1. 力の信号を提供 

大型内燃エンジン用の駆動装置では近年、急激な負荷変動に対応する高精度で高応答性のエンジン制御システム(例:燃料供給)を必要としています。エンジンは十分な力を常に供給していること同時に、低燃費で安全な運転パラメータを確保していることが不可欠です。このため、船、コンプレッサ、ポンプシステムなどに取り付けた特別な計測器により、力の信号が制御システムに供給されていることが必要です。力の信号を取得するためには、一般的には、3つの違った方式(a,b,c)があります。

  • a: 流量、温度、圧力などの特定の二次的数量の計測値から力を計算して、力の信号を間接的に取得する。このアプローチでは、計測からくる力の信号の不安定さが非常に高くなります。もうひとつの欠点としては、二次的数量がエンジンパワーを決定するプロセスに同期していないことです。入力シャフト上の特定の二次的数量の計測値から計算して、力の信号を間接的に取得する。
  • b: シャフトのねじれからくるシャフト表面のひずみや、シャフトのねじれ角のどちらかを使用した方式のすべてを含みます。両方の方式では、共に力は、二次的数量の計測を使用して計算されます。
  • c: 力の信号を、入力シャフトの中でトルク(一次的数量)を計測することにより直接的に取得する

 

以下の項で、ドライブトレイン軸上の直接的な力計測(方式c)とドライブトレイン表面上の間接的な力計測(方式b)を比較して、それぞれの計測の不確実性について述べます。

 

 

2. 駆動力計算の基礎

回転するシャフトから伝達する力Pは:

(1)

ここでMはトルクで、nは回転速度。 トルクMは:
(2)

ここで、t はせん断応力で、 はシャフトのモーメント抵抗。 捩じれ応力だけを受けているシャフトの明確な特徴は、両方の主たる垂直応力が同じ絶対値を持っていることです。これを式にすると:

(3)

この場合、ムーアの円の中心は座標の原点にあるので、せん断応力は主たる垂直応力の絶対値と一致する。これを式にすると:

(4)

ここで ׀σ׀ は垂直応力の絶対値。さらに、以下が成立します:

(5)

入力のシャフトは円筒形の中空でない棒状シャフトと仮定する。(1) … (5)より力Pは:

(6)

ねじりシャフトの垂直応力は:

(7)

ここでEは弾性率、μはポアソン比、 はねじりシャフト表面上の、主たるひずみ方向のひずみの絶対値。(6)に(7)を当てはめると、力Pは:

(8)

ひずみ を決定するには2つの方法(A,B)があります。

例A:、ひずみゲージで決定する。 ゲージの公差を原因とする誤差の大きさはテーブル1を参照。
例B:
ひずみ ねじれ角φ を計測して決定する。 以下が適応する:

(9)

入力駆動部の直径d長さ

3. 許容される公差の大きさ

式(8)でしめすように、全てのパラメータを考慮に入れた、AとBの場合では公差より影響を受けます。これは、以下のように評価することができます:

Aでは、ひずみゲージの設置位置の公差を起因とする精度への影響があります。さらに温度による誤差も補正の程度により考慮する必要があります。実際の公差は、ひずみゲージの設置の精度に依存しますが、ここでは論評しません。

詳しい誤差分析をするまでもなく、テーブル1で示すように、前述した方式bを使用した場合、測定機器からくる誤差の総和は主に弾性率E とポアソン比μが占めています。このため、実際上では、3 % 以下になることができず、これよりはるかに高い数値になる場合が多くなります。

4. 力の信号の計測の不確実性を減少させる

方式bによる大きな計測の不確実性を大きく減少させるためには、計測器が接着されているシャフトの部分を、使用する最大トルクでキャリブレーションする必要があります。このためには、負荷をかける器具で段階的に最大値まで負荷をかけていき、計測器からの出力信号をそれぞれの負荷のポイントで記録します。ほぼ直線の特性曲線と十分な計測ポイントの数があれば、キャリブレーションマシンに近い精度を達成できます。

しかしながら、実際にはこの方式を使用するのは困難です。大型の駆動装置シャフト部分をキャリブレーションマシンに移動するのは困難です。またその逆も同様です。さらに、シャフト部分をキャリブレーションマシンに取り付けるために機械的に適応させる必要があり、複雑な工程になりますが、負荷を正しくかけるためには必須となります。

このような困難を避けるには、ドライブトレインのシャフトの表面でなく、ドライブトレインの中でトルクを計測する(方式c)ことです。このためには、設計の段階から導入を計画して、駆動側と被駆動側の間にトルクセンサを設置します。

Mounting of a torque flange in a drive train, with an HBM Torque Flange with a nominal (rated) measuring range of 2MNm

図1:公称値(定格)最大2MNmの測定レンジHBMのトルクセンサを
ドライブトレインの中に設置

トルクセンサは公称(定格)の計測レンジまで(もしくは指定された一部のレンジの範囲内まで)出荷前にキャリブレーションされ検査証が添付されます。計測フランジのタイプにもよりますが、計測の不確実性は公称(定格)の計測レンジの0.03%(フルレンジの)です。(一部のレンジの場合は0.1%) この計測の不確実性はすでにトルクに直接関連した値であり、ひずみや捩じれなどの2次的数量に対してではありません。温度補償が組み込まれているので、計測フランジの仕様値は広い温度範囲でも有効です。

トルクセンサの設置、交換、再キャリブレーションは比較的簡単です。さらに、いろいろな特徴があり、アプリケーションによっては、大きな付加価値となります。

  • 高分解能 (16 ... 19 bit) のトルク信号で最小限の振幅の変動も記録可能
  • 広い帯域幅(最大6kHz) の動的トルク信号でドライブトレイン中の高度な動的プロセスの動的トルク信号(例:ねじり振動)も記録可能
  • 短い信号伝達時間により負荷状態が変化したときに非常に早い制御が可能
  • 堅牢な設計で高い信号安定性で極限の雰囲気で使用可能
  • 優秀な再現性と長期安定性で、補正なしで長期使用が可能 トルクの特性曲線の可視化を、特定の頻度で行い、状況別メンテナンス(CBM) 用のデータを構築できます。

参考資料

Karl Hoffmann
An Introduction to Measurements using Strain Gages
Publisher: Hottinger Baldwin Messtechnik GmbH (1987)

Horst Kuchling
Taschenbuch der Physik
17th edition (2007)
Fachbuchverlag Leipzig im Carl Hanser Verlag

Authors

Eberlein, Dirk
Product and Application Manager, Hottinger Baldwin Messtechnik GmbH

Kleckers, Thomas
Product and Application Manager, Hottinger Baldwin Messtechnik GmbH

Weissbrodt, Klaus
Product and Application Manager, Hottinger Baldwin Messtechnik GmbH

HBMへのお問合せ HBMやHBMの製品について「もっと詳しく知りたい」、「わからないことがある」、「こんな製品を探している」などございましたら、お気軽に下記お問合せフォームでご連絡ください。