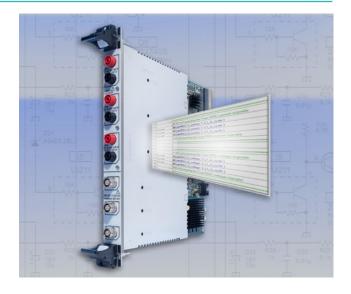


DATA SHEET

GEN series GN310B (GN311B) 3 channel power card ± 1500 V DC CAT III and ± 2 A

SPECIAL FEATURES

- Accuracy 0.015% of reading, 0.02% of range
- 3 power channels (U and I)
- 5 voltage ranges up to ± 1500 V DC CAT III
- 7 current ranges up to ± 2 A
- 2 Digital channels for torque and speed
- Real-time computations of RMS, P, S, Q, λ, η, cosφ, THD, i_alpha, i_ beta and more
- Full bandwidth power calculations
- Fundamental power calculations
- Phase matched anti-alias protection
- 1 ms latency real-time output
- 18 bit at 2 MS/s (200 kS/s) sample rate
- Triggering on real-time power results


GN310B/GN311B Functions and Benefits

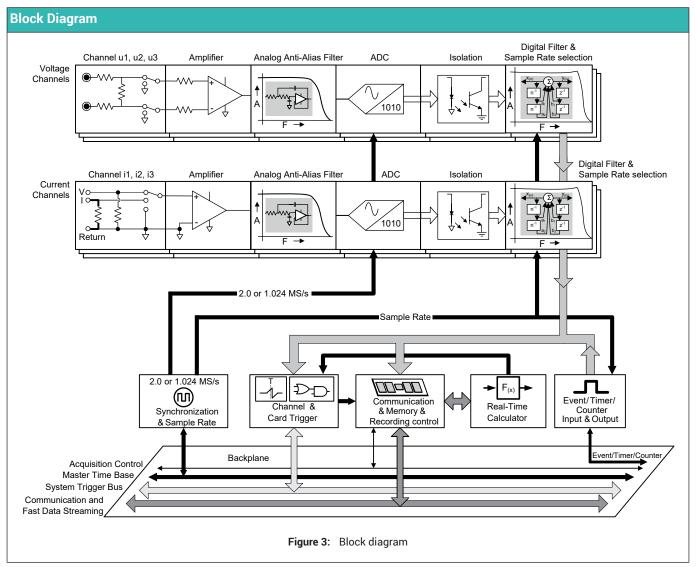
The power card GN310B offers three power channels, each one consisting of one voltage input and one current (or voltage) input.

The voltage inputs start at \pm 50 V to \pm 1500 V in five ranges, allowing to scale the inputs to best match your signal level to achieve minimum measurement uncertainty.

The voltage input isolation is tested up to 7.4 kV RMS supporting safe measurements up to 1000 V RMS CAT IV and 1500 V DC CAT III.

The current inputs start at \pm 75 mA to \pm 2 A, in seven range and uses internal burden resistors to support all common zero flux current transducers on the market. All current inputs can be switched to "voltage mode" to connect current clamps or Rogowski coils. The current inputs are electrically isolated up to 60 V to avoid current loops.

Full wide band power measurements allows for optimum efficiency calculations, where the optional unique multi stage anti-alias digital Bessel / Butterworth or Elliptic filters using 11 or 12 orders guarantees superior phase match, ultra-low noise and alias free results in noisy environments. The four Timer/Counters and the G070A torgue/RPM adapter allow for direct interfacing to HBM torgue transducers or other torque and speed sensors. The real-time formula database offers predefined or custom analysis. Power calculations like RMS, P, Q, S, $\cos\varphi$, λ , or η come out of the box, be it for wideband signals or the fundamental only. Advanced formulas allow real-time transformations to obtain α and β space vectors or d, g currents of an electric drive system. All results can be transferred to an automation system in real-time using GEN DAQ API and the optional CAN FD or EtherCAT[®] (1 ms latency) interfaces of the mainframe.


Capabilities Overview							
Model	GN310B	GN311B					
Maximum sample rate per channel	2 MS/s	200 KS/s					
Memory per card	2 GB						
Analog channels	6						
Anti-alias filters	Fixed bandwidth analog AA-filter combined with	sample rate tracking digital AA-filter					
ADC resolution	18 bit						
Isolation	Channel to channel and channel to chassis						
Input type	High voltage: analog, isolated, balanced differential Current / low voltage: analog, isolated, unbalanced differential						
Passive voltage/current probes	Voltage channels support special designed mat Current channels in voltage mode support curre						
Sensors	Current channels in current mode support curre	nt transducers					
TEDS	Not supported						
Real-time formula database calculators (option)	Extensive set of user programmable math routir	nes with triggering on calculated results					
Digital Event/Timer/Counter	16 digital events and 4 Timer/Counter channels						
Standard data streaming (CPCI up to 200 MB/s)	Not supported						
Fast data streaming (PCIe up to 1 GB/s)	Supported						
Slot width	1						

Mainframe Support						
	GEN2tB	GEN4tB	gen7ta / gen7tb	GEN17tA / GEN17tB	GEN3iA	GEN7iA / GEN7iB
GN310B/GN311B		1	Ye	es		
GEN DAQ API	Yes Yes ⁽¹⁾					
EtherCAT®	No Yes No				0	
CAN/CAN FD		Y	es		Ν	0

(1) Close Perception to enable GEN DAQ API access.

