I primi passi con MP85A FASTpress e PME Assistant

I2133-1.1 it

Contenuto

Pagina

No	te sulla sicurezza	4
1	Connessione del modulo MP85A al PC mediante l'interfaccia ETHERNET	5
2	Connessione dei sensori	6
3	Installazione del PME Setup Assistant	8
4	Preparazione della misurazione	9
5	Assegnazione dei criteri di valutazione	13
6	Misurare e visualizzare (produzione continua)	16
7	Risultati dell'ultima misurazione	17
8	Visualizzazione dei processi salvati	17
9	Ulteriore aiuto e supporto	19

Note sulla sicurezza

Osservare attentamente le note sulla sicurezza descritte nel manuale di istruzione dell'MP85A.

Questa Guida breve permette di ottenere rapidamente e facilmente i migliori risultati di misura con gli strumenti MP85A ed MP85ADP.

Gli MP85A ed MP85ADP vengono configurati con il software "PME Assistant", il quale è contenuto nel CD-ROM (PME System CD) che accompagna lo strumento. Esso è inoltre disponibile gratuitamente come freeware dalla

http://www.hbm.de > Support > Download > Software

Infine, ulteriori e dettagliate informazioni si trovano su:

- Help del programma in PME Assistant
- Manuale di istruzione del modulo amplificatore bicanale MP85A
- Descrizione dell'interfaccia per MP85A / MP85DP con CANbus, Profibus ed ETHERNET

1

Connessione del modulo MP85A al PC mediante l'interfaccia ETHERNET

- Collegare la tensione continua esterna ai morsetti 1 o 2
- Con un cavo ETHERNET crossover collegare il PC od il Laptop al morsetto 7.

2 Connessione dei sensori

Alle morsettiere 5 e 6 si possono collegare due sensori (trasduttori) indipendentemente l'uno dall'altro (p.es. al canale 1 lo spostamento ed al 2 la forza). Si dovrebbero usare cavi HBM o comunque cavi di misura schermati a bassa capacità. Lo schermo dei cavi del trasduttore deve essere il più corto possibile (< 5 cm) e collegato alla spina piatta (4,8 mm).

Importante

Collegando trasduttori con circuito a 4 conduttori, i fili sensori devono essere ponticellati coi corrispondenti fili di alimentazione (Pin 3 con Pin 2 e Pin 5 con Pin 4).

3 Installazione del PME Setup Assistant

• Inserire il CD nel lettore

L'installazione parte automaticamente, oppure essa si può chiamare dal file "Setup.exe". In alternativa si può scaricare l'Assistant corrente dalla pagina Web <u>http://www.hbm.de</u> > Support > Download > Software.

Dopo l'installazione viene generata una icona nel menu di start di Windows, con cui lanciare l'Assistant.

Inizialmente l'Assistant mostra la finestra di Setup (impostazione) con cui si devono specificare le impostazioni di connessione degli MP85A / MP85ADP.

	PME Assistant 3 Service Help	.0.0 🗃 🗙	
		PME Assistant	
Modo interfaccia	⊂Interface C CAN C TCP/IP C Offline	TCP/IP connection Device IP: 192 - 168 - 169 - 10 Insert IP to device list Delete sel. entry from device list Delete all entries from device list	Impostazione di fabbrica della interfaccia
	Devices Address Type V 1 MP85A 2.0	ers. Comment D4b 1.00/a 🔽 Scan	Interroga il Bus per trovare i moduli PME
Apre la fin <u>estra di</u> impostazione (setup)		of the settings window en settings window d all dialogs last time used Help Stop	Connessi
impostazione (setup)			

Suggerimento:

Assicurarsi che l'indirizzo IP dell'MP85A (impostazione di fabbrica: 192.169.169.10) sia stato assegnato nell'impostazione di rete del PC (non è possibile l'assegnazione automatica DHCP) e che esso differisca in un solo segmento.

Esempio d'impostazione del PC:

Indirizzo IP:	192.168.169.11
Maschera Subnet:	255.255.255.0

Ulteriori informazioni si ottengono cliccando sul bottone Help.

