
EtherCAT Slave Stack

Software Manual

to Product P.4520.01

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 1 of 94

 esd electronic system design gmbh
 Vahrenwalder Str. 207 • 30165 Hannover • Germany
 http://www.esd.eu
Phone: +49 (0) 511 3 72 98-0 • Fax: +49 (0) 511 3 72 98-68

N O T E

The information in this document has been carefully checked and is believed to be entirely reliable.
esd makes no warranty of any kind with regard to the material in this document, and assumes no
responsibility for any errors that may appear in this document. In particular descriptions and
technical data specified in this document may not be constituted to be guaranteed product features
in any legal sense.

esd reserves the right to make changes without notice to this, or any of its products, to improve
reliability, performance or design.

All rights to this documentation are reserved by esd. Distribution to third parties, and reproduction
of this document in any form, whole or in part, are subject to esd's written approval.

© 2018 esd electronics gmbh, Hannover

esd electronics gmbh
Vahrenwalder Str. 207
30165 Hannover
Germany

Phone: +49-511-372 98-0

Fax: +49-511-372 98-68

E-Mail: info@esd.eu

Internet: www.esd.eu

Trademark Notices

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.
Windows® is a registered trademark of Microsoft Corporation in the United States and other countries.
All other trademarks, product names, company names or company logos used in this manual are reserved
by their respective owners.

Page 2 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

http://www.esd.eu/
mailto:info@esd.eu

Document file: I:\Texte\Doku\MANUALS\PROGRAM\EtherCAT\Slave\Englisch\EtherCAT_Slave_Manual_en_18.odt

Date of print: 2018-05-03

Software version: EtherCAT Slave Stack Version >= 1.3.8

Document History

The changes in the document listed below affect changes in the software as well as changes in the
description of the facts, only.

Revision Chapter Changes versus previous version Date

1.0 First Release 2012-05-09

1.1
1.2.2 Added “EtherCAT Slave Controller”

2012-11-06
- Editorial changes (Note/Logo)

1.2

- Minor changes/clarifications for several sections

2013-05-07

- Added section “Reference“

2.6.61 Updated ESS_CONFIGURATION

2.4.25
Added essODPDOParamCreate() and other essPDOParam
functions

2.4 Added essGetTag()

2.6.10 Added some ESS_OD_ENTRY_FLAGS

2.6.20 Member added to the ESS_CBDATA_COE_EVENT struct

2.5 Added note to cbInputsUpdated

4.1 Fig. 3 updated (Includes overview)

4.2 Added descriptions for several “ESS_CFG_” defines

2.5, 2.6
Added new callbacks ESS_CB_EEPROM_EMULATION
and ESS_CB_DC and their data types

2.6 Added ESS_STATISTICS

1.3

2.6.58 Added EoE frames to ESS_STATISTICS

2014-03-044.2 Updated essConfig.h defines

2.2.9 Chapter VoE updated and renamed to AoE/SoE/VoE

1.4
2.4.25 Added essODDelete()

2014-08-19
2.4.5 Added remark to essOpen()/essClose() serialization

1.5

- Editorial changes

2014-01-05

4 Added Stack/Application flow chart

2.4
essSyncInputs() and essIoctl() added,
essODSyncInputMappedEntries() removed

2.6 ESS_RESULT and ESS_OD_ENTRY_FLAGS updated

4.3
essHALInit()/essHALFinish() now
essHALOpen()/essHALClose(). Added essHALIoctl().

1.6 - Editorial changes

1.2.2 Updated list of supported esd EtherCAT hardware 2016-07-04

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 3 of 94

Revision Chapter Changes versus previous version Date

4.1 Added description of supported ESS_PLATFORM_XXX 2016-07-12

4.2 Added description of CFG_HAL_USE_SYNCX_IRQ 2016-07-04

5 Updated list of supported esd EtherCAT hardware 2016-07-12

1.7 - Editorial changes

2.3.2 Added new chapter about EtherCAT device identification. 2016-07-27

2.5 Extended cbStateRequest to support device ID requests. 2016-07-27

2.6.23
Extended ESS_CBDATA_STATE_REQUEST to support the
'Explicit Device ID' mechanism defined in ETG.1020.

2016-07-27

4.2 Added essConfig.h define CFG_ESS_EXPLICIT_DEVICE_ID 2016-07-27

1.8 - Editorial changes

2.3.1 Revised description for bootstrap mailbox support. 2017-04-07

2.3.3 New chapter describing the PDO mapping. 2018-04-30

2.3.4
New chapter describing the expected behavior of the local
input/output data handler in SAFEOP and OP.

2018-01-10

2.6.22 Description of mapping macros ESS_MAP_XXX. 2018-04-30

2.6.24 Added description of ESS_SM_EVENT_FLAG_SAFE_OUTPUTS. 2018-01-10

2.6.28 Added description of maxDataLen for ESS_CBDATA_FOE_OPEN 2017-05-17

2.6.30
Added description of maxDataLen for ESS_CBDATA_FOE_DATA
and how to indicate a FoE Busy situation

2017-05-17

2.6.66 Documented additional AL Status Codes defined in ETG.1020. 2016-08-16

2.6.70 Documented additional CoE Abort Codes defined in ETG.1020. 2017-02-15

2.6.71 Documented additional FoE error codes defined in ETG.1020. 2017-03-09

4.2 Added essConfig.h define CFG_ESS_HAVE_XXX_FUNC 2017-05-08

Technical details are subject to change without further notice.

Page 4 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

Table of contents
 Abbreviations and terms..9

 Reference..10

1. Introduction..11
1.1 Features..12
1.2 Requirements...13

 1.2.1 EtherCAT Slave development in general..13
 1.2.2 esd EtherCAT Slave Stack...13

2. API.. 15
2.1 Usage overview..15
2.2 Quick Start..16

 2.2.1 Opening a device...16
 2.2.2 Starting the stack..17
 2.2.3 Running application code...17
 2.2.4 Creating the CoE object dictionary...17
 2.2.5 Adding objects to the CoE dictionary..18
 2.2.6 Accessing CoE entry data..18
 2.2.7 FoE...19
 2.2.8 EoE..19
 2.2.9 AoE/SoE/VoE...19

2.3 Configuration..20
 2.3.1 Sync Manager..20

2.3.1.1 Standard Mailbox...22
2.3.1.2 Bootstrap Mailbox..23

 2.3.2 Device Identification...24
 2.3.3 PDO Mapping...25
 2.3.4 Process Data Exchange...26

2.4 Function description..27
 2.4.1 essGetVersion()...27
 2.4.2 essGetTime()..27
 2.4.3 essFormatResult()..27
 2.4.4 essOpen()..28
 2.4.5 essClose()..29
 2.4.6 essStart()..29
 2.4.7 essStop()..29
 2.4.8 essIndicateError()...30
 2.4.9 essCoESendEmergency()..30
 2.4.10 essSyncInputs()..31
 2.4.11 essEEPROMRead()...32
 2.4.12 essEEPROMWrite()..33
 2.4.13 essSetLEDState()...33
 2.4.14 essESCRead()...34
 2.4.15 essESCWrite()..34
 2.4.16 essESCRead8()...35
 2.4.17 essESCRead16()...35
 2.4.18 essESCRead32()...35
 2.4.19 essESCWrite8()..36
 2.4.20 essESCWrite16()..36
 2.4.21 essESCWrite32()..36
 2.4.22 essEoESendFrame()..37
 2.4.23 essGetTag()...38
 2.4.24 essIoctl()...38
 2.4.25 CoE object dictionary specific...39

2.4.25.1 essODCreate()...39

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 5 of 94

2.4.25.2 essODDelete()...39
2.4.25.3 essODObjectAdd()...40
2.4.25.4 essODObjectDelete()...40
2.4.25.5 essODEntryAdd()...41
2.4.25.6 essODEntryDelete()...42
2.4.25.7 essODAddArrayObject()..43
2.4.25.8 essODAddGenericObjects()...44
2.4.25.9 essODUpdatePDOConfiguration()...45
2.4.25.10 essODGetPDOConfiguration()...46
2.4.25.11 essODUpdatePDOAssignment()..47
2.4.25.12 essODGetPDOAssignment()...48
2.4.25.13 essODPDOParamCreate()...49
2.4.25.14 essODPDOParamUpdateExclude()...50
2.4.25.15 essODPDOParamGetState()...50
2.4.25.16 essODPDOParamGetControl()..51
2.4.25.17 essODPDOParamGetToggle()...52

2.5 Callbacks..53
2.6 Data types...55

 2.6.1 ESS_HANDLE..55
 2.6.2 ESS_BOOL..55
 2.6.3 ESS_RESULT..55
 2.6.4 ESS_TIMESTAMP...57
 2.6.5 ESS_DEVICE_INDEX..57
 2.6.6 ESC_LED_TYPE..57
 2.6.7 ESC_LED_STATE...57
 2.6.8 ESS_OD_FLAGS...58
 2.6.9 ESS_OD_OBJECT_FLAGS...58
 2.6.10 ESS_OD_ENTRY_FLAGS...58
 2.6.11 ESS_OD_PDOPARAM_FLAGS...58
 2.6.12 ESS_OD_ENTRY_CALLBACK..59
 2.6.13 ESS_OD_OBJECT_INFOS..59
 2.6.14 ESS_OD_ENTRY_INFOS..59
 2.6.15 ESS_CONFIG_FLAGS...60
 2.6.16 ESS_EVENT..60
 2.6.17 ESS_DC_EVENT...60
 2.6.18 ESS_MBX_PACKET..60
 2.6.19 ESS_CBDATA_CYCLIC...60
 2.6.20 ESS_CBDATA_COE_EVENT..61
 2.6.21 ESS_COE_EMERGENCY...61
 2.6.22 ESS_PDO_ENTRY..61
 2.6.23 ESS_CBDATA_STATE_REQUEST...62
 2.6.24 ESS_CBDATA_SM_EVENT...62
 2.6.25 ESS_CBDATA_INOUTPUTS_ACTIVATE..63
 2.6.26 ESS_CBDATA_SM..63
 2.6.27 ESS_CBDATA_COE_READWRITE...63
 2.6.28 ESS_CBDATA_FOE_OPEN..64
 2.6.29 ESS_CBDATA_FOE_CLOSE..64
 2.6.30 ESS_CBDATA_FOE_DATA...65
 2.6.31 ESS_CBDATA_EOE_SETIPPARAM...66
 2.6.32 ESS_CBDATA_EOE_SETADDRFILTER...66
 2.6.33 ESS_CBDATA_EOE_FRAME..67
 2.6.34 ESS_CBDATA_AOE..67
 2.6.35 ESS_CBDATA_SOE..67
 2.6.36 ESS_CBDATA_VOE..67
 2.6.37 ESS_CBDATA_EEPROM_EMULATION..67
 2.6.38 ESS_CBDATA_DC...68
 2.6.39 ESS_CB_STATE_REQUEST...68

Page 6 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

 2.6.40 ESS_CB_SYNCMANAGER...68
 2.6.41 ESS_CB_OUTPUTS_UPDATED...68
 2.6.42 ESS_CB_INPUTS_UPDATED...68
 2.6.43 ESS_CB_COE_EVENT..68
 2.6.44 ESS_CB_COE_READWRITE..69
 2.6.45 ESS_CB_FOE_OPEN..69
 2.6.46 ESS_CB_FOE_CLOSE..69
 2.6.47 ESS_CB_FOE_DATA..69
 2.6.48 ESS_CB_INOUTPUTS_ACTIVATE...69
 2.6.49 ESS_CB_CYCLIC..69
 2.6.50 ESS_CB_EOE_SETIPPARAM...70
 2.6.51 ESS_CB_EOE_SETADDRFILTER..70
 2.6.52 ESS_CB_EOE_FRAME...70
 2.6.53 ESS_CB_AOE..70
 2.6.54 ESS_CB_VOE..70
 2.6.55 ESS_CB_SOE..70
 2.6.56 ESS_CB_EEPROM_EMULATION...70
 2.6.57 ESS_CB_DC..71
 2.6.58 ESS_STATISTICS...71
 2.6.59 ESS_SM_CONFIGURATION...71
 2.6.60 ESS_CALLBACKS...71
 2.6.61 ESS_CONFIGURATION..72
 2.6.62 ESC_STATE..72
 2.6.63 ESC_TRANSITION..73
 2.6.64 SM_TYPE..73
 2.6.65 ESS_SM...73
 2.6.66 REG_VAL_ALSTATUSCODE..74
 2.6.67 COE_CODE...77
 2.6.68 COE_ACCESS...77
 2.6.69 COE_DATATYPE...78
 2.6.70 COE_ABORTCODE...80
 2.6.71 FOE_ERRORCODE...81
 2.6.72 EOE_RESULTCODE...81

3. Object version specific...82
3.1 Build..82

4. Source Code Version specific..83
4.1 Build..84

 4.1.1 Example...85
4.2 essConfig.h...86

 4.2.1 Saving RAM...89
 4.2.2 CFG_ESS_SERVE_ERR_LED..90
 4.2.3 CFG_ESS_SERVE_RUN_LED..90

4.3 HAL...91
 4.3.1 essHALOpen()..91
 4.3.2 essHALClose()...91
 4.3.3 essHALMapESC()..91
 4.3.4 essHALUnmapESC()..91
 4.3.5 essHALGetTime()...91
 4.3.6 essHALStart()...92
 4.3.7 essHALStop()...92
 4.3.8 essHALReadESCMem()...92
 4.3.9 essHALWriteESCMem()...92
 4.3.10 essHALSetLEDState()..93
 4.3.11 essHALStackEvent()..93
 4.3.12 essHALIoctl()..93

5. Order information..94

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 7 of 94

Page 8 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

Abbreviations and terms

Abbreviations and terms

Abbr. Term Description/Comment

ABI Application Binary Interface
ACK Acknowledge
AoE ADS over EtherCAT (ADS: Automation Device Specifications)
API Application programming interface
Byte Byte 8 bit
CoE CAN application protocol over EtherCAT
CTT Conformance Test Tool EtherCAT slave device conformance test.

(Beckhoff Product: ET9400)
DIV Device Identification Value
DC Distributed Clock
DNS Domain Name System

DWord 32 bit
EEPROM Electrically Erasable Programmable

Read-Only Memory
EoE Ethernet over EtherCAT
ESC EtherCAT Slave Controller
ESI EtherCAT Slave Information Contains configuration infos, etc. about an

EtherCAT slave device. As .xml file or
within the slave’s EEPROM

ET1100 Common ESC by Beckhoff Automation
GmbH, see [ET1100]

ETG EtherCAT Technology Group Homepage: www.ethercat.org
Flash Flash memory
FMMU Field bus Memory Management Unit
FoE File transfer protocol over EtherCAT
GCC GNU Compiler Collection
GPL GNU General Public License
HAL Hardware Abstraction Layer
Init EtherCAT device state “Init”
IP Internet Protocol Referring only to IPv4
ISR Interrupt Service Routine
MAC Media Access Control
MBox Mailbox EtherCAT slave device Mailbox
OD Object Dictionary CoE object dictionary
Op EtherCAT device state “Operational”
PCIe PCI Express (Peripheral Component

Interconnect Express)
PDI Process Data Interface
PDO Process Data Object
PreOp EtherCAT device state “Pre-Operational”
Rx Receiver Direction: From master/EtherCAT to slave
SafeOp EtherCAT device state “Safe-Operational”
Slave Slave EtherCAT slave device
SM SyncMan, Synchronization Manager
SoE Servo Profile over EtherCAT
SPI Serial Peripheral Interface
Tx Transmitter Direction: From slave to master/EtherCAT
VoE Vendor specific protocol over EtherCAT
Word Word 16 bit

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 9 of 94

http://www.ethercat.org/

Reference

Reference
[ET1100] Beckhoff Automation GmbH, ET1100 Hardware Data Sheet, Version 2.9

[ESC.1] Beckhoff Automation GmbH, EtherCAT Slave Controller, Section I - Technology,
Version 2.2

[ESC.2] Beckhoff Automation GmbH, EtherCAT Slave Controller, Section II – Register
Description, Version 2.7

[ETG.1000.5] EtherCAT Technology Group, EtherCAT Specification – Part 5, Version 1.0.3

[ETG.1000.6] EtherCAT Technology Group, EtherCAT Specification – Part 6, Version 1.0.3

[ETG.1004] EtherCAT Technology Group, EtherCAT Unit Specification, Version 1.0.0

[ETG.1020] EtherCAT Technology Group, EtherCAT Protocol Enhancements, Version 1.2.0

[ETG.2010] EtherCAT Technology Group, EtherCAT Slave Information Interface, Version
1.0.0

[ETG.2200] EtherCAT Technology Group, EtherCAT Slave Implementation Guide, Version
2.1.7

Page 10 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

Introduction

1. Introduction
The esd EtherCAT Slave Stack offers an easy to use API to build complex EtherCAT Slave
devices.

The stack is distributed as a reconfigured library which is referred to as Binary Version in this
document or as source code which is referred to as Source Version (see chapter 1.2.2).

For implementation details / application flow chart, refer to the Source Code Version specific
description in chapter 4.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 11 of 94

Fig. 1: Architecture overview

Binary Version

Source Version

Application

esd EtherCAT Slave Stack API

HAL

Hardware

Library

Driver

Hardware

CoE
Dictionary Process

Data

FoE

EoE

AoE/VoE/SoE

EEPROM
Access

Simple interface: application
just accesses the data, Stack
handles the mapping

Completely
adaptable

during runtime

ANSI C App. control
by callbacks

Introduction

1.1 Features
• Based on a stable API which hides complexity and hardware dependency behind common

function calls and callbacks.
• Includes support for all major mailbox protocols

◦ CoE includes “SDO Information Service”, “Segmented SDO Service”, dynamic PDO
assignment and dynamic PDO configuration

◦ FoE by callback for each data segment with busy indication support and support for
extensions defined in [ETG.1020].

◦ EoE with callback for completely assembled frames (from EtherCAT) and a simple
function to send an Ethernet frame to EtherCAT (Stack handles fragmentation, etc.)

◦ AoE/VoE/SoE by simple callback for each mailbox packet of that type
• Comprehensive support for CoE object dictionary and process data – application just

accesses the objects and the stack handles almost everything, e.g. updates when they are
PDO mapped, automatically
◦ Dynamic dictionary, completely changeable during runtime.
◦ Dynamic PDO mapping, completely changeable during runtime.
◦ Support to map objects with more than 31 bytes according to [ETG.1020].
◦ Entries can also be created without data pointer to provide data dynamically during the

SDO access
◦ Implicit handling of important entries, such as PDOs and PDO assignment objects.
◦ Callbacks for important events, e.g. before and after SDO Download, etc.

• Support for the standard Explicit Device ID mechanisms according to [ETG.1020].
• Includes functions to read/write ESC’s E2PROM
• Header for library in ANSI C
• Source code:

◦ ANSI C
◦ Well defined HAL to adapt to own hardware with as little effort as possible
◦ Little/big endian compatible

• Always validated with the latest version of the EtherCAT Conformance Test Tool (CTT).
• Comprehensive example code application for a quick start.