Supported Analog Sensors and Probes								
Amplifier mode	Supported analog sensors and probes	Features, Cabling and Accessories						
Power measurement	 Current transducers Current probes Electrical voltages single-ended and differential Active single-ended voltage probes Active differential voltage probes 	 3 Power channels (Voltage and Current) Voltage input: ± 50 V up to ± 1500 V Direct current input for: ± 75 mA up to ± 2.0 A Voltage as current input: ± 50 mV up to ± 20 V 5 kV RMS certified probe Current probes 						

Supported Digital Sensors (TTL Level Input)							
imer counter Input type	Supported digital sensors	Features					
Signal Direction Reset 3/4 Count up Figure 1: Uni and Bi-directional clock	 HBM Torque sensors Torque sensors Speed sensors Position sensors 	 Angle measurement Frequency / RPM measurement Count/position measurement Count frequency up to 5 MHz Digital filter on input signals Several reset options RT-FDB can add a calculated Frequency/ RPM channel based on the angle measurement 					
Signal Direction J2 J3 J4 J3 J2 J1 Wheel rotates clock wise Wheel rotates counter clock wise Figure 2: ABZ Incremental Encoder (Quadrature)	 HBM Torque sensors Torque sensors Speed sensors Position sensors 	 Angle measure Frequency / RPM measurement Count/position measurement Count frequency up to 2 MHz Digital filter on input signals Single, dual and quad precision count Transition tracking to avoid count drift Several reset options RT-FDB can add a calculated Frequency/ RPM channel based on the angle measurement 					

Specifications and measurement uncertainty

Specifications are established using 23 °C environmental temperature. For measurement uncertainty improvements, the system could be readjusted at a specific environmental temperature to minimize the impact of temperature drift.

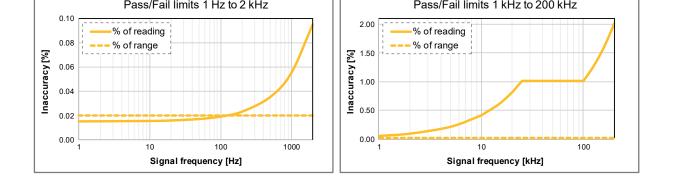
Any analog amplifier error source follows the = ax + b curve.

a % of reading error, represents the linear increasing error due to the increase of the input voltage: often referred to as gain error.

b % of range error, represents the error when measuring 0 V; often referred to as offset error.

For measurement uncertainty these errors can be considered independent error sources.

Noise is not a separate error source outside of the standard specification. Noise specifications are added separately in case you need dynamic accuracy on sample by sample level. Only for sample by sample measurement uncertainty add the RMS noise error. For e.g. power accuracy, the RMS noise error is already included in the power specifications.


Pass/Fail limits are rectangular distributed specifications, therefore measurement uncertainty is 0.58 * specified value.

Adding/removing or swapping cards

The specifications listed are valid for cards that have been calibrated and are used in the same mainframe, mainframe configuration and slots as they were at the time of calibration.

If cards are added, removed or relocated the thermal conditions of the card will change, resulting in additional thermal drift errors. The maximum expected error can be up to two times the specified Reading and Range error as well as 10 dB reduced common mode rejection. Recalibration after configuration changes is therefore highly recommended.

Power Wideband Pass/Fail Limits									
0.33 Ω shunt: ± 75 mA, ± 150 mA, ± 300 mA, ± 0.6 A and ± 1.2 A									
	DC	1 Hz < f ≤ 25 kHz	25 kHz < f ≤ 100 kHz	100 kHz < f ≤ 200 kHz	200 kHz < f ≤ 500 kHz				
Reading error DC and all power factors	0.015% ⁽¹⁾	0.015% + 0.04(fkHz)%	1.015%	0.015% + 0.01(fkHz)%	2.015% + 0.04(fkHz - 200kHz)%				
Range error DC	0.02% + 2.5 mW ⁽²⁾								
Range error 0.5 < power factor <=1		0.02%	0.02%	0.02%	0.02%				
Range error 0.01 ≤ power factor ≤ 0.5		0.04%	0.04%	0.04%	0.04%				
$0.1~\Omega$ shunt: ± 1.0 A and	± 2.0 A								
	DC	1 Hz < f ≤ 25 kHz	25 kHz < f ≤ 100 kHz	100 kHz < f ≤ 200 kHz	200 kHz < f ≤ 500 kHz				
Reading error DC and all power factors	0.02%	0.02 + 0.04(fkHz)%	1.02%	0.02 + 0.01(fkHz)%	2.02% + 0.04 (fkHz - 200kHz)%				
Range error DC	0.04% + 2.5 mW								
Range error 0.5 < power factor <=1		0.04%	0.04%	0.04%	0.04%				
	ass/Fail limits 1	Hz to 2 kHz		Pass/Fail limits 1	kHz to 200 kHz				
0.10									

Figure 4: Power pass/fail limits (0.33 Ω shunt), Wideband and 0.5 \leq Power Factor \leq 1

(1) For \pm 75 mA range, the DC Reading error is 0.02%

(2) For \pm 75 mA range, the DC Range error is 0.04% + 2.5 mW

Power Measurement Uncertainty Examples

For DC Power the power range is defined from 0 W to maximum DC voltage * DC current.

For RMS power only when voltage and current sine waves are used without harmonic distortions, the maximum RMS power would be 0 to (Max DC voltage / V2) * (Max DC current/ V2). However, in real world applications these signals have larges distortions, so maximum RMS power is harder to define.

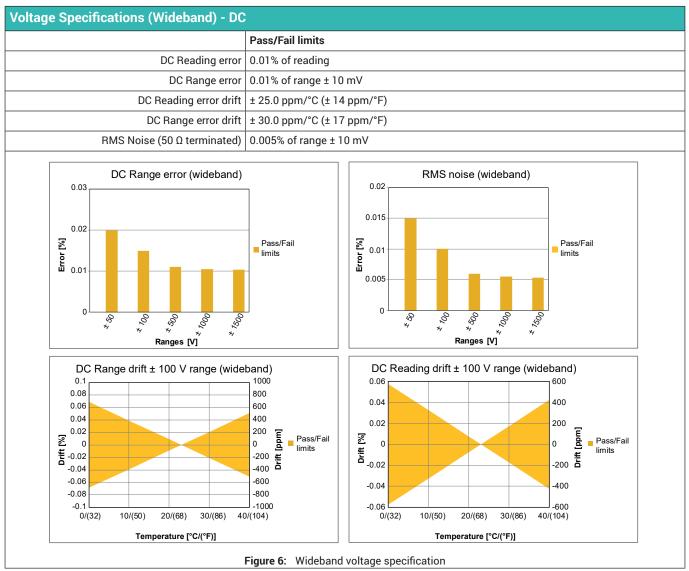
Specification for both DC and RMS power therefore are all based on the power range calculated for DC signals. This creates a consistent spec, especially if both DC and RMS components exist in the same power signal to be measured. As power calibration is a chain calibration, the individual voltage and current specifications can be excluded for power measurement uncertainty.