4 Preparazione della misurazione

Dopo l'accensione, il visore frontale a due righe dell'MP85A/MP85ADP mostra una riga col valore di misura e l'altra riga con l'informazione di status.

Se lo strumento rileva un errore, anch'esso viene mostrato sul visore (per la descrizione degli errori vedere il capitolo "Messaggi di errore" del manuale di istruzione dell'MP85A).

Le ulteriori impostazioni dello strumento appaiono ora nel "PME Assistant". Si richiamano le maschere individuali cliccando la cartella della struttura ad albero.

Per chiudere le finestre cliccare sul bottone in alto a destra della finestra, come usuale in Windows \square .

In questo modo vengono salvate tutte le impostazioni effettuate nella finestra!

Impostazione del sensore:

Prima di poter effettuare la misurazione è necessario assegnare tutti i valori caratteristici rilevanti del trasduttore mediante il PME Assistant.

1. Sensori con TEDS (prospetto dati elettronico)

Se l'MP85A/DP opera con trasduttori muniti di TEDS, le impostazioni del trasduttore possono essere trasferite all'amplificatore cliccando nella maschera: Prepare Measurement -> Amplifier -> TEDS.

Indi, tutto ciò che resta da fare è l'azzeramento del trasduttore.

x channel TEDS	y channel TEDS
☞ Find and use TEDS on device restart (all sensor types)	☞ Find and use TEDS on device restart (all sensor types)
Find and use TEDS during operation of device (only full-, half-bridge or LVDT sensors)	Find and use TEDS during operation of device (only full-, half-bridge or LVDT sensors)
Convert TEDS unit into current unit	Convert TEDS unit into current unit
Current unit of device channel: mm	Current unit of device channel: N
TEDS Error	TEDS Error
Unit conversion not possible	🕘 Unit conversion not possible
Supply voltage not supported	Supply voltage not supported
Unknown TEDS unit	Unknown TEDS unit
Unknown TEDS template	Unknown TEDS template
Faulty binary TEDS data	Faulty binary TEDS data
Find and use TEDS	Find and use TEDS
	OK Cancel Set

I2133-1.1 it

Suggerimento: Per garantire che la funzione TEDS sia disponibile automaticamente in caso di caduta della rete ed anche durante la stessa misurazione, selezionare le opzioni nella maschera TEDS **e salvarle anche nella serie corrente di parametri (maschera: Save/Load** parameters)

Sensori senza TEDS (prospetto dati elettronico)

Se i sensori che si usano non possiedono TEDS, i loro dati rilevanti devono essere assegnati mediante il PME Assistant.

Essi comprendono:

- 1. il tipo di trasduttore e
- 2. la caratteristica del trasduttore (2 punti). Infine,
- 3. si deve effettuare il bilanciamento a zero.

In questo esempio è stato collegato un trasduttore di spostamento al canale x ed un trasduttore di forza a quello y.

1° passo (maschera: Transducer):

Il **trasduttore di spostamento** opera come un mezzo ponte con campo di misura 80 mV/V (venga scelto il campo più alto successivo, cioè 100 mV/V). Il **trasduttore di forza** opera come un ponte intero con campo di misura 2 mV/V (venga scelto il campo più alto successivo, cioè 4 mV/V).

È di aiuto selezionare contemporaneamente le unità di misura (qui mm e kN).

2° passo (maschera: Enter characteristic curve):

Sono previsti 2 metodi:

- assegnare la caratteristica della curva usando i dati del prospetto, in alternativa
- tarare la curva caratteristica specificandone due punti per sensore.

Modo più semplice:

Nella maschera "Enter characteristic curve" assegnare i valori del punto zero e del fondo scala specificati nel prospetto dati

(p.es. punto zero: 0 mV/V corrispondenti a 0 kN fondo scala: 2 mV/V corrispondenti a 10 kN).

