
User Manual

EnglishDeutschEspanol

I2
9
5
4
-1

.0
 e

n
S

o
M

a
t
P

/N
 D

O
C

 0
0
2
4
-0

0

SIE and libsie

SoMat eDAQ/eDAQ-lite

SIE and libsie

2 I2954-1.0 en

SIE and libsie
 Safety Information

Conversions and modifications

HBM’s express consent is required for modifications affecting the SoMat eDAQ or

eDAQ-lite design and safety. HBM does not take responsibility for damage resulting

from unauthorized modifications.

Qualified personnel

The SIE format and libsie library may be used by qualified personnel only; the

specifications and the special safety regulations need to be followed in all cases.

The term “qualified personnel” refers to users with a reasonable background in

software programming, particularly in C.

Terms of Use

The libsie library is free software and may be redistributed and/or modified under the

terms of version 2.1 of the GNU Lesser General Public License as published by the

Free Software Foundation. This document describes libsie version 1.0.0 and SIE

version 1.0. All specifications are subject to change without notice in future version

releases. The most recent version of this document can be found at

www.hbm.com/somat.
I2954-1.0 en 3

http://www.somat.com

SIE and libsie
4 I2954-1.0 en

SIE and libsie
Contents Page

Safety Information 3

1 Getting Started 7

1.1 Introduction 7

1.1.1 SIE Format 7

1.1.2 libsie Library 7

1.2 Required Downloads 7

1.2.1 libsie Library Download 7

1.2.2 C Compiler Download 7

2 Using the libsie Library 9

2.1 Header and Main Function 9

2.2 Print SIE File Function Definition 9

2.2.1 Library Context 10

2.2.2 Error Handling 11

2.2.3 Iterators and File-Level Tags 11

2.2.4 SIE Tests and Test-Level Tags 12

2.2.5 Channels and Channel-Level Tags 12

2.2.6 Channel Dimensions 13

2.2.7 Spigots 13

2.2.8 Releasing a Context 16

2.3 Print Tag Function Definition 16

3 libsie Library Reference 19

3.1 Overview 19

3.2 Memory Management 19

3.3 Library Context 19

3.4 Iterators 20

3.5 Spigots 20
I2954-1.0 en 5

SIE and libsie
3.6 Reference Methods 22

3.6.1 Files 22

3.6.2 Tests 23

3.6.3 Channels 23

3.6.4 Dimensions 24

3.6.5 Tags 24

3.7 Output Methods 25

3.8 Error Handling 27

3.9 Progress Information 27

3.10 Streaming 27

3.11 Histogram Access 28

4 The SIE File 31

4.1 Overview 31

4.2 SIE Format 31

4.2.1 Data Model 31

4.2.2 Block Structure 32

4.2.3 Predefined Groups 33

4.2.4 Data Rendering Algorithm 33

4.3 XML Details 34

4.3.1 Standard Preamble 34

4.3.2 XML Features 35

4.3.3 XML Metadata Grammar 37

4.4 Core Schema 42

4.4.1 Core Metadata Schema 42

4.5 SoMat Schema 44

4.5.1 SoMat Metadata Schema 45

4.5.2 SoMat Data Schema 46
6 I2954-1.0 en

SIE and libsie
1 Getting Started

1.1 Introduction

1.1.1 SIE Format

SIE is a new data transmission and storage format for engineering data. SIE is

designed to be flexible, self-describing, streamable and robust, overcoming some of

the limitations of existing engineering data formats. This is accomplished with a simple

block structure and an XML description of how to read both the block structure and

contained binary data making it very simple to write. SIE has been successfully

implemented on the HBM SoMat eDAQ line of data acquisition systems and a library

for reading SIE files (libsie) has been implemented in portable C. For detailed

information on the SIE file, see “The SIE File” on page 31.

1.1.2 libsie Library

The libsie SIE reader library exposes an object-oriented C API for reading SIE data.

libsie provides functions to open and traverse a file and to get the SIE data in a

universal format. “Using the libsie Library” on page 9 provides a tutorial program to

demonstrate most of the API. “libsie Library Reference” on page 19 contains a

reference of the available libsie functions.

1.2 Required Downloads

Successful implementation of the libsie library requires the libsie software package

and a C compiler.

1.2.1 libsie Library Download

The libsie package can be found at www.hbm.com/somat in the resource center. Note

that registration is required for access. The libsie package include the libsie library files

and a libsie-demo.c program on which the Chapter 2 tutorial of this manual is based.

The libsie source is also available to allow the option of compiling it from scratch or

using it on a platform other than Microsoft Windows®.

1.2.2 C Compiler Download

For those without an existing C compiler, the Microsoft® Visual C++ development

environment is recommended. The free express version of the software is available for

download at http://www.microsoft.com/express/vc/.
I2954-1.0 en 7

SIE and libsie
8 I2954-1.0 en

SIE and libsie
2 Using the libsie Library

This section describes the use of the libsie library through tutorial code that reads all

data and metadata from an SIE file while demonstrating most of the libsie API. The

code as presented is more linear than usually written to provide a structure better

suited for the tutorial.

NOTE
This chapter is based on the libsie-demo.c program included in the libsie distribution.

2.1 Header and Main Function

First, include the necessary header files.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sie.h>

Then, prototype the functions for the program. Both the print_sie_file() and the

print_tag() functions are defined in this later in this program. For their definitions,

see “Print SIE File Function Definition” on page 9 and “Print Tag Function Definition”

on page 16.

static void print_sie_file(const char *filename);

static void print_tag(sie_Tag *tag, const char *prefix);

The main() function calls print_sie_file().

int main(int argc, char **argv)

{

if (argc < 2) {

fprintf(stderr, "Please enter an SIE filename on "

"the command line.\n");

return EXIT_FAILURE;

}

print_sie_file(argv[1]);

return EXIT_SUCCESS;

}

2.2 Print SIE File Function Definition

The print_sie_file() function prints the entire contents of an SIE file to standard

output. The first step is to initialize the necessary variables.
I2954-1.0 en 9

SIE and libsie
void print_sie_file(const char *filename)

{

sie_Context *context;

sie_File *file;

sie_Exception *exception;

sie_Iterator *tag_iterator;

sie_Iterator *test_iterator;

sie_Iterator *channel_iterator;

sie_Iterator *dimension_iterator;

sie_Tag *tag;

sie_Test *test;

sie_Channel *channel;

sie_Dimension *dimension;

sie_Spigot *spigot;

sie_Output *output;

sie_uint32 id;

int leaked_objects;

2.2.1 Library Context

The first step in using libsie is to get a library context.

context = sie_context_new();

This is used to hold internal library information about such things as buffers and error

handling. When a library context reference is required, either a direct pointer to the

context or a pointer to any other object that has been spawned from the context can

be used.

NOTE
libsie is thread safe as long as code referencing a context or objects created from that

context is only running one thread at a time. Objects cannot be shared among

contexts.

Insert an error notice in the event of failure.

if (!context) {

fprintf(stderr, "Error: Failed to acquire context!\n");

exit(EXIT_FAILURE);

}

If acquiring the context fails, the problem has occurred at a very low level.

NOTE
All functions in the SIE API accept NULL pointers where they normally expect an SIE

object and simple return an error value (usually NULL if the function would normally

return an object pointer) when it is called with NULL. This allows an error to cascade

through valid code to be checked at the end of the process. Obviously, non-SIE object

pointers must be checked for NULL before being dereferenced or otherwise used as is

typical in C code.
10 I2954-1.0 en

SIE and libsie

Next, open the desired SIE file.

file = sie_file_open(context, filename);

Notice that the context is passed into sie_file_open(). The SIE file object that is

returned references the same context and can be used to refer to it as an argument to

other functions that need a context. For instance, to open another file, the following two

statements are identical.

file2 = sie_file_open(context, filename2);

file2 = sie_file_open(file, filename2);

2.2.2 Error Handling

To demonstrate the libsie error-handling tools, insert a catch for a possible error, print

the exception and then exit. An error for the sie_file_open() function may be

caused by a non-existent or corrupted file.

if (!file) {

exception = sie_get_exception(context);

fprintf(stderr, "Something bad happened:\n %s\n",

sie_verbose_report(exception));

exit(EXIT_FAILURE);

}

Functions that return SIE objects return NULL on failure. If file is NULL, the requested

file failed to open. The function sie_get_exception() pulls the exception out of the

library context. To get a string describing the exception, use either sie_report() or

sie_verbose_report(). In addition to the exception message, the verbose version

contains what the library was doing when the exception happened.

On a successful open operation, use the following command to view the file name.

printf("File '%s':\n", filename);

2.2.3 Iterators and File-Level Tags

The generic form of metadata in an SIE file is called a tag. This is simply a reference

between an arbitrary textual key and an arbitrary value. Tags can exist at any level in

the SIE metadata hierarchy, including at the file level.

libsie functions that return more than one object do so via an object called an iterator.

The iterator returns the other objects one at a time when the sie_iterator_next()

method is called. When the iterator is empty, sie_iterator_next() returns NULL

instead of an object.