medourement uncertainty.				
Comparing the same reading in two different pow	ver ranges	Power range		
400 W DC	600 W	1200 W		
reading error	0.58 * 0.015% of reading	34.8 mW	34.8 mW	
range error	0.58 * (0.02% of range + 2.5 mW)	71.05 mW	140.65 mW	
Total error	$\sqrt{ m reading} m error^2$ + range error 2	79.11 mW	144.89 mW	
Uncertainty value (k=1)	total error / reading * 100%	0.0198%	0.0362%	
250 W RMS at 10 kHz & power factor 1		600 W	1200 W	
reading error	0.58 * (0.015 + (0.04 * kHz))% of reading	602 mW	602 mW	
range error	0.58 * 0.02% of range	69.6 mW	139.2 mW	
Total error	$\sqrt{ m reading error^2 + range error^2}$	606.0 mW	617.9 mW	
Uncertainty value (k=1)	total error / reading * 100%	0.242%	0.247%	

Power Pass/Fail Limit Overview: 0.33 Ω Shunt

(Wideband and 0.5 < power factor <=1). All values are calculated using the specifications of the Power Wideband Pass/Fail Limits. The listed value is the maximum inaccuracy that exist at the end of the frequency band. For more accurate values use the specified math in the table as listed in the Power Wideband Pass/Fail Limits.

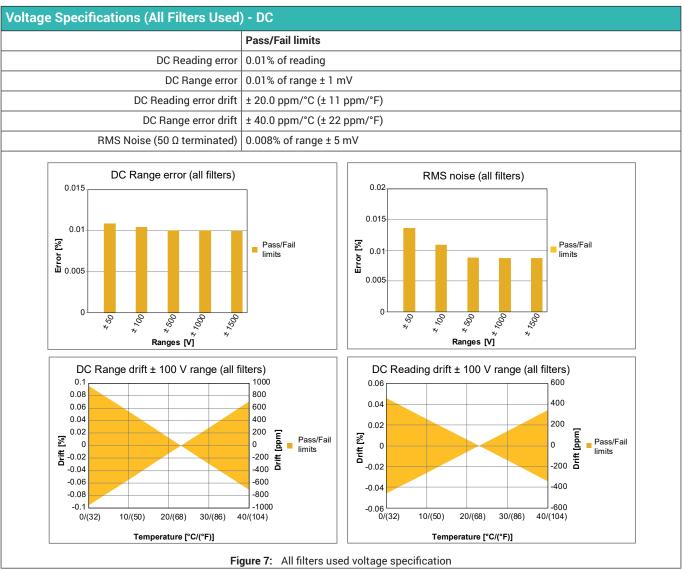
F	ower ranges		Signal frequency (f)							
Voltage	Current	Power	DC	1 Hz < f ≤ 100 Hz	0.1 kHz < f ≤ 1 kHz	1 kHz < f ≤ 10 kHz	10 kHz < f ≤ 100 kHz	100 kHz < f≤ 200 kHz	200 kHz < f≤ 500 kHz	
	± 1.2 A DC	1800 W	0.015%	0.019%	0.055%	0.415%	1.015%	2.015%	14.015%	reading
	[0.84 A RMS]		0.020%	0.020%	0.020%	0.020%	0.020%	0.020%	0.020%	range
	± 0.6 A [0.42 A RMS]	900 W	0.015% 0.020%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
± 1500 V DC [1060 V RMS]	± 0.3 A [0.21 A RMS]	450 W	0.015% 0.021%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.15 A [0.10 A RMS]	225 W	0.015% 0.021%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.075 A [0.05 A RMS]	112.5 W	0.020% 0.041%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 1.2 A DC [0.84 A RMS]	1200 W	0.015% 0.020%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.6 A [0.42 A RMS]	600 W	0.015% 0.020%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
± 1000 V DC [700 V RMS]	± 0.3 A [0.21 A RMS]	300 W	0.015% 0.021%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.15 A [0.10 A RMS	150 W	0.015% 0.022%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.075 A [0.05 A RMS]	75 W	0.020% 0.043%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 1.2 A DC [0.84 A RMS]	600 W	0.015% 0.020%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.6 A [0.42 A RMS]	300 W	0.015% 0.021%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
± 500 V DC [350 V RMS]	± 0.3 A [0.21 A RMS]	150 W	0.015% 0.022%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.15 A [0.10 A RMS]	75 W	0.015% 0.023%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.075 A [0.05 A RMS]	37.5 W	0.020% 0.047%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 1.2 A DC [0.84 A RMS]	120 W	0.015% 0.022%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.6 A [0.42 A RMS]	60 W	0.015% 0.024%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
± 100 V DC [70 V RMS]	± 0.3 A [0.21 A RMS]	30 W	0.015% 0.028%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.15 A [0.10 A RMS]	15 W	0.015% 0.037%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.075 A [0.05 A RMS]	7.5 W	0.020% 0.073%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 1.2 A DC [0.84 A RMS]	60 W	0.015% 0.024%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.6 A [0.42 A RMS]	30 W	0.015% 0.028%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
± 50 V DC [35 V RMS]	± 0.3 A [0.21 A RMS]	15 W	0.015% 0.037%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.15 A [0.10 A RMS]	7.5 W	0.015% 0.053%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range
	± 0.075 A [0.05 A RMS]	3.75 W	0.020% 0.107%	0.019% 0.020%	0.055% 0.020%	0.415% 0.020%	1.015% 0.020%	2.015% 0.020%	14.015% 0.020%	reading range