<u>Modo alternativo</u>: (maschera: Calibrate characteristic curve) – con due punti per sensore. Per minimizzare al meglio l'errore, i punti impiegati dovrebbero essere il più vicino possibile agli estremi del campo di misura che si userà.

Procedura:

- 1. Raggiungere il primo punto della curva caratteristica, p.es. muovendo il trasduttore di spostamento alla posizione inziale, e scaricare il trasduttore della forza (se si è scelto il punto zero quale punto iniziale).
- 2. Assegnare la corrispondente grandezza fisica al punto 1, p.es. 0 mm.
- 3. Cliccare su "Point 1 measure". Il valore misurato dall'MP85A appare sotto Point 1 measure.
- 4. Passare al Point 2 della curva caratteristica, p.es. usando per gli induttivi un blocchetto di riscontro e, per le forze, dei pesi od un trasduttore di riferimento.
- 5. Assegnare la corrispondente grandezza fisica al punto 2, p.es. 40 kN o 60 mm.
- 6. Cliccare su "Point 2 measure". Il valore misurato dall'MP85A appare sotto Point 2 measure.

Seguire la medesima procedura per il secondo sensore.

HBM

11

3° passo (maschera zero balance: Signal conditioning), necessario sia per trasduttori con TEDS che senza TEDS:

I sensori risultano ora collegati ed il sistema si trova nella posizione di partenza.

Ora resta solo da eseguire l'azzeramento per ciascun trasduttore, premendo il bottone "Zero balance".

Alla fine di questa procedura, i sensori ed i relativi amplificatori risultano perfettamente accordati.

Suggerimento:

Per metterle al sicuro da eventuali cadute di rete, ora salvare permanentemente tutte le impostazioni, con la maschera:

Save/load parameters

sia nella memoria interna dell'MP85A menu: Save in Flash) che in quella del PV (menu: Save to PC) !

Ulteriori informazioni si ottengono cliccando sul bottone Help.

5 Assegnazione dei criteri di valutazione

Questo menu (**Evaluation parameter settings**) viene usato per specificare i criteri di valutazione con cui successivamente il processo determina la validità OK o non OK (NOK) dei risultati. Ciò viene ottenuto facendo passare la curva (p.es. la curva forza-spostamento di un processo di piantaggio) attraverso diverse finestre (finestre di tolleranza).

Se la curva non passa per dette finestre o ne esce dal lato errato, il processo di inserimento viene valutato e visualizzato non OK (NOK).

Il menu **Evaluation parameter** permette di lanciare (Start) e fermare (Stop) manualmente la misurazione mediante un click del mouse. Le curve del processo acquisite in tal modo vengono usate per l'adeguato posizionamento delle finestre di tolleranza.

Il posizionamento individuale delle finestre si può effettuare anche col mouse. Create le finestre, esse posson essere spostate o ridimensionate a piacere con la funzione "Drag and Drop".

Sono disponibili massimo 9 finestre di tolleranza.

In alternativa, l'analisi può essere fatta anche mediante una curva di inviluppo od una banda di tolleranza (vedere l'Assistant Help).

In questo esempio vengono posizionate 4 finestre nei punti caratteristici del processo di piantaggio.

1° passo:

Chiamare la maschera "Evaluation parameter settings".

2° passo (posizioni di controllo):

L'impostazione essenziale è:

come deve terminare la funzione di misura nel susseguente processo?

Ciò è molto importante in quanto, come da impostazione di fabbrica, la valutazione con la decisione OK/NOK avviene solo **dopo** il completamento della misurazione! Ha senso quando in una acquisizione forza-spostamento l'impostazione dello **Start** sia: "Channel x setpoint exceeded" (qui lo spostamento) e quella di **Stop** sia: "After a short overshoot time".

Se il segnale di Stop deve giungere da un controllore esterno, si deve selezionare la condizione "External stop". La funzione "Start/Stop process" può essere assegnata ad un ingresso digitale. Cio deve essere fatto nel menu "Digital inputs".