To print out the file-level tags in the file, get an iterator containing all of the object’s tags

using sie_get_tags().

tag_iterator = sie_get_tags(file);

Next, pull all the tags out of the iterator, one at a time. The print_tag() function is

defined in “Print Tag Function Definition” on page 16.

while ((tag = sie_iterator_next(tag_iterator))) {

print_tag(tag, " File tag ");

}

I2954-1.0 en 11

SIE and libsie
After pulling out all the tags, release the iterator. This informs libsie that the iterator is

no longer in use.

sie_release(tag_iterator);

it is not necessary to release the tag objects because the objects returned by an

iterator are still owned by it. This allows for a shorter iterating pattern. If an iterator

returned object is needed after getting the next object or releasing the iterator, simply

call sie_retain() on the object. This is the opposite of sie_release(), informing

libsie that the object is needed again and it will be released later.

NOTE
In terms of referencing counting memory management, sie_retain() raises the

reference count and sie_release() lowers the reference count.

2.2.4 SIE Tests and Test-Level Tags

The next step is to get all the test runs contained in the SIE file. SIE tests are grouped

collections of channels. Again, use an iterator to get the SIE tests and cycle through

the iterator to return each test object. Within an SIE file, each test has a numeric ID

which is a unique identifier for that test within the SIE file. To demonstrate, print the test

ID for each test in the iterator.

test_iterator = sie_get_tests(file);

while ((test = sie_iterator_next(test_iterator))) {

id = sie_get_id(test);

printf(" Test id %lu:\n", (unsigned long)id);

Like the SIE file itself, tests also have tags. Print these just like the file-level tags in the

previous section and release the tag iterator.

tag_iterator = sie_get_tags(test);

while ((tag = sie_iterator_next(tag_iterator)))

print_tag(tag, " Test tag ");

sie_release(tag_iterator);

2.2.5 Channels and Channel-Level Tags

Finally, tests contain the channels that were collected as a part of the test run. To get

these channels, follow the same pattern used previously. Note that channels have an

SIE-internal ID just like tests. They also have a name, accessible with the function

sie_get_name().

channel_iterator = sie_get_channels(test);

while ((channel = sie_iterator_next(channel_iterator))) {

printf(" Channel id %lu, '%s':\n",

(unsigned long)sie_get_id(channel),

sie_get_name(channel));

Channels also contain tags. Although presented inline in this tutorial code, in an actual

program, it is probably more desirable to use a function to print groups of tags.
12 I2954-1.0 en

SIE and libsie
tag_iterator = sie_get_tags(channel);

while ((tag = sie_iterator_next(tag_iterator)))

print_tag(tag, " Channel tag ");

sie_release(tag_iterator);

Getting Channels Directly From a File

It is possible to skip the test level of the hierarchy and get all the channels directly in a file. For example:

channel_iterator = sie_get_channels(file);

while ((channel = sie_iterator_next(channel_iterator))) {

printf(" Channel id %lu, '%s' ",

(unsigned long)sie_get_id(channel), sie_get_name(channel));

Use sie_get_containing_test() to return the test that contains a channel. Note that not all channels must be contained

by a test, though most containing actual user data will.

test = sie_get_containing_test(channel);

if (test)

printf("is contained in test id %lu.\n",

(unsigned long)sie_get_id(test));

else

printf("is not in a test.\n");

sie_release(test);

}

sie_release(channel_iterator);

2.2.6 Channel Dimensions

Channels contain dimensions which define an axis or column of data. Each dimension

has an index. For example, in a typical time series, dimension index 0 is time and

dimension index 1 is the engineering value of the data. The dimensions also have

tags.

dimension_iterator = sie_get_dimensions(channel);

while ((dimension = sie_iterator_next(dimension_iterator))) {

printf(" Dimension index %lu:\n",

(unsigned long)sie_get_index(dimension));

tag_iterator = sie_get_tags(dimension);

while ((tag = sie_iterator_next(tag_iterator)))

print_tag(tag, " Dimension tag ");

sie_release(tag_iterator);

}

sie_release(dimension_iterator);

2.2.7 Spigots

Finally, channels can have a spigot attached to them to get the data. libsie presents

data as an array or matrix where each column is a dimension, as defined in the

previous section. Each column can either consist of 64-bit floats or of raw octet strings.

For example, a time series may be represented as follows:
I2954-1.0 en 13

SIE and libsie
NOTE
While all data comes out in this general form, there are multiple ways to interpret the

output. To see which type of data is stored and how the channel output should be

interpreted, look at the channel tag core:schema. For the example above, if the time

series was generated by an eDAQ, an appropriate schema would be

somat:sequential. In this schema, dimension 0 is time and dimension 1 is the data

value of the channel. All numbers come out scaled to their engineering values. For

more information on SoMat data schemas, see “SoMat Data Schema” on page 46.

To read the data stored in the channel, first attach a spigot. As with iterators, a spigot

contains a sequential sections of the channel’s data. The data is arranged into blocks

in the SIE file, and cycling through the spigot gets one block at a time. The data comes

out in an sie_Output object and the spigot is read with sie_spigot_get().

spigot = sie_attach_spigot(channel);

while ((output = sie_spigot_get(spigot))) {

sie_Output_Struct *os;

size_t dim, row, num_dims, num_rows, byte, size;

unsigned char *uchar_p;

To read the number of dimensions (i.e., columns) and the number of rows, use the

sie_output_get_num_dims() and sie_output_get_num_rows(), respectively.

num_dims = sie_output_get_num_dims(output);

num_rows = sie_output_get_num_rows(output);

printf(" Data block %lu, %lu dimensions, %lu rows:\n",

(unsigned long)sie_output_get_block(output),

(unsigned long)num_dims, (unsigned long)num_rows);

libsie offers several methods to get the data out of the output object. One method,

more suitable for languages that don’t have easy access to C structs, is to use

sie_output_get_float64() or sie_output_get_raw() to retrieve an array

containing one dimension’s data. Use sie_output_get_type() to return the type of

data in the dimension.

However, in languages that can interpret C structs, it is possible to pull out one struct

that contains all of the data.

Dimension 0 Dimension 1

0.0 0.0

1.0 0.25

2.0 0.5

3.0 0.25

4.0 0.0
14 I2954-1.0 en

SIE and libsie
os = sie_output_get_struct(output);

NOTE
A struct is not an SIE object, so sie_release() cannot be used on it. Rather, it is

owned by the output object and is released with that object.

Next, iterate through the C struct, printing all the data. The type can be

SIE_OUTPUT_FLOAT64 or SIE_OUTPUT_RAW. Raw data has three parts: a pointer to

the data (ptr), the size of the data (size) and a claimed field. Set claimed to 1 to

keep the data and clean up the associated memory manually. Otherwise, the raw data

is cleaned up with the rest of the output when the output object is released.

for (row = 0; row < num_rows; row++) {

printf(" Row %lu: ", (unsigned long)row);

for (dim = 0; dim < num_dims; dim++) {

if (dim != 0)

printf(", ");

switch (os->dim[dim].type) {

case SIE_OUTPUT_FLOAT64:

printf("%.15g", os->dim[dim].float64[row]);

break;

case SIE_OUTPUT_RAW:

uchar_p = os->dim[dim].raw[row].ptr;

size = os->dim[dim].raw[row].size;

if (size > 16) {

printf("(raw data of size %lu.)", (unsigned long)size);

} else {

for (byte = 0; byte < size; byte++)

printf("%02x", uchar_p[byte]);

}

break;

}

}

printf("\n");

}

As with iterators, there is no need to release the output object as the spigot still owns

it and it is possible to retain the object if necessary. To begin closing out the function,

release the spigot, iterators and file. Also, check for any exceptions that may have

occurred during the run.

}

sie_release(spigot);

}

sie_release(channel_iterator);

}

sie_release(test_iterator);

sie_release(file);
I2954-1.0 en 15

SIE and libsie
if (sie_check_exception(context)) {

exception = sie_get_exception(context);

fprintf(stderr, "Something bad happened:\n %s\n",

sie_verbose_report(exception));

sie_release(exception);

}

2.2.8 Releasing a Context

Unlike other SIE objects, a context must be disposed of in a special way to release

internal data structures and break circular references. The sie_context_done()

function attempts to dispose of the specified context. If successful, it returns zero.

Otherwise, it returns the number of other objects still alive and referencing the context.

It is good practice to check that this returns zero to ensure all SIE objects are cleaned

up properly.

leaked_objects = sie_context_done(context);

if (leaked_objects != 0)

fprintf(stderr, "Warning: Leaked %d SIE objects!\n",

leaked_objects);

}

NOTE
Unlike other functions that need a context as an argument, the actual context object

must be used when calling sie_context_done(). Using another live object to refer

to the context would cause a failure as that object, by definition, would still be

referencing the context.

2.3 Print Tag Function Definition

The print_tag() function prints a tag to standard output, prefixed by a string. It is

used many times in the previous print_sie_file() function. First, initialize the

necessary variables.

static void print_tag(sie_Tag *tag, const char *prefix)

{

const char *name;

char *value = NULL;

size_t value_size = 0;

int dont_print = 0;

As mentioned previously, a tag is a relation between a textual key (i.e., ID) and an

arbitrary value. Getting the ID is simple:

name = sie_tag_get_id(tag);

Tags can contain arbitrary-length binary data in the value. To get the entire contents of

the tag value in a binary-safe way, use sie_tag_get_value_b().

sie_tag_get_value_b(tag, &value, &value_size);

This sets value as a pointer to newly allocated memory of size value_size

containing the tag value. The value is guaranteed to be NULL-terminated by the

library, so it can be treated safely as a C string. However, the NULL added by libsie is
16 I2954-1.0 en

SIE and libsie
not included in the size returned so as to not disturb the size information of the real

binary data. If successful, sie_tag_get_value_b() returns true and, if not, it returns

zero.