Page 12 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

Introduction

1.2 Requirements

1.2.1 EtherCAT Slave development in general
Although this stack greatly simplifies the EtherCAT slave development you still have to be familiar
with the ETG specifications to develop a slave application compliant to the EtherCAT standards.
The ETG especially requires you to:

• test your slave against the CTT1

• be an ETG member with a valid member ID

For more information/requirements check the ETG homepage at www.ethercat.org (a good start is
[ETG.2200])

1.2.2 esd EtherCAT Slave Stack
The esd EtherCAT Slave Stack (ESS) is available as a source code version which can be adapted
to your custom EtherCAT hardware and operating system and as a binary version ready to be
used with the various esd EtherCAT slave interfaces. The latter is configured for the target
hardware with all supported EtherCAT protocols enabled.

Binary version

◦ These versions are usually bundled with hardware. The stack is delivered as a (shared)
library and the HAL is already included.

Available hardware:

▪ ECS-PCIe/1100: (Order No. E.1100.02)

• PCI Express card with ET1100 (only INTx support)

• Includes Windows driver for XP/Vista/7/8/10 (32/64 bit)

• Includes Linux driver (“UIO”) as source code under GPLv2

▪ ECS-PMC/FPGA: (Order No. E.1104.02)

• PMC card with EtherCAT IP Core (INTx / MSI support)

• Includes Windows driver for XP/Vista/7/8/10 (32/64 bit)

• Includes Linux driver (“UIO”) as source code under GPLv2

• Includes VxWorks 7 (x86) VxBus Gen2 driver as loadable kernel module

▪ ECS-XMC/FPGA: (Order No. E.1102.02)

• XMC card with EtherCAT IP Core (INTx / MSI support)

• Includes Windows driver for XP/Vista/7/8/10 (32/64 bit)

• Includes Linux driver (“UIO”) as source code under GPLv2

• Includes VxWorks 7 (x86) VxBus Gen2 driver as loadable kernel module

1 As this tool is enhanced and extended regularly, changes to the esd EtherCAT Slave Stack might also
become necessary.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 13 of 94

http://www.ethercat.org/

Introduction

▪ ECS-PCIe/FPGA / ECS-PCIe/FPGA-LP: (Order No. E.1106.02 / E.1106.04)

• PCI Express card with EtherCAT IP Core (INTx / MSI support)

• Includes Windows driver for XP/Vista/7/8/10 (32/64 bit)

• Includes Linux driver (“UIO”) as source code under GPLv2

• Includes VxWorks 7 (x86) VxBus Gen2 driver as loadable kernel module

Source Code Version

• Requires customization of the HAL to the target system, see section 4

• Sample resource usage for an EtherCAT slave application2: (Target: ARM Cortex™-M3,
20 kB RAM total, FreeRTOS™)

◦ RAM: approx. 5 kB (BSS/DATA/Heap) + 2 kB (Stack)

◦ ROM: approx. 15 kB (CODE/CONST)

• EtherCAT Slave Controller

◦ Designed for ET1100 and compatible

◦ Texas Instruments Programmable Real Time Units (PRU) also supported. (AM335x,
Code Composer Studio project file exists)

2 64 byte process data, CoE with “SDO Information Service” support and approx. 30 objects total.
Page 14 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2. API

2.1 Usage overview
• To access the API only ess.h has to be included

• To start the stack the functions essOpen() and essStart() have to be called

◦ essOpen() selects and initializes the underlying hardware

◦ essStart() then gives the application control to the stack, i.e. this function usually
never returns

• Application is now driven by the stack’s callback handler. This can be a cyclic callback or
certain other callbacks triggered by EtherCAT interrupts (see 2.5)

• All functions (except those to start/stop the stack, of course) may be called only when the
stack is running, i.e. during its callbacks (for certain functions more/less restrictions might
exist, see section 2.4)

• It’s transparent to the application whether the underlying HAL is connected to a real
interrupt handler or just polls the ESC registers

◦ Therefore application code is extremely hardware/configuration independent

◦ But if the application consists of multiple threads/tasks you must not call any esd
EtherCAT Slave Stack function from a thread/task other than the one that called
essOpen() (Unless different devices are handled, see also essOpen() devIdx
Parameter)

• The config parameter of essOpen() allows to configure some of the mentioned
behavior, see 2.4.4

(For details see also Source Code Version specific information in chapter 4)

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 15 of 94

API

2.2 Quick Start
This section shall only give a more detailed overview of the API usage as a quick start. F, for a
detailed function description see section 2.4. Complete example applications are provided with the
stack’s .../apps/ directory3:

• complex.c handles multiple variables with the CoE dictionary and shows different
flags/callbacks, etc. Also includes FoE samples.

This should be the base/template for your application

• eoe.c shows examples to handle EoE

2.2.1 Opening a device
This is done with essOpen():

ESS_RESULT res;
res = essOpen(0, &config, &hDev);
if (res != ESS_RESULT_SUCCESS) {
 PRINT(("Opening device failed with %s",
 essFormatResult(res, ESS_FORMAT_SHORT)));
 exit(10);
}

Used variables

static ESS_HANDLE hDev;

This is the handle to the device that was opened, almost all stack functions need this to distinguish
multiple devices. See also ESS_HANDLE.

static const ESS_CONFIGURATION config = { ...

This contains the configuration for the slave that is developed. It contains stack configuration such
as options for the HAL, slave configuration like the SM configuration and the application callbacks.
See ESS_CONFIGURATION for complete information.

Note that the configuration (especially the SM configuration) given to the stack must match the
slave configuration that is stored in the ESI (.xml and EEPROM).

3 “...” refers to your stack installation directory.
Page 16 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.2.2 Starting the stack
This is done with essStart(): (only after a successful call to essOpen(), of course)

res = essStart(hDev);
if (res != ESS_RESULT_SUCCESS)
 PRINT(("essStart() returned %s", essFormatResult(res, ESS_FORMAT_SHORT)));

Unless there is no error that prevents the stack from starting, essStart() does not return – i.e.
the stack takes control over the application.

To execute application code, the stack’s callbacks must be used.

2.2.3 Running application code
In essOpen() we also set the callbacks: functions that are called by the stack whenever
something happens. Only there application code can be executed4.

One of it is the cyclic callback, this function is just called cyclically, it could look like this:

static void cbCyclic(ESS_CBDATA_CYCLIC* cbData)
{
 HandleApplicationCode();

 if (ApplicationDetectedCriticalError())
 essStop(hDev);
}

As described in the previous section: essStart() usually does not return. So when the
application wants to stop the stack it has to call essStop() from this cyclic callback.

A table with the available callbacks can be found in section 2.5.

2.2.4 Creating the CoE object dictionary
This is done with essODCreate(). (Before the stack is started, but after the device was opened)

ESS_RESULT res = essODCreate(hDev, ESS_OD_FLAGS_HANDLE_SM_TYPES);
if (res != ESS_RESULT_SUCCESS)
 exit(20);

By the ESS_OD_FLAGS_HANDLE_SM_TYPES flag the stack will automatically create the object
0x1c00 for us (which is mandatory, so we have to create it to be EtherCAT compliant).

4 If your application consists of multiple threads/tasks don’t access any stack function from there.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 17 of 94

API

2.2.5 Adding objects to the CoE dictionary
To manually add an object (which consists of one or more entries) essODObjectAdd() and
essODEntryAdd() are used.

In the example below a dictionary entry at index 0x2000 and subindex 0 with the name To create
an object 0x2000 named “Output1” as that is a 32 bit unsigned integer which can be read or written
is created:

static const ESS_OD_OBJECT_INFOS objInfos = { "Output1", COE_DATATYPE_UDINT,
 COE_CODE_VARIABLE };
static const ESS_OD_ENTRY_INFOS entryInfos0 = { "Output1", NULL, NULL, NULL,
 0, COE_DATATYPE_UDINT };

res = essODObjectAdd(hDev, 0x2000, ESS_OD_OBJECT_FLAGS_NONE, &objInfos);
if (res != ESS_RESULT_SUCCESS) goto error;

res = essODEntryAdd(hDev, 0x2000, 0x00, 32, &output1, COE_ACCESS_RW,
 ESS_OD_ENTRY_FLAGS_NONE, &entryInfos0);
if (res != ESS_RESULT_SUCCESS) goto error;

All object and entry descriptions returned with the SDO Info Service are created implicitly. Please
note that the EtherCAT stack does not support segmented replies for this service. To avoid
truncated object or entry descriptions (and discrepancies to the ESI file) make sure that the
minimum mailbox size is sufficient to return the longest string provided in the parameter name of
ESS_OD_OBJECT_INFOS or ESS_OD_ENTRY_INFOS.

2.2.6 Accessing CoE entry data
As only a pointer to the entry’s data is given to the stack, some actions have to be taken to
“synchronize” the access between the application and the stack.

1. Input variables

When data for an entry that might be mapped into input process data is changed, the stack
needs to know this, use essSyncInputs().

2. Large entries that require segmented transfer

As a segmented transfer takes multiple cycles, the application will be called within the
transfer, i.e. the application might access data to an entry that was written only partially or
is currently uploaded to the master.

Use the ESS_OD_ENTRY_CALLBACK info of the ESS_CB_COE_EVENT callback to detect
start and end of a download/upload: Make sure a long entry is not accessed after a

ESS_OD_ENTRY_CALLBACK_STARTING_DOWNLOAD/UPLOAD

callback was received before either

ESS_OD_ENTRY_CALLBACK_COMPLETED_DOWNLOAD/UPLOAD or

ESS_OD_ENTRY_CALLBACK_ABORTED_DOWNLOAD/UPLOAD is received.

Page 18 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.2.7 FoE
FoE is used by setting these callback members in the ESS_CONFIGURATION/ESS_CALLBACKS
structure: (Must be enabled in essConfig.h by CFG_ESS_SUPPORT_FOE)

1. cbFoEOpen (Type definition: ESS_CB_FOE_OPEN)

2. cbFoEClose (Type definition: ESS_CB_FOE_CLOSE)

3. cbFoEData (Type definition: ESS_CB_FOE_DATA)

See section 2.5 and the type definition’s parameter description for details.

Examples are provided in .../apps/complex.c.

2.2.8 EoE
EoE is used by setting these callback members in the ESS_CONFIGURATION/ESS_CALLBACKS
struct: (Must be enabled in essConfig.h by CFG_ESS_SUPPORT_EOE)

1. cbEoESetIPParam (Type definition: ESS_CB_EOE_SETIPPARAM)

2. cbEoESetAddrFilter (Type definition: ESS_CB_EOE_SETADDRFILTER)

3. cbEoEFrame (Type definition: ESS_CB_EOE_FRAME)

See section 2.5 and the type definition’s parameter description for details.

To send an Ethernet frame to EtherCAT essEoESendFrame() is used. Examples are provided in
.../apps/eoe.c.

2.2.9 AoE/SoE/VoE
These three protocols are handled the same way: set the callback members in the
ESS_CONFIGURATION/ESS_CALLBACKS struct and enable CFG_ESS_SUPPORT_xOE in
essConfig.h).

See ESS_CB_AOE, and ESS_CBDATA_AOE for details.

The AoE/VoE/SoE packet can be answered only in this callback: modify the mailbox packet at
cbData->mb as needed an set cbData->result to MBX_ERR_SUCCESS to send this reply.

These protocols do not have extended support by the stack, i.e. the stack handles the mailbox
protocol but not the AoE/SoE/VoE protocol itself. Examples in .../apps/complex.c show how
to get started.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 19 of 94

API

2.3 Configuration

2.3.1 Sync Manager
The application has to define the Sync Manager (SM) configuration as an array of
ESS_SM_CONFIGURATION structures which is referenced by ESS_CONFIGURATION. The latter
contains the number of entries for the Standard Configuration followed by two optional Bootstrap
Configuration entries.

The table below shows the expected/typical assignment of the Standard Configuration for an
EtherCAT slave device with and without mailbox support. Additional SM configurations for process
data may follow. The number of available SMs depends on the ESC and has to be defined (at
compile time) as CFG_ESS_MAX_SM_COUNT. The number of entries for the Standard Configuration
in the ESS_SM_CONFIGURATION array has to be set in the variable smConfigCount of
ESS_CONFIGURATION.

Sync Manger (SM) Device with Mailbox Device w/o Mailbox
SM0 Mailbox Out Output Process Data

SM1 Mailbox In Input Process Data

SM2 Output Process Data

SM3 Input Process Data

Table 1: Default SyncManager Assignment

Please refer to [ETG.1020] for further default assignments if eg. the device has no output process
data.

The mandatory ESS_SM_CONFIGURATION array entries of this Standard Configuration may
optionally follow two entries for a special Bootstrap Mode mailbox configuration (see 2.3.1.2). In
this case the variable smConfigCountBootstrap of ESS_CONFIGURATION has to be set to 2
without a bootstrap configuration to 0.

Each SM configuration is defined by it’s physical start address, a SM type specific control byte and
the definition of the default, minimum and maximum size. These parameter has to correspond to
the values defined in the SII and ESI file.

Page 20 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

The EtherCAT stack performs several checks based on these values if the EtherCAT master
assigns/changes the SM configuration:

➢ The assigned size is checked that it does not come below the configured minimum value.

➢ The assigned size is checked that id does not exceed the configured maximum value (if this
is not set to 0).

➢ The assigned start address has to match the configured start address (if this is not set to 0).

➢ The assigned control byte (mailbox type) has to match the configured control byte.

➢ The stack checks that the sum of assigned values for start address and size of all SMs do
not result in overlapping ESC DPRAM areas.If one of the checks does not succeed the
slave device will usually not perform the requested state change.

Note: The default SM size is currently unused by the slave stack and the maximum value of any
SM configuration must not exceed the value defined for CFG_ESS_MAX_MBX_LEN.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 21 of 94

API

2.3.1.1 Standard Mailbox

The configuration of the mailbox sizes is always a trade-off between mailbox protocol
throughput/performance of your slave and the overall use of Ethernet bandwidth as an EtrherCAT
master always has to read the complete mailbox. A mailbox size configuration of 1024 bytes would
require already about 10 microseconds additional cycle time. The latter is especially expensive if
the mailbox is cyclically polled by the master because the Write Event Flag of the Input Mailbox is
not mapped to the process image with the help of one FMMU.

Example:

Page 22 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

#define SLAVE_MBX_OUT_DEF 522
#define SLAVE_MBX_OUT_MAX 1024
#define SLAVE_MBX_IN_DEF 522
#define SLAVE_MBX_IN_MAX 1024

static const ESS_SM_CONFIGURATION smConfigs[] =
{
 { /* SM0: MBoxOut */
 46, /* minSize */
 SLAVE_MBX_OUT_DEF,
 SLAVE_MBX_OUT_MAX,
 0x1000, /* startAddr */
 SM_TYPE_MBXOUT | REG_MASK_SMCONTROL_PDIINT /* contrByte */
 },

 { /* SM1: MBoxIn */
 46, /* minSize */
 SLAVE_MBX_IN_DEF,
 SLAVE_MBX_IN_MAX,
 0x1400, /* startAddr */
 SM_TYPE_MBXIN | REG_MASK_SMCONTROL_PDIINT /* contrByte */
 },

 { /* SM2: Outputs */
 0, /* minSize */
 4, /* defSize */
 0, /* maxSize (0: unchecked) */
 0x1800, /* startAddr */
 SM_TYPE_OUTPUTS | REG_MASK_SMCONTROL_PDIINT /* contrByte */
 },

 { /* SM3: Inputs */
 0, /* minSize */
 4, /* defSize */
 0, /* maxSize (0: unchecked) */
 0x2400, /* startAddr */
 SM_TYPE_INPUTS | REG_MASK_SMCONTROL_PDIINT /* contrByte */
 }
};

API

2.3.1.2 Bootstrap Mailbox

If your application supports the FoE protocol for firmware updates you can define a special (larger)
mailbox which is only applied in the mode BOOTSTRAP.

Example:

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 23 of 94

#define SLAVE_MBX_OUT_DEF 522
#define SLAVE_MBX_OUT_MAX 1024
#define SLAVE_MBX_IN_DEF 522
#define SLAVE_MBX_IN_MAX 1024

static const ESS_SM_CONFIGURATION smConfigs[] = {
 { /* SM0: MBoxOut (Standard) */
 46, /* minSize */
 SLAVE_MBX_OUT_DEF,
 SLAVE_MBX_OUT_MAX,
 0x1000, /* startAddr */
 SM_TYPE_MBXOUT | REG_MASK_SMCONTROL_PDIINT /* contrByte */
 },

 { /* SM1: MBoxIn (Standard) */
 46, /* minSize */
 SLAVE_MBX_IN_DEF,
 SLAVE_MBX_IN_MAX,
 0x1400, /* startAddr */
 SM_TYPE_MBXIN | REG_MASK_SMCONTROL_PDIINT /* contrByte */
 },

 { /* SM2: Outputs */
 0, /* minSize */
 4, /* defSize */
 0, /* maxSize (0: unchecked) */
 0x1800, /* startAddr */
 SM_TYPE_OUTPUTS | REG_MASK_SMCONTROL_PDIINT /* contrByte */
 },

 { /* SM3: Inputs */
 0, /* minSize */
 4, /* defSize */
 0, /* maxSize (0: unchecked) */
 0x2400, /* startAddr */
 SM_TYPE_INPUTS | REG_MASK_SMCONTROL_PDIINT /* contrByte */
 }

 { /* SM0: MBoxOut (Bootstrap) */
 SLAVE_MBX_OUT_MAX, /* minSize */
 SLAVE_MBX_OUT_MAX,
 SLAVE_MBX_OUT_MAX,
 0x1000, /* startAddr */
 SM_TYPE_MBXOUT | REG_MASK_SMCONTROL_PDIINT /* contrByte */
 },

 { /* SM1: MBoxIn (Bootstrap) */
 SLAVE_MBX_IN_MAX, /* minSize */
 SLAVE_MBX_IN_MAX,
 SLAVE_MBX_IN_MAX,
 0x1400, /* startAddr */
 SM_TYPE_MBXIN | REG_MASK_SMCONTROL_PDIINT /* contrByte */
 },
};

API

2.3.2 Device Identification
EtherCAT supports the explicit identification of a device which is used by the master for the
detection of a Hot Connect stations or to prevent an unambiguous swap of devices. The unique
Device Identification Value (DIV) in the range from 0..65355 has to be stored in non-volatile
memory or has to be derived from a non-volatile selector (e.g. DIP switch). At the moment three
different methods for the device identification are supported:

➢ Second Slave Address (SSA) / Alias Address: The DIV is stored in the E2PROM of the
EtherCAT slave and is loaded autonomously by the ESC into register 0x0012 where it can
be used by the master for the identification. The latter is only performed after power-on
reset [ESC.2]. For this reason [ETG.1020] defines a Device Identification Reload Object
which allows reloading register 0x0012 from E2PROM without a power cycle. The example
provided in .../apps/complex.c. implements this object if
ESS_COMPLEX_ID_RELOAD_OBJECT is defined. The configuration of the ID has to be
performed with a configuration tool (e.g. the esd EtherCAT Workbench).