Logging of measured values at	Δ	Channel x	>	0,250	cm	
	Δ	Channel y	>	0,500	N	
	Max	kimum meas, time:		60,00	s	
Start condition Stop condition						
Above reference value Channel >	+ Tim	ne until stop				
Time until stop: 1,500 s						

Riga di status:

Nella riga di status vengono mostrate le informazioni sul processo di misura, ora e poi durante l'acquisizione:

- andamento dell'acquisizione (p.es. in corso o terminata),
- causa di un allarme (p.es. valore al di fuori della finestra di allarme / protezione del macchinario),
- causa del termine dell'acquisizione (p.es. stop esterno)

3° passo (finestra del campo di allarme):

Chiamare la maschera "Alarm window" e premere il bottone "Adjust alarm and range windows automatically". Ciò adatta automaticamente l'area di visualizzazione e controllo al campo di misura dei trasduttori collegati.

4° passo:

Ora si può usare il bottone sinistro del mouse per piazzare le finestre di tolleranza nelle posizioni più consone per i processi.

(In questo caso: Finestra 1 per il processo di inserzione, Finestra 2 per il processo di giunzione (piantaggio) e Finestra 3 quale finestra di End, per visualizzare la forza di bloccaggio).

Importante

Tutte le finestre di tolleranza devono risiedere all'interno della finestra di campo marcata in verde. La finestra blu di allarme deve avere almeno la dimensione della finestra di campo. Si può variare la sua dimensione col mouse.

5° passo:

Per impostare gli ulteriori criteri di valutazione per le finestre di tolleranza, cliccare sulla finestra desiderata, la quale appare poi di colore blu.

Cliccare di nuovo sul bottone di valutazione PR per aprire un'altra finestra ove, ad esempio, selezionare i lati di ingresso e di uscita.

6° passo:

In modo Setup, usare il bottone di Start "manuale" e, svolto il processo, fermarla manualmente di nuovo col bottone

Se necessario, ripetere questa procedura più volte per ottenere un'accurata famiglia di curve. A tal scopo, prima cliccare sulla voce "Curve history" del menu "Graphics".

Suggerimento:

Per proteggere tutte le impostazioni effettuate dalle cadute di rete, con la maschera "Save/Load parameters" salvarle in modo permanente sia nella memoria interna (Flash) dell'MP85A che nel PC !

Il percorso (directory) della memoria trova sotto:

File > Specify memory directory

Ulteriori informazioni si ottengono cliccando sul bottone Help.

6 Misurare e visualizzare (produzione continua)

La visualizzazione grafica del processo di prova durante la produzione continua, con tutte le finestre di tolleranza, viene effettuata con la maschera **"Measurement curve"**. Come standard, viene mostrata sempre l'ultima curva. Dal menu **"Graphics**" si può attivare anche la **"Curve history**".

Nella parte bassa di questa maschera appare anche la riga o barra di status. Essa mostra:

- il progresso della misurazione indi, dopo la valutazione, la decisione OK oppure NOK,
- la causa di un allarme,
- la causa della fine (End) della misurazione.

Risultati dell'ultima misurazione

La valutazione dell'ultimo processo può essere mostrata in forma tabellare con tutte le informazioni più importanti (maschera: **Results of last measurement**).

-Uverall status last pro Process counter Parameter set numbe	icess RN er: 31	Cause for end Cause for alar Overall res t	t: Sei m: ult: Ol	ttling time exp	bired	⊉ ⊽ auto n	efresh	
	Result		Min(force)	Max(force)	Min(displa	acement)	-
Start window	10	4.07	x y 4 0.025	8.913	<u>y</u> 0.061	4.074	y 0.025	
Press fit window	IO	16,44	6 0,114	23,66	0,268	16,446	0,114	-
Additional window	IO	30,1	5 0,412	30,834	0,428	30,15	0,412	
Block window	Ю	38,26	6 0,771	38,676	0,991	38,266	0,771	-

8

7

Visualizzazione dei processi salvati

(Maschera: Data storage)

Per garantire l'ottimale tracciabilità dei processi di produzione, le curve, i risultati e le valutazioni statistiche di tutti i processi misurati possono essere salvati e visualizzati sullo schermo (ciò **non** avviene automaticamente con la funzione Save Parameter).