NOTE
Because a tag value can be arbitrarily long, allocating its entirety to memory (as the

above function does) may not be wise. To avoid this, attach a spigot to the tag to get

the value out in sections just as a spigot is used to get data out of a channel.

As tags are occasionally long, this example function prints only the length of the tag if

the tag value is over 50 bytes or contains any nulls.

if (value_size > 50 || memchr(value, 0, value_size)) {

printf("%s'%s': long tag of %lu bytes.\n", prefix, name,

(unsigned long)value_size);

dont_print = 1;

}

The value returned by sie_tag_get_value_b() must be freed as any other allocated

raw memory in C. To free plain pointers to allocated memory returned from libsie. call

sie_free().

sie_free(value);

if (dont_print)

return;

If it is necessary to know the binary size of the tag value, the value returned by

sie_tag_get_value_b() can be printed. If, however, the binary size is not needed,

the tag value can be treated as a NULL-terminated string using the

sie_tag_get_value() function. Again, the returned value must be freed.

value = sie_tag_get_value(tag);

printf("%s'%s': '%s'\n", prefix, name, value);

sie_free(value);

}

NOTE
The ID returned by sie_tag_get_id() does not need to be freed. It is cleaned up

with the tag object.

I2954-1.0 en 17

SIE and libsie
18 I2954-1.0 en

SIE and libsie
3 libsie Library Reference

3.1 Overview

The SIE reader library (libsie) exposes an object-oriented C API for reading SIE data.

It provides functions to open and traverse an SIE file and get its data in a universal

format. This chapter details the functions available in the libsie library.

Please note the following:

• All functions are prefixed with sie_.

• All of the sie_* object pointer types can be considered generic pointers -- a

normal library user should not have need to access the internals.

• The special types sie_float64 and sie_uint32 are used in these definitions.

Their C equivalents are architecture-specific.

NOTE
This document describes libsie version 1.0.0.

3.2 Memory Management

libsie uses reference counting for its memory handling. There are two generic

methods to manage an object's reference count: retain and release.

sie_retain() Retain

Raise an object’s reference count by one.

void *sie_retain(void *object);

A NULL input is safe and does nothing

sie_release() Release

Lower an object’s reference count by one. If an object’s count reaches zero, it is freed

from memory.

void sie_release(void *object);

A NULL input is safe and does nothing. The sie_retain() method returns the object

pointer allowing for chaining constructs like return sie_retain(object).

sie_free() SIE Free

Free the libsie-allocated memory pointed to by the pointer.

void sie_free(void *pointer);

3.3 Library Context

The first step towards using the library is to get a library context. This serves to keep

global resources around that are used in library operations. It is also used for error

handling. libsie is thread-safe as long as code referencing a context is only running in

a single thread at a time. Multiple contexts can be created, but objects cannot be

shared between them.
I2954-1.0 en 19

SIE and libsie
sie_context_new() New Context

Create a new library context.

sie_Context *sie_context_new(void);

Other API functions take a context object that specifies in what library context the

function should operate. Any libsie object, including the context itself, can function as

a context object referring to the context in which it was created.

sie_context_done() Release a Context

Context objects are an exception to the generic retain and release object methods. To

release a library context, use the following method:

int sie_context_done(sie_Context *context);

If successful, the function returns zero. Otherwise, the function returns the number of

objects that still have dangling references to them and, as such, were not freed.

3.4 Iterators

An iterator allows access to a collection of objects, such as channels or tags.

sie_iterator_next() Return Object

Return the next object in an iterator.

void *sie_iterator_next(void *iterator);

The returned object, owned by the spigot, is valid until the next call to

sie_iterator_next() and does not need to be released. To reference the object

after the next call to sie_iterator_next() or the release of the iterator, use

sie_retain() to retain the object and sie_release() to release it later.

3.5 Spigots

A spigot is the interface used to get data out of the library. A spigot can be attached to

several kinds of references (currently, channels and tags) and can be read from

repeatedly, returning the data contained in the reference.

The data that comes out of a spigot is arranged in scans of vectors. Each column can

be one of two data types: 64-bit float or raw, which is a string of octets. The form of the

data varies depending on the channel.

sie_attach_spigot() Attach a Spigot

Attach a spigot to a reference in preparation for reading data.

sie_Spigot *sie_attach_spigot(void *reference);

sie_spigot_get() Get Output

Read the next output record out of spigot. If it returns NULL, all data has been read.

sie_Output *sie_spigot_get(sie_Spigot *spigot);

The output record, owned by the spigot, is valid until the next call to

sie_spigot_get() and does not need to be released. To reference the output after

the next call to sie_spigot_get() or the release of the spigot, use sie_retain() to

retain the object and sie_release() to release it later.

sie_spigot_disable_transforms() Disable Transformations

Disable data transformations by SIE xform nodes.
20 I2954-1.0 en

SIE and libsie
void sie_spigot_disable_transforms(void *spigot, int disable);

If disable is true, the data returned is not transformed. This typically means that raw

decoder output is returned instead of engineering values. This can be useful as many

data schemas have dimension 0 as time when scaled and as sample count when

unscaled. When using unscaled data and binary search, dimension 0 can be used to

find a particular sample number with such schemas. This is currently applicable only

to channels.

sie_spigot_transform_output() Transform Output

Transform the output as it would be had transforms not been disabled.

void sie_spigot_transform_output(void *spigot, sie_Output *output);

This method allows transforming the spigot output after the fact to get both the

transformed and non-transformed outputs without reading from the spigot twice.

sie_spigot_seek() Seek

Prepare the spigot such that the next call to sie_spigot_get() returns the data in

the block target.

#define SIE_SPIGOT_SEEK_END(~(size_t)0)

size_t sie_spigot_seek(void *spigot, size_t target);

If the specified target is past the end of the data in the file, the method sets it to the end

of the data. For example, setting the target to one block after the last one causes the

next call of sie_spigot_get() to return NULL indicating the end of the data. The

method returns the block position that was set. SIE_SPIGOT_SEEK_END, defined as all

ones (i.e., 0xffffffff on 32-bit platforms), is provided as a convenient way to seek to the

end of a file.

sie_spigot_tell() Get Current Position

Return the current block position of the spigot which is the block that the next call to

sie_spigot_get() returns.

size_t sie_spigot_tell(void *spigot);

sie_lower_bound() Lower Bound Search

Find the block of data where the value of a specified dimension is first greater than or

equal to a specified value.

int sie_lower_bound(void *spigot, size_t dim,

sie_float64 value, size_t *block, size_t *scan);

The dimension specified by dim must be non-decreasing. If a value greater than or

equal to value is found, the function scans within the found block, returns true and

sects block and scan to the found value. The parameters block and scan are always

returned such that seeking to block, calling sie_spigot_get() and getting the scan

number scan in that block returns the first value in the dimension greater than or equal

to the search value. The function returns false if the last point in the data is less than

the value or if some other error ocurred. The block the spigot is currently pointing at is

not affected.
I2954-1.0 en 21

SIE and libsie
sie_upper_bound() Upper Bound Search

Find the block of data where the value of a specified dimension is first less than or

equal to a specified value.

int sie_upper_bound(void *spigot, size_t dim,

sie_float64 value, size_t *block, size_t *scan);

The dimension specified by dim must be non-decreasing. If a value less than or equal

to value is found, the function scans within the found block, returns true and sects

block and scan to the found value. The parameters block and scan are always

returned such that seeking to block, calling sie_spigot_get() and getting the scan

number scan in that block returns the first value in the dimension less than or equal to

the search value. The function returns false if the last point in the data is greater than

the value or if some other error ocurred. The block the spigot is currently pointing at is

not affected.

sie_spigot_done() Check if Spigot is Done

Return true if the specified spigot is done, meaning that all data have been read and

no more data will ever appear on the spigot.

int sie_spigot_done(void *spigot);

3.6 Reference Methods

References include files, tests, channels, dimensions and tags. The methods available

for each type of reference are detailed below. A reference method used for an invalid

type of reference returns NULL unless otherwise specified.

