for the amplifier ML01:
"pC__pF__K___V___NC__mV__A___mA__W___KW__MW__G__
_KG__T__KT__TONSLBS_N__KN__BAR_mBARPA__
PAS_HPASKPASPSI_UM_ MM_ CM_ M_ _INCHNM_ 
FTLBINLBUM/MM/S_M/SSp/o_p/ooPPM_UMIN_ _ __V_IN_NC _ PC _ "
Possible units for the amplifier ML10:
"MV/V_V_G_G_KG_T_KT_TONSLBS_N_KN_BAR_MBARPA_F
PAS_HPASKPASPSI_UM__MM__CM__M___INCHNM__KNM_
FTLBINLBUM/MM/S_M/SSp/o_p/00PPM_ _ _ _ _V_INNC_ _PC_ _'
Possible units for the amplifiers ML30, ML38, ML50, ML51, ML55:
"MV/VV\_\_G\_\_KG\_T\_\_KT\_\_TONSLBS\_N\_\_KN\_\_BAR\_mBARPA\_\_
PAS_HPASKPASPSI_UM__MM__CM__M___INCHNM__
FTLBINLBUM/MM/S_M/SSp/o_p/00PPM_ _ _ _ _ "
Possible units for the amplifier ML35:
"pC__pF__K___V___OHM_ KOHM_mV__ A___mA__W___KW__ MW__
G__KG_T_KT_TONSLBS_N_KN_BAR_mBARPA_PAS_
HPASKPASPSI_UM_ MM_ CM_ M_ INCHNM_ 
FTLBINLBUM/MM/S_M/SSp/o_p/ooPPM_UMIN_ _ _ _ _
Possible units for the amplifier ML60:
"V_ _
_kHZ_HZ_1/S_RPM_UMINIMP_KIMPDEG_NM_KNM_FTLBINLB_M/S_KM/HM/SS
_G_KPAS__KG__T___KT__TONSLBS_N___KN__BAR_mBARPA__
PAS_HPASPSI_UM__MM__CM__M___INCHuM/Mp/o_p/ooPPM_____
```


Indication Adaptation

Enter input range, decimal point, step

Syntax: IAD p1,p2,p3,p4(x)

Parameter:

p1	Range 1
p2	Input range without the decimal point
рЗ	Decimal point (number of decimal places)
p4	Step (minimum increment as a digit)

Step p4 can take the following values:

p4	Step
1	1
2	2
3	5
4	10
5	20
6	50
7	100
8	200
9	500
10	1000

CAUTION

Only one more range available. Parameter p1=2 affects range 1.

Related commands: ENU, IAD, ICS, ISS, SIS, STL

Amplifier type: MC

Indication Adaptation Query

Output input range, decimal point, step

Syntax: IAD? p1(x)

Parameter:

p1	Status
1	of range 1
2	of range 1

Response: q1,q2,q3,q4(y): for parameters, see IAD command

CAUTION

Only one more range available. Parameter p1=2 affects range 1.

Indication Signal Select

Selection of channel and signal display on AB22A/AB32

Syntax: ISS p1,p2(x)

Parameter: p1: channel number (1...16)

p2: signal code number

p2	Signal that is to be displayed
0	no measured value
1	Gross (S1)
2	Net (S2)
3	Peak value 1 (S3)
4	Peak value 2 (S4)
5*	Limit switch 1 (Limit1)
7*	Limit switch 2 (Limit2)
9*	Limit switch 3 (Limit3)
11*	Limit switch 4 (Limit4)

*) Only if limit switches are on

Related commands: ENU, IAD, ICS, ISS, SIS, STL

Communications processor: CP12, CP32

Indication Signal Select Query

Output the channel and the signal display on the AB22A/AB32

Syntax: ISS?(x) Parameter: none

Response: q1,q2(y): channel number, signal code number

9.14 Print functions

PFS

232G-Print Format Select

Specify print format

Syntax: PFS p1(x)

Parameter:

р1	Signal that is to be printed
0	Display in the AB22A/AB32
1	Gross (S1)
2	Net (S2)
4	Peak value 1 (S3)
8	Peak value 2 (S4)
16	Limit switches (status)
64	Disable print function (PRNT OFF)

You can set any signal combination, by adding coding numbers.

Example 1: S1 and S2 are to be printed

p1= 1 + 2 = 3 PFS3(x) O(y)

Example 2: Activation level of limit switch 1, channel 1 is to be printed.

ISS1,5(x) *0(y)*

Show level in the AB22A/AB32 display (only if the limit switch is

activated). PFS0(x)

O(y)

Select the AB22A/AB32 display to print

Related commands: LPR, PFS, PRF, PRT, SPP

Amplifier type: MC, MLxx

PFS?

233G-Print Format Select Query

Query the print format

Syntax 1: PFS?(x)
Parameter: none
Response: q1(y):

signal or signal combination set with the PFS command. For

coding, see PFS command.

Syntax 2: PFS??(x)

Parameter: none

Response: q1..qn(y): any possible signal combination (0,1,2,3,4...31,64)

Example: PFS?(x)

1(y): signal 1 is to be printed

Print

Print values

Syntax: PRT p1(x)

Parameter:

р1	Print Signal
1	Gross (S1)
2	Net (S2)
4	Peak value 1 (S3)
8	Peak value 2 (S4)
16	Limit switches (status)

You can set any signal combination, by adding coding numbers.

If p1 is not sent:

The signal output is that set with the AB22A/AB32 or from the

computer (PFS command).

Effect: sends the print data from selected channels to the interface

specified by the SPP command.

Related commands: LPR, PFS, PRF, PRT, SPP

Communications processor: CP12, CP32

Example 1: An external computer is connected to the RS232C interface. The

RS485 printer interface should be used for printing.

SPP1306(x)

O(y)

Select printer interface

CHS16(x) *0(y)*

Select channel 5

PRT1(x) *0(y)*

Prints S1 from channel 5

Example 2: PRT31(x)

O(y)

Prints S1, S2, S3, S4 and limit switch (status) from channel 5.

Command set \rightarrow Profibus H–253

10 Profibus

EST?

Error Status Query

Read out identification string

Syntax: EST? p1(x)
Parameter: p1: (UINT16)

Effect: the command is used to read out the identification string for a

parameter value.

Response: p1 = 0:

q1,...qn: IDS value(s) of the error(s)

p1=1: q1, q2

q1 !=0: an error exists q2 !=0: a warning exists

Amplifier type: ML77

Related commands: EST?, IDS?

IDS?

Identifier Settings Query

Query the read out identification string

Syntax: IDS? p1(x)

Parameter: p1: (UINT16) value of the parameter

Effect: the command is used to read out the identification string for a

parameter value.

Response: q1: identification string in the set language

Amplifier type: ML77

Command set \rightarrow CAN-bus H–255

11 CAN-bus

NAS?

Neighbourhood active subchannel Query

Output neighbourhood subchannel

Syntax: NAS?(x)

Effect: the command is addressed to a subchannel and returns the

adjoining subchannels. If there is no lower or higher active subchannel available, 0 is downloaded for the corresponding

parameter.

Response: p1(INT16): next lowest active subchannel

p2(INT16): next lowest active subchannel

Related commands: CPI?, CPO, DBA, DBE?, DBS?, FCL, FLO, FLW, NAS?, OSP,

REV?, **SAO**

Amplifier type: ML71

REV?

Revision Query

Output revision

Syntax: REV? p1(x)

Parameter: p1: 0:

0: revision ML hardware

1: revision AP hardware (partly readable)

Response: p1: (IEEEString) 4 Character Revision

Amplifier type: ML71

Related commands: CPI?, CPO, DBA, DBE?, DBS?, FCL, FLO, FLW, NAS?, OSP,

REV?, SAO

H–256 Command set → CAN-bus

11.1 File commands

FLO

File open Open file

Syntax: FLOp1,p2(x)

Parameter: p1: (UNIT32) file size in bytes

p2: (UNIT16) type of file (IDS_FopenBin=1700,

IDS_FopenAsc=1701

Effect: the command opens a file in ML71. If this file is not available as yet,

it is created.

Response: 0: command successfully executed

?: an error has occurred

Related commands: CPI?, CPO, DBA, DBE?, DBS?, FCL, FLO, FLW, NAS?, OSP,

REV?, SAO

Amplifier type: ML71

FLW

File Write

File/Block download

Syntax: FLWp1,p2(x)

Parameter: if opened as a binary file:

p1: (INT16) block number p2: (HEXASC) data block if file opened in ASCII mode:

Command set \rightarrow CAN-bus H–257

Effect: a file must be opened. In binary mode, a 128-byte block is

downloaded with block number p2.