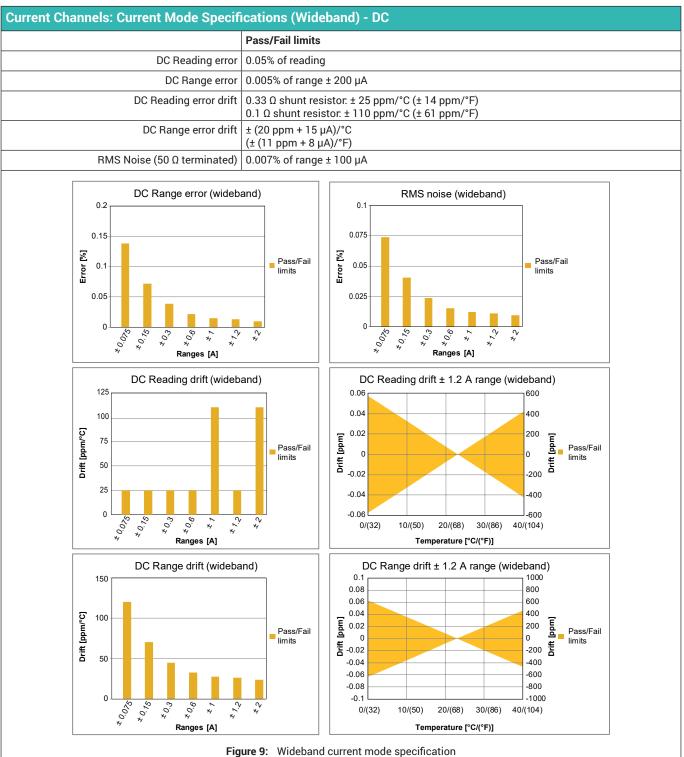

Power Pass/Fail Limit Overview: 0.1 Ω Shunt

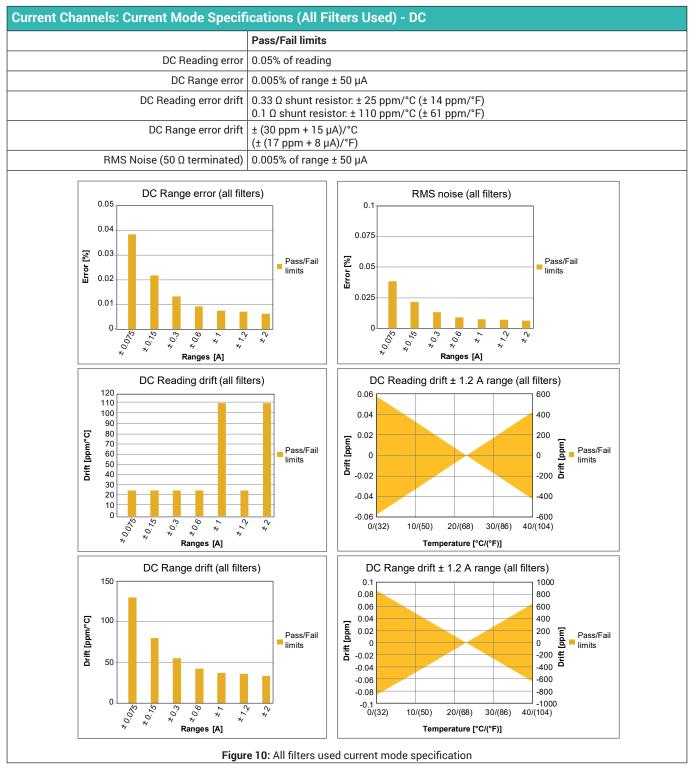
(Wideband and 0.5 < power factor <=1).

All values are calculated using the specifications of the Power Wideband Pass/Fail Limits. The listed value is the maximum inaccuracy that exist at the end of the frequency band. For more accurate values use the specified math in the table as listed in the Power Wideband Pass/Fail Limits.

F	Power ranges		Signal frequency (f)							
Voltage	Current	Power	DC	1 Hz < f ≤ 100 Hz	0.1 kHz < f ≤ 1 kHz	1 kHz < f ≤ 10 kHz	10 kHz < f ≤ 100 kHz	100 kHz < f≤ 200 kHz	200 kHz < f≤ 500 kHz	
± 1500 V DC	± 2.0 A [1.40 A RMS]	3000 W	0.020% 0.040%	0.020% 0.040%	0.060% 0.040%	0.420% 0.040%	1.020% 0.040%	2.020% 0.040%	14.020% 0.040%	reading range
[1060 V RMS]	± 1.0 A [0.70 A RMS]	1500 W	0.020% 0.040%	0.020% 0.040%	0.060% 0.040%	0.420% 0.040%	1.020% 0.040%	2.020% 0.040%	14.020% 0.040%	reading range
± 1000 V DC	± 2.0 A [1.40 A RMS]	2000 W	0.020% 0.040%	0.020% 0.040%	0.060% 0.040%	0.420% 0.040%	1.020% 0.040%	2.020% 0.040%	14.020% 0.040%	reading range
[700 V RMS]	± 1.0 A [0.70 A RMS]	1000 W	0.020% 0.040%	0.020% 0.040%	0.060% 0.040%	0.420% 0.040%	1.020% 0.040%	2.020% 0.040%	14.020% 0.040%	reading range
± 500 V DC	± 2.0 A [1.40 A RMS]	1000 W	0.020% 0.040%	0.020% 0.040%	0.060% 0.040%	0.420% 0.040%	1.020% 0.040%	2.020% 0.040%	14.020% 0.040%	reading range
[350 V RMS]	± 1.0 A [0.70 A RMS]	500 W	0.020% 0.041%	0.020% 0.040%	0.060% 0.040%	0.420% 0.040%	1.020% 0.040%	2.020% 0.040%	14.020% 0.040%	reading range
± 100 V DC	± 2.0 A [1.40 A RMS]	200 W	0.020% 0.041%	0.020% 0.040%	0.060% 0.040%	0.420% 0.040%	1.020% 0.040%	2.020% 0.040%	14.020% 0.040%	reading range
[70 V RMS]	± 1.0 A [0.70 A RMS]	100 W	0.020% 0.043%	0.020% 0.040%	0.060% 0.040%	0.420% 0.040%	1.020% 0.040%	2.020% 0.040%	14.020% 0.040%	reading range
± 50 V DC	± 2.0 A [1.40 A RMS]	100 W	0.020% 0.043%	0.020% 0.040%	0.060% 0.040%	0.420% 0.040%	1.020% 0.040%	2.020% 0.040%	14.020% 0.040%	reading range
[35 V RMS]	± 1.0 A [0.70 A RMS]	50 W	0.020% 0.045%	0.020% 0.040%	0.060% 0.040%	0.420% 0.040%	1.020% 0.040%	2.020% 0.040%	14.020% 0.040%	reading range