3.6.1 Files

sie_file_is_sie() SIE File Test

Quickly test if the file specified by name looks like an SIE file. Returns non-zero if it

looks like an SIE file or zero otherwise.

int sie_file_is_sie(void *ctx_obj, const char *name);

sie_file_open() Open SIE File

Open an SIE file, returning a file object.

sie_File *sie_file_open(void *context_object, const char *name);

sie_ignore_trailing_garbage() Ignore Trailing Garbage

Open a corrupted file with a valid block at the end of the file of a specified size.

void sie_ignore_trailing_garbage(void *ctx_obj, size_t amount);

By default, the library refuses to open SIE files with any detectable corruption. The

sie_file_open() method returns NULL and sets the library exception to an

explanation of the error. However, a somewhat common corruption is a file truncated

in the middle of a block which can occur when reading a file that is being written at the

same time. The sie_ignore_trailing_garbage() method tells the library to open

the file anyway, as long as it finds a valid block at the end of the file of the size specified

by amount.

sie_get_tests() Get All Tests

Return an iterator containing all tests in the file as sie_Test objects.
22 I2954-1.0 en

SIE and libsie
sie_Iterator *sie_get_tests(void *reference);

sie_get_channels() Get All Channels

Return an iterator containing all channels (as sie_Channel objects) in the file.

sie_Iterator *sie_get_channels(void *reference);

sie_get_tags() Get All Tags

Return an iterator containing all top level tags in the file.

sie_Iterator *sie_get_tags(void *reference);

sie_get_test() Get Test

Return the test in the file with its ID or NULL if no such test ID exists.

sie_Test *sie_get_test(void *reference, sie_uint32 id);

sie_get_channel() Get Channel

Return the channel in the test with its ID or NULL if no such channel ID exists.

sie_Channel *sie_get_channel(void *reference, sie_uint32 id);

sie_get_tag() Get Tag

Return the tag in the file with its ID or NULL if no such tag ID exists.

sie_Tag *sie_get_tag(void *reference, const char *id);

3.6.2 Tests

sie_get_channels() Get All Channels

Return an iterator containing all channels (as sie_Channel objects) in the test.

sie_Iterator *sie_get_channels(void *reference);

sie_get_tags() Get All Tags

Return an iterator containing all tags in the test.

sie_Iterator *sie_get_tags(void *reference);

sie_get_tag() Get Tag

Return the tag in the test with its ID or NULL if no such tag ID exists.

sie_Tag *sie_get_tag(void *reference, const char *id);

sie_get_id() Get Test ID

Return the ID of the test. The method returns SIE_NULL_ID if the call is invalid.

#define SIE_NULL_ID (~(sie_uint32)0)

sie_uint32 sie_get_id(void *reference);

3.6.3 Channels

sie_get_dimensions() Get All Dimensions

Return an iterator containing all dimensions (as sie_Deminsion objects) in the

channel.

sie_Iterator *sie_get_dimensions(void *reference);
I2954-1.0 en 23

SIE and libsie
sie_get_tags() Get All Tags

Return an iterator containing all tags in the channel.

sie_Iterator *sie_get_tags(void *reference);

sie_get_dimension() Get Dimension

Return the dimension in the channel with its index or NULL if no such dimension exists.

sie_Dimension *sie_get_dimension(void *reference, sie_uint32 index);

sie_get_tag() Get Tag

Return the tag in the channel with its ID or NULL if no such tag ID exists.

sie_Tag *sie_get_tag(void *reference, const char *id);

sie_get_containing_test() Get Containing Test

Return the test the channel is a member of, if any.

sie_Test *sie_get_containing_test(void *reference);

sie_get_name() Get Channel Name

Return the name of the channel.

const char *sie_get_name(void *reference);

sie_get_id() Get Channel ID

Return the ID of the channel. The method returns SIE_NULL_ID if the call is invalid.

#define SIE_NULL_ID (~(sie_uint32)0)

sie_uint32 sie_get_id(void *reference);

3.6.4 Dimensions

sie_get_tags() Get All Tags

Return all tags in the dimension.

sie_Iterator *sie_get_tags(void *reference);

sie_get_tag() Get Tag

Return the tag in dimension with its ID or NULL if no such tag ID exists.

sie_Tag *sie_get_tag(void *reference, const char *id);

sie_get_index() Get Dimension Index

Return the index of the dimension.

sie_uint32 sie_get_index(void *reference);

3.6.5 Tags

A tag is a key to value pairing and is used for almost all metadata. Use the following

methods to access tags.

sie_tag_get_id() Get Tag ID

Return the ID of a tag.

const char *sie_tag_get_id(sie_Tag *tag);

The returned string is valid for the lifetime of the tag object. If needed longer, duplicate

the string using the strdup function or otherwise reallocate the string.
24 I2954-1.0 en

SIE and libsie
sie_tag_get_value() Get Tag Value

Return a newly-allocated string containing the value of a tag.

char *sie_tag_get_value(sie_Tag *tag);

This function returns NULL on failure. Because the returned string is a plain pointer, it

must eventually be freed with the sie_free function.

NOTE
Because the amount of data in a tag value can be very large, it can also be read with

a spigot. For more information, see “Spigots” on page 20.

sie_tag_get_value_b() Get Tag Value (Binary Safe)

Set a pointer to a newly-allocated string containing the tag value and a pointer to the

size of the data.

int sie_tag_get_value_b(sie_Tag *tag, char **value, size_t *size);

The pointer value points to the value of tag and the pointer size points to the size of

the data. This function returns true if successful. If an error occurs, the function returns

false and value and size are unchanged. If successful, value must eventually be

freed with the sie_free() function.

NOTE
Because the amount of data in a tag value can be very large, it can also be read with

a spigot. For more information, see “Spigots” on page 20.

3.7 Output Methods

Use the following methods to access the output data from a spigot. The data from a

spigot is arranged in scans of vectors. The data type of each column can be either

64-bit float or raw. The form of the data varies depending on the channel.

sie_output_get_block() Get Block Number

Return the number of the block from which the data originated. The first data block in

a channel is always block 0.

size_t sie_output_get_block(sie_Output *output);

sie_output_get_num_dims() Get Number of Dimensions

Return the number of dimensions in the output.

size_t sie_output_get_num_dims(sie_Output *output);

sie_output_get_num_rows() Get Number of Rows

Return the number of rows of data in the output.

size_t sie_output_get_num_rows(sie_Output *output);

sie_output_get_type() Get Data Type

Return the type of the specified dimension of the output.
I2954-1.0 en 25

SIE and libsie
#define SIE_OUTPUT_NONE 0

#define SIE_OUTPUT_FLOAT64 1

#define SIE_OUTPUT_RAW 2

int sie_output_get_type(sie_Output *output, size_t dim);

sie_output_get_float64() Get Float Data

Return a pointer to an array of float64 (i.e., double) data for the specified dimension.

sie_float64 *sie_output_get_float64(sie_Output *output, size_t dim);

The data array has a size equal to the number of scans in the output. This is only valid

if the type of the dimension is SIE_OUTPUT_FLOAT64. The lifetime of the return value

is managed by the sie_Output object.

sie_output_get_raw() Get Raw Data

Return a pointer to an array of raw data for the specified dimension.

typedef struct _sie_Output_Raw {

void *ptr;

size_t size;

int reserved_1;

} sie_Output_Raw;

sie_Output_Raw *sie_output_get_raw(sie_Output *output, size_t dim);

The data array has a size equal to the number of scans in the output. The ptr member

of the sie_Output_Raw struct is a pointer to the actual data and size is the size in

bytes of the data pointed to by the pointer. The lifetime of the return value is managed

by the sie_Output object.

sie_output_get_struct() Get Struct

Return an sie_Output_Struct pointer containing information about the sie_Output

object.

typedef struct _sie_Output_Dim {

int type;

sie_float64 *float64;

sie_Output_Raw *raw;

} sie_Output_Dim;

typedef struct _sie_Output_Struct {

size_t num_dims;

size_t num_rows;

size_t reserved_1;

size_t reserved_2;

sie_Output_Dim *dim;

} sie_Output_Struct;

sie_Output_Struct *sie_output_get_struct(sie_Output *output);

The returned struct can be used in all C-compatible languages to access all data in

the sie_Output object. The lifetime of the return value is managed by the

sie_Output object.

For information about the SIE data model, see “The SIE File” on page 31.
26 I2954-1.0 en

SIE and libsie
3.8 Error Handling

sie_check_exception() Check for Exception

Check for an exception since library initialization or the last call to

sie_get_exception().

sie_Exception *sie_check_exception(void *ctx_obj);

The method returns NULL if no exception has occurred. Otherwise, it returns a

non-NULL pointer.

sie_get_exception() Get Exception

Return the exception object.

sie_Exception *sie_get_exception(void *ctx_obj);

The method returns NULL if no exception has occurred since library initialization or the

last call to sie_get_exception(). The caller is responsible for releasing the

exception object when finished.

sie_report() Get Exception Report

Return a string describing the exception.

char *sie_report(void *exception);

The returned string is valid for the lifetime of the exception object and does not have

to be freed.

sie_verbose_report() Get Verbose Exception Report

Return a string describing the exception plus extra information describing what was

happening when the exception occurred.

char *sie_verbose_report(void *exception);

The returned string is valid for the lifetime of the exception object and does not have

to be freed.

3.9 Progress Information

Using some operations, such as sie_file_open(), on very large SIE files can take

enough time that progress information may be useful. The following interface allows

configuration of the SIE library context to provide information on the progress of libsie

activities.