In ASCII mode, a line of a text file is downloaded.

Caution!

In ASCII mode, upper quotation marks (ASCII code 34) must be

displayed by ASCII code 127.

Response: 0: command successfully executed

?: an error has occurred

Related commands: CPI?, CPO, DBA, DBE?, DBS?, FCL, FLO, FLW, NAS?, OSP,

REV?, **SAO**

Amplifier type: ML71

FCL

File Close

Close file and delete

Syntax: FCL(x)
Parameter: none

Effect: a file must be opened. The open file is closed and deleted.

Response: 0: command successfully executed

?: an error has occurred

Related commands: CPI?, CPO, DBA, DBE?, DBS?, FCL, FLO, FLW, NAS?, OSP,

REV?, SAO

Amplifier type: ML71

11.2 Parameter assignment for CAN data acquisition

DBE? Data Base Error Query Query Data base Errors

Syntax: DBE?(x)
Parameter: none

Effect: the command returns detailed information about errors that can

occur when the CQT command is executed.

Response: q1,q2(y)

q1	q2	Meaning						
=0	=0	no error occurred						
>0	>0	q1= row and q2= column number of the DBC file where an error has occurred						
-1	Х	3						
-1	х	4						

Related commands: CPI?, CPO, DBA, DBE?, DBS?, FCL, FLO, FLW, NAS?, OSP,

REV?, SAO

Amplifier type: ML71

Command set \rightarrow CAN-bus H–259

DBA

Data Base

Create database

Syntax: DBAp1,p2(x)

Parameter: p1: (UINT16) database number

p2: (UINT16) IDS_NewDatabase, IDS_DeleteDatabase

Effect: a database file is read in and used to create a new database for

internal use or to delete an existing database. When a new

database is defined, this is stored in flash memory.

Related commands: CPI?, CPO, DBA, DBE?, DBS?, FCL, FLO, FLW, NAS?, OSP,

REV?, SAO

Amplifier type: ML71

Response: 0: command successfully executed

?: an error has occurred

Amplifier type: ML71

DBA?

Data Base Query

Query the database

Syntax: DBA? p1(x)

Parameter: p1: (UINT16) database number

Effect: the command queries whether there is already an internal database

under the given number.

Response: 0: database exists

1: no database exists

DBS?

Data Base Signal Query

Output parameters from the database

Syntax: DBS? p1,p2(x)

Parameter: p1: (UINT16) database number

p2: (UINT16) signal number

Effect: the parameters of a signal are output from the database.

Response: p1: message name

p2: signal name

p3: CAN ID p4: mode

p5: start bit p6: length p7: scaling p8: offset

p9: unit

p10: frame format p11: value format

Related commands: CPI?, CPO, DBA, DBE?, DBS?, FCL, FLO, FLW, NAS?, OSP,

REV?, **SAO**

Amplifier type: ML71

Command set \rightarrow CAN-bus H–261

11.3 Exchange of CAN messages

CPO

CAN Protocol Output

Output CAN protocol

Syntax: CPOp1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p1 1(x)

Parameter: p1: (UINT8) number of the CAN interface (1 or 2)

p2: (UINT32) CAN identifier

p3: (UINT8) length of the CAN message (0...8)

p4: (UINT8) byte 1 p5: (UINT8) byte 2 p6: (UINT8) byte 3 p7: (UINT8) byte 4 p8: (UINT8) byte 5 p9: (UINT8) byte 6 p10: (UINT8) byte 9

Effect: output of a CAN protocol at one of the two interfaces.

Response: 0: command successfully executed

?: an error has occurred

Related commands: CPI?, CPO, DBA, DBE?, DBS?, FCL, FLO, FLW, NAS?, OSP,

REV?, SAO

Amplifier type: ML71

H–262 Command set → CAN-bus

CPI?

CAN Protocol Input Query

Output CAN message

Syntax: CPOp1,p2,p3(x)

Parameter: p1: (UINT8) number of the CAN interface (1 or 2)

p2: (UINT32) CAN identifier of the receive message

Effect: output of any CAN message which has been received with the

corresponding ID(p2). If no suitable message has been received, 0 is output. However, once messages have been received, you can only call them for a certain period of time (dependent on utilisation of bus capacity), in other words, only until the entry in the CAN

input buffer is overwritten (buffer size 50).

Response: q1: (UINT8) length of the receive message

q2: (UINT8) byte 1 q3: (UINT8) byte 2 q4: (UINT8) byte 3 q5: (UINT8) byte 4

q6: (UINT8) byte 5 q7: (UINT8) byte 6 q8: (UINT8) byte 7

q9: (UINT8) byte 8

q10: (UINT8) timestamp[6]

or

?: error

0: no message received

Related commands: CPI?, CPO, DBA, DBE?, DBS?, FCL, FLO, FLW, NAS?, OSP,

REV?, **SAO**

Amplifier type: ML71
MGC*plus* Operation with computer or terminal

Command set \rightarrow CAN-bus H–263

11.4 Assigning analogue output parameters

OSP

Output Select Path

Allocate analogue outputs

Syntax: OSPp1,p2(x)

Parameter: p1: (UINT16) analogue output number (code number of the

analogue output)

p2: signal source 200: no signal

219: signal set with SAO

220: signal of the selected subchannel

Effect: a signal is assigned to the analogue outputs.

Response: 0: command successfully executed

?: an error has occurred

Related commands: CPI?, CPO, DBA, DBE?, DBS?, FCL, FLO, FLW, NAS?, OSP,

REV?, SAO

Amplifier type: ML71

OSP?

Output Select Path Query

Query allocation of analogue outputs

Syntax: OSP?p1(x)

Parameter: p1: (UINT16) signal source (see above)

p2: signal source

Effect: a signal is assigned to the analogue outputs. Response: q1: assigned subchannel number (1...32)

H–264 Command set → CAN-bus

SAO

Set Analogue Output

Output voltage

Syntax: SAOp1,p2(x)

Parameter: p1: (UINT16) analogue output

p2: output voltage in V

Effect: outputs the voltage applied to an analogue output by SAO

Response: p1: analogue output

p2: voltage

Related commands: CPI?, CPO, DBA, DBE?, DBS?, FCL, FLO, FLW, NAS?, OSP,

REV?, SAO

Amplifier type: ML71

Set Analog Output Query

Query the output voltage

Syntax: SAO?p1(x)

Parameter: p1: (UINT16) analogue output

Effect: outputs the voltage applied to an analogue output by SAO

Response: p1: analogue output

p2: voltage

Specifying the output subchannel and the output characteristics

The subchannel output at the analogue output and the output characteristics are assigned parameters in dialogue box 3 "Output Characteristics".

Command set \rightarrow CAN-bus H–265

The TDD command in ML71

Although ML71 is a multi-channel amplifier, all TDD commands **always apply to the entire module.** Even if a TDD is addressed to one subchannel, the settings will be saved or loaded for all subchannels.

For reasons of memory space, the device only has **one** parameter set, in contrast to the eight parameter sets of other modules.

H–266 Command set → CAN-bus

11.5 Using function keys to send CAN messages

You can configure 10 function keys. Assign parameters to the message which is to be sent once or cyclically, by pressing the function key.

Sending the CAN message once

To make sure that only one message is only sent when a function key is pressed, the transmission period must be set to 0ms when parameters are assigned. Each time the function key is pressed, the CAN message is sent once.

Cyclic transmission of CAN messages

A transmission period of 0ms must be set here. The longest possible transmission period which can be set is 65535ms.

When the function key is pressed once, cyclic transmission of the CAN message starts with the period set. The next time you press the key, transmission is interrupted until it is restarted by pressing the key again.

Command set \rightarrow ML78 H–267

12 Multi-channel I/O module ML78

12.1 File commands

FLO

File open

Syntax: FLOp1,p2

Parameters: p1: (UNIT32) File size in bytes

p2: (UNIT16) File type (IDS_FopenBin=1700, IDS_FopenAsc=1701)

Effect: The command opens an existing file in the ML78. If this file does not

already exist, it is created.

Response: 0: Command has been executed

?: An error has occurred

Related commands: FLW, FCL, DBA, DBE?, SAO, OSP, SOP, SPF?, RIP?, ROP?,

TDD, TDD?

H=268 Command set \rightarrow ML78

File Write

File/block transfer (a file must be open before this command is used)

Syntax: FLWp1,p2(x)

Parameters: If binary file open:

p1: (INT16) Block number p2: (HEXASC) Data block If file in ASCII mode open:

p1: (IEESTR) Line (max. 245 characters)

Effect: In binary mode a 128-byte block with block number p2 is

transferred.

In ASCII mode a line of a text file is transferred.