Voltage Channels			
Channels	3 high voltage		
Connectors	Fully isolated 4 mm banana plugs (plastic), 2 per channel (red and black)		
Input type	Analog, isolated, balanced differential		
Input impedance	5 MΩ ± 1% // 4 pF ± 20%		
Input coupling modes	DC, GND		
Ranges	± 50 V, ± 100 V, ± 500 V, ± 1000 V and ± 1500 V		
Offset	± 50% in 1000 steps (0.1%) ± 1000 V range, ± 25% offset ± 1500 V range has fixed 0% offset		
CAT rating			
Differential input	1500 V DC CAT III, 1000 V CAT IV		
Input to chassis	1000 V CAT III, 600 V CAT IV		
Common mode (referred to system ground)			
Rejection (CMR)	> 60 dB @ 80 Hz (80 dB typical)		
Maximum common mode voltage	1000 V RMS		
100 10 10. 10. 10.0 10.0 10.0 10.0	Common mode response		
Figure	5: Common mode response (Voltage Channels)		
Maximum nondestructive differential input voltage	2000 V RMS		
Overload recovery time	Restored to 0.1% accuracy in less than 5 μs after 200% overload		

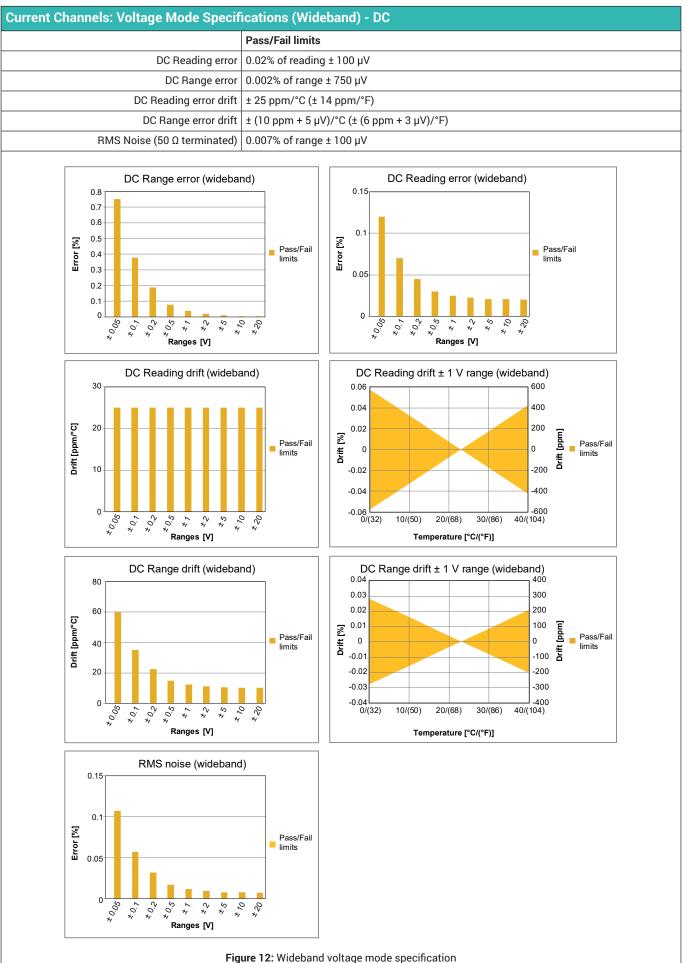

Voltage Specifications (Wideband) - AC

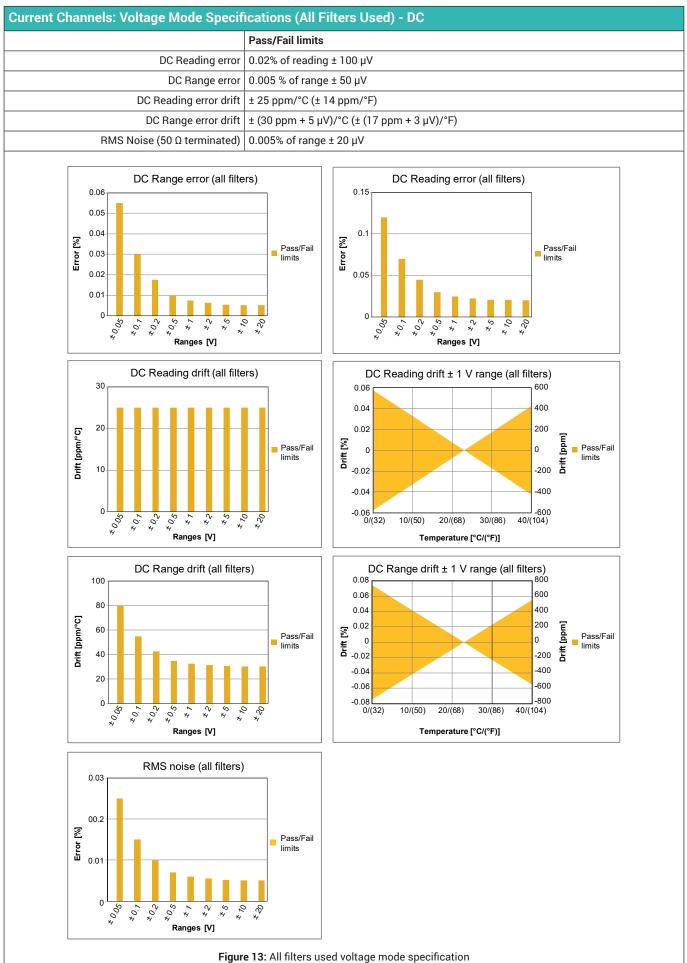

All values are calculated using the voltage channels inaccuracy specifications. The listed value is the maximum inaccuracy that exist at the end of the frequency band. For more accurate values use the specified math in the voltage channels inaccuracy specification table.

Voltage range	Signal frequency (f)										
	1 Hz < f ≤ 100 Hz	100 Hz < f ≤ 1 kHz	1 kHz < f ≤ 20 kHz	20 kHz < f ≤ 100 kHz	100 kHz < f ≤ 200 kHz	200 kHz < f ≤ 500 kHz					
All ranges (±50 V, ±100 V, ±500	0.010%	0.025%	max 0.806%; (0.025 + 0.6*log(fkHz)) %	max 1.225%; (0.025 + 0.6*log(fkHz)) %	max 3.225%; (0.020*(fkHz) - 0.775) %	max 9.225%; (0.020*(fkHz) - 0.775) %	reading				
V, ±1000 V, ±1500 V)	0.010%	0.010%	0.010%	0.010%	0.010%	0.010%	range				

Current Channels: Current Mode			
Channels	3 current		