➢ Data Word Identification Mode / Direct ID: The DIV is stored in the process data area of
the EtherCAT slave controller. [ETG.1020] restricts the possible memory ranges to
0x0F18..0x0F1F and 0x1000..0x1003. The address offset implemented by the slave has to
be indicated to the master in the Esi:Info:IdentificationAdo element and/or the related SII
elements [ETG.2010]. This method is often used by simple slaves without an MCU which
connect an ID-Selector directly with the digital I/O inputs of an ESC but can also be enabled
in .../apps/complex.c. by defining a valid data word address with
ESS_COMPLEX_DIRECT_ID_ADO.

➢ Explicit Device Identification / Requesting ID: The master requests explicitly the device
ID by setting the ID Request bit in the AL Control Register (0x0120.5) and the slave stores
the DIV in the AL Status Code Register (0x0134). This is the preferred mechanism for
complex slaves and is defined in [ETG.1000.6] and described in more detail in [ETG.1020].
The slave stack has to be compiled with CFG_ESS_EXPLICIT_DEVICE_ID set to 1 to enbale
support for this identification method and the DIV has to be returned to the stack with the
callback cbStateRequest in the structure ESS_CBDATA_STATE_REQUEST. The example
provided in .../apps/complex.c. demonstrates the application usage if the stack
contains the the support. This identification method has to be indicated to the master in the
Esi:Info:IdentificationReg134 element and/or the related SII element [ETG.2010].

Page 24 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.3.3 PDO Mapping
The PDO mapping is defined or updated by passing arrays of the type ESS_PDO_ENTRY to
essODUpdatePDOConfiguration().

The mapping of objects with a byte size of less or equal 31 bytes is performed with a single entry
for each object to be mapped. For the example below let’s assume we have the objects 0x2011:00
with 32 bits and 0x2012:00 with 8 bits which should be right after each other.

Example 1 (Standard mapping):

Sometimes it is necessary to insert padding data (dummy entries) for alignment reasons. For the
example below let’s assume we have the objects 0x2013:00 with 16 bits and 0x2014:00 with 32
bits and want to force the 2nd object to be on a 32 bit aligned address.

Example 2 (Dummy Mapping):

If the data size of the object exceeds 31 bytes the [ETG.1020] describes the mechanism to define
the mapping of such objects. The mapping starts with a normal entry with a length of 30 bytes (240
bits) followed by extension entries of chunks with 30 bytes (240 bits) apart from the last chunk
which might be smaller. The stack will internally apply the required copy operations for the
extension entries. For the example below let’s assume we have an object 0x2015:00 with 64 bytes.

Example 3 (Mapping of objects with more than 31 bytes):

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 25 of 94

static const ESS_PDO_ENTRY PDO1a00Entries[] = {
 ESS_MAP_ENTRY(0x2011, 0, 32),
 ESS_MAP_ENTRY(0x2012, 0, 8)
};

static const ESS_PDO_ENTRY PDO1a00Entries[] = {
 ESS_MAP_ENTRY(0x2013, 0, 16),

ESS_MAP_DUMMY(16), /* Align to 32 bits */
 ESS_MAP_ENTRY(0x2014, 0, 32)
};

static const ESS_PDO_ENTRY PDO1a00Entries[] = {
 ESS_MAP_ENTRY(0x2015, 0, 240), /* Map 30 bytes */
 ESS_MAP_EXTEND(240), /* Map 30 bytes */

ESS_MAP_EXTEND(32), /* Map last 4 bytes */
};

API

2.3.4 Process Data Exchange
The application is responsible to send the current input data to the EtherCAT master and process
the output data received from the EtherCAT master.

The local input handler which are responsible to send the current input data to the master should
be active in the states SAFEOP and OP.

The local output handler which are responsible to set the current output data received from the
master should only be active in the OP state. In the SAFEOP state the device/application specific
safe-state values should be set.

The application should track the current state of the local input and output handler by attaching the
cbInOutputsActive() callback handler (see 2.5). If the local output handler is inactive (as the device
is in the SAFEOP state) valid output data might still be received by the EtherCAT master as the
respective SM remain active and so the cbOutputsUpdated() callback are called. The application is
responsible to set all variables to their application/device specific safe-state values instead of using
the data received by the EtherCAT master.

Page 26 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4 Function description
Unless otherwise noticed, all parameters are mandatory, i.e. pointer values must not be NULL. For
most pointers it’s also noticed that “data must remain there”: This means that data is not copied
from pointer location and therefore the pointer must remain valid even after function call.

2.4.1 essGetVersion()
Returns the stack version. Can be called without stack being started.

const char* essGetVersion(void);

Return values

Pointer to a version string, e.g. "Version 1.0.0, build Jun 16 2011 13:51:02".

2.4.2 essGetTime()
Returns a 32 bit time stamp. In milliseconds, wraps after 0xffffffff.

ESS_TIMESTAMP essGetTime(void);

2.4.3 essFormatResult()
Returns an ESS_RESULT as string. Can be called without stack being started.

const char* essFormatResult(ESS_RESULT err);

err

Result to be formatted, see ESS_RESULT.

Return values

Pointer to a string that describes err, e.g. "ESS_RESULT_SUCCESS".

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 27 of 94

API

2.4.4 essOpen()
Opens and initializes an EtherCAT device. (Please note “essOpen() / essClose() serialization”
remark below)

ESS_RESULT essOpen(ESS_DEVICE_INDEX devIdx,
 const ESS_CONFIGURATION* config,
 ESS_HANDLE* resHandle);

devIdx

Index of EtherCAT device to be used, starting with index 0.

config

Pointer to configuration information, see ESS_CONFIGURATION. Data must remain there.
(NULL is also allowed, but intended only for usage with essIoctl() – certain functions
requiring a valid configuration, e.g. essStart(), are not possible then and will just return
ESS_RESULT_INVALID_CONFIG then)

resHandle

Pointer to where the resulting ESS_HANDLE shall be stored.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_INVALID_INDEX when the device does not exist,
ESS_RESULT_ALREADY_ACTIVE when the device is already opened,
ESS_RESULT_MISSING_CALLBACK when a mandatory callback in the given
ESS_CONFIGURATION is NULL.

Page 28 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4.5 essClose()
Closes a device. Handle h becomes invalid then and must not be used any more. If the stack is still
running, essStop() has to be called before this function can be called. (Please note “essOpen() /
essClose() serialization” remark below)

ESS_RESULT essClose(ESS_HANDLE h);

h

Handle to the device, created with essOpen().

Return values

On success the function returns ESS_RESULT_SUCCESS.

essOpen() / essClose() serialization:
If multiple devices are used by multiple threads/tasks, then all calls to essOpen() and
essClose() must be serialized, i.e. there must never be another thread/task at the same
time in essOpen() or essClose().

2.4.6 essStart()
Starts the stack. On success the function does not return and the application runs only by stack’s
callbacks then. To stop the stack essStop() has to be called within the cyclic callback.

ESS_RESULT essStart(ESS_HANDLE h);

h

Handle to the device, created with essOpen().

Return values

On success (when stopped by essStop()) the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_CANT_OPEN when the device could not be opened, e.g.
on Windows when the device driver was not loaded/installed correctly.

2.4.7 essStop()
Stops the stack. Must be called from within the cyclic callback.

ESS_RESULT essStop(ESS_HANDLE h);

h

Handle to the device, created with essOpen().

Return values

On success the function returns ESS_RESULT_SUCCESS.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 29 of 94

API

2.4.8 essIndicateError()
Sets new EtherCAT state and error status. Usually used when an error is detected outside a state
transition and to lower the EtherCAT state – e.g. from “Op” to “SafeOp” when the outputs can’t be
written any more, etc.

The newState parameter is checked and fixed/ignored when wrong, i.e. the function will still
return ESS_RESULT_SUCCESS then.

Not all invalid transitions can be checked, make sure desired action is allowed. (Check ETG
documents and use the CTT)

ESS_RESULT essIndicateError(ESS_HANDLE h,
 ESC_STATE newState,
 REG_VAL_ALSTATUSCODE errCode);

h

Handle to the device, created with essOpen().

newState

New EtherCAT state for the slave.

errCode

Error code to write to the AL Status Code register (0x0134:0x0135).

See REG_VAL_ALSTATUSCODE for constants to use.

Return values

On success the function returns ESS_RESULT_SUCCESS.

2.4.9 essCoESendEmergency()
Sends a CoE emergency message.

ESS_RESULT essCoESendEmergency(ESS_HANDLE h, const ESS_COE_EMERGENCY* data);

h

Handle to the device, created with essOpen().

data

Pointer to message details, see ESS_COE_EMERGENCY.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_TRY_AGAIN when there’s already an unsent CoE
emergency. ESS_RESULT_INVALID_CONFIG when no mailboxes are configured.
ESS_RESULT_WRONG_ECAT_STATE when mailboxes are not set up (e.g. in Init state).

Page 30 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4.10 essSyncInputs()
Informs the stack that entries that might be mapped into input process data have been modified by
the application, i.e. the stack shall update the according SM buffer.

Usually this is called with ESS_ISYN_FLAGS_NONE: that will schedule the update of all input SMs
until callback is done or next loop – thus allowing multiple essSyncInputs() calls without affecting
performance.

Alternatively an immediate update of a specific SM may be forced, e.g. with flags set to
ESS_ISYN_FLAGS_SM3_IMMEDIATELY for SM3. This should be used only if the input data must
be available for EtherCAT read as fast as possible – it may seriously affect performance if called
more often than required (mind the ESC connection, e.g. SPI access).

ESS_RESULT essSyncInputs(ESS_HANDLE h, ESS_ISYN_FLAGS flags);

h

Handle to the device, created with essOpen().

flags

ESS_ISYN_FLAGS_NONE or e.g. ESS_ISYN_FLAGS_SM3_IMMEDIATELY, as described
above.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_WRONG_ECAT_STATE when slave is not in SafeOp/Op
state.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 31 of 94

API

2.4.11 essEEPROMRead()
Reads data from slave’s EEPROM. Without any swapping.

Address and length are not checked for being outside actual EEPROM size – read bytes are just
invalid (e.g. mirrored from another address) then.

ESS_RESULT essEEPROMRead(ESS_HANDLE h,
 uint32_t addr,
 uint32_t len,
 void* dest);

h

Handle to the device, created with essOpen().

addr

Byte offset where to read from. Must be even.

len

Byte length to read. Must be greater than 0.

dest

Where to store the read data.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_CANT_OPEN when EtherCAT currently has access to
EEPROM (determined by ESC register 0x0500).

Page 32 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4.12 essEEPROMWrite()
Writes data to slave’s EEPROM. Without any swapping.

Address and length are not checked for being outside actual EEPROM size – additional bytes
might be written to another address!

ESS_RESULT essEEPROMWrite(ESS_HANDLE h,
 uint32_t addr,
 uint32_t len,
 const void* src);

h

Handle to the device, created with essOpen().

addr

Byte offset where to write to. Must be even.

len

Byte length to write. Must be greater than 0 and even.

src

Where to read the data from.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_CANT_OPEN when EtherCAT currently has access to
EEPROM (determined by ESC register: 0x0500).

2.4.13 essSetLEDState()
Sets the status of a LED. Requires HAL/driver to have this implemented – see information for
architecture/platform you are using. (ESC_LED_STATE_ON turns the LED on immediately, all other
states turn it off immediately and are updated by the stack loop)

ESS_RESULT essSetLEDState(ESS_HANDLE h,
 ESC_LED_TYPE led,
 ESC_LED_STATE state);

h

Handle to the device, created with essOpen().

led

Which LED to change, see ESC_LED_TYPE.

state

New state of that LED, see ESC_LED_STATE.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_INVALID_ARG when the selected LED is not supported.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 33 of 94

API

2.4.14 essESCRead()
Reads a custom number of bytes from ESC memory.

void essESCRead(ESS_HANDLE h, uint16_t address, void* dest, uint16_t len);

h

Handle to the device, created with essOpen().

address

ESC source address.

dest

Pointer to where to store the read data.

len

Number of bytes to read.

2.4.15 essESCWrite()
Writes a custom number of bytes to ESC memory.

void essESCWrite(ESS_HANDLE h, uint16_t address,
 const void* src, uint16_t len);

h

Handle to the device, created with essOpen().

address

ESC destination address.

src

Pointer to where to read from.

len

Number of bytes to write.

Page 34 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4.16 essESCRead8()
Reads a Byte from ESC memory.

uint8_t essESCRead8(ESS_HANDLE h, uint16_t address);

h

Handle to the device, created with essOpen().

address

ESC address.

2.4.17 essESCRead16()
Reads a Word from ESC memory. Value will be swapped automatically on big endian systems.

uint16_t essESCRead16(ESS_HANDLE h, uint16_t address);

h

Handle to the device, created with essOpen().

address

ESC address.

2.4.18 essESCRead32()
Reads a DWord from ESC memory. Value will be swapped automatically on big endian systems.

uint32_t essESCRead32(ESS_HANDLE h, uint16_t address);

h

Handle to the device, created with essOpen().

address

ESC address.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 35 of 94

API

2.4.19 essESCWrite8()
Writes a Byte to ESC memory.

void essESCWrite8(ESS_HANDLE h, uint16_t address, uint8_t value);

h

Handle to the device, created with essOpen().

address

ESC Address.

value

Value to write.

2.4.20 essESCWrite16()
Writes a Word to ESC memory. Value will be swapped automatically on big endian systems.

void essESCWrite16(ESS_HANDLE h, uint16_t address, uint16_t value);

h

Handle to the device, created with essOpen().

address

ESC Address.

value

Value to write.

2.4.21 essESCWrite32()
Writes a DWord to ESC memory. Value will be swapped automatically on big endian systems.

void essESCWrite32(ESS_HANDLE h, uint16_t address, uint32_t value);

h

Handle to the device, created with essOpen().

address

ESC Address.

value

Value to write.

Page 36 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4.22 essEoESendFrame()
Sends an Ethernet frame to EtherCAT. Only implemented when stack was built with EoE support
(CFG_ESS_SUPPORT_EOE in essConfig.h)

Does not check the EtherCAT state: when mailboxes are set up correctly the data is sent: it’s up to
the application to determine whether this is currently allowed.

ESS_RESULT essEoESendFrame(ESS_HANDLE h,
 const void* data,
 uint16_t dataLen,
 void* reserved);

h

Handle to the device, created with essOpen().

data

Pointer to the frame data.

dataLen

Length of frame data in byte.

reserved

Must be NULL.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_TRY_AGAIN when there’s still a frame (or fragment of it)
to be sent (Sample application EoE.c shows how to implement a simple queue).

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 37 of 94

API

2.4.23 essGetTag()
Returns the user defined pointer that was set in ESS_CONFIGURATION’s tag member.

void* essGetTag(ESS_HANDLE h);

h

Handle to the device, created with essOpen().

2.4.24 essIoctl()
Used to implement other hardware/platform specific functions. Shouldn’t be needed for regular
use: Most IOCTLs are not implemented on most hardware.

With the Source Code Version this can be used to implement own functions / to communicate with
HAL from application.

ESS_RESULT essIoctl(ESS_HANDLE h, ESS_IOCTL fn, void* data,
 uint32_t sizeOfData);

h

Handle to the device, created with essOpen().

fn

The function that shall be performed. (See ESS_IOCTL_... #defines in essTypes.h: own
functions shall start at 0x80000000).

data

Pointer to function specific data

sizeOfData

Number of bytes usable at data.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_NOT_IMPLEMENTED if function is not supported/
implemented. ESS_RESULT_INSUFFICIENT_BUFFER if sizeOfData is not sufficient to
fulfill the requested function – try again with increased buffer then.

Page 38 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4.25 CoE object dictionary specific

2.4.25.1 essODCreate()

Creates the object dictionary for the slave. Only possible in Init state.

ESS_RESULT essODCreate(ESS_HANDLE h, ESS_OD_FLAGS flags);

h

Handle to the device, created with essOpen().

flags

Flags for dictionary creation, see ESS_OD_FLAGS.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_WRONG_ECAT_STATE when not in Init state.
ESS_RESULT_ALREADY_ACTIVE when already created.

2.4.25.2 essODDelete()

Deletes the object dictionary for the slave (and all its objects/entries). Only possible in Init state.

ESS_RESULT essODDelete(ESS_HANDLE h, uint16_t reserved);

h

Handle to the device, created with essOpen().

reserved

For future use, must be set to 0.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_WRONG_ECAT_STATE when not in Init state.

(Returns ESS_RESULT_SUCCESS also if dictionary was already deleted)

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 39 of 94

API

2.4.25.3 essODObjectAdd()

Adds an object to the dictionary. Only possible after dictionary was created and only in Init/PreOp
state.

ESS_RESULT essODObjectAdd(ESS_HANDLE h,
 uint16_t idx,
 ESS_OD_OBJECT_FLAGS flags,
 const ESS_OD_OBJECT_INFOS* infos);

h

Handle to the device, created with essOpen().

idx

Index of the object to be added.

flags

Creation flags for the object, see ESS_OD_OBJECT_FLAGS.

infos

Pointer to ESS_OD_OBJECT_INFOS for this object, or NULL when “SDO Information
Service” is not needed.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_WRONG_ECAT_STATE when slave is not in Init/PreOp
state. ESS_RESULT_OBJ_EXISTS when an object with that index already exists.

2.4.25.4 essODObjectDelete()

Deletes an object (and all its entries) from the dictionary. Only possible in Init/PreOp state.

ESS_RESULT essODObjectDelete(ESS_HANDLE h, uint16_t idx);

h

Handle to the device, created with essOpen().

idx

Index of the object.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_WRONG_ECAT_STATE when slave is not in Init/PreOp
state. ESS_RESULT_OBJ_NOT_FOUND when object does not exist.

Page 40 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4.25.5 essODEntryAdd()

Adds an entry to an existing object in the dictionary. Only possible in Init/PreOp state.

ESS_RESULT essODEntryAdd(ESS_HANDLE h,
 uint16_t idx,
 uint8_t subIdx,
 uint32_t bitLen,
 void* data,
 COE_ACCESS access,
 ESS_OD_ENTRY_FLAGS flags,
 const ESS_OD_ENTRY_INFOS* infos);

h

Handle to the device, created with essOpen().

idx

Index of object this entry belongs to.

subIdx

Entry index, 0 to 255.

bitLen

Bit length of the entry.

data

Pointer to the entry data. (Must be little endian. ess.h offers some macros to be
endianness independent, e.g. SWAP32_HOST2LE() and SWAP32_LE2HOST())

NULL when data shall be handled by ESS_CB_COE_READWRITE.

access

Access rights to the entry, see COE_ACCESS.

flags

Entry creation flags, see ESS_OD_ENTRY_FLAGS.

infos

Pointer to ESS_OD_ENTRY_INFOS for this entry, or NULL when “SDO Information Service”
is not needed.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_ENTRY_EXISTS when an entry with that sub index
already exists. ESS_RESULT_OBJ_NOT_FOUND when the object does not exist.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 41 of 94

API

2.4.25.6 essODEntryDelete()

Deletes an entry from an object in the dictionary. Only possible in Init/PreOp state.