A tal scopo, la procedura di salvataggio deve essere prima impostata nella maschera "**Data storage**".

Suggerimento:

Il percorso (directory) della memoria si trova sotto:

File > Specify memory directory

Indi, i dati salvati possono essere visualizzati con PME Assistant od importati con altri programmi (p.es. Excel).

Target memory	External via CAN/Etherne	et 🗾 Step
MMC free memory (kByte)	30864	50 - 18 - I
Internal free memory (Byte)	173156	
Saving method	No data loss 📃 💌	
Save results	NOK + OK 💌	Step 2
File format	Ascii 💌	
Save curves	NOK + OK 💌	Step 3
No. of saved curves on MMC	1000 💌	
Save statistical data	Save statistical data	
Save statistical data automatically	Disabled 💌	
Workpiece name	Tailgate	

1° passo (storage target):

Per salvare i dati nel PC si deve selezionare il target di salvataggio: "External via CAN/ETHERNET".

2° passo (results):

Specificare qui quali risultati devono essere salvati (OK, NOK, tutti, nessuno).

3° passo (curves):

Specificare qui quali curve devono essere salvate (OK, NOK, tutte, nessuna).

Chiamata dei dati salvati:

(Maschera: Display saved data)

Dopo aver aperto la maschera, possono essere caricate e visualizzate nel diagramma vuoto le curve di misura ed i risultati di valutazione (dati di processo) precedentemente salvati.

1° passo:

Cliccare sul bottone "Select files" per aprire una maschera di ricerca in cui selezionare i dati di processo e dei risultati.

2° passo:

Si possono specificare svariati criteri di ricerca ed il percorso del PC. Cliccare sul bottone "Find" per visualizzare le voci selezionate. Si può effettuare una nuova ricerca in qualsiasi momento.

3° passo:

Nell'area di ricerca, cliccare sul file desiderato per trasferirlo automaticamente nella finestra grafica ove visualizzarlo. Sono disponibili i seguenti file:

- i file di processo e dei risultati (Result file), che terminano sempre con .R85.
 Se per il processo sono state salvate le curve, esse vengono automaticamente incluse nella visualizzazione,
- i file di curve OK, che terminano sempre con .C85,
- i file di curve NOK, che terminano sempre con .D85.

Funzione Zoom:

Per un'osservazione più accurata, usare il bottone sinistro del mouse per attivare la funzione zoom.

Si ristabilisce la raffigurazione originale (non zoomata) premendo di nuovo il bottone \Re , oppure con la combinazione di tasti CTRL + Z.

9 Ulteriore aiuto e supporto

In qualsiasi momento l'Assistant Help offre una ricca gamma di avvisi, trucchi e suggerimenti per ogni voce selezionata.

Se durante l'uso di questo programma dovessero insorgere dei problemi, ci si può rivolgere ai seguenti servizi:

Supporto e-mail: support@HBM.com

Supporto telefonico:

Il supporto telefonico è attivo nei giorni lavorativi durante le normali ore di apertura degli uffici (CET):

06151-803-666 (Germania) +49-6151-803-666 (internazionale)

Supporto fax: 06151-803-9666 (Germania) +49-6151-803-9666 (internazionale)

HBM su Internet: (Monitoraggio della produzione e dei processi) http://www.hbm.com/produzione

Riserva di modifica. Tutti i dati descrivono i nostri prodotti in forma generica. Pertanto essi non costituiscono alcuna garanzia formale e non possono essere la base di alcuna nostra responsabilità.

HBM Italia srl

Via Pordenone, 8 I 20132 Milano - MI Tel.: +39 02 45471616; Fax: +39 02 45471672 E-mail: info@it.hbm.com; support@it.hbm.com Internet: www.hbm.com; www.hbm-italia.it