Connectors	LEMO connector, 1 per channel		
Input type	Analog, isolated, unbalanced differential		
Input impedance	< 0.6 Ω (shunt resistor plus protection)		
Input coupling modes	DC, GND (current path stays closed)		
Ranges	± 0.075 A, ± 0.15 A, ± 0.3 A, ± 0.6 A, ± 1.0 A, ± 1.2 A, ± 2.0 A		
Offset	0% offset (no offset correction)		
Built-in shunt resistors	0.33 Ω, 5 ppm/°C (± 0.075 A, ± 0.15 A, ± 0.3 A, ± 0.6 A, ± 1.2 A) 0.1 Ω, 20 ppm/°C (± 1.0 A, ± 2.0 A)		
Common mode (referred to system ground)			
Rejection (CMR)	< 10 µA/V @ 80 Hz		
Maximum common mode voltage	30 V RMS		
Figure 8: Con	Common mode response All ranges Di 0.1 1 1 0 100 1000 Frequency [kHz] nmon mode response (Current Channels: Current Mode)		
Maximum nondestructive current	± 2.5 A DC Internally protected with resettable PTC fuses. Note: PTC fuses, when tripped, need time to cool down to meet the input impedance specification.		
Isolation voltage	60 V DC		

Current channels, Current mode Pass/Fail Limits Overview - AC

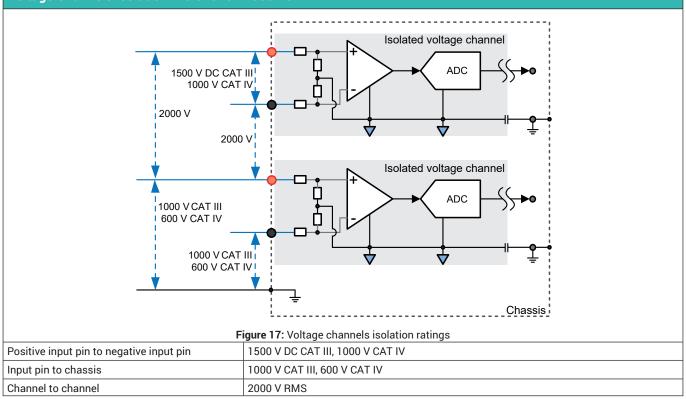

All values are calculated using the current channels, current mode inaccuracy specifications. The listed value is the maximum inaccuracy that exist at the end of the frequency band. For more accurate values use the specified math in the current channels, current mode inaccuracy specification table.


Shunt resistor		Signal frequency (f)					
	1 Hz < f ≤ 100 Hz	100 Hz < f ≤ 1 kHz	1 kHz < f ≤ 10 kHz				
Pass/Fail limit at 0.33 Ω							
0.33 Ω shunt ⁽¹⁾	0.010%	max 0,21%	max 0,41%	na a din n			
	const.	(0.21 + 0.2*	reading				
	0.010%	0.010%	0.010%	range			
Pass/Fail limit at 0.1 Ω	÷						
0.1 Ω shunt ⁽²⁾	0.010%	max 0,31%	max 0,61%	na a din n			
	const.	(0.31 + 0.3*	reading				
	0.020%	0.020%	0.020%	range			

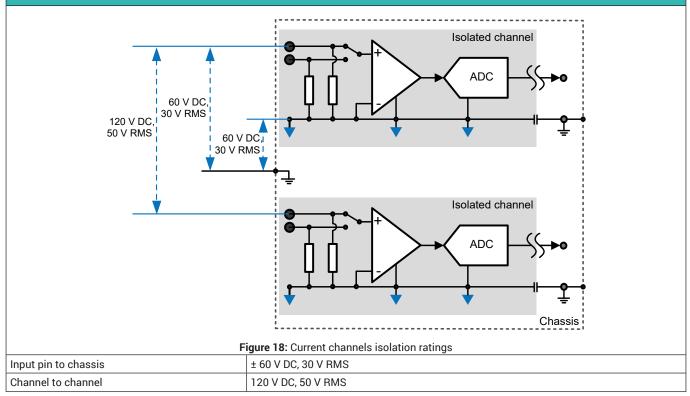
(1) ± 75 mA, ± 150 mA, ± 300 mA, ± 0.6 A and ± 1.2 A