ESS_RESULT essODEntryDelete(ESS_HANDLE h,
 uint16_t idx,
 uint8_t subIdx);

h

Handle to the device, created with essOpen().

idx

Object index.

subIdx

Entry index.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_WRONG_ECAT_STATE when slave is not in Init/PreOp
state. ESS_RESULT_OBJ_NOT_FOUND when the object does not exist.

ESS_RESULT_ENTRY_NOT_FOUND when the entry does not exist.

Page 42 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4.25.7 essODAddArrayObject()

Adds an array object to the dictionary (COE_CODE = COE_CODE_ARRAY). All subentries are
automatically created. entriesCount determines the number of array elements, i.e. with an
entriesCount value of 5 for example, there will be six entries: Subindex 0 with a value of 5
(“Max Subindex”), and 5 more sub entries which represent the array elements.

Could be replaced by essODObjectAdd() and several essODEntryAdd() calls, of course, but
by this function internally only one entry is created – thus saving a lot of RAM when many entries
are required. (But currently only usable for arrays of fix length)

ESS_RESULT essODAddArrayObject(ESS_HANDLE h,
 uint16_t idx,
 const char* name,
 uint8_t entriesCount,
 COE_DATATYPE entriesDataType,
 uint32_t entryBitLen,
 COE_ACCESS entriesAcc,
 void* entriesData,
 uint16_t entriesDataStride);

h

Handle to the device, created with essOpen().

idx

Index of the object.

name

Name of the object, for “SDO Information Service”

entriesCount

Number of array elements. The first entry, with subindex 0, will be an read-only entry with
this value.

entriesDataType

COE_DATATYPE for the entries, needed for “SDO Information Service”

entryBitLen

Bit length of each item.

entriesAcc

Access rights for each item, see COE_ACCESS.

entriesData

Pointer to the data of the first array element (with subindex 1) or NULL, when data shall be
handled by ESS_CB_COE_READWRITE.

entriesDataStride

Ignored when data is NULL. Else distance between the array elements in byte, i.e. when
entriesData points to a packed array of uint32_t values for example, then
entriesDataStride must be 4.

Return values

On success the function returns ESS_RESULT_SUCCESS.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 43 of 94

API

2.4.25.8 essODAddGenericObjects()

Adds some common objects to the dictionary. Only possible after dictionary was created and only
in Init/PreOp state.

This function is just a convenience wrapper that could be replaced by a few essODObjectAdd()
and essODEntryAdd() calls – but as some of these objects are mandatory for complex slaves,
it’s at least useful to save some lines of application code.

ESS_RESULT essODAddGenericObjects(ESS_HANDLE h,
 const uint32_t* deviceType,
 const uint32_t* vendorId,
 const uint32_t* productCode,
 const uint32_t* revNo,
 const uint32_t* serialNo,
 const char* devName,
 const char* verHardware,
 const char* verSoftware);

h

Handle to the device, created with essOpen().

deviceType

Pointer to device type integer (Object 0x1000). Data must remain there and must be in little-
endian format.

vendorId

Pointer to vendor id integer (Object 0x1018). Data must remain there and must be in little-
endian format.

productCode

Pointer to product code integer (Object 0x1018). Data must remain there and must be in
little-endian format.

revNo

Pointer to revision number integer (Object 0x1018). Data must remain there and must be in
little-endian format.

serialNo

Pointer to serial number (Object 0x1018). Data must remain there and must be in little-
endian format.

devName

Optional pointer to device name string (Object 0x1008). Data must remain there.

verHardware

Optional pointer to hardware version string (Object 0x1009). Data must remain there.

verSoftware

Optional pointer to software version string (Object 0x100a). Data must remain there.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Common failures: ESS_RESULT_INVALID_ARG when a non optional parameter was
NULL.

Page 44 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4.25.9 essODUpdatePDOConfiguration()

Sets the configuration of a PDO (also called mapping / defines which entries are in that PDO). Only
possible in Init/PreOp.

ESS_RESULT essODUpdatePDOConfiguration(ESS_HANDLE h,
 uint16_t pdo,
 const char* name,
 const ESS_PDO_ENTRY* entries,
 uint8_t entryCount,
 ESS_BOOL writable);

h

Handle to the device, created with essOpen().

pdo

Index of PDO object. (0x1600..0x17ff: Rx PDOs, 0x1a00..0x1bff: Tx PDOs)

name

Pointer to the name of the object. Data must remain there.

entries

Pointer to the entries within that PDO, see ESS_PDO_ENTRY.

When NULL: PDO Object shall be deleted from dictionary.

entryCount

Number of items at entries.

writable

When set to ESS_TRUE the object becomes writable (in PreOp), thus allowing a dynamic
PDO configuration.

To obtain the current PDO configurations use essODGetPDOConfiguration().

Return values

On success the function returns ESS_RESULT_SUCCESS.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 45 of 94

API

2.4.25.10 essODGetPDOConfiguration()

Used to retrieve the current content of a PDO.

ESS_RESULT essODGetPDOConfiguration(ESS_HANDLE h,
 uint16_t pdo,
 uint8_t* numEntries,
 ESS_PDO_ENTRY* dest,
 uint8_t reserved);

h

Handle to the device, created with essOpen().

pdo

Index of the PDO object, e.g. 0x1600/0x1a00.

numEntries

When dest is NULL the number of items in the PDO is written to the value at
numEntries. Else the value at numEntries is used to determine the maximum number
of items to store at dest and to return the actual number of items written to dest
afterwards.

dest

Pointer to where to store the resulting items. When NULL only the number of items in the
PDO is returned (by numEntries).

reserved

For future use, must be set to 0.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Page 46 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4.25.11 essODUpdatePDOAssignment()

Sets the slave’s PDO assignment. Only possible in Init/PreOp state. Has to be called for every SM,
even if now PDOs are assigned by default.

ESS_RESULT essODSetPDOAssignment(ESS_HANDLE h,
 ESS_SM smIdx,
 const uint16_t* pdo,
 uint8_t pdoCount,
 ESS_BOOL writable);

h

Handle to the device, created with essOpen().

smIdx

SM whose assignment is to be updated.

Most common configuration: Outputs/RxPDOs: ESS_SM_2, Inputs/TxPDOs: ESS_SM_3.

pdo

Pointer to uint16_t array. NULL if no PDOs are assigned pdoCount is also 0.

pdoCount

Number of items at pdo.

writable

When set to ESS_TRUE the object becomes writable (in PreOp), thus allowing a dynamic
PDO assignment.

To obtain the current PDO assignments use essODGetPDOAssignment().

Return values

On success the function returns ESS_RESULT_SUCCESS.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 47 of 94

API

2.4.25.12 essODGetPDOAssignment()

Used to retrieve the PDOs assigned to a specific SM.

ESS_RESULT essODGetPDOAssignment(ESS_HANDLE h,
 ESS_SM smIdx,
 uint8_t* numPDOs,
 uint16_t* dest);

h

Handle to the device, created with essOpen().

smIdx

SM index. (Common configuration: ESS_SM_3 for inputs and ESS_SM_2 for outputs)

numPDOs

When dest is NULL the number PDOs assigned to that SM is written to the value at
numPDOs. Else the value at numPDOs is used to determine the maximum number of items
to store at dest and to return the actual number of items written to dest afterwards.

dest

Pointer to where to store the resulting items. When NULL only the number of PDOs
assigned to that SM is returned (by numPDOs).

Return values

On success the function returns ESS_RESULT_SUCCESS.

Page 48 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4.25.13 essODPDOParamCreate()

Creates a parameter object for a PDO, according to [ETG.1020]. (Object 0x1800 for PDO 0x1a00,
etc., requires CFG_ESS_OD_ALLOW_HANDLE_PDO_PARAMS)

See following functions for how to handle the parameter data. The stack does not use any of the
parameter data itself – the PDO parameter objects are used by the master or configuration tool etc.

(This function is just a convenience function that could be replaced by essODObjectAdd()/
essODEntryAdd() calls and application handling of the entry data)

ESS_RESULT essODPDOParamCreate(ESS_HANDLE h,
 uint16_t pdo,
 const char* name,
 ESS_OD_PDOPARAM_FLAGS flags);

h

Handle to the device, created with essOpen().

pdo

Index of the PDO object, e.g. 0x1600/0x1a00.

name

Name of the object for SDO information service, e.g. "RxPDO Parameter".

flags

Used to configure the entries, see ESS_OD_PDOPARAM_FLAGS.

Return values

On success the function returns ESS_RESULT_SUCCESS.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 49 of 94

API

2.4.25.14 essODPDOParamUpdateExclude()

Used to update the list of excluded PDOs, i.e. PDOs that must not be assigned at the same time.
(Parameter object subindex 6)

(Requires CFG_ESS_OD_ALLOW_HANDLE_PDO_PARAMS, usable only on objects created with
essODPDOParamCreate().)

ESS_RESULT essODPDOParamUpdateExclude(ESS_HANDLE h,
 uint16_t pdo,
 const void* data,
 uint16_t dataLen);

h

Handle to the device, created with essOpen().

pdo

Index of the PDO object, e.g. 0x1600/0x1a00.

data

Pointer to an array of PDO indices to exclude. Indices must be little-endian.

dataLen

Date length in bytes (must be an even value).

Return values

On success the function returns ESS_RESULT_SUCCESS.

Example: (PDO 0x1a00 shall exclude PDO 0x1a01 and PDO 0x1a02)

res = essODPDOParamUpdateExclude(hDev, 0x1a00, "\x01\x1a\x02\x1a", 4);

2.4.25.15 essODPDOParamGetState()

Used set a pointer to the state value. (Parameter object subindex 7)

(Requires CFG_ESS_OD_ALLOW_HANDLE_PDO_PARAMS, usable only on objects created with
essODPDOParamCreate().)

ESS_RESULT essODPDOParamGetState(ESS_HANDLE h,
 uint16_t pdo,
 ESS_BOOL** state);

h

Handle to the device, created with essOpen().

pdo

Index of the PDO object, e.g. 0x1600/0x1a00.

state

Pointer to the state value pointer.

Return values

On success the function returns ESS_RESULT_SUCCESS.

See essODPDOParamGetToggle() for an example.

Page 50 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.4.25.16 essODPDOParamGetControl()

Used to set a to pointer to the control value. (Parameter object subindex 8)

(Requires CFG_ESS_OD_ALLOW_HANDLE_PDO_PARAMS, usable only on objects created with
essODPDOParamCreate().)

ESS_RESULT essODPDOParamGetControl(ESS_HANDLE h,
 uint16_t pdo,
 ESS_BOOL** control);

h

Handle to the device, created with essOpen().

pdo

Index of the PDO object, e.g. 0x1600/0x1a00.

control

Pointer to the control value pointer.

Return values

On success the function returns ESS_RESULT_SUCCESS.

See essODPDOParamGetToggle() for an example.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 51 of 94

API

2.4.25.17 essODPDOParamGetToggle()

Used to set a a pointer to the toggle value. (Parameter object subindex 9)

(Requires CFG_ESS_OD_ALLOW_HANDLE_PDO_PARAMS, usable only on objects created with
essODPDOParamCreate().)

ESS_RESULT essODPDOParamGetToggle(ESS_HANDLE h,
 uint16_t pdo,
 ESS_BOOL** toggle);

h

Handle to the device, created with essOpen().

pdo

Index of the PDO object, e.g. 0x1600/0x1a00.

toggle

Pointer to the toggle value pointer.

Return values

On success the function returns ESS_RESULT_SUCCESS.

Example: (analogue for control and state value)

ESS_BOOL* rxToggle;
ESS_BOOL* txToggle;

essODPDOParamGetToggle(hDev, 0x1600, &rxToggle);
essODPDOParamGetToggle(hDev, 0x1a00, &txToggle);
/* Return values must be checked in your code! */

/* After Outputs were updated: */
if (*rxToggle)
 OutputsUpdated();

/* e.g. in cyclic handler: */
if (InputsUpdated())
 *txToggle = !*txToggle;

Page 52 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.5 Callbacks
All callbacks are set with the ESS_CONFIGURATION/ESS_CALLBACKS struct, given to the stack
by essOpen(). Unless otherwise described here, every callback is mandatory (i.e. its member
variable must point to a valid function).

All data that is accessible via the callback parameter is read only, unless otherwise described in its
type description in section 2.6.

Type definition
Parameter
Member name

Description

ESS_CB_CYCLIC
ESS_CBDATA_CYCLIC*
cbCyclic

Called cyclically – this should be the application’s main
loop.
The interval is set by halConfig member of
ESS_CONFIGURATION struct.

ESS_CB_STATE_REQUEST
ESS_CBDATA_STATE_REQUEST*
cbStateRequest

Called when EtherCAT requests a new state for the
slave or requests the configured device ID via the
'Explicit Device ID' mechanism described in
[ETG.1020].

ESS_CB_SYNCMANAGER
ESS_CBDATA_SM*
cbSMInterrupt

Called when the AL Event register (0x0220:0x0223)
signals an SM interrupt. Might be used to “hook” into
these interrupts – but replacing that interrupt handling
by application would lead to almost writing an own
EtherCAT stack.
Used with CFG_ESS_SM_CALLBACK.

ESS_CB_INOUTPUTS_ACTIVATE
ESS_CBDATA_INOUTPUTS_ACTIVATE*
cbInOutputsActivate

Called when the local input/output handler shall be
started or stopped (see 2.3.4). Determined just by
state changes – e.g. called for outputs even when no
outputs exist/mapped.

ESS_CB_OUTPUTS_UPDATED
ESS_CBDATA_SM_EVENT*
cbOutputsUpdated

Optional. Called when an SM buffer (for an SM that is
configured as “Outputs”) was written by EtherCAT.

ESS_CB_INPUTS_UPDATED
ESS_CBDATA_SM_EVENT*
cbInputsUpdated

Optional. Called when an SM buffer (for an SM that is
configured as “Inputs”) was read by EtherCAT.
That interrupt is only cleared when the application
writes new inputs to the SM buffer, i.e. when
essSyncInputs() is used – so you shouldn’t use
this callback if the inputs are not updated in every
cycle.
When this callback is not used, you should also mask
that interrupt to save CPU load (Clear the inputs SM
bit in ESC_REG_ALEVENTMASK).

ESS_CB_COE_READWRITE
ESS_CBDATA_COE_READWRITE*
cbCoEReadWrite

Optional (But required when CoE items without data
pointer exist, see essODEntryAdd()). Called
whenever the stack has or needs data for an entry.
Used with CFG_ESS_SUPPORT_COE.
Note: The member variable abortCode of
ESS_CBDATA_COE_READWRITE is set to the default
value COE_ABORTCODE_SUBINDEX by the stack. If the
application wants the CoE request to succeed it has to
be changed explicitly to COE_ABORTCODE_NONE.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 53 of 94

API

Type definition
Parameter
Member name

Description

ESS_CB_COE_EVENT
ESS_CBDATA_COE_EVENT*
cbCoEEvent

Optional. Called for certain CoE events, see
ESS_OD_ENTRY_CALLBACK for available callbacks.
Used with CFG_ESS_SUPPORT_COE.
Note: The member variable abortCode of
ESS_CB_COE_EVENT is set to the default value
COE_ABORTCODE_NONE by the stack.

ESS_CB_FOE_OPEN
ESS_CBDATA_FOE_OPEN*
cbFoEOpen

Called when an FoE upload or download is started.
Optional, but when used both other FoE callbacks
must be set, too. Used with CFG_ESS_SUPPORT_FOE.

ESS_CB_FOE_CLOSE
ESS_CBDATA_FOE_CLOSE*
cbFoEClose

Called when an FoE transfer is finished.
Optional, but when used both other FoE callbacks
must be set, too. Used with CFG_ESS_SUPPORT_FOE.

ESS_CB_FOE_DATA
ESS_CBDATA_FOE_DATA*
cbFoEData

Called when data for a FoE transfer is available or
required.
Optional, but when used both other FoE callbacks
must be set, too. Used with CFG_ESS_SUPPORT_FOE.

ESS_CB_EOE_SETIPPARAM
ESS_CBDATA_EOE_SETIPPARAM*
cbEoESetIPParam

Optional. Called when EoE packet to set IP
parameters was received.
Used with CFG_ESS_SUPPORT_EOE.

ESS_CB_EOE_SETADDRFILTER
ESS_CBDATA_EOE_SETADDRFILTER*
cbEoESetAddrFilter

Called when EoE packet to set IP address filters was
received.
Used with CFG_ESS_SUPPORT_EOE.

ESS_CB_EOE_FRAME
ESS_CBDATA_EOE_FRAME*
cbEoEFrame

Called when an Ethernet frame was received via EoE.
Used with CFG_ESS_SUPPORT_EOE.

ESS_CB_VOE
ESS_CBDATA_VOE*
cbVoE

Optional. Called when a VoE packet was received.
Used with CFG_ESS_SUPPORT_VOE.

ESS_CB_EEPROM_EMULATION
ESS_CBDATA_EEPROM_EMULATION*
cbEEPROMEmulation

Optional. Called for each EEPROM access when ESC
does not handle EEPROM itself.
Used with CFG_ESS_EEPROM_EMULATION.

ESS_CB_DC
ESS_CBDATA_DC*
cbDCEvent

Called for DC SYNC/Latch events, i.e. when bit 1..3 in
ESC reg. 0x0220 is set. (Useful only with acknowledge
mode for SYNC event)
Used with CFG_ESS_DC_CALLBACK.

ESS_CB_AOE
ESS_CBDATA_AOE*
cbAoE

Optional. Called when a AoE packet was received.
Used with CFG_ESS_SUPPORT_AOE.

ESS_CB_SOE
ESS_CBDATA_SOE*
cbSoE

Optional. Called when a SoE packet was received.
Used with CFG_ESS_SUPPORT_SOE.

Page 54 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.6 Data types
All listed types are defined in essTypes.h and ecatDefs.h (both included by ess.h).

2.6.1 ESS_HANDLE
Data behind this is not accessible by application. It’s just created by essOpen() and then used for
calling other functions.

Remarks:

Calling a function with an invalid handle (one that was not obtained by a successful call to
essOpen() or one that became invalid by calling essClose()) can have any undesired
side effect – at least crashing the application.

2.6.2 ESS_BOOL

#define Description

ESS_FALSE 0

ESS_TRUE All other values

Remarks:

Never compare with ESS_TRUE, i.e. do NOT test: “if (x == ESS_TRUE)”.