If a callback returns non-zero, the current API function is aborted. The API function

returns a failure value and an operation aborted exception.

typedef int (sie_Progress_Set_Message)(void *data,

const char *message);

typedef int (sie_Progress_Percent)(void *data,

sie_float64 percent_done);

void sie_set_progress_callbacks(void *ctx_obj, void *data,

sie_Progress_Set_Message *set_message_callback,

sie_Progress_Percent *percent_callback);

3.10 Streaming

See contrib/misc/stream-test.c for an example of how to use streaming.
I2954-1.0 en 27

SIE and libsie
sie_stream_new() Create SIE Stream

Create a new SIE stream.

sie_Stream *sie_stream_new(void *context_object);

The stream object can be used in all places a file object can be used. Data from the

stream can only be read once.

sie_add_stream_data() Add Stream Data

Add data to an existing stream.

size_t sie_add_stream_data(void *stream, const void *data,

size_t size);

The method adds size bytes pointed to by the pointer data to the SIE stream stream.

The function returns size if successful or zero if the stream is corrupt. After the

function returns, query open spigots for more data or open new channels.

3.11 Histogram Access

Histograms are presented with a data schema which is comprehensive but somewhat

inconvenient to access. However, libsie provides a utility for reconstructing a more

traditional data representation.

The SoMat histogram data schema for each bin is:

dim 0: count

dim 1: dimension 0 lower bound

dim 2: dimension 0 upper bound

dim 3: dimension 1 lower bound

dim 4: dimension 1 upper bound

...

for as many dimensions as are present in the histogram. If a bin is repeated, the new

count replaces the old one. This presents all the data needed to reconstruct the

histogram in one place.

In SoMat files, this schema is used whenever the core schema tag (core:schema) is

somat:histogram or somat:rainflow. When using rainflow data, this schema is

used with an additional tag of rainflow stack data. For more information on these

SoMat data schemas, see “Histogram Data Schema” on page 47.

To access a histogram in a more convenient way, use the following methods to create

and interface with histogram objects.

sie_histogram_new() Create a New Histogram

Create a new histogram convenience object from the specified channel and read all

data from the channel.

sie_Histogram *sie_histogram_new(sie_Channel *channel);

sie_histogram_get_num_dims() Get the Number of Dimensions

Return the number of dimensions in the histogram.

size_t sie_histogram_get_num_dims(sie_Histogram *hist);

sie_histogram_get_num_bins() Get the Number of Bins

Return the number of bins in the specified dimension of the histogram.

size_t sie_histogram_get_num_bins(sie_Histogram *hist, size_t dim);
28 I2954-1.0 en

SIE and libsie
sie_histogram_get_bin_bounds() Get Bin Bounds

Get the lower and upper bounds of the bins in the specified dimension.

void sie_histogram_get_bin_bounds(sie_Histogram *hist,

size_t dim, sie_float64 *lower, sie_float64 *upper);

The method fills the arrays lower and upper with the lower and upper bounds of the

bins. The arrays must have enough space for the number of bins in the dimension (see

the sie_histogram_get_num_bins() function above).

sie_histogram_get_bin() Get Bin

Return the bin value for the specified indices.

sie_float64 sie_histogram_get_bin(sie_Histogram *hist,

size_t *indices);

The parameter indices must point to an array of size size_t. The size is defined as

the number of dimensions of the histogram.

sie_histogram_get_next_nonzero_bin() Get Next Non-Zero Bin

Return the bin value of the next non-zero bin from a specified starting position.

sie_float64 sie_histogram_get_next_nonzero_bin(

sie_Histogram *hist, size_t *start, size_t *indices);

The method sets the parameter indicies to the indices of the found bin and the

parameter start to a value that allows future calls of the function to continue the

search from the bin after the current found bin. To start a new search, set start to

point to a zero value. The parameter indices must point to an array of size size_t.

The size is defined as the number of dimensions of the histogram. When there are no

more non-zero bins, the function returns 0.0.
I2954-1.0 en 29

SIE and libsie
30 I2954-1.0 en

SIE and libsie
4 The SIE File

This appendix presents the details of the SIE file itself including the format of the SIE

file, the structure and behavior of the underlying XML and the core and SoMat SIE

schemas.

4.1 Overview

SIE is a flexible and robust data storage and transmission format and it is designed to

be self-describing. At its core, SIE is a block-structured container for data. It defines

an XML schema for describing both the structure and associated metadata of the data.

It also defines an optional index format to speed up file access.

NOTE
This document describes SIE version 1.0.

4.2 SIE Format

4.2.1 Data Model

SIE presents a flexible, unified data model to the end user. Data are presented as a

table of rows and columns. For example, a time series channel could be represented

as the following:

A dimension (column) may contain either numerical values or raw binary data.

The metadata for this example contains additional information, such as that dimension

0 is time with the unit seconds, while dimension 1 is the actual data measurement with

the unit millivolts.

Ultimately, all SIE data are presented in this basic form. It is notable that, if given an

SIE file with completely unknown data, all of the data values are immediately visible

even if the details of the intended representation are unknown.

Metadata are represented as tags, which are pairings of a textual name to arbitrary

binary data and can exist an any level of the SIE hierarchy. The metadata for the

example above could be represented as:

<ch id="0" name="example">

<dim index="0">

<tag id="core:label">time</tag>

Row Dimension 0 Dimension 1

0 0.0 0.42

1 0.1 -0.20

2 0.2 0.13

3 0.3 0.06

4 0.4 -0.23

...
I2954-1.0 en 31

SIE and libsie
<tag id="core:units">seconds</tag>

</dim>

<dim index="1">

<tag id="core:label">measurement</tag>

<tag id="core:units">millivolts</tag>

</dim>

</ch>

To help standardize and document the many ways that data and metadata can be

represented on this basic model, SIE provides schemas, which are documented sets

of data and metadata representation standards. Schemas are identified by a

namespacing system. For example, all tags beginning with core: belong to the core

schema. The SIE schema, described in “libsie Library Reference” on page 19, is

reserved for items defined in the SIE format proper. Two other schemas, the core

schema and SoMat schema, are discussed in this appendix in “Core Schema” on

page 42 and “SoMat Schema” on page 44.

Note that SIE can store data in almost any conceivable format. Most of the SIE format

is in fact a mechanism to convert arbitrary binary data in a block-structured container

to the unified data model described above.

4.2.2 Block Structure

SIE is output as a stream of bytes, which is composed of a series of data blocks in

sequence without intervening padding as depicted in figure 1. A block is composed of

several parts, namely a size, group, sync word, payload and checksum. The size is

repeated on both ends of the block. All of these except the payload are 32-bit unsigned

integers in network (big-endian) byte order.

Figure 4-1: Figure 1: An SIE data stream

The size is simply the size of the block in bytes, including both size fields. Having the

size on both sides of the block allows an SIE data file to be traversed both forwards

and backwards and it provides one level of consistency checking in that the size fields

in each block should always be equal.

The group identifies what data are contained in the payload of the block. Groups 0 and

1 indicate the XML metadata and index blocks, respectively. The purposes of all other

groups are defined in the XML metadata.

The sync word is always the hexadecimal value 5IEDA7A0, which looks vaguely like

“SIEDATA0.” The sync word is used to find the beginning of a block when reading

damaged files or joining a broadcast stream in the middle. Also, as it has some high

bits set, if an SIE file is transmitted over a medium that is not 8-bit clean, the sync word

will be damaged, quickly indicating corruption even if checksums are not present.
32 I2954-1.0 en

SIE and libsie
The payload is the actual data contained in the block. It is interpreted based on the

group of the block. A block with a payload size of zero indicates that no more blocks of

that group will occur. This is intended to be used to indicate end of data in real-time

streaming scenarios. The length of the payload is always the block size minus 20.

Finally, the checksum is a CRC32 checksum of all bytes from the first byte of the first

size field through the last byte of the payload. The checksum is optional, as some

devices may not have the processor capacity to compute it, but, if it is not present, the

checksum field must be set to zero. When reading a block, a zero checksum is always

valid.

4.2.3 Predefined Groups

There are only two groups defined in the core SIE standard: group 0 blocks contain

the SIE XML metadata and group 1 blocks are index blocks.

XML metadata (group 0)

The SIE XML metadata defines how to interpret the SIE data. It contains tags,

channels and tests. Tags are generalized metadata relating an arbitrary text key to a

completely arbitrary value. Channels are groupings of engineering data (composed of

multiple dimensions) with their associated metadata. Tests are groupings of channels.

Tags can appear at all levels of the hierarchy.

Additionally, the SIE XML metadata contains descriptions of all binary formats

contained within the file, including the block structure defined above. These

descriptions are contained within decoders, which are small programs used to read

and interpret binary data. The XML representation of the SIE metadata is defined as

the sequential concatenation of the payload of every block with group ID 0.

Index blocks (group 1)

Index blocks must index a consecutive chunk of blocks ending with the last block

before the index block itself. Index blocks that are indexed in other index blocks will be

passed over to allow re-indexing of a file.

4.2.4 Data Rendering Algorithm

The first step in getting the data model representation of an SIE channel’s data is to

look at the channel element (ch) defining the channel’s metadata.

The following information must be obtained for each dimension d : which group the

data are going to be read from (g), which decoder will be used to decode the data (D),

which v of the decoder will be assigned to the dimension (vd), and optionally, what

transform will be applied to the output of the decoder (xd). Note that for this SIE

version, the group and decoder for all dimensions must be the same, as there is no

Offset

(bytes)

Size

(bytes) Name Description

0 4 size Total size of the block in bytes.

4 4 group Group identifier for the block.

8 4 sync word Constant 51EDA7A0.

