
TECH NOTE – ClipX API for Linux

Author: Michael G., Florian S., Roland S. Seite 1 von 4 HBM: Public

TECH NOTE :: ClipX API for Linux

Version: 2019-09-09
Author: Michael Guckes, Florian Schopp, Roland Siepmann
Status: HBM: Public

Brief description
This is an instruction for using the ClipXApi.so file for including ClipX in self-made program environments in Linux-based
systems. The library uses a TCP/IP connection to the port 55000 which causes that no other connection to this port can
be established during a measurement. However, the web server can be used normally, because it uses another port.
The ClipX API is based on a communication to the object directory of ClipX and uses its internal fifo storage. This causes
a limitation of the maximal possible measurement rate of 1kHz (minimal rate 1Hz).

Note: Make sure to use the latest version of the ClipX API.

https://www.hbm.com/de/7077/clipx-praeziser-leicht-integrierbarer-messverstaerker/

https://www.hbm.com/de/7077/clipx-praeziser-leicht-integrierbarer-messverstaerker/

TECH NOTE – ClipX API for Linux

Author: Michael G., Florian S., Roland S. Seite 2 von 4 HBM: Public

Integration
In principle, the ClipX API can be integrated in each project. Since the programming was done in C ++, the integration in
the same language environment is the easiest. Both for the integration in C, and also for the integration in C#, this
technote contains an example.

Functions
ClipX is implemented as a C++ class. So, each ClipX device can be represented as a separate instance of this class. The
class has the following methods:

Connect

The ‘Connect’ method creates a socket and establishes the connection. The IP address is entered as input parameter. If
the connection was successful, the starts a keep alive thread (more in chapter ‘KeepAlive’) method returns 0. Otherwise
it returns a value below 0.

Disconnect

The ‘Disconnect’ method disconnects from the ClipX device and closes the socket. If this procedure is successful, it
returns 0.

SDORead

The ‘SDORead’ method makes it possible to read from the object directory of ClipX. The inputs are the index and
subindex, a char array, which stores the result, and the size, which should be read (typically: sizeof(res)). The method
returns the amount of read bytes.

Note: Please refer to the ClipX manual for further information concerning the object directory and the available indices
and objects.

SDOWrite

The ‘SDOWrite’ method allows to write to the object directory of ClipX. The inputs are the index, subindex and the
value (Char/String) of the attribute, that should be written. If the process was successful, the method returns 0,
otherwise it returns -1.

Note: Please refer to the ClipX manual for further information concerning the object directory and the available indices
and objects.

startMeasurement

The ‘startMeasurement’ method initializes the measurement. Consequently, the keep alive thread is finished, the filling
of the fifo storage is started and after that, the measurement thread is started, which reads all entries of the fifo every
100ms and stores them in a buffer/struct.

TECH NOTE – ClipX API for Linux

Author: Michael G., Florian S., Roland S. Seite 3 von 4 HBM: Public

AvailableLines

The ‘AvailableLines’ method returns the amount of non-read measurement lines. This is the amount of lines, which are
already read from the fifo, but not read from the internal buffer via the ‘ReadNextLine’ method.

ReadNextLine

The ‘ReadNextLine’ method reads the next available line of measurement values from the internal buffer/struct. The
input parameter is expected to be a size 7 double array, which stores first the timestamp and then the six signals. As a
return value, this method returns the number of lines still available.

Note: By calling the ‘startMeasurement’ method, the current time is read from ClipX. The time stamp of the individual
measurement values consists of this time and the added tick, which is delivered by the fifo.

ReadNextBlock

The ‘ReadNextBlock’ method reads an amount of measurement values (predefined by the user with the variable
‘maxreads’) from the internal buffer/struct. The input parameter is expected to be a double pointer of each of the 7
signals (6 signals + 1 time). As a return value, this method returns the number of lines still available. If less
measurement lines than ‘maxreads’ are available, all available measurement lines are read.

Note: By calling the ‘startMeasurement’ method, the current time is read from ClipX. The time stamp of the individual
measurement values consists of this time and the added tick, which is delivered by the fifo.

stopMeasurement

The ‘stopMeasurement’ method de-initializes the measurement, ends the measurement thread and starts the keep
alive thread again. If the measurement has successfully ended, this method returns 0. Is no device was connected or no
measurement has been started before calling this method, it returns -1.

GetOverFlowFlag

The ‘GetOverFlowFlag’ method returns a Boolean, which contains the information, if some values got lost by not
reading them. This overflow only concerns information about the internal buffer overflow and not about the fifo.

Note: Information about the overflow of the fifo storage can be taken from the fifo control flags (object directory).

isConnected

The ‘isConnected’ method returns a boolean, which signalizes if there is currently a connection to a ClipX established.

ClearBuffer

The ClearBuffer method sets the read pointer on the position of the write pointer. This causes that the next values to
be read, are the ones, that are last written. The values is between are not deleted but they are skipped.

KeepAlive

The KeepAlive method is a private method, which is not available for the user. It is used internally to avoid a timeout of
the connection between PC and ClipX. For this reason, each 10 seconds a KeepAliveMessage is send to the ClipX. The
KeepAlive thread is startet when the measurement starts (method: startMeasurement) and ends automatically when
ClipX is disconnected (method: Disconnect).

TECH NOTE – ClipX API for Linux

Author: Michael G., Florian S., Roland S. Seite 4 von 4 HBM: Public

ClipX_Interface for C implementation
For C implementation the .dll contains a ClipX interface. It provides a handle which allows you to access to the full
scope of functions of ClipX in C.

Calling methods is just the same as in C++, except for the handle input at each method.

Example
Both, the ‘testmain.cpp’ and the ‘testmainint.cpp’ are examples for an integration of the ClipX in a project. The first one
uses directly the class ClipX, whereas the second one uses the C interface.

Disclaimer
These examples are for illustrative purposes only. They cannot be used as the basis for any warranty or liability claims.