Caution!

In ASCII mode, high quotation marks (ASCII code 34) must be

represented by ASCII code 127.

Response: 0: Command has been executed

?: An error has occurred

Related commands: FLO, FCL, DBA, DBE?, SAO, OSP, SOP, SPF?, RIP?, ROP?,

TDD, TDD?

Command set \rightarrow ML78 H–269

File Close

Close and delete file (a file must be open before this command is used)

Syntax: FCL(x)
Parameters: None

Effect: The open file is closed and deleted.

Response: 0: Command has been executed

?: An error has occurred

Related commands: FLO, FLW, DBA, DBE?, SAO, OSP, SOP, SPF?, RIP?, ROP?,

TDD, TDD?

H=270 Command set \rightarrow ML78

DBA

Data Base

Create or delete database

Syntax: DBAp1, p2

Parameters: p1: (UNIT16) Database number

p2: (UINT16) IDS_NewDatabase (1720), IDS_DeleteDatabase

(1721), IDS_NewDB_Parts(1722)

Effect: A curve for internal use by the system is created for the function

generator from an imported curve file or an existing curve is deleted.

When a new curve is created it is saved to the Flash memory.

Response: 0: Command has been executed

?: An error has occurred

Related commands: FLO, FLW, FCL, DBE?, SAO, OSP, SOP, SPF?, RIP?, ROP?, TDD,

TDD?

Command set \rightarrow ML78 H–271

DBE?

Data Base Error Query

Error typeout

Syntax: DBE?p1

Parameters: No parameters for error query

p1 = 1 : Save the curve in parts (DBA<No>,1722)

Response:

0 : All parts saved

1 : DBE?1 must be sent again, since the database has not yet been

saved in full

Effect: Output giving detailed information on errors that may have occurred

when the DBA command was being executed.

Response: q1,q2(y)

q1	q2	Meaning
=0	=0	No error occurred
>0	>0	q1=line number and q2=column number of the DBC file in which an error occurred
-1	Х	No file open
-2	Х	A table with the specified number already exists
-3	Х	The database to be deleted does not exist
-4	Χ	Insufficient memory space (Flash or RAM)

Related commands: FLO, FLW, FCL, DBA, SAO, OSP, SOP, SPF?, RIP?, ROP?, TDD,

TDD?

H=272 Command set \rightarrow ML78

12.2 Other commands

SAO

Set Analog Output

Syntax: SAOp1,p2(x)

p1 = Number of analogue output 1...10

1 = analogue output 1: BNC or VO1 AP78 or VO1 AP75

2 = analogue output 2: VO2 AP78 or VO2 AP75

3...10 = AO3 ... AO10 AP78

p2: Voltage from -10V ... +10V

Effect: Sets analogue output n to the required output voltage

Response: 0: Command has been executed

?: An error has occurred

Requirement: The output concerned must have been set up for an "External"

source (see command OSP)

Example: SAO3,-5.680

Analogue output AO3 is set to -5.68 V

Related commands: FLO, FLW, FCL, DBA, DBE?, OSP, SOP, SPF?, RIP?, ROP?, TDD,

TDD?

Command set \rightarrow ML78 H–273

OSP

Output Select Path

Assign analogue outputs

Syntax: OSPp1,p2(x)

p1 = Number of analogue output 1...10

1 = analogue output 1: BNC or VO1 AP78 or VO1 AP75

2 = analogue output 2: VO2/AP78 or VO2/AP75

3...10 = AO3 ... AO10/AP78

p2: Signal according to table

IDS constant	Value	Meaning
IDS_ANASRC_NULL	1908	Output fixed at 0V
IDS_ANASRC_EXT	1909	Output voltage adjustable using software command SAO
IDS_ANASRC_CHAN	1910	Output voltage linked to MGC signal
IDS_ANASRC_FUNC1	1911	Output linked to function generator 1
:	:	:
:	:	:
IDS_ANASRC_FUNC10	1920	Output linked to function generator 10

Effect: The signal source is assigned to analogue output x.

Response: 0: Command has been executed

?: An error has occurred

Example: OSP4, 1909

Signal source "External" is assigned to analogue output AO4.

Related commands: FLO, FLW, FCL, DBA, DBE?, SAO, SOP, SPF?, RIP?, ROP?,

TDD, TDD?

H=274 Command set \rightarrow ML78

SOP

Set Output

Set a logical level for the analog outputs

Syntax: SOPp1,p2(x)

p1 = Number of the analogue output it is intended to set
1 ... 8 output A.1 ... A.8 on the AP75 (slot at rear of ML78)
9 ... 16 output B.1 ... B.8 on the AP75 (slot alongside the ML78)

p2 = 0 = Off, 1 = On

Effect: Sets output p1 to the required logical level

Response: 0: Command has been executed

?: An error has occurred

Requirement: In the "Output" menu on the AB22A or on the Assistant for the

output concerned, the option "External" must have been selected with YES. If there is no intention to set up a link with any other MGC signals, no channel selection string must be specified in the other

fields.

Example: SOP1, 1

Output A.1 is set to 1.

Related commands: FLO, FLW, FCL, DBA, DBE?, SAO, OSP, SPF?, RIP?, ROP?,

TDD, TDD?

Command set \rightarrow ML78 H–275

SPF?

Special Functions Query

Query the special properties of an amplifier

Syntax: SPF? Parameters: None

Effect: To find out the special properties of amplifiers, it is possible to

request a 32-bit value containing the relevant information in

bit-coded form.

Response: 61

Bit0 Multimaster

Bit1 Asynchronous module Bit2 Generally configurable

Bit3 Special handling with regard to saving a parameter set to hard

disk or to the Assistant.

Bit4 TDD once only per module, not for each individual subchannel

Bit5 Synchronous link data

Related commands: FLO, FLW, FCL, DBA, DBE?, SAO, OSP, SOP, RIP?, ROP?, TDD,

TDD?

H=276 Command set \rightarrow ML78

Read Input Query

Import the logical levels of the inputs

Syntax: RIP? Parameters: None

Effect: Imports the logical level of the AP75 inputs from slots A and B.

0=0V, 1=24V

Response: q1: Integer value with the following contents

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Input	B.8	B.7	B.6	B.5	B.4	B.3	B.2	B.1	A.8	A.7	A.6	A.5	A.4	A.3	A.2	A.1

ROP?

Read Output Query

Import the logical levels of the outputs

Syntax: ROP? Parameters: None

Effect: Imports the logical level of the AP75 outputs from slots A and B.

0=0V, 1=24V

Response: q1: Integer value with the following contents

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Output	B.8	B.7	B.6	B.5	B.4	B.3	B.2	B.1	A.8	A.7	A.6	A.5	A.4	A.3	A.2	A.1

Related commands: FLO, FLW, FCL, DBA, DBE?, SAO, OSP, SOP, SPF?, TDD, TDD?

Command set \rightarrow ML78 H–277

Transmit Device Data

Save/import settings, comment

Syntax: TDDp1,p2

Parameters:

p1	p2	Amplifier settings
0	any	Load factory settings
1	any	Import parameter set
2	any	Save parameter set
5	110	Import comment
6	110	Save comment

Remarks: Although the ML78 is a multi-channel amplifier, all TDD commands

<u>always apply to the whole module</u>. Even if a TDD is addressed to a subchannel, the settings for all subchannels are saved or imported.

The ML78 has only one parameter set.

Caution: If curve data is imported into the ML78 and command TDD2 is then

executed, the modified curve data is stored in the Flash memory. Saving curve data (256 Kbytes) takes about 30 sec. During this time, analogue output updates run at reduced speed. Command TDD?10 can be used to query whether the data save has finished.

Related commands: FLO, FLW, FCL, DBA, DBE?, SAO, OSP, SOP, SPF?, RIP?,

ROP?, TDD?

 $\text{Command set} \rightarrow \text{ML78}$

TDD?

Transmit Device Data Query

Syntax: TDD?p1

Parameters:

p1	Amplifier settings
0	Origin (upper, left corner) of the amplifier data
1	Active parameter set
3	Test for presence of XM001
10	Test whether curve data has now been fully saved

Response: q1 when p1=0: as for standard MGC

q1 when p1=1: as for standard MGC (when ML78 always 1) q1 when p1=3: as for standard MGC (when ML78 always –1)

q1 when p1 = 10:

q1	Test whether curve data has been saved
0	Save complete
1	Data currently being saved

Related commands: FLO, FLW, FCL, DBA, DBE?, SAO, OSP, SOP, SPF?, RIP?,

ROP?, TDD

Global tables I-1

I Global tables (parameter list)

See the below tables for the major parameter values. The MGCplus system CD (directory D/file lds-kon.pdf) provides a complete list of parameters.