(2) ± 1.0 A and ± 2.0 A

Current Channel: Voltage Mode					
Channels		3 voltage			
Connectors		LEMO connector, 1 per channel			
Input type		Analog, isolated, unbalanced differential			
Input impedance		1 MΩ ± 1% // 40 pF ± 10%			
Input coupling modes		DC, GND			
Ranges		\pm 50 mV, \pm 0.1 V, \pm 0.2 V, \pm 0.5 V, \pm 1 V, \pm 2 V, \pm	5 V, ± 10 V,	± 20 V	
Offset		± 50% in 1000 steps (0.1%) ± 20 V range has fixed 0% offset			
Common mode (referred to system grou	und)		_		
Rai	nges	Less than ± 5 V	La	arger than or equal to \pm 5 V	
Rejection (C	MR)	> 80 dB @ 80 Hz (100 dB typical)	> 6	0 dB @ 80 Hz (80 dB typical)	
Maximum common mode vol	tage	30 V RMS			
100 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	0		5 V ranges 5 V ranges 9 V ranges		
Overvoltage impedance change		The activation of the overvoltage protection s	system res		
		The overvoltage protection is not active as long as the input voltage remains less than 200% of the selected input range.			
Maximum nondestructive current		± 35 V DC			
Isolation voltage		60 V DC			
Overload recovery time		Restored to 0.1% accuracy in less than 5 μ s a	after 200%	overload	


Current channels, Voltage mode Pass/Fail Limits Overview - AC

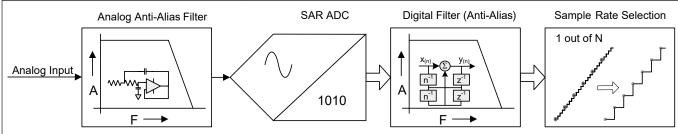
All values are calculated using the current channels, voltage mode inaccuracy specifications. The listed value is the maximum inaccuracy that exist at the end of the frequency band. For more accurate values use the specified math in the current channels, voltage mode inaccuracy specification table.


ž	1 Hz < f ≤ 1 kHz	1 kHz < f ≤ 10 kHz	1 kHz < f ≤ 20 kHz	20 kHz < f ≤ 100 kHz	100 kHz < f ≤ 200 kHz	200 kHz < f ≤ 500 kHz		
	0.010% const		0.070%	0.550%	2.550%	8.550%	reading	
± 0.05 V DC [35 mV RMS]			(0.006*(fkł	(0.006*(fkHz) - 0.05)%		(0.02*(fkHz) - 1.45)%		
[communic]		0.060%						
	0.0	10%	0.070%	0.550%	2.550%	8.550%		
± 0.1 V DC [70 mV RMS]	const		(0.006*(fkł	Hz) - 0.05)%	(0.02*(fkHz) - 1.45)%		reading	
	0.030%						range	
	0.010% const		0.070%	0.550%	2.550%	8.550%		
± 0.2 V DC [140 mV RMS]			(0.006*(fkł	Hz) - 0.05)%	(0.02*(fkHz) - 1.45)%		reading	
	0.015%						range	
	0.010% const		0.070%	0.550%	2.350%	7.750%		
± 0.5 V ≤ Range < ± 5 V			(0.006*(fkHz) - 0.05)%		(0.02*(fkHz) - 1.45)%		reading	
			0.010%				range	
Range ≥ ± 5 V	0.010% 0.410% const (0.0		0.530%	0.810%	2.610%	8.010%	u a a dina n	
)1 + 0.4*log(fkHz))%		(0.018*(fkHz) - 0.99)%		reading	
	0.010%					range		

GN310B/GN311B Current Connector an	d Pinnings				
GN310B/GN311B front panel connector	LEMO EPG.1B.304.HLN				
Mating connector	LEMO FGG.1B.304.CLAD52 (Check cable collet selection details)*				
Figure	14: FGG.1B.304.CLAD52 mating LEMO connect	ctor			
ØB					
	Figure 15: Cable collet setup				
* Cable collet selection:	Minimum cable diameter ØB	Maximum cable diameter ØB			
M27	2.2 mm	2.7 mm			
M31	2.7 mm	3.1 mm			
D42	3.1 mm	4.2 mm			
D52	4.2 mm	5.2 mm			
D62	5.2 mm	6.2 mm			
D72	6.2 mm	7.2 mm			
D76	7.2 mm	7.6 mm			
	Signal name (Cable/Connector color)	Pin number			
	Current input (White/Blue)	1			
	Voltage input (Brown/Red)	2			
Figure 16: Cable connector soldering view	Ground/shield (Yellow/Yellow)	3			
	Input return/Isolated ground (Green/Black)	4			

Voltage Channels Isolation IEC 61010-2-030:2017

Current Channels Isolation IEC 61010-2-030:2017



Isolation and Input Type Testing (Voltage Channel)					
IEC61010-1 and IEC61010-2-030 isolation te	sts				
Channel to channel	7400 V RMS for 5 s 4400 V RMS for 60 s				
Channel to chassis	7400 V RMS for 5 s 4400 V RMS for 60 s				
Differential	8250 V RMS for 5 s 2200 V RMS 60 s 3200 V DC for 60 s				
Differential impulse	12 kV peak using a 2 Ω series resistor Rise time 1.2 μs, 50% amplitude reduction in 50 μs				
Channel to channel impulse	7 kV peak using a 2 Ω series resistor Rise time 1.2 μs, 50% amplitude reduction in 50 μs				
Channel to chassis impulse	8 kV peak using a 2 Ω series resistor Rise time 1.2 μs , 50% amplitude reduction in 50 μs				
Amplitude	Upk				
	Figure 19: Example of 1.2/50 µs impulse				

Analog to Digital Conversion	
Sample rate; per channel	0.1 S/s to 2 MS/s (GN310B) or 0.1 S/s to 200 kS/s (GN311B)
ADC resolution; one ADC per channel	18 bit
ADC type	Successive Approximation Register (SAR); Analog Devices AD4003BCPZ
Time base accuracy	Defined by mainframe: ± 3.5 ppm; aging after 10 years ± 10 ppm

Anti-Alias Filters

Note on phase matching channels. Every filter characteristic and/or filter bandwidth selection comes with it's own specific phase response. Using different filter selections (Wideband/Bessel/Butterworth/Bessel IIR/Butterworth IIR/Elliptic IIR) or different filter bandwidths can result in phase mismatches between channels.