Use “if (x != ESS_FALSE)” instead. (Or just “if (x)”)

2.6.3 ESS_RESULT
Returned by almost every stack function. Use essFormatResult() to get it as string.

#define Description

ESS_RESULT_SUCCESS No error. The function call succeeded.

ESS_RESULT_UNKNOWN An unspecified error occurred. Check debug outputs
with debug version for more details.

ESS_RESULT_INVALID_INDEX An index was invalid, e.g. a devIdx parameter is out
of range.

ESS_RESULT_NOT_READY Something is not ready, e.g. EEPROM when ESC
registers signal it has not been loaded.

ESS_RESULT_ALREADY_ACTIVE Something was already done, e.g. device with that
index was already opened.

ESS_RESULT_CANT_OPEN Usually when device could not be opened, e.g.
because driver was not installed/started correctly.

ESS_RESULT_TRY_AGAIN Some action is temporarily not possible, e.g. sending
an EoE frame or CoE emergency when there’s
already one to be sent.

ESS_RESULT_MISSING_CALLBACK A mandatory callback of ESS_CONFIGURATION/
ESS_CALLBACKS was NULL when essOpen() was
called.

ESS_RESULT_INVALID_HANDLE A handle given to a stack function is invalid. Usually
only tested in debug versions – so don’t rely on this

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 55 of 94

API

#define Description

and make sure no invalid handles are used.

ESS_RESULT_INVALID_LIST Currently unused.

ESS_RESULT_OBJ_NOT_FOUND Used in OD functions when object with given index
does not exist.

ESS_RESULT_ENTRY_NOT_FOUND Used in OD functions when entry with given sub
index does not exist in that object.

ESS_RESULT_NO_DICT Used in OD functions, e.g. when trying to add objects
before the dictionary was created.

ESS_RESULT_NO_MEM Out of memory. Usually in OD functions.

ESS_RESULT_OBJ_EXISTS Used when a CoE object already existed that should
have been added.

ESS_RESULT_ENTRY_EXISTS Used when a CoE object entry already existed that
should have been added.

ESS_RESULT_WRONG_ECAT_STATE An action is not possible in the current EtherCAT
state, e.g. changing the CoE dictionary when not in
Init/PreOp state.

ESS_RESULT_INVALID_CONFIG A configuration is wrong, e.g. when trying to do
mailbox operations but the slave has no mailboxes
configured. Also used when configuration given to
essOpen() is invalid.

ESS_RESULT_INVALID_OD_FLAGS Used when an action requires that the CoE dictionary
was created with other flags.

ESS_RESULT_INVALID_SUBINDEX Used when CoE entry sub index is negative or
greater than 255.

ESS_RESULT_INVALID_SM Used when SM is invalid or does not exist, e.g. when
setting SMs PDO assignment.

ESS_RESULT_INVALID_ARG A function argument is invalid, e.g. NULL or out of
range.

ESS_RESULT_NOT_IMPLEMENTED The function is not implemented, e.g. EoE or FoE
functions when the stack was built with
CFG_ESS_SUPPORT_EOE/CFG_ESS_SUPPORT_FOE
defined to 0.

ESS_RESULT_INVALID_SIZE Currently used when trying to send an EoE frame
that is too large.

ESS_RESULT_BUSY Used e.g. in EEPROM functions when EEPROM
busy bit is not cleared within expected time.

ESS_RESULT_INVALID_PDI_CONTROL Returned by essOpen() when the PDI Control
register (0x0140:0x0141) signals that PDI is disabled
or that device is in “Device Emulation” mode.
(Slave’s EEPROM configuration area needs to be
updated then – or was read incorrectly)

ESS_RESULT_ABI_INCOMPATIBLE Returned by essOpen() when the essABIVersion
member of the configuration states that the
application was built with an incompatible header –
update the header file and adapt your application to
the changes.

Page 56 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

#define Description

ESS_RESULT_INVALID_TIMER_CONFIG Returned by essOpen() when the halConfig
member of the configuration contains a value for the
cyclic timer that cannot be reached by the HAL/driver
– usually a higher value is necessary then.

ESS_RESULT_MISSING_ACK Currently used only in EEPROM functions when
EEPROM interface did not signal ACK within
expected time.

ESS_RESULT_INVALID_OBJECT Returned by some OD functions when it’s not
possible with that object, e.g. for objects that are
created automatically/implicit.

ESS_RESULT_INSUFFICIENT_BUFFER Returned by essIoctl() if given data length is not
sufficient to fulfill the requested function etc.

2.6.4 ESS_TIMESTAMP
Integral value, in milliseconds.

2.6.5 ESS_DEVICE_INDEX
Integral value from 0 to 255.

2.6.6 ESC_LED_TYPE

#define Description

ESC_LED_TYPE_ERR EtherCAT Error LED. (Usually red)

ESC_LED_TYPE_RUN EtherCAT RUN LED. (Usually green)

ESC_LED_TYPE_CUSTOMn Custom LEDs. Not used by stack, but HAL might offer these for
application usage.

2.6.7 ESC_LED_STATE
As defined by ETG.1300 documents.

#define Description

ESC_LED_STATE_OFF LED is off.

ESC_LED_STATE_FLASH_1 LED repeats: 200 ms on, 1000 ms off.

ESC_LED_STATE_FLASH_2 LED repeats: 200 ms on, 200 ms off, 200 ms on, 1000 ms off.

ESC_LED_STATE_FLASH_3 LED repeats: 2x(200 ms on, 200 ms off), 200 ms on, 1000 ms off.

ESC_LED_STATE_FLASH_4 LED repeats: 3x(200 ms on, 200 ms off), 200 ms on, 1000 ms off.

ESC_LED_STATE_BLINK LED repeats: 200 ms on, 200 ms off.

ESC_LED_STATE_FLICKER LED repeats: 50 ms on, 50 ms off.

ESC_LED_STATE_ON LED is on.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 57 of 94

API

2.6.8 ESS_OD_FLAGS

#define Description

ESS_OD_FLAGS_NONE Dictionary is created with no special flags.

ESS_OD_FLAGS_HANDLE_SM_
TYPES

Stack automatically creates the CoE object 0x1c00 (“Sm types”)
according to SM configuration given in essOpen().

2.6.9 ESS_OD_OBJECT_FLAGS
Currently no special flags exist.

#define Description

ESS_OD_OBJECT_FLAGS_NONE Object is created without special behavior.

2.6.10 ESS_OD_ENTRY_FLAGS
Currently no special flags exist.

#define Description

ESS_OD_ENTRY_FLAGS_
NONE

Entry is created without any special behavior.

ESS_OD_ENTRY_FLAGS_
UPLOAD_TRIMMED

Trim trailing zeros for PDO upload. Only for entries without data
callback. Usually used for strings.

ESS_OD_ENTRY_FLAGS_
USE_DATA_AS_MAXSUBI
DX

Data in this entry shall be used as max subindex for that object. Used
to hide inactive entries from SDO information service.

ESS_OD_ENTRY_FLAGS_
NOSDOINFO

Completely hide this entry from SDO information service.

ESS_OD_ENTRY_FLAGS_
ALLOWPARTIALDOWNLOA
D

If set, CoE download with less data than object’s data size is possible.
Missing bytes (trailing bytes) will be filled with 0x00. Flag is
automatically set for COE_DATATYPE_OCTETSTRING, COE_-
DATATYPE_WSTRING and COE_DATATYPE_STRING.

2.6.11 ESS_OD_PDOPARAM_FLAGS
See [ETG.1020] for PDO parameter object details.

#define Description

ESS_OD_PDOPARAM_FLAGS_
NONE

Entry is created without any special behavior.

ESS_OD_PDOPARAM_FLAGS_
EXCLPDOS_EXISTS

Entry with subindex 6 will be created.
Handled by essODPDOParamUpdateExclude().

ESS_OD_PDOPARAM_FLAGS_
STATE_EXISTS

Entry with subindex 7 will be created.
Handled by essODPDOParamGetState().

ESS_OD_PDOPARAM_FLAGS_
CONTROL_EXISTS

Entry with subindex 8 will be created. (Used only for Rx-PDOs)
Handled by essODPDOParamGetControl().

ESS_OD_PDOPARAM_FLAGS_
TOGGLE_EXISTS

Entry with subindex 9 will be created.
Handled by essODPDOParamGetToggle().

Page 58 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.6.12 ESS_OD_ENTRY_CALLBACK

#define
ESS_OD_ENTRY_CALLBACK_

Description

REQUESTED_UPLOAD Called when an SDO upload is requested, before testing if
access is allowed or entry exists, etc.

REQUESTED_DOWNLOAD Called when an SDO download is requested, before testing if
access is allowed or entry exists, etc.

STARTING_UPLOAD Called when an SDO upload is actually started, i.e. entry
exists and access is allowed, etc.

STARTING_DOWNLOAD Called when an SDO download is actually started, i.e. entry
exists and access is allowed, etc.

COMPLETED_UPLOAD Called when an SDO upload was finished successfully.

COMPLETED_DOWNLOAD Called when an SDO download was finished successfully.

ABORTED_UPLOAD Called when an SDO upload was aborted. (segmented
transfer)

ABORTED_DOWNLOAD Called when an SDO download was aborted. (segmented
transfer)

2.6.13 ESS_OD_OBJECT_INFOS

Struct member Description

name Object name.

dataType Object data type, see COE_DATATYPE. (Usually: With a
COE_CODE of COE_CODE_VARIABLE/COE_CODE_ARRAY the
same data type as for entry/entries is used. With
COE_CODE_RECORD COE_DATATYPE_INVALID is used.)

code Object kind, see COE_CODE.

2.6.14 ESS_OD_ENTRY_INFOS

Struct member Description

name Entry name.

minValue Optional pointer to uint8_t array that contains the minimum value
for that entry. Data must remain there, must be stored as little-
endian and must have same length as the entry.

maxValue Optional pointer to uint8_t array that contains the maximum value
for that entry. Data must remain there, must be stored as little-
endian and must have same length as the entry.

defaultValue Optional pointer to uint8_t array that contains the default value for
that entry. Data must remain there, must be stored as little-endian
and must have same length as the entry.

unitType Unit type value. 0 when this info shall not be included, see
[ETG.1004] for unit details.

dataType Entry’s data type, see COE_DATATYPE.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 59 of 94

API

2.6.15 ESS_CONFIG_FLAGS

#define Description

ESS_CONFIG_FLAGS_NONE No special configuration flags.

ESS_CONFIG_FLAGS_USE_
ISR

HAL shall use ISR instead of polling ESC registers. (Based on used
HAL this might be required or forbidden – refer to used HAL’s
“Readme”, etc.)

ESS_CONFIG_FLAGS_APPS
UPP_BOOTSTRAP

Application supports bootstrap mode.
Note: No special settings are required for Bootstrap mode, i.e.
standard mailbox SM settings are used. (Mailbox settings for
Bootstrap mode are stored in the slave’s .xml and EEPROM data)

2.6.16 ESS_EVENT
This is only used internally for certain HALs. With CFG_HAL_NEEDS_EVENTS the slave stack
triggers these events and it’s up to the HAL to use/handle them.

2.6.17 ESS_DC_EVENT

#define Description

ESS_DC_EVENT_SYNC0 Bit 2 in ESC register 0x0220 was set.

ESS_DC_EVENT_SYNC1 Bit 3 in ESC register 0x0220 was set.

ESS_DC_EVENT_LATCH Bit 1 in ESC register 0x0220 was set.

2.6.18 ESS_MBX_PACKET
See [ETG.1000.6] for more mailbox transfer details.

Struct member Description

length Mailbox Header: Length of packet data.

address Mailbox Header: Station address.

channelAndPrio Mailbox Header: Channel and priority.

typeAndCounter Mailbox Header: Type and counter.

data Mailbox data, length bytes used.

2.6.19 ESS_CBDATA_CYCLIC

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

essTime Set by HAL before calling the callback. Always in milliseconds, but
accuracy/jitter depends on HAL/hardware.

Page 60 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.6.20 ESS_CBDATA_COE_EVENT

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

abortCode Allows the application to abort the access. Only supported for
ESS_OD_ENTRY_CALLBACK_STARTING_DOWNLOAD/UPLOAD and
for objects/entries that were created by essODObjectAdd() and
essODEntryAdd().

objIdx Object index.

cbType Callback type, see ESS_OD_ENTRY_CALLBACK.

entryIdx Entry index.

2.6.21 ESS_COE_EMERGENCY

Struct member Description

errCode Value for CoE emergency error code. An overview can be found in
[ETG.1000.6].

errReg Value for CoE emergency error register.

data Value for CoE emergency error data.

2.6.22 ESS_PDO_ENTRY

Struct member Description

objIdx Index of object to be mapped.

subIdx Sub index of object to be mapped.

len Length of mapped entry in bit.

The API defines three macros to make PDO mapping definition more readable (see 2.3.3):

ESS_MAP_ENTRY(objIdx, subIdx, len):

Define mapping of an existing object with less or equal 31 bytes (248 bit) or define the
mapping of the first part (240 bits) of an object with more than 31 bytes.

ESS_MAP_EXTEND(size):

Continue the definition of a mapping for an object with more than 31 bytes in chunks of 240
bit apart from the last chunk.

ESS_MAP_DUMMY(size):

Define a dummy mapping entry (for data alignment) with size bits.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 61 of 94

API

2.6.23 ESS_CBDATA_STATE_REQUEST

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

transition The state transition (ESC_TRANSITION) that is requested.

statusCode Error code that was detected by stack. When 0 state is changed
after finishing this callback.
When application itself detects an error that prevents the state
change it sets statusCode accordingly (When stack already set it,
the application must not change it – no application defined state
change possible then!)
See REG_VAL_ALSTATUSCODE for constants to use.

newState The new state that was requested.
The application can change this value when it detects an error. (And
when stack did not find one at first. And also only to a lower state /
according to the EtherCAT rules!)

errAck Err Ind Ack value from AL Control register (0x0120) that was
written by the master.

tryAgain Application can set this to ESS_TRUE when it is not yet able to
complete the callback – the stack will then try again until it is set to
ESS_FALSE.

devIdRequest Set to ESS_TRUE by the stack if the master has requested to store
the device ID in the AL Status Code Register (0x0134) according to
the 'Explicit Device ID' mechanism defined in ETG.1020.

devId The application stores the current configured device ID in this
member variable if devIdRequest is ESS_TRUE.

2.6.24 ESS_CBDATA_SM_EVENT

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

sm Bit mask which SM triggered the callback (Bit x: SMx with x 0..15). If
more than one SM is configured for input/output process data more
than one bit may be set.

If passed to the cbOutputsUpdated() callback (see 2.5) the bit
ESS_SM_EVENT_FLAG_SAFE_OUTPUTS is set to indicate that the
slave is in the SAFEOP state and the application should set the
application specific safe-state values instead of the values received
by the EtherCAT master.

Page 62 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.6.25 ESS_CBDATA_INOUTPUTS_ACTIVATE

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

inputs When ESS_FALSE then callback was triggered for outputs else for
inputs.

started When ESS_FALSE outputs/inputs are stopped else started. An
application which supports input process data as

2.6.26 ESS_CBDATA_SM

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

smPhysAddr Physical address of SM this callback is for.

smLen Length of that SM in bytes.

smIdx SM index.

smContrByte SM control byte (ESC register 0x0804, etc.)

smType SM type, e.g. SM_TYPE_OUTPUTS.

smActivate Value of SM Activate register (ESC register 0x0806, etc.)

2.6.27 ESS_CBDATA_COE_READWRITE

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

destSrc When isRead is ESS_TRUE: Destination where to copy entry data
to, else source where to read entry data from. (Keep in mind:
EtherCAT uses little endian)

offset Current byte offset in entry’s data.

abortCode Application may set this when it wants to abort the SDO transfer.
See COE_ABORTCODE for possible values.

len When isRead is ESS_TRUE: Length of data that shall be written to
destSrc, else length of data available at destSrc.

objIdx Index of object the entry belongs to.

entryIdx Entry index.

isRead Whether it’s a read (SDO upload) or write access (SDO download)
to the entry.

isLastPart Whether it’s the last part of the SDO transfer or not.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 63 of 94

API

2.6.28 ESS_CBDATA_FOE_OPEN

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

fileName Name of file that is to be opened, zero terminated.

appHandle Custom value that can be set by the application.

password Password for the file.

errCode Application has to write this to tell the stack whether the access is
allowed or has to be aborted, see FOE_ERRORCODE for possible
values.

errorText Application sets this in conjunction with errCode.

fileNameLen Length of file name. (as strlen() would count it)

isUpload Whether this is a FoE upload or download request.

maxDataLen Net size of the mailbox. The end of an FoE upload/download
transfer is indicated by / has to be indicated to the master with a
data segment which size is smaller than this mailbox size (or even
0) before the FoE cloase handler is called. The application can use
this parameter to detect this situation. This parameter is also
provided in ESS_CBDATA_FOE_DATA.

2.6.29 ESS_CBDATA_FOE_CLOSE

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

appHandle Custom application value that was set during the FoE open request.

isUpload Whether this is for a FoE upload or download request.

unexpected ESS_TRUE when the FoE transfer was aborted/timed out.

Page 64 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.6.30 ESS_CBDATA_FOE_DATA

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

appHandle Custom application value that was set during the FoE open request.

errorText Application may return an (optional) error or busy situation related
string in conjunction with an errCode or returns NULL to provide no
further textual information to the EtherCAT master.

destSrc When isUpload is ESS_TRUE: Destination where to copy entry
data to, else source where to read entry data from.

offset Current byte offset in file data.

errCode Application has to return this to tell the stack whether the data
transfer shall continue (by returning FOE_ERRCODE_NONE) or has
to be terminated, see FOE_ERRORCODE for possible values.

The EtherCAT FoE service also allows to indicate a ‘busy’ situation
at any time during the data phase to the EtherCAT master with the
(optional) information how many percent (0..100) of the expected
busy phase has already elapsed if the data is either not yet available
or the data can not yet be stored. The application has to use the
macro FOE_ERRCODE_BUSY(arg) with the argument set to a value
between 0..100. As a result the handler will be called again with the
same values for offset and len until the request is completed with a
FOE_ERRORCODE or the ESS_CB_FOE_CLOSE handler is called as
the ErtherCAT master has terminated the transfer.

len When isUpload is ESS_TRUE: Length of data that shall be written
to destSrc (writing less tells the stack upload is completed by that
chunk), else length of data available at destSrc.

isUpload Whether this is a FoE upload or download request.

maxDataLen Net size of the mailbox. The end of an FoE upload/download
transfer is indicated by / has to be indicated to the master with a
data segment which size is smaller than this mailbox size (or even
0) before the FoE cloase handler is called. The application can use
this parameter to detect this situation. This parameter is also
provided in ESS_CBDATA_FOE_OPEN.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 65 of 94

API

2.6.31 ESS_CBDATA_EOE_SETIPPARAM

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

macAddress Pointer to MAC address. (or NULL when this was not included in the
request)

ipAddress Pointer to IP address. (or NULL when this was not included in the
request)

subnetMask Pointer to subnet mask. (or NULL when this was not included in the
request)

defaultGateway Pointer to default gateway IP address. (or NULL when this was not
included in the request)

dnsServerIP Pointer to DNS server IP address. (or NULL when this was not
included in the request)

dnsName Pointer to DNS name. (or NULL when this was not included in the
request)

result Set by application to determine the result of the EoE request, see
EOE_RESULTCODE for possible values.