Status	Value	Remarks
On	1	
Off	0	
Yes	3	
No	2	

Tab.1: General

Status	Value	Remarks	Command
No supply	10		SAD
1V	11		
1.25V	12		
2.5V	13		
5V	14		
10V	15		
2–20mA	16	AP18	
0.2V	17	AP810/AP814	
0.5V	18	AP810/AP814	

Tab.2: Bridge excitation voltage

Status	Value	Remarks	Command
5V	21	ML60	SAD
100mV	22	ML60	

Tab.3: Input amplitude

Status	Value	Remarks	Command
Three-wire connection	25	ML35	SAD
Four-wire connection	26	ML35	

Tab.4: Input circuit

I-2 Global tables

Status	Value	Remarks	Command
Short	31	AP08	SAD
Medium	32	AP08	
Long	33	AP08	

Tab.5: Decay time

Status	Value	Remarks	Command
Zero signal	40		AIS
Calibration signal	41		
Measuring signal	42		
Benchmark measuring point	43	ML01, AP09	

Tab.6: Input signal

Status	Value	Remarks	Command
No function	50		RIF
Autocal	51		
Tare	52		
Current/peak value 1	53		
Hold peak value 1	54		
Current/peak value 2	55		
Hold peak value 2	56		
Zeroing the amplifier	57		
Shunt	58		
Print	59		
Calibration signal	60		
Zero signal	61		
Operating sign change	62		
Load parameter set 1	63		
Load parameter set 2	64		
Load parameter set 4	65		
Remote/Local	66		
Start/Stop Integration	67		

Tab.7: Remote function

Global tables I-3

Status	Value	Remarks	Command
1	110		ICS
2	111		
5	112		
10	113		
20	114		
50	115		
100	116		
200	117		
500	118		
1000	119		

Tab.8: Display step

Status	Value	Remarks	Command
Above limit	130		LVS
Below limit	131		

Tab.9: Operating direction

Status	Value	Remarks	Command
Positive logic	135		LVS
Negative logic	136		

Tab.10: Output logic

I-4 Global tables

Status	Value	Remarks	Command
No filter	140	_	SFC
Butterworth	141		
Bessel	142		
Aperiodic	143	_	

Tab.11: Filter characteristics

Status	Value	Remarks	Command
No combination	150	_	SLC, TRD
AND	151		
OR	152		
EXOR	153		
NAND	154		
NOR	155		
EXNOR	156		

Tab.12: Combination type

Status	Value	Remarks	Command
Minimum gross	180		PSM, PCM
Minimum net	181		
Maximum gross	182		
Maximum net	183		
Peak-to-peak gross	184	_	
Peak-to-peak net	185	_	
Comb.: Peak/Peak	186		
Comb.: Mean value	187		
Integration: gross	188	mean-value calculation	
Integration: net	189	mean-value calculation	

Tab.13: Mode peak store

Global tables I-5

Status	Value	Remarks	Command
No signal	200		LVS, SIS, PRF, LPR, MSS
Signal on display	201		
Gross, display filtered	202		
Net, display filtered	203		
Peak value 1	204		
Peak value 2	205		
Limit1 closing level	206		
Limit1 opening level	207	_	
Limit2 closing level	208		
Limit2 opening level	209	_	
Limit3 closing level	210		
Limit3 opening level	211	_	
Limit4 closing level	212		
Limit4 opening level	213	_	
Gross, dynamic	214		
Net, dynamic	215		
Limit value stati	216	On/Off	
Comb. Peak value	217		
User def. signal	219		

Tab.14: Signal type

I-6 Global tables

Status	Value	Remarks	Command
Does not go into comb. on	300		SLC
Limit value status 1	301		
Limit value status 1 inverse	302		
Limit value status 2	303		
Limit value status 2 inverse	304		
Limit value status 3	305		
Limit value status 3 inverse	306		
Limit value status 4	307		
Limit value status 4 inverse	308		
Input 1	309		
Input 1 inverse	310		
Input 2	311		
Input 2 inverse	312		
Input 3	313		
Input 3 inverse	314		
Input 4	315		
Input 4 inverse	316		

Tab.15: Logical input signal

Global tables I-7

Status	Value	Remarks	Command
Full bridge	350		SAD
Half bridge	351		
Quarter bridge	352		
Strain gauge full bridge	353	ML30/38/55	
Strain gauge half bridge	354	ML55	
Strain gauge quarter bridge	355		
Inductive full bridge	356	ML50/51/55	
Inductive half bridge	357	ML50/5155	
Full bridge low level	358	ML10	
Half bridge low level	359	ML10	
Full bridge high level	360	ML10	
Half bridge high level	361	ML10	
Strain gauge full bridge 120 ohm	362	AP14	
Strain gauge full bridge 350 ohm	363	AP14	
Strain gauge full bridge 700 ohm	364	AP14	
Strain gauge half bridge 120 ohm	365	AP14	
Strain gauge half bridge 350 ohm	366	AP14	
Strain gauge half bridge 700 ohm	367	AP14	
Quarter bridge 120 ohm 4L	368	AP14	
Quarter bridge 350 ohm 4L	369	AP14	
Quarter bridge 700 ohm 4L	370	AP14	
Quarter bridge 120 ohm 3L	371	AP14	
Quarter bridge 350 ohm 3L	372	AP14	
Quarter bridge 700 ohm 3L	373	AP14	
DC V	420		SAD
DC A	421		
DC 75mV	425	ML01	
DC 10V	426	ML01	
DC 20mA	427	ML01	

Tab.16: Transducer type

I-8 Global tables

Continued: Tab. 16 transducer types

Status	Value	Remarks	Command
Type J	450	ML01	
Type K	451	ML01	
Type T	452	ML01	
Type S	453	ML01	
Type B	454	ML01, ML01B and ML801 with AP09 and AP08	
Type E	455	ML01, ML01B and ML801 with AP09 and AP08	
Type R	456	ML01, ML01B and ML801 with AP09 and AP08	
Resistance	475		
500 ohm	476	ML35	
5000 ohm	477	ML35	
Pt10	500	ML35	
Pt100	501	ML35	
Pt500	502		
Pt1000	503	ML35	
Internal temperature	510		
Frequency	520		
Period	521		
Pulse counting	525	ML60	
2 kHz	530	ML60	
20 kHz	531	ML60	
200 kHz	532	ML60	
2MHz	537	ML60	
Deltatron TM 0.1V	550	AP18	
Deltatron TM 1V	551	AP18	
Deltatron TM 10V	552	AP18	
Charge	570		
0.1nC	571	AP08	
1nC	572	AP08	
10nC	573	AP08	
100nC	574	AP08	

Global tables I-9

Status	Value	Remarks	Command
0.010 Hz	901		SFC
0.012	902		
0.015	903		
0.020	904		
0.025	905		
0.030	906	Bessel, ML38	
0.040	907		
0.050	908	Bessel, ML01, ML10, ML30, ML35, ML38, ML50/51/55, ML60	
0.060	909		
0.070	910		
0.075	911		
0.080	912		
0.090	913		
0.100	914	Bessel, ML01, ML10, ML30, ML35, ML38, ML50/51/55, ML60	
0.120	915		
0.150	916		
0.200	917	Bessel, ML01, ML10, ML30, ML35, ML38, ML50/51/55, ML60	
0.250	918		
0.300	919		
0.400	920		
0.500	921	Bessel, ML01, ML10, ML30, ML35, ML38, ML50/51/55, ML60	
0.600	922		
0.700	923		
0.750	924		
0.800	925		
0.900	926	Bessel ML38	
1.000	927	Butterworth ML38	
1.200	928		
1.250	929	Bessel, ML01, ML10, ML30, ML35, ML50/51/55, ML60	
1.500	930	Bessel, Butterworth ML38	
2.000	931		
2.500	932	Bessel, ML01, ML10, ML30, ML35, ML50/51/55, ML60, Butterworth ML38	
3.000	933	Butterworth ML38	

Tab.17: Low-pass filter frequencies

I-10 Global tables

Continued: Tab. 17 Low-pass filter frequencies

Status	Value	Remarks	Command
4.000Hz	934		SFC
5.000	935	Bessel, ML01, ML10, ML30, ML35, ML50/51/55, ML60,	
		Butterworth ML01, ML10, ML30, ML35, ML38, ML60	
6.000	936	Butterworth ML38	
7.000	937		
7.500	938		
8.000	939		
9.000	940	Butterworth ML38	
10.00	941	Bessel, Butterworth, ML01, ML10, ML30, ML35, ML38, ML50/51/55, ML60	
12.00	942		
15.00	943		
17.50	944		
20.00	945	Bessel, Butterworth, ML01, ML10, ML30, ML35, ML50/51/55, ML60	
25.00	946		
30.00	947		
40.00	948	Bessel, Butterworth, ML01, ML10, ML30, ML50/51/55, ML60	
50.00	949		
60.00	950		
70.00	951		
75.00	952		
80.00	953	Butterworth, ML01, ML10, ML30, ML50/51/55, ML60	
90.00	954		
100.0	955	Bessel, ML01, ML10, ML30, ML50/51/55, ML60	
120.0	956		
150.0	957		
200.0	958	Bessel, ML01, ML10, ML50/51/55, ML60, Butterworth ML30	