12 n payload n bytes of data

n +12 4 checksum CRC32 of bytes 0 through n +11 inclusive.

n +16 4 size2 Total size of the block in bytes.
I2954-1.0 en 33

SIE and libsie
way to specify how multiple disparate decoder outputs be joined. If any of the required

information above is missing, the channel is abstract and does not have data

associated with it. This is common in the case of base channels which are only used

to hold common metadata for other channels. Usually, these channels will have the

private attribute set so the reader knows not to try to access them.

To determine the group, look at the group attribute for each of the dimension elements,

or the group attribute of the channel element. The decoder ID is defined by the

decoder attribute in each dimension’s data element and the decoder v by the v

attribute. Finally, the transform is defined by the dimension’s xform element, if any.

Knowing g , D , all vd , and all xd , the algorithm to render the channel data is relatively

straightforward:

For each block b in the SIE stream with group ID g :

Run decoder D on the payload of b , producing multiple output vectors.

For each decoder output vector V :

Start building up an output row r .

For each dimension d in the channel:

Let o be the decoder output V [vd].

If the transform xd exists, apply it to o .

Assign r [d] to be the value of o .

Append the row r to the channel data.

The result of this algorithm will be the channel data in the form of the universal SIE

data model.

4.3 XML Details

4.3.1 Standard Preamble

The standard SIE XML metadata preamble is:

<?xml version="1.0" encoding="UTF-8"?>

<sie version="1.0" xmlns="http://www.somat.com/SIE">

<!-- SIE format standard definitions: -->

<!-- SIE stream decoder: -->

<decoder id="0">

<loop>

<read var="size" bits="32" type="uint" endian="big"/>

<read var="group" bits="32" type="uint" endian="big"/>

<read var="syncword" bits="32" type="uint" endian="big"

value="0x51EDA7A0"/>

<read var="payload" octets="{$size - 20}" type="raw"/>

<read var="checksum" bits="32" type="uint" endian="big"/>

<read var="size2" bits="32" type="uint" endian="big"

value="{$size}"/>

</loop>

</decoder>

<tag id="sie:xml_metadata" group="0" format="text/xml"/>

<!-- SIE index block decoder: v0=offset, v1=group -->

<decoder id="1">

<loop>
34 I2954-1.0 en

SIE and libsie
<read var="v0" bits="64" type="uint" endian="big"/>

<read var="v1" bits="32" type="uint" endian="big"/>

<sample/>

</loop>

</decoder>

<tag id="sie:block_index" group="1" decoder="1"/>

<!-- Stream-specific definitions begin here: -->

Notice this contains a description of the block structure described in the previous

chapter and the tag sie:xml_metadata, the value of which is the contents of group

0. It also contains a tag and description of the format of the block indexes.

The purpose of including this preamble is not to expect that a reader program will

extract how to read the SIE block structure from this description; a sufficiently clever

implementation could, but that value of this is questionable. Rather, it is to realize the

design goal that the format be completely self-describing. Even without external

documentation, looking at an SIE file in a text editor will yield a good chance of

understanding the basic format.

4.3.2 XML Features

To make possible some of the properties of the SIE format, the XML representation

used has some unusual features.

Merge and Replace Behavior

To support streaming data, the XML format supports effectively overriding and

modifying metadata from earlier in the stream. For example, the following two

examples are equivalent.

Example 1:

<ch id="42" name="test">

<tag id="core:description">testing</tag>

</ch>

<ch id="42">

<tag id="core:output_samples">74088</tag>

</ch>

Example 2:

<ch id="42" name="test">

<tag id="core:description">testing</tag>

<tag id="core:output_samples">74088</tag>

</ch>

This is an example of merging behavior. This can be used to add information once it

is known. In the example above, the number of output samples is clearly not known

until all samples are written to the file.

Some other metadata are atomic and replace instead as illustrated by the following

two examples.

Example 1:

<ch id="42" name="test">

<tag id="core:description">testing</tag>

</ch>
I2954-1.0 en 35

SIE and libsie
<ch id="42">

<tag id="core:description">overridden</tag>

</ch>

Example 2:

<ch id="42" name="test">

<tag id="core:description">overridden</tag>

</ch>

The table below details the merge and replace behavior for interpreting the SIE XML

metadata. The behavior is either merge or replace, as described above. The key is the

attribute which is used to select which existing element to merge with or replace. If the

key is unique, only one element of that type is allowed within its parent.

Nesting Shortcut

To reduce metadata size and require fewer statements from the writer, there is a

shortcut method to describe elements nested within others. The attribute names test,

ch and dim are reserved for all elements and produce hierarchy as illustrated by the

following examples.

Example 1:

<tag ch="2" dim="3" test="1" id="core:description">test</tag>

Example 2:

<test id="1">

<ch id="2">

<dim index="3">

<tag id="core:description">test</tag>

</dim>

</ch>

</test>

Note that to allow this to be implemented by a simple expansion, there cannot be

redundant element specifiers. For example, the following would be in error, as it

creates two nested test tags:

<test id="1">

<tag ch="2" dim="3" test="1" id="core:description">test</tag>

</test>

Element Behavior Key

ch merge id

dim merge index

test merge id

data replace unique

tag replace id

xform replace unique
36 I2954-1.0 en

SIE and libsie
Inheritance

The channel and test elements support inheritance. To inherit, set the base attribute

to the ID of the existing element to inherit from. For instance, the following two

examples are equivalent.

Example 1:

<ch id="2" name="old">

<tag id="core:description">test</tag>

</ch>

<ch id="42" name="new">

<tag id="core:description">test</tag>

</ch>

Example 2:

<ch id="2" name="old">

<tag id="core:description">test</tag>

</ch>

<ch id="42" base="2" name="new"/>

Inheritance is useful for creating many similar channels without excessive duplication.

4.3.3 XML Metadata Grammar

NOTE
The syntax of each element is described in the RELAX NG schema description

language.

SIE Element

The SIE element is the top-level element of the SIE XML metadata. The version

attribute specifies the version of SIE. Version 1.0 is described in this document. The

SIE element can contain tags, decoders, channels and tests.

SIE = element sie {

attribute version { text },

(TopTag | Decoder | Channel | Test)*

}

Note that as an SIE stream is always capable of being appended to, the SIE element

should never be explicitly closed. For parsing purposes, consider “</sie>” added to

the end of the XML metadata.

Tag Element

The tag element is the generic element for application-level annotation, which allows

arbitrary text as the tag name and completely arbitrary values. Tag values are stored

either directly in the XML, properly escaped:

<tag id="core:samplerate">500</tag>

or as the contents of a group:

<tag id="setupphoto.1" group="27" format="image/jpeg"/>
I2954-1.0 en 37

SIE and libsie
For the group form, the value of the tag is considered to be the sequential

concatenation of the payload of every block with the specified group ID.

The <tag group="42" decoder="17"/> form allows binary structures specifiable

through the decoder mechanism. Extant SIE reader implementations are not capable

of applying decoders to tag values.

TestSpecs = (ChannelSpec | (ChannelSpec & DimSpec))

TopTag = element tag {

(attribute test { UINT } | TestSpecs)?,

TagBase

}

TestTag = element tag {

TestSpecs?,

TagBase

}

ChannelTag = element tag {

DimSpec?,

TagBase

}

Tag = element tag {

TagBase

}

TagBase = (

attribute id { text },

((attribute group { UINT }, DecoderOrFormat?) | text)

)

DecoderOrFormat = (attribute decoder { UINT } | Format)

UINT = xsd:nonNegativeInteger

Decoder Element

Each decoder element contains the machinery to decode the binary payload from a

particular data block. The same decoder may be used by any number of different

channels. The assignment of a particular decoder ID to a group is mediated through

the group and channel directives.

Decoder = element decoder {

Id,

DecodeOps*

}

DecodeOps = (If | Loop | Read | Sample | Seek | Set)

Variables

Decoder variables can contain either numbers or arbitrary binary data of unbounded

size. Variables are always initialized to zero upon entering a decoder. The special

variables v0, v1, ... , vn are used by the sample operator to compose output result

vectors.
38 I2954-1.0 en

SIE and libsie
Expressions

Expressions support simple arithmetic expressions and variable dereferencing via the

$ prefix (i.e. the value of {$foo + 24} is 24 plus the value of the variable foo).

EXPR = text # either a literal number or an {...} expression

If Operator

The if operator is used for conditional execution of code. If the expression in the

condition attribute evaluates to non-zero, the contents of the if operator are

executed.

If = element if{

attribute condition { EXPR },

DecodeOps*

}

Loop Operator

The loop operator is a general iteration mechanism. By default, it repeats its contents

forever or until the decoder aborts upon a failed read operation.

If the variable attribute is present, the optional start, end and increment attributes

can be specified as either a constant value or an expression. The variable attribute

(var) begins the loop equivalent to the value of the start attribute as illustrated by the

following two equivalent statements.

<set var="foo" value="42"/><loop var="foo">

<loop var="foo" start="42">

The loop variable increments by the increment value at the end of each loop iteration.

The increment value defaults to one. The end attribute sets the termination condition;

the loop runs while the var is less than end when the increment is zero or positive,

and while var is more than end when the increment is negative. If defined as an

expression, the increment and end values are computed with each iteration.

