

Electric Motor NVH Case Study and Analysis

Agenda

- 1. Introduction to vibration in electric machines
- 2. Measurement of NV and Electrical signals
- 3. Efficiency mapping with vibration
- 4. NVH Ramps with efficiency

Introduction to Vibration In Electric Machines

Simple Measurement Chain - Electric & Mechanical Measurements

HOTTINGER BRÜEL &

Why Measure Both?

Benefits of combined testing

- Single test to do both
 - Reduction costs
- Communication between groups
 - Faster development
 - Easier communication to vehicle simulation
- Sound design
- Fatigue characterization
- Failure testing
- Resonance tracking
- End of line characterization

Propeller motor startup with load and vibration measurements

eDrive testing

Case Study

Characterization of a Traction Motor

Test Machine

- Three phase traction motor
- PM & wound field excitation
- Eight poles

Tests Run

- Point by point efficiency map
- Ramps at different loadings

Measured Quantities

- Inverter voltage & current
- Torque and Speed
- Vibration
- Noise

Acoustic camera picture of a test motor

Electric Powertrain and NVH Testing

Efficiency Mapping With Vibration

Efficiency Mapping

- Series of static torque and speed points where efficiency is measured
- Record many signals
 - torque & speed
 - Voltage & current
 - Control
 - Vibration
- Can monitor how control effects vibration
 - Avoid certain states
 - Faster communication with other teams

Efficiency & Vibration Mapping

- From these acquired points a "Efficiency Map" is often generated
 - X Speed (RPM)
 - Y Torque (Nm)
 - Contour Efficiency %
- Gives an idea of the optimal operation
- Can also be plotted for RMS vibration
 - Shows general trend of the vibration
 - Identifies hot spots
- Allows for analysis of system level
 interactions

eDrive testing

Ramps With Efficiency

Electrical Analysis of Motors and Drives During Sweeps

- A ramp test involves setting a fixed torque and ramping speed
 - Common NVH test
- Efficiency can be measured with a dynamic measurement technique
- Understand how electrical state effects vibration
- Single test for NVH, efficiency, calibration

Ramp test showing state, efficiency, noise, vibration, and control variables during a ramp test.

lq – Id – Ifield – Torque – Speed – Efficiency– Accel – Mic –

Spectral Analysis of the Inverter

- Test took place in acoustically noisy environment
- Clear traces of switching noise
- Relation between voltage, current, acceleration and noise
- Allows us to identify source path contribution to noise and vibration

Strong currents blades line

up with weak acceleration

Spectrum plots of acceleration, microphone, and current for full loading ramp tests from 0-3000RPM

Efficiency from ramps

- Ramps efficiency can be used to plot efficiency
 - Requires dynamic power measurement
 - Requires high bandwidth torque
- Results can be used by NVH to gauge how their changes effect efficiency
- Close correlation to point by point map

Questions?

Mitch Marks Business Development at HBK -Hottinger, Brüel & Kjær

HBK Electric Power Test