250.0	959	Butterworth, ML01, ML10, ML50/51/55, ML60	
300.0	960		

Global tables I-11

Continued: Tab. 17 Low-pass filter frequencies

Status	Value	Remarks	Command
400.0Hz	961	Bessel, ML01, ML10, ML50/51/55, ML60	SFC
500.0	962	Butterworth, ML01, ML10, ML50/51/55, ML60	
600.0	964		
700.0	965		
750.0	966		
800.0	967		
900.0	968	Bessel, ML50/51/55/60	
1000.	969	Butterworth, ML01, ML10, ML50/51/55, ML60, Bessel ML10	
1100.	970	Bessel ML01	
1200.	971		
1500.	972	Butterworth, ML50/51/55	
2000.	973	Butterworth, ML01, ML10	
2400.	974	Butterworth, ML01	
2500.	975		
3000.	976		
4000.	977		
5000.	978		
6000.	979		
7000.	980		
7500.	981		
8000.	982		
9000.	983		
10,000	1100	Bessel, ML10	
50,000	1140	Bessel, ML10	
100,000	1150	Bessel, ML10 (special version with 100kHz)	
_	1199	without filter	

Status	Value	Remarks	Command
HP Off	1200		HPS
HP 0.1 Hz	1201		
HP 1.0 Hz	1202		
HP 10 Hz	1203		

Tab.18: High pass filter frequencies

I-12 Global tables

Status	Value	Remarks	Command
ASCII measured value, channel, status	1250		MVF, MBF
ASCII measured value	1251		
4 bytes binary MSB LSB	1252		
4 bytes binary LSBMSB	1253		
2 bytes binary MSB LSB	1254		
2 bytes binary LSB MSB	1255		
4 bytes float MSB LSB	1256		
4 bytes float LSB MSB	1257		

Tab.19: Measurement output format

Status	Value	Remarks	Command
current interface	1300		SBR, SPP, ADS
RS-232	1301		
RS-485	1302		
IEEE488	1303		
IEEE1284	1304		
Ethernet	1305		
Printer	1306		

Tab.20: Interface

Status	Value	Remarks	Command
No parity	1350		SBR
Even parity	1351		
Odd parity	1352		

Tab.21: Parity

Global tables I-13

Status	Value	Remarks	Command
75 Bd	1400		SBR
110 Bd	1401		
150 Bd	1402		
300 Bd	1403		
600 Bd	1404		
1200 Bd	1405	0010 0000	
2400 Bd	1406	CP12, CP32	
4800 Bd	1407		
9600 Bd	1408	/	
10000 Bd	1409		
19200 Bd	1410	CP12, CP32	
20000 Bd	1411		
38400 Bd	1412	CP32	
50000 Bd	1413		
57600 Bd	1414	CP32	
76800 Bd	1415		
115200 Bd	1416		
125000 Bd	1417		
153600 Bd	1418		
250000 Bd	1419		
307200 Bd	1420		
500000 Bd	1421		
614400 Bd	1422		
800000 Bd	1423		
1000000 Bd	1424		
1288000 Bd	1425		
2457600 Bd	1426		

Tab.22: Baud rate

I-14 Global tables

Status	Value	Remarks	Command
ML30	5000		AMT?
ML50	5001		
ML01	5002		
ML55	5003		
ML60	5004		
ML35	5005		
ML10	5006		
ML51	5007		
ML55S6	5008		
ML38	5009		
ML801	5015		

Tab.23: Amplifier type

Status	Value	Remarks	Command
AP01, AP03, AP04, AP07, AP11, AP12, AP13	5500	Standard connection boards	CBT?
AP05, AP06	5501	Connection board with Zener barrier	
AP08	5502	Connection board for charge amplifier	
AP14	5503	Connection board with quarter bridge extension	
AP18	5504	Connection board for piezoelectric transducer	
AP09	5505	Connection board with reference point	
AP801	5506	for ML801	
AP809	5507	for ML801	
AP835	5508	for ML801	
AP409	5509	for ML801	
AP4092	5510	for ML801 (2x mounted AP409)	
AP810	5511	for ML801	
AP814	5512	for ML801	

Tab.24: Connection board type

Global tables I-15

Status	Value	Remarks	Command
Measured value ≥ Trigger level	6000	_	TRE
Measured value ≤ Trigger level	6001	_	
Positive edge	6002		
Negative edge	6003		
Static positive (≥ or within)	6004		
Static negative (≥ or outside)	6005		
Threshold	6006		
Window	6007		
Limit value1	6008		
Limit value2	6009		
Limit value3	6010		
Limit value4	6011		

Tab.25: Trigger mode

Status	Value	Remarks	Command
immediately	6100		TRD, TRE
TRG command	6101	_	
External trigger	6102		
Internal trigger	6103	_	

Tab.26: Trigger start mode

I-16 Global tables

Status	Value	Remarks	Command
1 Hz	6300		ICR
2	6301		
5	6302		
10	6303		
25	6304		
50	6305		
60	6306		
75	6307		
100	6308		
150	6309		
200	6310		
300	6311		
400	6312		
600	6313		
800	6314		
1200	6315		
1600	6316	_	
2400	6317	Default	
3200	6318	_	
4800	6319		
9600	6320		

Tab.27: Sampling rates

Global tables I-17

Continued: Tab. 27 sampling rates

		1	
3 Hz	6321		ICR
4	6322		
6	6323		
8	6324		
15	6325		
20	6326		
30	6327		
48	6328		
64	6329	_	
80	6330		
96	6331	_	
120	6332		
160	6333		
192	6334	_	
240	6335		
320	6336	_	
384	6337	_	
480	6338		
640	6339	_	
960	6340	_	
1920	6341	_	
2s	6350		
5	6351		
10	6352		
20	6353		
50	6354		
100	6355		
200	6356		
500	6357		
1000	6358		
2000	6359		
5000	6360		
10000	6361		

I-18 Global tables

Status	Value	Remarks	Command
Start measured value memory	6400		OMP, RMB?
Start measurement run	6401		
Start next measurement run	6402		
Start next measurement run, release old one	6403		
Trigger point	6404		
End of measurement run	6405		
Current position	6406		
Current position, release before	6407		
Current recording position	6408		
Current position, release inclusive	6409		

Tab.28: Reader pointer positioning in recorded measurement

Status	Value	Remarks	Command
Start trigger	6500		TRD
Stop trigger	6501		
Sampling rate trigger	6502		

Tab.29: Trigger type

Global tables I-19

Status	Value	Remarks	Command
No error	0		EST?
FACTORY CAL ERR 1	15001		
FACTORY CAL ERR 2	15002		
FACTORY CAL ERR 3	15003		
FACTORY CAL ERR 4	15004		
FACTORY CAL ERR 5	15005		
FACTORY CAL ERR 6	15006		
FACTORY CAL ERR 7	15007		
AP WRONG	15010	Connection board not suitable for amplifier;	
		Remedy:load factory setup	
APXX ERR	15011	Parameters not suitable for AP; Remedy:load factory setup	
PARAM NOT VALID	15012	Parameters not consistent; Remedy:load factory setup	
TRANSDUCER ERR	15015	Error in six wire circuit	
CALIBRATION ERR	15020	Calibration lines have not produced a valid setting	
Hardware underflow	15030	Error in six wire circuit	
Hardware overflow	15031	Error in six wire circuit	
Gross overflow	15040	Error in six wire circuit	
Net overflow	15041	Error in six wire circuit	
SYNC ERR	15050	Excitation voltage not synchronous, fast measurement	
		acquisition not possible; Remedy: synchronise device to	
		MASTER or devices with cables	
Additional errors	15100	-	
PARAM.CHANGE	20000	Table setting has changed	
AO1 OVERFL	20020	Analogue output 1 overflow	
AO2 OVERFL	20021	Analogue output 2 overflow	

Tab.30: Error query

I-20 Global tables

Command assignments J–1

J Assignment command – hardware

Command	CP12	CP32B	МС	MLxx	MLxxB	ML801	ML71	ML77	ML78
ACL			Х	х		х	x ¹⁾	x ¹⁾	x ¹⁾
ADR?	Х	Х							
ADS	Х	Х							
AFS			Х			х			
AID?			Х			х	х	х	х
AIS			Х			х			
AMT?			Х			х	х	Х	х
ASA			Х						
ASF			Х						
ASS			х			х			
BDR	Х	X				X			
CAL			Х	X		X	x ¹⁾	x ¹⁾	x ¹⁾
CAN				х		х	x ¹⁾	x ¹⁾	x ¹⁾
CAV					х				
CAP				х		х			
CBT?				х		х	х	Х	х
CDT				х		х			
CDV				х		х			
CDW			Х						
CFS		х							
CGP		х							
CHS	Х	х							
*CLS	Х	х							

¹⁾ Command will be accepted, however, it will not have any effect

J–2 Command assignments

Command	CP12	CP32	MC	MLxx	MLxxB	ML801	ML71	ML77	ML78
CMF		х							
CMR			х			х			
COF	Х	х							
CPI?							х		
СРО							х		
CPV			Х	х		х	x ¹⁾	x ¹⁾	x ¹⁾
DBA							DBA		DBA
DBE?							DBE?		DBE?