Loop = element loop {

(attribute var { text }, LoopOpts)?,

DecodeOps*

}

LoopOpts = (

attribute increment { EXPR }?,

attribute start { EXPR }?,

attribute end { EXPR }?

)

Read Operator

The read operator reads n bits of payload from the current position, where n is either

the value of the bits attribute or eight times the value of the octets attribute. If used,

bits must be a multiple of eight. If neither size attribute is present, all remaining data

in the payload is read. If there is less data remaining than requested, the decoder

terminates; this is the primary means of termination for most decoders.
I2954-1.0 en 39

SIE and libsie
If the variable attribute (var) is present, the named variable is set to the value read

and interpreted according to any type or endian attributes that may be present. The

optional value attribute asserts that the value read is equal to the value of the

attribute. An error will result if this is not the case.

The type attribute, which defaults to raw, has several possible values:

The endian attribute specifies the byte order to be used for interpreting numerical

data. If the endian attribute is “big,” the number 0x00112233 would be stored in the

order 0x00, 0x11, 0x22, 0x33 (also known as network or Motorola order). If the endian

attribute is “little,” it would be stored in the order 0x33, 0x22, 0x11, 0x00 (Intel, Vax,

x86 order).

Read = element read {

attribute var { text }?,

(attribute bits { EXPR } | attribute octets { EXPR }),

ReadType,

attribute value { EXPR }?

}

ReadType = (

Format

| attribute type { "raw" }

| (attribute type { "int" | "uint" | "float" }

& attribute endian { "big" | "little" })

)

Sample Operator

The sample operator adds a data sample vector [v0,v1, ... ,vn] to the decoder’s output

queue. All variables of the form v0, v1, v2, etc. that are used in the decoder (through

loop, set or read operators) are included in the output vector.

Sample = element sample { empty }

Seek Operator

The seek operator moves the location from which the next read operator will read data.

The read location is moved to the position described in the from and offset

attributes. The from attribute can either be “start,” the start of the data; “current,” the

current position; or “end,” the end of the data. The offset attribute is an expression

evaluating to the number of octets offset from the location defined in the from attribute.

Seek = element seek{

attribute from { "start" | "current" | "end" },

attribute offset { EXPR }

}

Type Description

int Two’s complement signed integer of 8, 16, 32 or 64 bits.

uint Unsigned integer of 8, 16, 32 or 64 bits.

float IEEE-754 floating point value of either 32 or 64 bits.

raw No interpretation; store unmodified binary buffer. The endian attribute has

no effect here.
40 I2954-1.0 en

SIE and libsie
Set Operator

The set operator is used to set the variable specified by the variable attribute (var) to

the value of the value attribute. The value attribute can be either a numerical value

or an expression.

Set = element set{

attribute var { text },

attribute value { EXPR }

}

Channel (ch) Element

The channel element (ch) is the container used to define engineering level data

channels. It contains dimension elements whose transform, data and tag elements

have all the information necessary to convert the raw decoder data vectors into

engineering unit data. The optional name attribute defines the channel name. All other

information is contained in tag elements either directly under the channel or under a

dimension child.

To minimize redundancy, the channel element supports an inheritance mechanism

through its base attribute. See “Inheritance” on page 37 for more information on the

base attribute.

The optional group attribute specifies a single group to be associated with the

channel. This will be most often seen using inheritance inside a test definition:

<test id="1">

<ch id="9" base="0" group="5" name="th1@rpm.RN2"/>

<ch id="10" base="1" group="5" name="th1@coolant.RN2"/>

</test>

More than one group can contribute to a channel. The group attribute in a dimension

overrides any group attribute of the parent channel.

Channel = element ch{

Id,

attribute base { UINT }?,

attribute name { text }?,

attribute group { UINT }?,

Private?,

(Dimension* & ChannelTransform* & ChannelTag*)

}

Dimension (dim) Element

The dimension element (dim) contains the definition for axis index. The first axis is

index zero. Decoder data for the dimension comes from the dimension’s group

attribute or, if that does not exist, the enclosing channel’s group attribute.

Dimension = element dim {

attribute index { UINT },

attribute group { UINT }?,

(Transform? & Data? & Tag*)

}

I2954-1.0 en 41

SIE and libsie
Transform (xform) Element

The transform element (xform) defines a linear transform using the scale (i.e. slope)

and offset (i.e. intercept) attributes. An indexed mapping transform (essentially an

array lookup) uses index_ch and index_dim to define the output.

Transform = element xform { Transforms }

TestTransform = element xform { ChannelDimSpec, Transforms }

ChannelTransform = element xform { DimSpec, Transforms }

Transforms = (LinearTransform | IndexTransform)

LinearTransform = (

attribute scale { REAL },

attribute offset { REAL }

)

IndexTransform = (

attribute index_ch { UINT },

attribute index_dim { UINT }

)

Data Element

The data element is used to define the data for a particular dimension as the vector

element v from decoder d . For example,

<dim index="2">

<data decoder="7" v="3">

</dim>

assigns element “3” of the decoder “7” output to dimension “2” of the channel.

Data = element data{

DecoderOrFormat,

attribute v { UINT }

}

4.4 Core Schema

SIE provides a very flexible framework for describing almost any kind of data and

associated metadata. However, some organization and standardization is necessary

to allow the widest number of programs to understand the widest amount of data.

SIE tag names can belong to a particular metadata schema. The schema part of a tag

name precedes a colon. For example, tag names beginning with core: belong to the

core schema.

Not all of the tags in the schema will be present; in fact, none have to be. For maximum

robustness, data reading applications should be able to work with the absolutely

minimum set of tags possible.

4.4.1 Core Metadata Schema

In addition to metadata schemas, the core schema tag (see “Schema Tag” on

page 44) indicates which data schema is in use for the numerical and binary data that

will be output from a channel. Referencing the correct data schema documentation will

allow the data to be correctly interpreted.
42 I2954-1.0 en

SIE and libsie
core:description Description Tag

The core description tag provides a free-form, natural-language description of the

element in which it is contained.

<tag id="core:description">

A thermocouple mounted underneath the right front wheel

bearing.

This channel is gated to only collect data when the

temperature is above 60 degrees C.

</tag>

core:elapsed_time Elapsed Time Tag

The core elapsed time tag defines the amount of time spent collecting the data in its

container in seconds.

<tag id="core:elapsed_time">160760.4</tag>

core:input_samples Input Samples Tag

The core input samples tag contains the number of data samples present before

running any data-reduction algorithms. For example, in a gated time history, the input

samples tag contains the number of samples present before gating.

<tag id="core:input_samples">4760</tag>

core:label Label Tag

The core label tag defines a label, which is a short description intended for placing on

a plot, graph or table. For example, a dimension label is usually used as an axis label.

<tag id="core:label">Time</tag>

core:output_samples Output Samples Tag

The core output samples tag contains the number of data samples that are present

after running any data-reduction algorithms or, in other words, the number of data

samples that are actually stored in the channel. For example, in a gated time history,

the output samples tag contains the number of samples stored after gating.

<tag id="core:output_samples">200</tag>

core:range_max Range Max Tag

The core range max tag defines the expected maximum bound for the container

dimension. This can be used, for example, to set plot range boundaries. It is not the

maximum data value in the dimension.

<tag id="core:range_max">1000.0</tag>

core:range_min Range Min Tag

The core range min tag defines the expected minimum bound for the container

dimension. This can be used, for example, to set plot range boundaries. It is not the

minimum data value in the dimension.

<tag id="core:range_min">-1000.0</tag>

core_sample_rate Sample Rate Tag

The core sample rate tag defines the sample rate in hertz of the data in its container.

<tag id="core:sample_rate">2500</tag>
I2954-1.0 en 43

SIE and libsie
core:schema Schema Tag

The core schema tag defines what data schema is in use for this channel. The data

schema defines how you interpret the data output of the channel. For example, if the

schema tag is somat:sequential, look up the sequential data schema for

instructions on how to interpret it. For more information on the SoMat data schemas,

see “SoMat Data Schema” on page 46.

<tag id="core:schema">somat:sequential</tag>

core:setup_name Setup Name Tag

The core setup name tag contains the name of the setup under which the data in the

container is collected, if applicable.

<tag id="core:setup_name">bearing_temp</tag>

core:start_time Start Time Tag

The core start time tag contains the time that data collection starts for the container.

The time is in the ISO 8601 format.

<tag id="core:start_time">2007-01-10T11:49:34-0600</tag>

core:stop_time Stop Time Tag

The core stop time tag contains the time that data collection stops. The time is in the

ISO 8601 format.

<tag id="core:stop_time">2007-01-10T12:12:06-0600</tag>

core:test_count Test Count Tag

The core test count tag contains the sequence number of the container test. For

example, when a test is repeated multiple times, the first test run has a test count of 1,

the second has a test count of 2 and so on.

<tag id="core:test_count">14</tag>

core:units Units Tag

The core units tag defines the units of the container dimension (e.g. seconds, millivolts,

microstrain, etc.). For unitless dimensions (e.g. counts) this tag is absent.

<tag id="core:units">seconds</tag>

core:version Version Tag

The core version tag defines the version of the core schema in use. The version

described in this document is 1.0.