2.6.32 ESS_CBDATA_EOE_SETADDRFILTER

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

macAddresses Pointer to MAC addresses.
Count is determined by macAddrFilterCount member.

macAddrFilter Pointer to MAC address filters.
Count is determined by macAddrFilterCount member.

result Set by application to determine the result of the EoE request, see
EOE_RESULTCODE for possible values.

macAddrCount Number of MAC addresses at macAddresses.

macAddrFilterCount Number of MAC address filters at macAddrFilter.

filterBroadcasts Whether to filter broadcast messages or not.

Page 66 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.6.33 ESS_CBDATA_EOE_FRAME

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

data Pointer to the Ethernet frame data.

reserved1 Currently unused

dataLen Number of bytes (complete Ethernet frame) at data.

frameNo Frame number, taken from EoE request header.

reserved2 Currently unused

2.6.34 ESS_CBDATA_AOE

2.6.35 ESS_CBDATA_SOE

2.6.36 ESS_CBDATA_VOE
All three structs are identical.

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

mb Pointer to mailbox packet that was received, see
ESS_MBX_PACKET. To send a reply replace its data contents as
desired and set result to MBX_ERR_SUCCESS.

mbMaxLen Available space at mb->data (the reply length is given by
mb->length)

result Mailbox result. If MBX_ERR_SUCCESS, then mb is sent as reply.

fragment Set this to ESS_TRUE if the reply is fragmented, i.e. another callback
is needed. If this is initially set it indicates the callback was triggered
by former fragment=ESS_TRUE instead of an actual packet (mb
members are undefined then).

2.6.37 ESS_CBDATA_EEPROM_EMULATION

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

destSrc Pointer to store data read from emulated EEPROM (isRead) or
pointer to data to write to emulated EEPROM.

offset EEPROM offset in byte.

len Data length in byte.

result Set to 0 to signal successful access.

isRead Whether it’s a read (application stores read data at destSrc) or
write access (application reads data to write from destSrc).

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 67 of 94

API

2.6.38 ESS_CBDATA_DC

Struct member Description

hDev Handle to device for which the callback was set. (Needed only when
same callback function is used for multiple devices)

evtType See ESS_DC_EVENT.

2.6.39 ESS_CB_STATE_REQUEST
Function definition:

Name Result Parameters

ESS_CB_STATE_REQUEST void (ESS_CBDATA_STATE_REQUEST*)

2.6.40 ESS_CB_SYNCMANAGER
Function definition:

Name Result Parameters

ESS_CB_SYNCMANAGER ESS_BOOL (ESS_CBDATA_SM*)

Result: ESS_TRUE when application handled that SM interrupt and stack should not process it.

2.6.41 ESS_CB_OUTPUTS_UPDATED
Function definition:

Name Result Parameters

ESS_CB_OUTPUTS_UPDATED void (ESS_CBDATA_SM_EVENT*)

2.6.42 ESS_CB_INPUTS_UPDATED
Function definition:

Name Result Parameters

ESS_CB_INPUTS_UPDATED void (ESS_CBDATA_SM_EVENT*)

2.6.43 ESS_CB_COE_EVENT
Function definition:

Name Result Parameters

ESS_CB_COE_EVENT void (ESS_CBDATA_COE_EVENT*)

Page 68 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.6.44 ESS_CB_COE_READWRITE
Function definition:

Name Result Parameters

ESS_CB_COE_READWRITE void (ESS_CBDATA_COE_READWRITE*)

2.6.45 ESS_CB_FOE_OPEN
Function definition:

Name Result Parameters

ESS_CB_FOE_OPEN void (ESS_CBDATA_FOE_OPEN*)

2.6.46 ESS_CB_FOE_CLOSE
Function definition:

Name Result Parameters

ESS_CB_FOE_CLOSE void (ESS_CBDATA_FOE_CLOSE*)

2.6.47 ESS_CB_FOE_DATA
Function definition:

Name Result Parameters

ESS_CB_FOE_DATA void (ESS_CBDATA_FOE_DATA*)

2.6.48 ESS_CB_INOUTPUTS_ACTIVATE
Function definition:

Name Result Parameters

ESS_CB_INOUTPUTS_ACTIVATE void (ESS_CBDATA_INOUTPUTS_ACTIVATE*)

2.6.49 ESS_CB_CYCLIC
Function definition:

Name Result Parameters

ESS_CB_CYCLIC void (ESS_CBDATA_CYCLIC*)

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 69 of 94

API

2.6.50 ESS_CB_EOE_SETIPPARAM
Function definition:

Name Result Parameters

ESS_CB_EOE_SETIPPARAM void (ESS_CBDATA_EOE_SETIPPARAM*)

2.6.51 ESS_CB_EOE_SETADDRFILTER
Function definition:

Name Result Parameters

ESS_CB_EOE_SETADDRFILTER void (ESS_CBDATA_EOE_SETADDRFILTER*)

2.6.52 ESS_CB_EOE_FRAME
Function definition:

Name Result Parameters

ESS_CB_EOE_FRAME void (ESS_CBDATA_EOE_FRAME*)

2.6.53 ESS_CB_AOE
Function definition:

Name Result Parameters

ESS_CB_AOE void (ESS_CBDATA_AOE*)

2.6.54 ESS_CB_VOE
Function definition:

Name Result Parameters

ESS_CB_VOE void (ESS_CBDATA_VOE*)

2.6.55 ESS_CB_SOE
Function definition:

Name Result Parameters

ESS_CB_SOE void (ESS_CBDATA_SOE*)

2.6.56 ESS_CB_EEPROM_EMULATION
Function definition:

Name Result Parameters

ESS_CB_EEPROM_EMULATION void (ESS_CBDATA_EEPROM_EMULATION*)

Page 70 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.6.57 ESS_CB_DC
Function definition:

Name Result Parameters

ESS_CB_DC void (ESS_CBDATA_DC*)

2.6.58 ESS_STATISTICS

Struct member Description

smInterrupts Counter for SM events. SM0 events are counted in smInterrupts[0],
SM1 events in smInterrupts[1] and so on. Incremented whenever
the stack sees the according bit in ESC Reg. 0x0220 set, i.e. not
necessarily by PDI interrupt

totalCalls Counts how often the stack’s main loop was called

cyclicCalls Counts how often the stack’s main loop was called by cyclic event
handler (which equals the number of calls to the cbCyclic callback)

eoeSent Counts EoE frames sent. (Incremented when last fragment was written
to own mailbox)

eoeReceived Counts EoE frames received. (Incremented when last fragment was
received – just before application callback is triggered)

2.6.59 ESS_SM_CONFIGURATION
Values must match parameter of the related ESI file – stack verifies them against values received
by master and denies state change, etc. when they don’t match.

Struct member Description

minSize Minimum SM length. See remark to mailbox configuration in chapter
2.2.5.

defSize Default SM length (Not used)

maxSize Maximum SM length (0 to disable verification)

startAddr SM Start address (0 to disable verification)

contrByte SM control byte, contains SM type, etc. (see ESC documentation for its
register 0x0804)

2.6.60 ESS_CALLBACKS
All ESS_CALLBACKS members are described in section 2.5 (page 53).

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 71 of 94

API

2.6.61 ESS_CONFIGURATION
Based on used HAL certain requirements might apply, e.g. a minimum value for timerInterval
or certain flags set – refer to used HAL’s “ReadMe”, etc.

Struct member Description

essABIVersion Use ESS_ABI_VERSION from essConfig.h

flags Configuration flags, see ESS_OD_OBJECT_INFOS

timerInterval Interval for cyclic callback, in microseconds

tag User defined pointer, retrieved by essGetTag()

cb Callbacks, see 2.5

smConfigs Pointer to SM configuration array, see
ESS_SM_CONFIGURATION

smConfigCount Number of entries in smConfigs for the standard configuration.

smConfigCountBootstrap Number of entries in smConfigs for the bootstrap configuration.

reserved All reserved members must be set to 0

stats Statistics for certain stack events, see ESS_STATISTICS (Used
with CFG_ESS_SERVE_STATISTICS)

2.6.62 ESC_STATE

#define Description

ESC_STATE_INIT EtherCAT state “Init”

ESC_STATE_PREOP EtherCAT state “Pre-Operational”

ESC_STATE_BOOT EtherCAT state “Bootstrap”

ESC_STATE_SAFEOP EtherCAT state “Safe-Operational”

ESC_STATE_OP EtherCAT state “Operational”

Page 72 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.6.63 ESC_TRANSITION

#define Description

ESC_TRANSITION_BI Transition from EtherCAT state “Bootstrap” to “Init”

ESC_TRANSITION_IB Transition from EtherCAT state “Init” to “Bootstrap”

ESC_TRANSITION_BB Transition from EtherCAT state “Bootstrap” to “Bootstrap”

ESC_TRANSITION_II Transition from EtherCAT state “Init” to “Init”

ESC_TRANSITION_IP Transition from EtherCAT state “Init” to “Pre-Operational”

ESC_TRANSITION_OI Transition from EtherCAT state “Operational” to “Init”

ESC_TRANSITION_OP Transition from EtherCAT state “Operational” to “Pre-Operational”

ESC_TRANSITION_OS Transition from EtherCAT state “Operational” to “Safe-Operational”

ESC_TRANSITION_OO Transition from EtherCAT state “Operational” to “Operational”

ESC_TRANSITION_PI Transition from EtherCAT state “Pre-Operational” to “Init”

ESC_TRANSITION_PP Transition from EtherCAT state “Pre-Operational” to “Pre-Operational”

ESC_TRANSITION_PS Transition from EtherCAT state “Pre-Operational” to “Safe-Operational”

ESC_TRANSITION_SI Transition from EtherCAT state “Safe-Operational” to “Init”

ESC_TRANSITION_SO Transition from EtherCAT state “Safe-Operational” to “Operational”

ESC_TRANSITION_SP Transition from EtherCAT state “Safe-Operational” to “Pre-Operational”

ESC_TRANSITION_SS Transition from EtherCAT state “Safe-Operational” to “Safe-Operational”

2.6.64 SM_TYPE

#define Description

SM_TYPE_INPUTS SM is of type “Mailbox Inputs”

SM_TYPE_MBXIN SM is of type “Mailbox In”

SM_TYPE_OUTPUTS SM is of type “Outputs”

SM_TYPE_MBXOUT SM is of type “Mailbox Out”

2.6.65 ESS_SM

#define Description

ESS_SM_NONE SM not configured/existing

ESS_SM_0 SM0

.
.
.

ESS_SM_31 SM31

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 73 of 94

API

2.6.66 REG_VAL_ALSTATUSCODE
These are constants for the AL Status Codes which are stored in the AL Status Code Register
(0x0134:0x0135) to indicate the reason for an error situation to the EtherCAT master. Most of the
status codes are defined in [ETG.1000.6] with some additional codes defined in [ETG.1020].

The numerical range from 0x8000..0xFFFF is reserved for vendor specific AL Status Codes. To
define such a code use the macro REG_VAL_ALSTATUSCODE_VENDOR. The esd EtherCAT slave
stack defines some AL Status Codes starting with the numerical value 0xB000 and reserves the
values up to 0xB0FF for future use. Please make sure that your application/vendor specific AL
Status Codes do not overlap.

#define REG_VAL_ALSTATUSCODE_ Description

NOERROR Value: 0x0000, see “AL Status Codes” in [ETG.1020].

UNSPECIFIEDERROR Value: 0x0001, see “AL Status Codes” in [ETG.1020].

NOMEMORY Value: 0x0002, see “AL Status Codes” in [ETG.1020].

INVALIDDEVICESETUP Value: 0x0003, see “AL Status Codes” in [ETG.1020].

FWINCOMPATIBLE Value: 0x0006, see “AL Status Codes” in [ETG.1020].

FWUPDATEERROR Value: 0x0007, see “AL Status Codes” in [ETG.1020].

LICENSEERROR Value: 0x000E, see “AL Status Codes” in [ETG.1020].

INVALIDALCONTROL Value: 0x0011, see “AL Status Codes” in [ETG.1020].

UNKNOWNALCONTROL Value: 0x0012, see “AL Status Codes” in [ETG.1020].

BOOTNOTSUPP Value: 0x0013, see “AL Status Codes” in [ETG.1020].

NOVALIDFIRMWARE Value: 0x0014, see “AL Status Codes” in [ETG.1020].

INVALIDMBXCFGINBOOT Value: 0x0015, see “AL Status Codes” in [ETG.1020].

INVALIDMBXCFGINPREOP Value: 0x0016, see “AL Status Codes” in [ETG.1020].

INVALIDSMCFG Value: 0x0017, see “AL Status Codes” in [ETG.1020].

NOVALIDINPUTS Value: 0x0018, see “AL Status Codes” in [ETG.1020].

NOVALIDOUTPUTS Value: 0x0019, see “AL Status Codes” in [ETG.1020].

SYNCERROR Value: 0x001a, see “AL Status Codes” in [ETG.1020].

SMWATCHDOG Value: 0x001b, see “AL Status Codes” in [ETG.1020].

SYNCTYPESNOTCOMPATIBLE Value: 0x001c, see “AL Status Codes” in [ETG.1020].

INVALIDSMOUTCFG Value: 0x001d, see “AL Status Codes” in [ETG.1020].

INVALIDSMINCFG Value: 0x001e, see “AL Status Codes” in [ETG.1020].

INVALIDWDCFG Value: 0x001f, see “AL Status Codes” in [ETG.1020].

WAITFORCOLDSTART Value: 0x0020, see “AL Status Codes” in [ETG.1020].

WAITFORINIT Value: 0x0021, see “AL Status Codes” in [ETG.1020].

WAITFORPREOP Value: 0x0022, see “AL Status Codes” in [ETG.1020].

WAITFORSAFEOP Value: 0x0023, see “AL Status Codes” in [ETG.1020].

INVALIDINPUTMAPPING Value: 0x0024, see “AL Status Codes” in [ETG.1020].

INVALIDOUTPUTMAPPING Value: 0x0025, see “AL Status Codes” in [ETG.1020].

INCONSISTENTSETTINGS Value: 0x0026, see “AL Status Codes” in [ETG.1020].

FREERUNNOTSUPPORTED Value: 0x0027, see “AL Status Codes” in [ETG.1020].

SYNCHRONNOTSUPPORTED Value: 0x0028, see “AL Status Codes” in [ETG.1020].

Page 74 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

#define REG_VAL_ALSTATUSCODE_ Description

FREERUNNEEDS3BUFFERMODE Value: 0x0029, see “AL Status Codes” in [ETG.1020].

BACKGROUNDWATCHDOG Value: 0x002a, see “AL Status Codes” in [ETG.1020].

NOVALIDINPUTSANDOUTPUTS Value: 0x002b, see “AL Status Codes” in [ETG.1020].

FATALSYNCERROR Value: 0x002c, see “AL Status Codes” in [ETG.1020].

NOSYNCERROR Value: 0x002d, see “AL Status Codes” in [ETG.1020].

CYCLETIMETOOSMALL Value: 0x002e, see “AL Status Codes” in [ETG.1020].

DCINVALIDSYNCCFG Value: 0x0030, see “AL Status Codes” in [ETG.1020].

DCINVALIDLATCHCFG Value: 0x0031, see “AL Status Codes” in [ETG.1020].

DCPLLSYNCERROR Value: 0x0032, see “AL Status Codes” in [ETG.1020].

DCSYNCIOERROR Value: 0x0033, see “AL Status Codes” in [ETG.1020].

DCSYNCMISSEDERROR Value: 0x0034, see “AL Status Codes” in [ETG.1020].

DCINVALIDSYNCCYCLETIME Value: 0x0035, see “AL Status Codes” in [ETG.1020].

DCSYNC0CYCLETIME Value: 0x0036, see “AL Status Codes” in [ETG.1020].

DCSYNC1CYCLETIME Value: 0x0037, see “AL Status Codes” in [ETG.1020].

MBXAOE Value: 0x0041, see “AL Status Codes” in [ETG.1020].

MBXEOE Value: 0x0042, see “AL Status Codes” in [ETG.1020].

MBXCOE Value: 0x0043, see “AL Status Codes” in [ETG.1020].

MBXFOE Value: 0x0044, see “AL Status Codes” in [ETG.1020].

MBXSOE Value: 0x0045, see “AL Status Codes” in [ETG.1020].

MBXVOE Value: 0x004f, see “AL Status Codes” in [ETG.1020].

EEPROMNOACCESS Value: 0x0050, see “AL Status Codes” in [ETG.1020].

EEPROMERROR Value: 0x0051, see “AL Status Codes” in [ETG.1020].

EXTHWNOTREADY Value: 0x0052, see “AL Status Codes” in [ETG.1020].

SLVRESTARTEDLOCALLY Value: 0x0060, see “AL Status Codes” in [ETG.1020].

DEVIDUPDATED Value: 0x0061, see “AL Status Codes” in [ETG.1020].

MODULEIDENTMISMATCH Value: 0x0052, see “AL Status Codes” in [ETG.1020].

APPCONTRAVAILABLE Value: 0x00f0, see “AL Status Codes” in [ETG.1020].

esd specific

ESD_MAP_ASSIGNMISSING Value 0xB001: Error while PDO mapping: An assignment object
(e.g. 0x1c12/0x1c13) is missing.

ESD_MAP_ASSIGNOBJERR Value: 0xB002: Error while PDO mapping: An assignment object
(e.g. 0x1c12/0x1c13) was not created by
essODUpdatePDOAssignment().

ESD_MAP_PDOMISSING Value: 0xB003: Error while PDO mapping: PDO object (e.g.
0x1600/0x1a00) mentioned in an assignment object does not
exist.

ESD_MAP_PDOOBJERR Value: 0xB004: Error while PDO mapping: PDO object (e.g.
0x1600/0x1a00) mentioned in an assignment object was not
created with essODUpdatePDOConfiguration().

ESD_MAP_MAPPEDOBJMISSING Value: 0xB005: Error while PDO mapping: Object mentioned in
a PDO object does not exist.

ESD_MAP_MAPPEDOBJERR Value: 0xB006: Error while PDO mapping: Object mentioned in
a PDO object can not be mapped.

ESD_MAP_MAPPEDENTRYMISSING Value: 0xB007: Error while PDO mapping: Entry mentioned in a

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 75 of 94

API

#define REG_VAL_ALSTATUSCODE_ Description

PDO object was not found.