DBS?							х		
DCL	х	х							
DEL		х							
DFL					х	х			
<u>DGM</u>			х			х			
DID?	Х	Х							
DIR		Х							
DSD	Х	х					х	х	х
EES?		х							
ENU			Х			Х			
*ESE	Х	Х							
ESR?	X	X							
EST?					х			х	х
EUN				Х		x	х		

Command assignments J–3

Command	CP12	CP32B	MC	MLxx	MLxxB	ML801	ML71	ML77	ML78
FCL							FCL		FCL
FDA									
FDE									
FDH									
FDI?									
FDR?									
FDS									
FDW									
FLO							х		FLO
FLW							х		FLW
GFV			Х			x ¹⁾			
HCF?		x							
HPS				х	х	x ²⁾			
HPV				х		x ²⁾			
IAD			X						
IBY?	X		^						
ICR		Х							
ICS				Х		х	Х		
*IDN?	х	x							

¹⁾ AP814 only

²⁾ Command will be accepted, however, it will not have any effect

Command	CP12	CP32B	МС	MLxx	MLxxB	ML801	ML71	ML77	ML78
IDS?				х		х		х	х
IHD		х							
IMR			Х						
IPA		х							
ISR			Х			Х			
ISS	Х	х							
IST?	Х	х							
ISV?				Х		х	х		
IUN				Х		х	х		
LIV			X						
LOR			х	х		x ²⁾	x ²⁾	x ²⁾	x ²⁾
LPR		х							
LSS?					Х				
LVD				Х		х			
LVL				Х		х			
LVS				Х		х	x ²⁾	x ²⁾	
MBF		X							
MCS		x							
MDD	Х	x							
MPV				Х		x ²⁾			
MRG		x							
MSS		x			+				
MSV?	Х	х					х	x ²⁾	x ²⁾

²⁾ Command will be accepted, however, it will not have any effect MGCplus Operation with computer or terminal

Command assignments J–5

Command	CP12	CP32B	МС	MLxx	MLxxB	ML801	ML71	ML77	ML78	ML85
MVA?				Х		х				
MVC				х		x ²⁾				
MVF		Х					х		Х	
NAS?							X			
ОСР				х			x			
OMP		х								
OPS			Х			x ²⁾				
OSP				х		x ²⁾	OSP		OSP	
PCM				Х		x ²⁾				
PCS		х								
PFS			Х	х		х				
PHD		х								
PPM	Х	х								
*PRE	Х	х								
PRF				х		x ¹⁾	х			
PRQ										х
PRT	х	х								
PSC										
PSM				х		х				
PVS			Х			х				

¹⁾ not PkPk

²⁾ Command will be accepted, however, it will not have any effect

J–6 Command assignments

Command	CP12	CP32B	MC	MLxx	MLxxB	ML801	ML71	ML77	ML78
RES	Х	х				х			
REV?							х		
RFP			Х						
RHD?		х							
RIF				х		x ²⁾			
RIP?				х		x ²⁾			RIP?
RMB?		х							
RMS?		х							
RMV?		х							
ROP?									х
*RST	Х	х							
SAD				Х		X			
SAF				Х					
SAO					SAO		SAO		SAO
SBR		х							
SCL			х	х		x ¹⁾			
SCM		х							
SFC				х		х			
SHD		х							
SIS		х							

¹⁾ AP810 and AP814 only

²⁾ Command will be accepted, however, it will not have any effect

Command assignments J–7

Com- mand	CP12	CP32B	МС	MLxx	MLxxB	ML801	ML71	ML77	ML78
SLC				х		x ²⁾			
SML		х							
SMS		х							
SNO?		х							
SOP				х		x ²⁾			SOP
SPF							х		SPF?
SPP	х	х							
SPS		х							
SRB	х	х							
*SRE	х	х							
SRP		х							
STB?	х	х							
STD		Х							
STL			Х	х		x ²⁾	х		
STP	х	Х							
Sxx	х	х							
TAR			Х						
TAT				х		х			
TAV				х		х	x ²⁾	x ²⁾	x ²⁾
TCD		х							
TDD			Х	х		х	х	Х	TDD

²⁾ Command will be accepted, however, it will not have any effect

J–8 Command assignments

Command	CP12	CP32B	MC	MLxx	MLxxB	ML801	ML71	ML77	ML78
TEX	Х	х							
TRD		х							
TRE		х							
TRG		х							
TRR		х							
TSV		х							
UCC			х	х		х	х	х	х

Alphabetical command list K–1

K Alphabetical command list

Α	С
ACL, H-59	CAL, H-61
ACL?, H-59	CAN, H-60
ADR?, H-193	CAN?, H-60
ADS, H-14	CAP, H-65
ADS?, H-15	CAP?, H-65
AFS, H-211	CAV, H-61
AFS?, H-211	CBT?, H-40
AID?, H-38 , H-145	CDT, H-64
AIS, H-47	CDT?, H-64
AIS?, H-47	CDV, H-63
AMT?, H-38	CDV?, H-63
ASA, H-202	CDW, H-216
ASA?, H-205	CDW?, H-218
ASF, H-212	CFS, H-177
ASF?, H-213	CFS?, H-178
ASS, H-209	CGP, H-46
ASS?, H-210	CGP?, H-46
	CHS, H-196
В	CHS?, H–197
BDR, H-145 , H-198	CLS, H-34
BDR?, H–199	CMF, H-178
DDI(:, 11 133	CMF?, H-179
	CMR, H-219
	CMR?, H-219

COF, H-233 COF?, H-235 CPI?, H-262 CPO, H-261 CPV, H-76 CPV?, H-76

D

DBA, H-259 , H-270
DBE?, H-258 , H-259 , H-271
DBS?, H-260
DCL, H-13 , H-146
DEL, H-179
DFL, H-100
DGM, H-195
DGM?, H-195
DID?, H-41
DIR, H-180
DSD, H-52 , H-146
DSD?, H-52 , H-149

E

EES?, H–43
ENU, H–242
ENU?, H–243
ESE, H–27
MGC*plus* Operation with computer or terminal

ESE?, H-28 ESR?, H-24 EST?, H-253 EUN, H-68 EUN?, H-68

F

FCL, H-257, H-269 FDA, H-149 FDA?, H-150 FDE, H-153 FDE?, H-154 FDH, H-158 FDH?, H-159 FDI?, H-160 FDR?, H-160 FDS, H-161 FDS?, H-163 FDW, H-164 FDW?, H-166 FLO, H-256, H-267 FLW, H-256, H-268 Alphabetical command list K–3

G

GFV, H-69 GFV?, H-69

Н

HCF?, H-140

HPS, H-48

HPS?, H-48

HPV, H-78

HPV?, H-78

I

IAD, H-246

IAD?, H-247

IBY?, H-200

ICR, H-138

ICR?, H-138

ICS, H-109

ICS?, H-109

IDN?, H-40

IDS?, H-39, H-253

IHD, H-182

IHD?, H-183

IMR, H-220

IMR?, H-221

IPA, H-15

ISR, H-101

ISR?, H-104

ISS, H-248

ISS?, H-248

IST?, H-35

ISV?, H-67

IUN, H-68

,

IUN?, H-69

L

LIV, H-226

LIV?, H-228

LOR, H-96

LOR?, H-96

LPR, H-116

LSS?, H-92

LVD, H-83

LVD?, H-84

LVL, H-88

LVL?, H-88

LVS, H-85

LVS?, H-86

M

MBF, H-134

MBF?, H-135

MCS, H-117

MCS?, H-117

MDD, H-166, H-230

MDD?, H-168, H-230

MPV, H-77

MPV?, H-77

MRG, H-129

MRG?, H-129

MSS, H-124

MSS?, H-124

MSV?, H-236

MVA?, H-67

MVC, H-81

MVC?, H-81

MVF, H-106

MVF?, H-108

N

NAS?, H-255

0

OCP, H-66

MGCplus Operation with computer or terminal

OCP?, H-66

OMP, H-131

OMP?, H-132

OPS, H-223

OPS?, H-223

OSP, H-72 , H-263 , H-273

OSP?, H-72, H-263

P

PCM, H-79

PCM?, H-80

PCS, H-184

PCS?, H-184

PFS, H-169, H-249

PFS?, H-170, H-250

PHD, H-185

PHD?, H-186

PPM, H-29

PPM?, H-30

PRE, H-36

PRE?, H-37

PRF, H-113

PRF?, H-114

PRQ, H-171

PRQ?, H-171

PRT, H-251

Alphabetical command list K–5

PSC, H-172 SAF, H-50 PSC?, H-172 SAO, H-73, H-264, H-272 PSM, H-74 SBR, H-20 PSM?, H-74 SBR?, H-20 PVS, H-224 SCL, H-62 PVS?, H-225 SCL?, H-62 SCM, H-141 R SCM?, H-142 SFC, H-53 RES, H-18, H-173 SFC?, H-53 REV?, H-255 SHD, H-190 RFP, H-231 SIS, H-110 RFP?, H-232 SIS?, H-110 RHD?, H-187 SLC, H-89 RIF, H-97 SLC?, H-91 RIF?, H-98 SML, H-42 RIP, H-276 SML?, H-42 RIP?, H-99 SMS, H-119 RMB?, H-133 SMS?, H-119 RMS?, H-139 SNO?, H-44 RMV?, H-105 SOP, H-82, H-274 ROP, H-276 SOP?, H-82 RST, H-19 SPF?, H-275 SPP, H-115 S SPP?, H-115 SAD, H-49

SAD?, H-49

K–6 Alphabetical command list

SPS, H-56 SPS?, H-56 SRB, H-21 SRB?, H-23 SRE, H-32 SRE?, H-33 SRP, H-130, H-191 SRP?, H-130, H-192 STB?, H-31 STD, H-45 STD, H-45 STD?, H-411 STL?, H-111 STP, H-104 Sxx, H-16

T

TAR, H-222
TAR?, H-222
TAT, H-71
TAT?, H-71
TAV, H-70
TAV?, H-70
TCD, H-139
TDD, H-93, H-174, H-277
TDD?, H-94, H-175, H-278

MGCplus Operation with computer or terminal

TEX, H-108 TEX?, H-108 TRD, H-125 TRD?, H-126 TRE, H-120 TRE?, H-122 TRG, H-142 TRR, H-123 TSV, H-127 TSV?, H-128

U

UCC, H-95, H-176 UCC?, H-95, H-176 Command list by function L–1

L Command list by function

		Page		
ications behaviour	Communication computer/MGC/		plus H–20	
• Addressing H-13		Set up the baud rate for the serial interfaces		
Start communication via computer H–13 End communication via computer H–13	BDR?	•		
Output the device address H–193	IBY?	Query baud rates/address sw	/itches H-200	
Setting up interface addresses H–14	SBR	Set up the baud rate	H–20	
Output the interface addresses H–15	SBR?	Output the baud rate	H–20	
Select amplifier channels H–196 Output the amplifier channels H–197	SRB	Select the behaviour on ackn for the current interface	owledgement H–21	
