arrow_back_ios

Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence
arrow_back_ios

Main Menu

See All Analysis & Simulation Software See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Hand-held Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance
arrow_back_ios

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

T40B With Rotational Speed Measuring System and Reference Pulse

null
The market offers countless options for incremental rotational speed measurement systems. However, these systems are designed solely for measuring rotational speed. Combining rotational speed and torque measurement capabilities in a single measurement sensor imposes unique demands on the measurement of rotational speed:
  • The mechanical and application-specific features of the measurement sensor must not be impaired by the speed measuring system.
  • A high-resolution system that simultaneously allows large relative motion between the rotor and the stator is required.
  • The integrated rotational speed measuring system must not interfere with the transmission of the required nominal (rated) or limit torques.
Integrating the rotational speed measurement system with the transducer greatly facilitates handling. If necessary, the second shaft end is no longer required for a speed measuring system and is available for other tasks, such as an additional torque sensor.

Implementation of a Rotational Speed Measuring System

The magnetic plastic ring's metal carrier is mounted onto the torque transducer's second free sensor, so it is fully integrated. This saves space and significantly facilitates installation. The system is based on contactless sensing of a magnetic pulse wheel using an anisotropic magneto-resistive (AMR) sensor. When the sensor used is subjected to a magnetic field, its resistance value changes, depending on the angle of magnetization and the resistor's direction vector. The magnetic field is modulated by the relative motion between material measure and sensor. The magnetic field is sensed in radial direction. This guarantees a robust and stable signal. The maximum air gap between pulse wheel and sensor is 2.5 mm. This makes the measurement system extremely insensitive to the relative motion between rotor and stator that can result from vibration in the test bench.

Pulse Generation by a Bi-directional Encoder

The magnetic incremental encoder generates pulses when the drive train is rotated. The number of pulses per revolution corresponds to the speed or position. The system available is a bi-directional encoder; that is, the AMR sensor used includes two full bridges for signal acquisition. The two bridges are arranged offset from each other by a quarter of a period. The generated sine and cosine signals are digitized by downstream electronics. The periodic sine and cosine signals are further subdivided by interpolation, thereby further increasing the basic resolution by electronic means. This reduces the quantization error; calculation of the input shaft's current rotational speed provides results that are more precise.

Output Signals

Two square wave signals that are 90 degrees out of phase electrically are available as output signals. The second signal (signal B) enables decoding the direction of motion (right - left). With clockwise rotation (that is, to the right), signal B is one phase ahead of signal A. With a rising edge of signal B, signal A is on 'low level.' This corresponds to logic "0". With anti-clockwise rotation (to the left), signal A is one phase ahead of signal B. With a rising edge of signal A, signal B is on 'high level.' This corresponds to logic "1". The out-of-phase signal pair A and B is also called a quadrature signal, because it allows increasing the resolution further. Signals A and B now generate one pulse per pole pair. The resolution can be increased, for example, with every edge of signal A and B triggering a pulse. This is known as quadruple evaluation. For the T40B and T40FM's rotational speed measuring system, this means that the resolution of 1024 pulses per revolution can be increased to 4096 pulses per revolution. Incremental transmission from the rotational speed measuring system to the drive controller offers the advantage that only two signals are required for transmitting information about direction of motion, speed and relative position. The disadvantage is that the absolute position is no longer known after a power failure because the rotational speed measuring system measures only the change compared to the initial position. With positioning systems, however, it is essential to know the absolute position. For this reason, a so-called reference run is performed at power-on. This requires a reference pulse (0-index).

Reference Signal

Fig. 4 shows the third signal, which is the reference signal (0-index). This signal is generated by a separate sensor, which senses the corresponding magnetic field in axial direction. It is synchronized with the rising edge of signal A. After power-on, the rotational speed measuring system needs to be rotated until the reference pulse has been detected. The absolute value of the angle is available at the latest after one revolution. This third track generates one pulse per full revolution. Determining the rotor position or the positioning accuracy demands high angular resolution. With quadruple evaluation of the quadrature signal, the system provides an angular accuracy of 212 steps. The output stages have been implemented as a symmetric 5V (TTL)-RS422 complementary signal. Differential signal transmission offers the advantage that undesired interference fields affect all signals to the same extent and therefore do not change the signal difference. As a result, digital signal transmission is highly immune to interference, so it is the ideal solution for long cable lengths or for use in areas subject to electromagnetic fields.

Advantages

  • High accuracy: 1024 pulses/revolution
  • Angular accuracy of up to 212 steps
  • Integrated sensor optimized for magnetic fields
  • High signal quality and signal-to-noise ratio
  • No additional adjustment between pulse wheel and sensor required
  • Air gap of up to 2.5 mm between pulse wheel and sensor
  • Protected against environmental influences