<tag id="core:version">1.0</tag>

4.5 SoMat Schema

This section describes the SoMat schema for the SIE format. The SoMat schema

describes metadata and data representations specific to HBM's line of SoMat data

acquisition systems. In addition, some elements of this schema may be applicable for

more general use. In almost all cases, data files that reference this schema also

reference the core schema.
44 I2954-1.0 en

SIE and libsie
4.5.1 SoMat Metadata Schema

somat:data_bits Data Bits Tag

The SoMat data bits tag contains the number of bists of resolution of the channel data..

<tag id="somat:data_bits">16</tag>

somat:data_format Data Format Tag

The SoMat data format tag contains the data format of the channel data type. The data

format can equal “uint,” “int” or “float.”

<tag id="somat:data_format">uint</tag>

somat:datamode_name DataMode™ Name Tag

The SoMat DataMode name tag contains the name of the DataMode which produced

the current SIE channel.

<tag id="somat:datamode_name">th1k</tag>

somat:datamode_type DataMode™ Type Tag

The SoMat DataMode type tag contains the type of the DataMode produced the

current SIE channel.

<tag id="somat:datamode_type">time_history</tag>

The data mode type can be one of the following values:

time_history

burst_history

peak_valley

peak_valley_slice

event_slice

time_at_level

peak_valley_matrix/from_to

peak_valley_matrix/range_mean

peak_valley_matrix/range_only

rainflow/from_to

rainflow/range_mean

rainflow/range_only

message_log

somat:input_channel Input Channel Tag

The SoMat input channel tag contains the name of the input channel which produced

the current SIE channel.

<tag id="somat:input_channel">bracket</tag>

somat:log Log Tag

The SoMat log tag contains the data acquisition system’s log. The log is stored

continuously and is not limited in size.

somat:rainflow_unclosed_cycles Rainflow Unclosed Cycles Tag

The SoMat rainflow unclosed cycles tag contains a sequence of ASCII-formatted

floating-point numbers containing the unclosed cycles stack from the rainflow counting

algorithm.
I2954-1.0 en 45

SIE and libsie
<tag id="somat:rainflow_unclosed_cycles">

9.992119789123535 20.02879905700684 -40.09270095825195

40.0364990234375 -50.09659957885742 60.07699966430664

- 70.13710021972656 70.08080291748047 -80.14089965820312

90.12129974365234 -110.1849975585938 150.2100067138672

- 120.1890029907227 190.2579956054688 -150.2330017089844

230.3390045166016 -330.5 390.5650024414062

-681.0609741210938 630.9199829101562 -590.89501953125

460.6900024414062 - 460.7139892578125 340.5130004882812

-320.4960021972656 170.2510070800781 -210.3220062255859

</tag>

somat:tce_setup TCE Setup Tag

The SoMat TCE setup tag contains the TCE setup file used to initialize the current test.

somat:version Version Tag

The SoMat version tag defines the version of the SoMat schema in use. The version

described in this document is 1.0.

<tag id="somat:version">1.0</tag>

4.5.2 SoMat Data Schema

somat:sequential Sequential Data Schema

The SoMat sequential data schema represents time series numerical data sampled at

a regular interval or the sequential output of various data reduction algorithms which

dispose of time information. Each row represents a single data sample and the time

or sequence number of that sample.

When time is preserved, the data output represents:

 When time information is disposed of, the data output represents:

The values of SIE dimension index 0, scaled or unscaled, have non-decreasing

ordering.

somat:message Message Data Schema

The SoMat message data schema data schema represents non-numerical data

sampled at irregular intervals. Each row represents a single message or event and the

time of collection.

SIE dimension Data type Scaled Unscaled

0 Numeric Time Sample number

1 Numeric Engineering value undefined

SIE dimension Data type Scaled Unscaled

0 Numeric Sequence number Sequence number

1 Numeric Engineering value undefined
46 I2954-1.0 en

SIE and libsie
The values of SIE dimension index 0, scaled or unscaled, have non-decreasing

ordering.

somat:burst Burst Data Schema

The SoMat burst data schema represents time series numerical data sampled at a

regular interval, but where actual data collection is triggered by a triggering event.

Each row represents a single data sample, the time that sample was collected, and

the relation between that sample and the event which triggered collection.

The values of SIE dimension index 0, scaled or unscaled, have non-decreasing

ordering.

For the burst data schema, the sample number is absolute. For example, if the first

burst data happens at the 50,000th sample collected, the sample number emitted from

SIE dimension 0 for that data is 50,000, not 0. The burst index, however, indicates the

relative position of the burst trigger.

somat:histogram Histogram Data Schema

The SoMat histogram data schema represents n -dimensional histogram data. Each

row represents a single histogram bin’s count and limits in all incoming dimensions.

The histogram bins are not presented in any particular order, nor are empty bins

guaranteed to be present. The number of histogram dimensions is equal to (m -1)/2,

where m is the number of SIE dimensions. To allow streaming of histogram data, if a

bin is specified more than once, the last count is valid.

SIE dimension Data type Scaled Unscaled

0 Numeric Time undefined

1 Raw Binary message undefined

SIE dimension Data type Scaled Unscaled

0 Numeric Time Sample number

1 Numeric Engineering value undefined

2 Numeric Burst index Burst index

Burst index Description

n <0 Current sample is n samples before the burst trigger.

0 Current sample is the first sample in the burst trigger.

0.5 Current sample is a continuation of the (level-sensitive) burst trigger.

n ≥1 Current sample is n samples after the burst trigger.

SIE dimension Data type Scaled Unscaled

0 Numeric Bin count undefined

n *2+1 Numeric Lower bin limit for histogram

dimension n
undefined

n *2+2 Numeric Upper bin limit for histogram

dimension n
undefined
I2954-1.0 en 47

SIE and libsie
A data sample falls into a bin if it is in the range [lower , upper). Note that the lower

bound is closed while the upper bound is open. Overflow bins are explicitly specified;

a negative overflow bin has a lower bin limit of negative infinity, while a positive

overflow bin has an upper bin limit of infinity.

The libsie library offers a convenient interface to access a histogram stored in this

schema as an n -dimensional array rather than as a linear list of bins. For more

information, see “Histogram Access” on page 28.

somat:rainflow Rainflow Data Schema

The SoMat rainflow data schema is identical to the histogram data schema except for

the SoMat rainflow unclosed cycles metadata tag

(somat:rainflow_unclode_cycles) metadata tag. This tag contains a sequence of

ASCII-formatted floating-point numbers containing the unclosed cycles stack from the

rainflow counting algorithm. Note that histograms emitted by SIE are closed. To

reopen them, run the rainflow algorithm in reverse with the unclosed cycles stack.
48 I2954-1.0 en

SIE and libsie
I2954-1.0 en 49

I2
9
5
4
-1

.0
 e

n
S

o
M

a
t
P

/N
 D

O
C

 0
0
2
4
-0

0

© HBM, Inc. All rights reserved.
All details describe our products in general form only.
They are not to be understood as express warranty
and do not constitute any liability whatsoever.

measure and predict with confidence

The Americas

HBM, Inc.
19 Bartlett Street

Marlborough, MA 01752, USA

Tel: +1 800-578-4260 • Email: info@usa.hbm.com

Europe, Middle East and Africa

HBM GmbH
Im Tiefen See 45

64293 Darmstadt, Germany

Tel: +49 6151 8030 • Email: info@hbm.com

Asia-Pacific

HBM China
106 Heng Shan Road

Suzhou 215009

Jiangsu, China

Tel: +86 512 682 47776 • Email: hbmchina@hbm.com.cn

	Safety Information
	1 Getting Started
	1.1 Introduction
	1.1.1 SIE Format
	1.1.2 libsie Library

	1.2 Required Downloads
	1.2.1 libsie Library Download
	1.2.2 C Compiler Download

	2 Using the libsie Library
	2.1 Header and Main Function
	2.2 Print SIE File Function Definition
	2.2.1 Library Context
	2.2.2 Error Handling
	2.2.3 Iterators and File-Level Tags
	2.2.4 SIE Tests and Test-Level Tags
	2.2.5 Channels and Channel-Level Tags
	2.2.6 Channel Dimensions
	2.2.7 Spigots
	2.2.8 Releasing a Context

	2.3 Print Tag Function Definition

	3 libsie Library Reference
	3.1 Overview
	3.2 Memory Management
	3.3 Library Context
	3.4 Iterators
	3.5 Spigots
	3.6 Reference Methods
	3.6.1 Files
	3.6.2 Tests
	3.6.3 Channels
	3.6.4 Dimensions
	3.6.5 Tags

	3.7 Output Methods
	3.8 Error Handling
	3.9 Progress Information
	3.10 Streaming
	3.11 Histogram Access

	4 The SIE File
	4.1 Overview
	4.2 SIE Format
	4.2.1 Data Model
	4.2.2 Block Structure
	4.2.3 Predefined Groups
	4.2.4 Data Rendering Algorithm

	4.3 XML Details
	4.3.1 Standard Preamble
	4.3.2 XML Features
	4.3.3 XML Metadata Grammar

	4.4 Core Schema
	4.4.1 Core Metadata Schema

	4.5 SoMat Schema
	4.5.1 SoMat Metadata Schema
	4.5.2 SoMat Data Schema