Terminate communication H–13, H–146	SRB?			
Allocate group addresses H–195 Output the group address of the				
·		·		
		•		
Outputs the IP address for CP32 H-15	*ESE?	Output the ESR enable bit ma	ask H–28	
Channel select for setup commands H–184	*ESR?	Output the error status registe	er H–24	
Output the channel selection for setup commands H–184	EST? *IST?	Output the response standby	status	
Execute warm restart H–18, H–173	РРМ			
Execute warm restart H–19				
Select the MGC <i>plus</i> with the address xx	*PRE			
Subchannel selection mask H–56	*PRE?	Output the PRE bit mask	H–37	
Subchannel selection mask output H–56	*STB? *SRE *SRF?	Input the STB-enable bit mas	sk H–32	
	Start communication via computer H–13 End communication via computer H–13 Output the device address H–193 Setting up interface addresses H–14 Output the interface addresses H–15 Select amplifier channels H–196 Output the amplifier channels H–197 Terminate communication H–13, H–146 Allocate group addresses H–15 Output the group addresses H–195 Output the group address of the amplifier H–195 Sets the IP address for CP32 H–15 Outputs the IP address for CP32 H–15 Channel select for setup commands H–184 Output the channel selection for setup commands H–184 Execute warm restart H–18, H–173 Execute warm restart H–19 Select the MGCplus with the address xx H–16 Subchannel selection mask H–56	Start communication via computer H–13 End communication via computer H–13 Coutput the device address H–193 Setting up interface addresses H–14 Output the interface addresses H–15 Select amplifier channels H–196 Output the amplifier channels H–197 Terminate communication H–13, H–146 Allocate group addresses H–15 Output the group addresses H–195 Output the group address of the amplifier H–195 Sets the IP address for CP32 H–15 Channel select for setup commands H–184 Output the channel selection for setup commands H–184 Execute warm restart H–18, H–173 Execute warm restart H–18, H–173 Execute warm restart H–18 Select the MGC plus with the address xx H–16 Subchannel selection mask H–56 Subchannel selection mask output H–56 *STB?	Start communication via computer	

Command list by function L–3

Abbreviation		je	Abbreviat	ion	Page	
• Identific	ation H–3	38	ASA?	Output the bridge excitation voltage and transducer type		
AID?	Output the amplifier identification H–145, H–3	38	ASS	Select the amplifier input signal	H-209	
AMT?	Output the amplifier type H–3	38	ASS?	Output the input signal type	H-210	
CBT?	Output the connection board type H-4	40	HPS	Select the high pass cut-off frequency	. H–48	
DID?	Output the amplifier identification H-4	41	HPS?	Output the high pass cut-off frequency	H-48	
EES?	Queries internal error status H-4	43	SAD	Select the input characteristic adjustme	nt H–49	
*IDN?	Output the device identification H-4	40	SAD?	Output the input characteristic adjustme	ent	
IDS?	Identification string for the parameter value Read out H–39, H–25	53	SAF	H–49 Transducer frequency adaptation	. H–50	
SML	Select message language H-4	42	DSD	Input of amplifier settings H–14	6, H–52	
SML?	Query the language setting H-4	42	DSD?	Output of amplifier settings H–52	, H–149	
SNO?	Read out serial number of CP32B H-4	44	• Filter set	ting	H-211	
• Time an	d date H–4	4 5	AFS	Filter changeover (fc 1/2)	H-211	
STD	Set up the system time and date H-4	45	AFS?	Output the filter setting	H-211	
STD?	Output the system time and date H-4	45	ASF	Input the cut–off frequency and filter characteristics	H-212	
CGP?	Set GPIB Write timeout H–4 Establish GPIB Write timeout H–4		ASF?	Output the cut–off frequency and filter characteristics	H–213	
Amplifier	set-ups		SFC	Input the cut–off frequency and filter characteristics	. H–53	
•	er input H–4	47	SFC?	Output the cut–off frequency and filter characteristics	. H–53	
AIS	Select the amplifier input signal H-4	4 7	SPS	Subchannel selection mask		
AIS?	Output the amplifier input signal H-4		SPS?	Subchannel selection mask output	. H–56	
ASA	Input the bridge excitation voltage and transducer type H–20	02				

Abbrev	riation Page	Abbreviation		Page	
	ration H–57	ОСР	Define the characteristic analogue output		
ACL	Autocalibration on/off	OCP?	Output the characteristic	•	
ACL?	Output the autocalibration status H–59		analogue output		
CAL	Calibrate amplifier H–61	SCL	Shunt on/off	H–62	
CAN	Cancel cyclical autocalibration H-60	SCL?	Output the shunt switchir	ng status H–62	
CAN?	Output cancellation of cyclical autocalibration				
CAP	Input the transducer characteristic points H–65	• Tarin	g	H–222	
CAP?	Output transducer characteristic points . H-65	TAR	Ctart taring/langet tara val	U 70 U 222	
CAV	Enter the full scale of the input characteristic		Start taring/Input tare val		
	H–61	TAR?	Output tare value		
CDT	Input the target value for zero point shift of input characteristics	TAT	Input the target tare value		
CDT?	Output the target value for zero point shift	TAT?	Output the target tare val	lue H–71	
	of input characteristics	TAV	Define tare offset	H–70	
CDV	Input the zero point shift for input characteristics	TAV?	Output tare offset	H–70	
CDV?	Output the zero point shift for input characteristics				
EUN	Input the physical unit H–68	• Analo	ogue outputs	H–72	
EUN?	Output the zero point shift for	OPS	Allocate the analogue ou	tputs H-223	
	input characteristics H-68	OPS?	Query the allocation of th	ie	
GFV	Enter k-factor H–69		analogue outputs	H–223	
GFV?	Read out k-factor H–69	OSP	Allocate the analogue ou	tputs H–72	
ISV?	Output the display scale values H-67	OSP?	Output the allocation of the	•	
IUN	Input the unit to be displayed H–68	SAO			
IUN?	Output the unit to be displayed H–69	SAO?	Query the output voltage	⊓−264	
MVA?	Output the absolute value H–67				

Command list by function L–5

Abbreviation		Page	Abbrevia	ation Page
Peak va	lue store	H-74	LVL	Input the limit value H–88
CPV			LVL?	Output the limit value H–88
	Clear peak value store	П-76	LVS	Define parameters for the limit switches H-85
CPV?	Query which peak value stores can be cleared	H-76	LVS?	Output the parameters for the limit switches
HPV	Update the peak value stores suspend/enable	H-78	SLC	Link the limit value outputs H–89
HPV?	Update the peak value stores read out .	H-78	SLC?	Link the limit value outputs H–91
MPV	Enter peak value store mode	H-77	SOP	Set limit value outputs H–82
MPV?	Read out peak value store mode	H-77	SOP?	Output the set limit value outputs H–82
MVC	Start/Stop mean-value calculation	H-81		
MVC?	Query status of mean-value calculation	H-81	• Transfe	er the amplifier setups and
PCM	Link peak value stores	H-79		ents H–93
PCM?	Output the peak value store links	H-80	MDD	Input amplifier setup data H–166, H–230
PSM	Set up peak value store	H-74	MDD?	Output amplifier setup data H–168, H–230
PSM?	Output peak value store settings	H-74	TDD	Save/recall amplifier setups and
PVS	Input the peak value store settings	H-224		comments H–93, H–174, H–277