ESD_MAP_MAPPEDENTRYERR Value: 0xB008: Error while PDO mapping: Entry mentioned in a
PDO object can not be mapped. (e.g. because it was created
with datapointer = NULL)

ESD_CAN_INVALIDHANDLE Value: 0xB010: An Ntcan handle was invalid.

ESD_OTHERSIDEINVALSTATE Value: 0xB011: Other side of Bridge/Gateway device is in invalid
state

ESD_FLASHERROR Value: 0xB012: Read or write access to flash memory failed.

Page 76 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.6.67 COE_CODE
See “Object Code” in ETG documents for more details.

#define Description

COE_CODE_VARIABLE CoE object is a variable.

COE_CODE_ARRAY CoE object may consist of multiple entries of same type. Entry0 for
max. used sub index.

COE_CODE_RECORD CoE objects may consist of multiple entries of different type. Entry0
for max. used sub index.

2.6.68 COE_ACCESS
Used as flags.

#define Description

COE_ACCESS_R_PREOP Entry is readable in PreOp.

COE_ACCESS_R_SAFEOP Entry is readable in SafeOp.

COE_ACCESS_R_OP Entry is readable in Op.

COE_ACCESS_R Entry is readable in PreOp, SafeOp and Op.

COE_ACCESS_W_PREOP Entry is writeable in PreOp.

COE_ACCESS_W_SAFEOP Entry is writeable in SafeOp.

COE_ACCESS_W_OP Entry is writeable in Op.

COE_ACCESS_W Entry is writeable in PreOp, SafeOp and Op.

COE_ACCESS_RW Entry is readable and writeable in PreOp, SafeOp and Op.

COE_ACCESS_RXMAPPABLE Entry is mappable as Rx object.

COE_ACCESS_TXMAPPABLE Entry is mappable as Tx object.

COE_ACCESS_ISBACKUPOBJECT Entry can be used for backup. (Might be used for device
replacement, see [ETG.1020])

COE_ACCESS_ISSETTINGSOBJECT Entry can be used for settings. (Entry might be
downloaded by the master during start up, see
[ETG.1020])

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 77 of 94

API

2.6.69 COE_DATATYPE
See ETG documents for details.

#define Description

COE_DATATYPE_INVALID Value: 0x0000

COE_DATATYPE_BOOL Value: 0x0001

COE_DATATYPE_SINT Value: 0x0002

COE_DATATYPE_INT Value: 0x0003

COE_DATATYPE_DINT Value: 0x0004

COE_DATATYPE_USINT Value: 0x0005

COE_DATATYPE_UINT Value: 0x0006

COE_DATATYPE_UDINT Value: 0x0007

COE_DATATYPE_REAL Value: 0x0008

COE_DATATYPE_STRING Value: 0x0009

COE_DATATYPE_OCTETSTRING Value: 0x000a

COE_DATATYPE_WSTRING Value: 0x000b

COE_DATATYPE_TIMEOFDAY Value: 0x000c

COE_DATATYPE_TIMEDIFF Value: 0x000d

COE_DATATYPE_DOMAIN Value: 0x000f

COE_DATATYPE_INT24 Value: 0x0010

COE_DATATYPE_LREAL Value: 0x0011

COE_DATATYPE_INT40 Value: 0x0012

COE_DATATYPE_INT48 Value: 0x0013

COE_DATATYPE_INT56 Value: 0x0014

COE_DATATYPE_LINT Value: 0x0015

COE_DATATYPE_UINT24 Value: 0x0016

COE_DATATYPE_UINT40 Value: 0x0018

COE_DATATYPE_UINT48 Value: 0x0019

COE_DATATYPE_UINT56 Value: 0x001a

COE_DATATYPE_ULINT Value: 0x001b

COE_DATATYPE_PDOCOMMPAR Value: 0x0020

COE_DATATYPE_PDOMAPPING Value: 0x0021

COE_DATATYPE_SDOPARAMETER Value: 0x0022

COE_DATATYPE_IDENTITY Value: 0x0023

COE_DATATYPE_COMMANDPAR Value: 0x0025

COE_DATATYPE_SYNCPAR Value: 0x0029

COE_DATATYPE_BIT1 Value: 0x0030

COE_DATATYPE_BIT2 Value: 0x0031

COE_DATATYPE_BIT3 Value: 0x0032

Page 78 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

#define Description

COE_DATATYPE_BIT4 Value: 0x0033

COE_DATATYPE_BIT5 Value: 0x0034

COE_DATATYPE_BIT6 Value: 0x0035

COE_DATATYPE_BIT7 Value: 0x0036

COE_DATATYPE_BIT8 Value: 0x0037

COE_DATATYPE_ENUMFIRST Value: 0x0800

COE_DATATYPE_ENUMLAST Value: 0x0fff

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 79 of 94

API

2.6.70 COE_ABORTCODE
See ETG documents for details.

#define Description

COE_ABORTCODE_NONE Value: 0x00000000

COE_ABORTCODE_TOGGLE Value: 0x05030000

COE_ABORTCODE_TIMEOUT Value: 0x05040000

COE_ABORTCODE_CCS_SCS Value: 0x05040001

COE_ABORTCODE_MEMORY Value: 0x05040005

COE_ABORTCODE_ACCESS Value: 0x06010000

COE_ABORTCODE_WRITEONLY Value: 0x06010001

COE_ABORTCODE_READONLY Value: 0x06010002

COE_ABORTCODE_SI0_MUSTBE0_FOR_WRITEACCESS Value: 0x06010003

COE_ABORTCODE_UNSUPP_TYPE_FOR_COMPL_ACCESS Value: 0x06010004

COE_ABORTCODE_MAILBOX_TOO_SMALL Value: 0x06010005

COE_ABORTCODE_INVALID_STATE_FOR_MAPPED_OBJ Value: 0x06010006

COE_ABORTCODE_INDEX Value: 0x06020000

COE_ABORTCODE_PDO_MAP Value: 0x06040041

COE_ABORTCODE_PDO_LEN Value: 0x06040042

COE_ABORTCODE_P_INCOMP Value: 0x06040043

COE_ABORTCODE_I_INCOMP Value: 0x06040047

COE_ABORTCODE_HARDWARE Value: 0x06060000

COE_ABORTCODE_LEN Value: 0x06070010

COE_ABORTCODE_LEN_TOO_HIGH Value: 0x06070012

COE_ABORTCODE_LEN_TOO_LOW Value: 0x06070013

COE_ABORTCODE_SUBINDEX Value: 0x06090011

COE_ABORTCODE_DATA Value: 0x06090030

COE_ABORTCODE_DATA_TOO_HIGH Value: 0x06090031

COE_ABORTCODE_DATA_TOO_LOW Value: 0x06090032

COE_ABORTCODE_MODULE_MISMATCH Value: 0x06090033

COE_ABORTCODE_MINMAX Value: 0x06090036

COE_ABORTCODE_GENERAL Value: 0x08000000

COE_ABORTCODE_STORE Value: 0x08000020

COE_ABORTCODE_STORE_LOCAL Value: 0x08000021

COE_ABORTCODE_STORE_DEVICE_STATE Value: 0x08000022

COE_ABORTCODE_DICTIONARY Value: 0x08000023

Page 80 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

API

2.6.71 FOE_ERRORCODE
See ETG documents for details.

#define Description

FOE_ERRCODE_NONE Value: 0x00000000

FOE_ERRCODE_UNDEFINED Value: 0x00008000

FOE_ERRCODE_NOTFOUND Value: 0x00008001

FOE_ERRCODE_ACCESSDENIED Value: 0x00008002

FOE_ERRCODE_DISKFULL Value: 0x00008003

FOE_ERRCODE_ILLEGAL Value: 0x00008004

FOE_ERRCODE_WRONGPACKETNO Value: 0x00008005

FOE_ERRCODE_ALREADYEXISTS Value: 0x00008006

FOE_ERRCODE_NOUSER Value: 0x00008007

FOE_ERRCODE_BOOTSTRAPONLY Value: 0x00008008

FOE_ERRCODE_NOBOOTSTRAP Value: 0x00008009

FOE_ERRCODE_NORIGHTS Value: 0x0000800a

FOE_ERRCODE_PROGRAMERROR Value: 0x0000800b

FOE_ERRCODE_INVALIDCHECKSUM Value: 0x0000800c

FOE_ERRCODE_INVALIDFIRMWARE Value: 0x0000800e

FOE_ERRCODE_NOFILE Value: 0x0000800f

FOE_ERRCODE_UNKNOWNHEADER Value: 0x00008010

FOE_ERRCODE_FLASHPROBLEM Value: 0x00008011

FOE_ERRCODE_INCOMPATIBLE Value: 0x00008012

2.6.72 EOE_RESULTCODE
See ETG documents for details.

#define Description

EOE_RESULTCODE_SUCCESS Value: 0x0000

EOE_RESULTCODE_UNSPECIFIEDERR Value: 0x0001

EOE_RESULTCODE_UNSUPPORTEDFRAME Value: 0x0002

EOE_RESULTCODE_NOIPSUPPORT Value: 0x0201

EOE_RESULTCODE_NOFILTERSUPPORT Value: 0x0401

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 81 of 94

Object version specific

3. Object version specific
Object versions consist of the stack as binary static or shared library (a .dll file for Windows, a
.so file for Linux and .a file for VxWorks 7) and an additional device driver specific for the
EtherCAT hardware.

3.1 Build
The .../build directory of the stack installation contains sample project files for Microsoft Visual
Studio 10 and sample Makefiles tested with the GCC tool chain.

They have to be adapted to your specific environment. Currently the Makefiles can be used e.g.
with “make PLATFORM=WINDOWS” or “make PLATFORM=LINUX” (Where the latter one also uses
the CROSS_COMPILE environment variable.) and might already work for some platforms.

For VxWorks 7 you have to create an appropriate project with the Wind River Workbench and link
to this with the static library of the esd EtherCAT slave stack.

The essConfig.h file (described in next section) can’t be changed with the object versions, but it
might show useful hints about the parameters the stack was built with.

Page 82 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

Source Code Version specific

4. Source Code Version specific
The Source Code Version usually requires the customization of the HAL to the target system. Fig.
2 gives an overview of the general code flow: the Application can remain unchanged, but the
Stack’s functions to access the ESC, interrupts etc. have to be adapted.

This section shows how the Stack is build from the Source Code and what parts have to be
adapted. (A general usage overview was given in 2.1)

Fig. 2: Stack/Application flow chart

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 83 of 94

Initialization
(System / Application

specific)

main()

Application

ESC/Timer
Interrupt?

essOpen()

Slave initialization
(CoE Dictionary / PDO

creation, etc.)

HAL Init.
(Might contain more sys.

specific init. for ESC)

essOpen()

Stack

ESC Init.
(Map ESC registers,
add ISR, init SPI,

Timers, etc.)

essStart()

Stack Loop
(Handle pending events)essStart()

yes

ess Callback

App. callb.
required?

yes

Never returns
(unless start failed

or essStop() is
used in callback)

exit()

Application code

(Cyclic tasks in cyclicCB,
Handling of new Output data in
OutputsUpdatedCB, and so on)

other functions

Other ess functions are usually
called only from within callbacks

no /
afterwards

Source Code Version specific

4.1 Build
The stack consists of three source files that have to be compiled/linked:

1. .../src/ess.c

2. .../src/essOD.c

3. .../hal/[YourPlatform]/essHAL.c

(Hardware/platform specific, e.g. in .../hal/linux/essHAL.c for Linux. See section
HAL for details to add an implementation for a yet unsupported platform)

Two include paths have to be added: (Fig. 3 gives an overview)

1. .../include/

2. .../hal/

.../include/essSystem.h has to be adapted:

This file is included by all stack sources as well as your application. It contains the platform
specific includes, defines and macros. It is controlled by the compile time define
ESS_PLATFORM_XXX: which will result in a compile time error in case it is undefined. The
following platforms are already supported:

#define Description

ESS_PLATFORM_WINDOWS Windows

ESS_PLATFORM_LINUX Linux

ESS_PLATFORM_AM335X TI Sitara AM335x @ TI-RTOS (SYSBIOS)

ESS_PLATFORM_QNX QNX

ESS_PLATFORM_RIN32M3 Renesas R-IN32M3

ESS_PLATFORM_XMC4800 Infineon XMC4800

ESS_PLATFORM_VXWORKS VxWorks

To support your yet unsupported OS or environment extend this list at the end with an
“#elif defined(YOURPLATFORM)” etc. and add the required includes, defines and
macros there.

.../include/essPrivate.h might need changes, too:

This file contains types and macros that are private to the stack sources (i.e. not for the
application). Some macros, such as

#define ESS_MEMCOPY(pDst,pSrc,len) memcpy((pDst),(pSrc),(size_t)(len))

have to be verified – replace them if necessary.

Page 84 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

Source Code Version specific

4.1.1 Example
Building the complex.c sample with the Linux HAL by the gcc: (while in .../apps/ folder)

gcc -o sample complex.c ../src/ess.c ../src/essOD.c ../hal/linux/essHAL.c -
I../include -I../hal -DLINUX

Typically a Makefile is created to add additional directives, such as the configuration defines (e.g.
-DCFG_ESS_SUPPORT_FOE=1 for the gcc sample to enable FoE)

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 85 of 94

Fig. 3: Source- and include files and their includes.

ess.c / essOD.cessHAL.c

ess.h

Application

essSystem.h essTypes.h

essConfig.h

ecatDefs.h

essPrivate.hessHAL.h

System-specific
Includes

Source Code Version specific

4.2 essConfig.h
This file is used to configure the stack when building it from source.

#define Description

CFG_BIG_ENDIAN Set this to 1 on big endian systems.

CFG_ESC_HAVE_POINTER Set this to 1 when ESC memory is accessible by a
pointer (acquired by essHALMapESC()
Set to 0 when HAL’s essHALReadESCMem() /
essHALWriteESCMem() have to be used instead.

CFG_ESS_COE_ENTRY_LIST_INCREMENT Number of new items allocated in object’s entry list
when there’s no space for next entry left (each is a
pointer)

CFG_ESS_COE_MAPPED_LIST_INCREMENT For each SM a list of entries mapped to it exists.
This is the number of new items allocated when
there’s no space for the next item left (each is a
ESS_PDO_MAP_INFO struct)

CFG_ESS_COE_MAX_ITEMS_PER_PDO_OBJECT Each PDO object (created with
essODUpdatePDOConfiguration()) will
contain an array of ESS_PDO_ENTRY with this size.

CFG_ESS_COE_MAX_ITEMS_PER_PDOASSIGN_
OBJECT

Each PDO assignment object (created with
essODUpdatePDOAssignment()) will contain an
array of uint16_t with this size.

CFG_ESS_COE_OBJECT_LIST_INCREMENT Number of new items allocated in dictionary’s
object list when there’s no space for next object left
(each is a pointer)

CFG_ESS_COE_SDO_SEGMENT_TIMEOUT Timeout for SDO transfer: when last segment
receipt is longer ago than this, transfer is aborted.

CFG_ESS_COE_SUPPORT_COMPLETE_ACCESS Not implemented, set to 0.

CFG_ESS_COE_SUPPORT_SDO_INFO_SERVICE Determines whether the “SDO Information Service”
is enabled (This allows the master to read the
object dictionary, etc.)
Should be disabled only when there are no system
resources to handle ESS_OD_OBJECT_INFOS and
ESS_OD_ENTRY_INFOS structs for the objects and
entries.

CFG_ESS_COMBINED_RUNERR_LED If CFG_ESS_SERVE_ERR_LED and
CFG_ESS_SERVE_RUN_LED are set to 1 and both
LEDs are combined, then this will disable the RUN
LED while the Error LED is in another state than
OFF

CFG_ESS_COPY_CALLBACKS Set this to 0 to save some memory (sizeof
ESS_CALLBACKS), 1 for minor performance gain
(stack saves dereferencing configuration struct
pointer because it will copy the callbacks).

CFG_ESS_DC_CALLBACK Set to 1 when the DC callback (cbDCEvent in
ESS_CONFIGURATION/ESS_CALLBACKS) shall be
used.

CFG_ESS_EEPROM_ACK_WAIT Time to wait before EEPROM command retry, in

Page 86 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

Source Code Version specific

#define Description

ms. (Happens when ACK missed, max. 10 retries)

CFG_ESS_EEPROM_EMULATION Determines whether the EEPROM is emulated and
the according callback is used.

CFG_ESS_FOE_TRANSFER_TIMEOUT Timeout for FoE transfers: when last data packet is
longer ago than this, transfer is aborted. (in ms)

CFG_ESC_HAVE_READ_FUNC If set to 1 the stack calls the HAL specific function
essHALReadESCMem() instead of using the
internal code to read ESC memory although
CFG_ESC_HAVE_POINTER is set to 1.

CFG_ESC_HAVE_WRITE_FUNC If set to 1 the stack calls the (optional) HAL
specific function essHALWriteESCMem() instead
of using the internal code to read ESC memory
although CFG_ESC_HAVE_POINTER is set to 1.

CFG_ESS_MAX_DEVICES Max devIdx supported, e.g. in essOpen().

CFG_ESS_MAX_EEPROM_WAIT Max. time to wait for cleared busy bit during
EEPROM accesses, in ms.

CFG_ESS_MAX_MBX_LEN Max. mailbox length.
Max. 1486 byte, min. depends on supported
mailbox protocol. (When a very small value is
required: 64 should be suitable)

CFG_ESS_MAX_SM_COUNT Max. sync manager per ESC.

CFG_ESS_MIN_SM_ALLOC Min size to allocate for SM buffer copy, might be
increased to avoid realloc() calls.

CFG_ESS_OD_ALLOW_HANDLE_PDO_PARAMS Determines whether the PDO Parameter functions
are enabled. (essODPDOParamCreate() etc.)

CFG_ESS_OD_ALLOW_HANDLE_SM_TYPE Determines whether ESS_OD_FLAGS_HANDLE_
SM_TYPES is enabled. (See ESS_OD_FLAGS)

CFG_ESS_SERVE_CUSTOM_LED May be set to 0 to completely disable LED code if
CFG_ESS_SERVE_RUN_LED and
CFG_ESS_SERVE_ERR_LED is also 0.

CFG_ESS_SERVE_ERR_LED Set to 1 to let the stack handle the ERR LED.
(Has no effect when HAL has not implemented the
LED access)

CFG_ESS_SERVE_RUN_LED Set to 1 to let the stack handle the RUN LED.
(Has no effect when HAL has not implemented the
LED access)

CFG_ESS_SERVE_STATISTICS Set this to 1 when the stats member of the
ESS_CONFIGURATION shall be served. (That
member must not be NULL then)

CFG_ESS_SM_CALLBACK Set to 1 to allow the application to handle all SM
interrupts. Might be used to “hook” into these
interrupts – really replacing that interrupt handling
by application would lead to almost writing an own
EtherCAT stack.