PVS?	Output the peak value store settings	H-225	TDD?	Query where the amplifier set–up comes from H–94, H–175, H–278
• Limit–va	alue monitoring H	H-226	UCC	Enter comment H–95, H–176
LIV	Input the limit value switch thresholds .	H-226	UCC?	Output comment H–95, H–176
LIV?	Output the limit value switch thresholds	H-228		
LSS?	Query limit value status	H-92		
LVD	Enter the limit value switch thresholds .	H-83		
LVD?	Read out the limit value switch thresholds	H-84		

Abbreviation Pa		e Abb	Abbreviation	
• Remo	ote control H–9	ISR?	Output the data transmission rate	H–104
DFL	Disable function key H–10	MSV?	Output the data	H–236
DFL?	Outputs status of the function key H–10	MVF	Specify measurement output forma	t H–106
LOR	Local/Remote switchover H–9	MVF?	Query measurement output format	H–108
LOR?	Output the Local/Remote status H–9	RMV?	Output the data	H–105
RFP	Assign the remote functions H–23		Cancel the measurement output an data acquisition (CP32)	
RFP?	Query the remote functions H–23	32 TEX	Define the data separator	H–108
RIF	Allocate the function of the remotes H–S	TEX?	Output the data separator	H–108
RIF?	Output the allocation of the remotes H–9		splay functions	⊔ 100
RIP?	Output the status of the remotes H–9	99 - Di	splay functions	п-109
Amplifi	er functions	ENU	Input the unit	H–242
• Outpu	ut format, measurement output H-10	1 ENU?	Output the unit	H–243
CDW	Start zeroing/Input zero value (balance) H-2	l6 IAD	Input the input range, decimal point step	
CDW?	Output the zero value H–2°	18	Step	11–240
CMR	Changeover measuring range (Range 1/2)	IAD?	Output the input range, decimal poi step	
CMR?	Output the measuring range H–2°	ıg ICS	Input the display adaptation	H–109
COF	Define the measurement output format H-23	33 ICS?	Output the display adaptation	H–109
COF?	Query the measurement output format H-23	35 ISS	Select the channel and the	
IMR	Input the full scale values H–22		signal display on the AB22A/AB32	H–248
IMR?	Output the full scale values H–22	21 ISS?	Output the channel and the	
ISR	Define the data transmission rate H–10)1	signal display on the AB22A/AB32	H–248

Command list by function L–7

Abbrev	iation Pa	ge	Abbreviat	tion	Page
SIS	Select the channel and the signal display on the AB22A/AB32 H-	110	DSD	Input the setups for ML amplifiers	, H–146
SIS?	Output the channel and the signal display on the AB22A/AB32 H—	110	DSD?	Output the setups for ML amplifiers	H–149
STL	Select the status/level display H-	111	FDA	Set alarm limits for the /ALARM output	
STL?	Output the state of the status/level display	111	FDA?	Set alarm limits for the /ALARM output	
Print fu	ınctions H–1	13	FDE	Start/stop evaluation	H-153
LPR	Print the measured values H-		FDE?	Query the evaluation results	H-154
PFS	Define print format H–169, H–2	249	FDH	Clear the statistics buffer	H-158
PFS?	Query print format H–170, H–2	250	FDH?	Query the statistics buffer	H-159
PRF	Define the print format	113	FDI?	Output the IO port status	H-160
PRF?	Query the print format H-	114	FDR?	Query the measured values in compressed or non–compressed form	H–150
PRT	Print values H–2	251	FDS	Control the press-fit measurement run	
SPP	Define the output interface H-	115	FDS?	Query the settings	H-163
SPP?	Determine the output from the interface H-	115	FDW	Change the window limits	H-164
_	peed data acquisition P32 only) H–1	17	FDW?	Query the window limits	
ADS	Set up the interface addresses H-		HCF?	Determine the hardware configuration	H-140
ADS?	Output the interface addresses H-	-15	ICR	Set up the measuring rates	H-138
CFS	Enter compression factor H–	177	ICR?	Output the sampling rate setting $\ \ldots \ .$	H-138
CFS?	Read out compression factor H–		IHD	Divert the measurement output to the PCMCIA hard disk	H–182
CMF	Put comments in measurement file H-	178	IHD?	Output data diversion information	H-183
CMF?	Read out comments	179	MBF	Define the measurement value output format	H_134
DEL	Delete a measurement file from the HDDH-		MBF?	Query the measurement value	
DIR?	Output the contents on the HDD H-	180		output format	
				MGCplus Operation with computer or	r terminal

Abbreviation		Page	Abbreviation		Page	
MCS	Channel selection for the channels to be recorded	⊔ 117	SML	Select language	H–42	
		⊓ −117	SML?	Query the language setti	ng H–42	
MCS?	Output channel selection for the channels to be recorded	H–117	SMS	Sets subchannel mask .	H–119	
MRG	Define the measurement rate groups .	H-129	SMS?	Output subchannel mask	H–119	
MRG?	Output the measurement rate groups .	H-129	SNO?	Read out the serial numb	per of the CP32 H-44	
MSS	Measuring signal selection for the		SRP	Data acquisition paramet	ters H-130, H-191	
	channels to be recorded	H-129	SRP?	Output data acquisition		
MSS?	Output measuring signal selection for the			parameters		
	channels to be recorded		TCD	Save/recall CP32 configu	uration H–139	
OMP	Position the reading pointer	H–131	TRD	Define the trigger-event	links H-125	
OMP?	Output the reading pointer information	H-132	TRD?	Output the trigger-event	links H–126	
PHD	Save the press–fit data on the CP32 HDD	H–185	TRE	Set up the trigger condition	ons H–120	
PHD?	Read the press-fit data from the		TRE?	Output the trigger conditi	ons H–122	
	CP32 HDD	H-186	TRG	Initiate one-time trigger	H–142	
PRQ	Initiate printing	H–171	TRR	Delete the trigger condition	ons H–123	
PRQ?	Query print request	H-171	TSV	Define and start triggered	d measurement H-127	
RHD?	Output a measurement data file	H-187	TSV?	Output information on sta		
RMB?	Output the measurement data	H-133		recorded measurement	H–128	
RMS?	Position the master/slave switch on the CP32	H–139				
SCM	Start, stop and save measurements	H-141				
SCM?	Read out the number of saved measurement programs	H–142				
SHD	Transfer file to CP32 HDD	H-190				

Command list by function L–9

Abbreviation Page		Abbrev	iation	Page
CAN-Bus	s H–255	Multi-cl	nannel I/O module ML78 .	H–267
NAS?	Output neighbourhood subchannel H–255	DBA	Create or delete database	H–270
REV?	Revision Query H–255	DBE?	Error typeout	H–271
FLO	Open file	FCL	Close file	H–267
FLW	File/Block download H–256	FLO	Open file	H–267
FCL	Close file and delete H–257	FLW	Write file	H–268
DBE?	Query errors	OSP	Assign analogue outputs	H–269
DBA	Create database H–259	RIP?	Import the logical levels of the inpu	uts . H–276
DBA?	Query the database H–259	ROP?	Import the logical levels of the out	outs H–276
DBS?	Output parameters from the database H–260	SAO	Set analogue output	H–272
СРО	Output CAN-Protocol	SOP	Set logical level for the analog out	puts H–274
CPI?	Output CAN-message H–262	SPF?	Query the special properties of an amplifier	H-275

Modifications reserved. All details describe our products in general form only. They are not to be understood as express warranty and do not constitute any liability whatsoever.

B 31.MGCPR.40 en

Hottinger Baldwin Messtechnik GmbH

Postfach 10 01 51, D-64201 Darmstadt Im Tiefen See 45, D-64293 Darmstadt Tel.: +49/61 51/8 03-0; Fax: +49/61 51/ 8039100

E-mail: support@hbm.com www.hbm.com