CFG_ESS_SUPPORT_AOE Determines whether the AoE callbacks are
enabled.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 87 of 94

Source Code Version specific

#define Description

CFG_ESS_SUPPORT_COE Determines whether the CoE functions are
enabled. (When disabled, most of stack
functionality is lost – might be useful only for
minimalistic slaves with an application that handles
even SM buffers, etc. itself)

CFG_ESS_SUPPORT_EOE Determines whether the EoE functions are
enabled.

CFG_ESS_SUPPORT_FOE Determines whether the FoE functions are
enabled.

CFG_ESS_SUPPORT_SOE Determines whether the SoE callbacks are
enabled.

CFG_ESS_SUPPORT_VOE Determines whether the VoE callbacks are
enabled.

CFG_ESS_EXPLICIT_DEVICE_ID Determines whether the stack supports the device
ID request via AL Status Code Register (0x134).

CFG_HAL_EXTERNAL Set this to 1 when HAL resides in an external
library. (Instead of being directly compiled/linked
into the stack)

CFG_HAL_NEEDS_EVENTS Set this to 1 when HAL wants to be informed about
certain events, like “Read an SM buffer” etc.
(Currently only used for AM335x PRU)

CFG_HAVE_STD_INT_TYPES Set this to 1 when e.g. <inttypes.h> was
included previously, else ess.h will try to define
int8_t, etc. itself.
The latter is not recommended, as the stack’s
definitions are only rudimentary (but essOpen()
will fail when a type is not of expected size).

CFG_ESS_DISABLE_DEPRECATED Set this to 1 if functions/macros etc. that exist only
for compatibility reasons shall be removed – might
save some RAM / code size

CFG_HAL_USE_SYNC0_IRQ Set to 1 if your HAL should handle a direct SYNC0
indication instead of using SYNC0 indication via
PDI interrupt.

CFG_HAL_USE_SYNC1_IRQ Set to 1 if your HAL should handle a direct SYNC1
indication instead of using SYNC1 indication via
PDI interrupt.

Page 88 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

Source Code Version specific

4.2.1 Saving RAM
Some defines might be tweaked to decrease RAM usage:

• Lower CFG_ESS_MAX_DEVICES to the actual number of devices that shall be supported,
usually only 1 slave device is used

• Lower CFG_ESS_MAX_MBX_LEN to the actual allowed maximum mailbox size. For many
cases a small mailbox (e.g. 128 byte) is suitable

• Set CFG_ESS_MIN_SM_ALLOC to the largest of the “Outputs”/”Inputs” SM length.

Example: Max. 16 byte input data and max. 32 byte output data: set this to 32

• Set CFG_ESS_COE_MAX_ITEMS_PER_PDO_OBJECT to the number of items in your PDO
with the most items.

Example: Two PDOs exist, one has 3 entries, one has 5 entries: set this to 5

• Set CFG_ESS_COE_MAX_ITEMS_PER_PDOASSIGN_OBJECT to the max. number of PDOs
assigned to one SM.

Example: Three PDOs exist, one can only be assigned to “Inputs” SM, the other two can be
assigned to “Outputs”: set this to 2

• Set CFG_ESS_COE_OBJECT_LIST_INCREMENT to the total number of objects (not
including entries).

Make sure all objects are counted, especially don’t forget the objects that are created by
e.g. essODAddGenericObjects()

• Try to find a reasonable value for CFG_ESS_COE_ENTRY_LIST_INCREMENT.

When an entry is added to an object (by essODEntryAdd()) the pointer list within the
object is increased by this many items if the entry does not fit any more.

There’s no general rule for a good value, e.g. with many objects that have only few items a
smaller value might save RAM, but it will also increase calls to realloc() – which might
be even worse

• Set CFG_ESS_COE_MAPPED_LIST_INCREMENT to the max. number of entries (not PDOs)
that can be mapped to one SM.

Example: Two input PDOs with 3 entries each exist and they can be mapped at the same
time: set this to 6

• Disable VoE, EoE, etc. when not needed. Set CFG_ESS_SUPPORT_xOE to 0 then

• When “SDO Information Service” is not needed by your application, disable it by setting
CFG_ESS_COE_SUPPORT_SDO_INFO_SERVICE to 0

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 89 of 94

Source Code Version specific

4.2.2 CFG_ESS_SERVE_ERR_LED
Stack Error LED handling:

LED state Set when

ESC_LED_STATE_OFF State changed successfully to Init or Op.

ESC_LED_STATE_BLINK State change failed.

ESC_LED_STATE_FLASH_1 Application called essIndicateError().

A watchdog time out is not handled by the stack, i.e. the application has to set the error LED to
ESC_LED_STATE_FLASH_2 then manually – by essSetLEDState().

4.2.3 CFG_ESS_SERVE_RUN_LED
Stack RUN LED handling:

LED state Set when EtherCAT state is

ESC_LED_STATE_OFF Init

ESC_LED_STATE_FLICKER BootStrap

ESC_LED_STATE_BLINK PreOp

ESC_LED_STATE_FLASH_1 SafeOp

ESC_LED_STATE_ON Op

Page 90 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

Source Code Version specific

4.3 HAL
Following functions have to be implemented by the HAL. Use .../hal/dummy/essHAL.c as
template when creating one from scratch. (.../hal/linux/essHAL.c might be used as an
example, too)

The devIdx parameter starts at 0, where 0 shall be the first EtherCAT controller found in the
system.

reserved parameters will be set to NULL by the stack, if this is not the case, HAL shall fail and
return ESS_RESULT_INVALID_ARG.

4.3.1 essHALOpen()
Called when device is opened. No other HAL function for that devIdx will be called before this
one.

ESS_RESULT essHALOpen(ESS_DEVICE_INDEX devIdx);

HAL usually handles global initializations for that dev here.

4.3.2 essHALClose()
Called when device is closed. No other HAL function for that devIdx will be called after this one
(unless reopened by essHALOpen()).

ESS_RESULT essHALClose(ESS_DEVICE_INDEX devIdx);

HAL usually handles global finalizations for that dev here.

4.3.3 essHALMapESC()
Called only when CFG_ESC_HAVE_POINTER is not 0.

ESS_RESULT essHALMapESC(ESS_DEVICE_INDEX devIdx, void** escPointer);

Shall map the ESC memory and return a pointer to that memory via the escPointer parameter.

4.3.4 essHALUnmapESC()
Called only when CFG_ESC_HAVE_POINTER is not 0.

ESS_RESULT essHALUnmapESC(ESS_DEVICE_INDEX devIdx);

Might unmap the ESC memory, i.e. stack will not use the pointer acquired by essHALMapESC()
any more.

4.3.5 essHALGetTime()
ESS_TIMESTAMP essHALGetTime(void);

Shall return a 32 bit time stamp. In milliseconds, must wrap after 0xffffffff.

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 91 of 94

Source Code Version specific

4.3.6 essHALStart()
ESS_RESULT essHALStart(ESS_DEVICE_INDEX devIdx, ESS_HAL_CALLBACK* isr,
 ESS_HAL_CALLBACK* cyclicCallback,
 uint32_t cyclicInterval, void* cbData);

Shall start the stack’s main loop, i.e. when successfully started it must return only when
essHALStop() is called.

Must call cyclicCallback every cyclicInterval microseconds, and must call isr when an
interrupt occurs – both with cbData as argument.

isr is optional, i.e. it’s NULL when stack only wants the cyclic callback.

4.3.7 essHALStop()
ESS_RESULT essHALStop(ESS_DEVICE_INDEX devIdx);

Shall stop the stack’s main loop, i.e. stack’s call to essHALStart() shall return with
ESS_RESULT_SUCCESS. If called when already stopped it shall return ESS_RESULT_SUCCESS
too.

4.3.8 essHALReadESCMem()
Called when CFG_ESC_HAVE_POINTER is 0, else essHALMapESC() is called during startup to
request a pointer to the ESC memory assuming that this memory can be accessed directly. The
function is also called if CFG_ESC_HAVE_READ_FUNC is 1.

void essHALReadESCMem(ESS_DEVICE_INDEX devIdx, uint16_t address,
 void* dst, uint16_t len);

Shall read len bytes from ESC memory at address, stored at dst. No swapping must be
performed.

4.3.9 essHALWriteESCMem()
Called when CFG_ESC_HAVE_POINTER is 0, else essHALMapESC() is called during startup to
request a pointer to the ESC memory assuming that this memory can be accessed directly. The
function is also called if CFG_ESC_HAVE_WRITE_FUNC is 1.

void essHALWriteESCMem(ESS_DEVICE_INDEX devIdx, uint16_t address,
 const void* src, uint16_t len);

Shall write len bytes to ESC memory at address, taken from src. No swapping must be
performed.

Page 92 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

Source Code Version specific

4.3.10 essHALSetLEDState()
ESS_RESULT essHALSetLEDState(ESS_DEVICE_INDEX devIdx, ESC_LED_TYPE ledId,
 ESS_BOOL ledOn);

Shall switch a LED on or off. Shall return ESS_RESULT_INVALID_ARG when the given LED is not
supported (it’s called for all LEDs, whether stack handles them or not).

No LED is mandatory – but LED support should match configuration, e.g. ESC_LED_TYPE_ERR
should be supported when CFG_ESS_SERVE_ERR_LED is set to 1.

4.3.11 essHALStackEvent()
void HAL_CALLTYPE essHALStackEvent(ESS_EVENT_DATA* e)

For custom usage by HAL. Stack fires these events when built with CFG_HAL_NEEDS_EVENTS.

4.3.12 essHALIoctl()
Used to implement custom/device specific functions – see essIoctl() in 2.4.24.

essIoctl() forwards functions it does not handle to the HAL.

ESS_RESULT essHALIoctl(ESS_DEVICE_INDEX devIdx, ESS_IOCTL fn,
 void* data, uint32_t sizeOfData);

EtherCAT Slave Stack Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 Page 93 of 94

Order information

5. Order information

Type Properties Order No.

EtherCAT Slave Stack
Source

EtherCAT Slave Stack Source Code Version P.4520.01

Related Hardware:

ECS-PCIe/1100 PCI Express board with EtherCAT slave controller ET1100
incl. driver, stack binary and documentation for Windows
and Linux

E.1100.02

ECS-PCIe/FPGA PCI Express board with EtherCAT IP Core incl. driver,
stack binary and documentation for Windows, Linux and
VxWorks 7 (x86)

E.1106.02

E.1106.04

ECS-PMC/FPGA PMC board with EtherCAT IP Core incl. driver, stack
binary and documentation for Windows, Linux and
VxWorks 7 (x86)

E.1104.02

ECS-XMC/FPGA XMC board with EtherCAT IP Core incl. driver, stack
binary and documentation for Windows, Linux and
VxWorks 7 (x86)

E.1102.02

EtherCAT CD Includes driver, documentation and ESI files for all esd
EtherCAT products as well as trial versions of the
EtherCAT master for different platforms and the
configuration/engineering tool EtherCAT Workbench.

E.1101.01

Table 2: Order information

PDF Manuals
Manuals are available in English and usually in German as well. For availability of English manuals
see table below.
Please download the manuals as PDF documents from our esd website www.esd.eu for free.

Manuals

EtherCAT Slave Stack-ME Manual in English P.4520.21

Table 3: Available manuals

Printed Manuals
If you need a printout of the manual additionally, please contact our sales team: sales@esd.eu for
a quotation. Printed manuals may be ordered for a fee.

Page 94 of 94 Software Manual • Doc. No.: P.4520.21 / Rev. 1.8 EtherCAT Slave Stack

mailto:sales@esd.eu
http://www.esd.eu/

	Abbreviations and terms
	Reference
	1. Introduction
	1.1 Features
	1.2 Requirements
	1.2.1 EtherCAT Slave development in general
	1.2.2 esd EtherCAT Slave Stack

	2. API
	2.1 Usage overview
	2.2 Quick Start
	2.2.1 Opening a device
	2.2.2 Starting the stack
	2.2.3 Running application code
	2.2.4 Creating the CoE object dictionary
	2.2.5 Adding objects to the CoE dictionary
	2.2.6 Accessing CoE entry data
	2.2.7 FoE
	2.2.8 EoE
	2.2.9 AoE/SoE/VoE

	2.3 Configuration
	2.3.1 Sync Manager
	2.3.1.1 Standard Mailbox
	2.3.1.2 Bootstrap Mailbox

	2.3.2 Device Identification
	2.3.3 PDO Mapping
	2.3.4 Process Data Exchange

	2.4 Function description
	2.4.1 essGetVersion()
	2.4.2 essGetTime()
	2.4.3 essFormatResult()
	2.4.4 essOpen()
	2.4.5 essClose()
	2.4.6 essStart()
	2.4.7 essStop()
	2.4.8 essIndicateError()
	2.4.9 essCoESendEmergency()
	2.4.10 essSyncInputs()
	2.4.11 essEEPROMRead()
	2.4.12 essEEPROMWrite()
	2.4.13 essSetLEDState()
	2.4.14 essESCRead()
	2.4.15 essESCWrite()
	2.4.16 essESCRead8()
	2.4.17 essESCRead16()
	2.4.18 essESCRead32()
	2.4.19 essESCWrite8()
	2.4.20 essESCWrite16()
	2.4.21 essESCWrite32()
	2.4.22 essEoESendFrame()
	2.4.23 essGetTag()
	2.4.24 essIoctl()
	2.4.25 CoE object dictionary specific
	2.4.25.1 essODCreate()
	2.4.25.2 essODDelete()
	2.4.25.3 essODObjectAdd()
	2.4.25.4 essODObjectDelete()
	2.4.25.5 essODEntryAdd()
	2.4.25.6 essODEntryDelete()
	2.4.25.7 essODAddArrayObject()
	2.4.25.8 essODAddGenericObjects()
	2.4.25.9 essODUpdatePDOConfiguration()
	2.4.25.10 essODGetPDOConfiguration()
	2.4.25.11 essODUpdatePDOAssignment()
	2.4.25.12 essODGetPDOAssignment()
	2.4.25.13 essODPDOParamCreate()
	2.4.25.14 essODPDOParamUpdateExclude()
	2.4.25.15 essODPDOParamGetState()
	2.4.25.16 essODPDOParamGetControl()
	2.4.25.17 essODPDOParamGetToggle()

	2.5 Callbacks
	2.6 Data types
	2.6.1 ESS_HANDLE
	2.6.2 ESS_BOOL
	2.6.3 ESS_RESULT
	2.6.4 ESS_TIMESTAMP
	2.6.5 ESS_DEVICE_INDEX
	2.6.6 ESC_LED_TYPE
	2.6.7 ESC_LED_STATE
	2.6.8 ESS_OD_FLAGS
	2.6.9 ESS_OD_OBJECT_FLAGS
	2.6.10 ESS_OD_ENTRY_FLAGS
	2.6.11 ESS_OD_PDOPARAM_FLAGS
	2.6.12 ESS_OD_ENTRY_CALLBACK
	2.6.13 ESS_OD_OBJECT_INFOS
	2.6.14 ESS_OD_ENTRY_INFOS
	2.6.15 ESS_CONFIG_FLAGS
	2.6.16 ESS_EVENT
	2.6.17 ESS_DC_EVENT
	2.6.18 ESS_MBX_PACKET
	2.6.19 ESS_CBDATA_CYCLIC
	2.6.20 ESS_CBDATA_COE_EVENT
	2.6.21 ESS_COE_EMERGENCY
	2.6.22 ESS_PDO_ENTRY
	2.6.23 ESS_CBDATA_STATE_REQUEST
	2.6.24 ESS_CBDATA_SM_EVENT
	2.6.25 ESS_CBDATA_INOUTPUTS_ACTIVATE
	2.6.26 ESS_CBDATA_SM
	2.6.27 ESS_CBDATA_COE_READWRITE
	2.6.28 ESS_CBDATA_FOE_OPEN
	2.6.29 ESS_CBDATA_FOE_CLOSE
	2.6.30 ESS_CBDATA_FOE_DATA
	2.6.31 ESS_CBDATA_EOE_SETIPPARAM
	2.6.32 ESS_CBDATA_EOE_SETADDRFILTER
	2.6.33 ESS_CBDATA_EOE_FRAME
	2.6.34 ESS_CBDATA_AOE
	2.6.35 ESS_CBDATA_SOE
	2.6.36 ESS_CBDATA_VOE
	2.6.37 ESS_CBDATA_EEPROM_EMULATION
	2.6.38 ESS_CBDATA_DC
	2.6.39 ESS_CB_STATE_REQUEST
	2.6.40 ESS_CB_SYNCMANAGER
	2.6.41 ESS_CB_OUTPUTS_UPDATED
	2.6.42 ESS_CB_INPUTS_UPDATED
	2.6.43 ESS_CB_COE_EVENT
	2.6.44 ESS_CB_COE_READWRITE
	2.6.45 ESS_CB_FOE_OPEN
	2.6.46 ESS_CB_FOE_CLOSE
	2.6.47 ESS_CB_FOE_DATA
	2.6.48 ESS_CB_INOUTPUTS_ACTIVATE
	2.6.49 ESS_CB_CYCLIC
	2.6.50 ESS_CB_EOE_SETIPPARAM
	2.6.51 ESS_CB_EOE_SETADDRFILTER
	2.6.52 ESS_CB_EOE_FRAME
	2.6.53 ESS_CB_AOE
	2.6.54 ESS_CB_VOE
	2.6.55 ESS_CB_SOE
	2.6.56 ESS_CB_EEPROM_EMULATION
	2.6.57 ESS_CB_DC
	2.6.58 ESS_STATISTICS
	2.6.59 ESS_SM_CONFIGURATION
	2.6.60 ESS_CALLBACKS
	2.6.61 ESS_CONFIGURATION
	2.6.62 ESC_STATE
	2.6.63 ESC_TRANSITION
	2.6.64 SM_TYPE
	2.6.65 ESS_SM
	2.6.66 REG_VAL_ALSTATUSCODE
	2.6.67 COE_CODE
	2.6.68 COE_ACCESS
	2.6.69 COE_DATATYPE
	2.6.70 COE_ABORTCODE
	2.6.71 ­FOE_ERRORCODE
	2.6.72 EOE_RESULTCODE

	3. Object version specific
	3.1 Build

	4. Source Code Version specific
	4.1 Build
	4.1.1 Example

	4.2 essConfig.h
	4.2.1 Saving RAM
	4.2.2 CFG_ESS_SERVE_ERR_LED
	4.2.3 CFG_ESS_SERVE_RUN_LED

	4.3 HAL
	4.3.1 essHALOpen()
	4.3.2 essHALClose()
	4.3.3 essHALMapESC()
	4.3.4 essHALUnmapESC()
	4.3.5 essHALGetTime()
	4.3.6 essHALStart()
	4.3.7 essHALStop()
	4.3.8 essHALReadESCMem()
	4.3.9 essHALWriteESCMem()
	4.3.10 essHALSetLEDState()
	4.3.11 essHALStackEvent()
	4.3.12 essHALIoctl()

	5. Order information