Figure 20: Combined analog and digital anti-alias filter block diagram

Anti-aliasing is prevented by a steep, fixed frequency analog anti-alias filter in front of the Analog to Digital Converter (ADC). The ADC always samples at a fixed sample rate. The fixed sample rate of the ADC avoids the need for different analog anti-alias filter frequencies. Directly behind the ADC, the high precision digital filter is used as anti-alias protection before the digital downsampling to the desired user sample rate is performed. The digital filter is programmed to a fraction of the user sample rate and automatically tracks any user sample rate selection. Compared to analog anti-alias filters, the programmable digital filter offers additional benefits like higher order filter with steep roll-off, a larger selection of filter characteristics, noise-free digital output and no additional phase shifts between channels that use the same filter settings.

3	
Wideband ⁽¹⁾	When wideband is selected, there is neither an analog anti-alias filter nor any digital filter in the signal path. Therefore, there is no anti-alias protection when wideband is selected. Wideband should not be used if working in a frequency domain with recorded data.
Bessel (Fc @ -3 dB) ⁽¹⁾	This analog Bessel filter can be used to reduce the higher bandwidth signals, especially at maximum sample rate 2 MS/s or 200 kS/s. For lower sample rates, the digital IIR filter is a better choice to prevent aliasing. Bessel filters are typically used when looking at signals in the time domain. They are best used for measuring transient signals or sharp edge signals like square waves or step responses.
Butterworth (Fc @ -3 dB) ⁽¹⁾	This analog Butterworth filter can be used to reduce the higher bandwidth signals, especially at maximum sample rate 2 MS/s or 200 kS/s. For lower sample rates, the digital IIR filter is a better choice to prevent aliasing. Butterworth filters are typically used when looking at (near) sine wave signals in the time domain or signals in the frequency domain.
Bessel IIR (Fc @ -3 dB)	When Bessel IIR filter is selected, this is always a combination of an analog Bessel anti- alias filter and a digital Bessel IIR filter to prevent aliasing at lower sample rates. Bessel filters are typically used when looking at signals in the time domain. They are best used for measuring transient signals or sharp edge signals like square waves or step responses.
Butterworth IIR (Fc @ -3 dB)	When Butterworth IIR filter is selected, this is always a combination of an analog Butterworth anti-alias filter and a digital Butterworth IIR filter to prevent aliasing at lower sample rates. This filter is best used when working in the frequency domain. When working in the time domain, this filter is best used for signals that are (close to) sine waves.
Elliptic IIR (Fc @ -0.1 dB)	When Elliptic IIR filter is selected, this is always a combination of an analog Butterworth anti-alias filter and a digital Elliptic IIR filter to prevent aliasing at lower sample rates. This filter is best used when working in the frequency domain. When working in the time domain, this filter is best used for signals that are (close to) sine waves.

(1) Wideband and analog Anti-Alias filters are valid for GN310B only.

Bandwidth and Filter Characteristic Selection versus Sample Rate The digital filter before decimation guarantees a superior phase match, ultra-low noise and alias free result. Digital lowpass filters (alias free by using an analog anti alias filter in front of ADC) Wideband Bessel IIR Bessel IIR **Bessel IIR** No Anti-alias **Butterworth IIR Butterworth IIR Butterworth IIR Butterworth IIR** filter Elliptic IIR Elliptic IIR Elliptic IIR Elliptic IIR **Bessel IIR** User selectable 1/4 Fs 1/10 Fs 1/20 Fs 1/40 Fs 1/100 Fs sample rates 2 MS/s Wideband 200 kHz 100 kHz 50 kHz 20 kHz 1 MS/s Wideband 250 kHz 100 kHz 50 kHz 25 kHz 10 kHz 500 kS/s Wideband 125 kHz 50 kHz 25 kHz 12.5 kHz 5 kHz 400 kS/s Wideband 100 kHz 40 kHz 20 kHz 10 kHz 4 kHz Wideband 2.5 kHz 250 kS/s 62.5 kHz 25 kHz 12.5 kHz 6.25 kHz 2 kHz 200 kS/s Wideband 50 kHz 20 kHz 10 kHz 5 kHz 1.25 kHz 125 kS/s Wideband 25 kHz 12.5 kHz 6.25 kHz 2.5 kHz 1 kHz 100 kS/s Wideband 20 kHz 10 kHz 5 kHz 2 kHz 50 kS/s Wideband 12.5 kHz 5 kHz 2.5 kHz 1.25 kHz 500 Hz 40 kS/s Wideband 10 kHz 4 kHz 2 kHz 1 kHz 400 Hz 25 kS/s Wideband 6.25 kHz 2.5 kHz 1.25 kHz 625 Hz 250 Hz 20 kS/s Wideband 5 kHz 2 kHz 1 kHz 500 Hz 200 Hz 12.5 kS/s Wideband 2.5 kHz 1.25 kHz 625 Hz 312.5 Hz 125 Hz 10 kS/s Wideband 1 kHz 500 Hz 100 Hz 2 kHz 250 Hz 5 kS/s Wideband 1.25 kHz 500 Hz 250 Hz 125 Hz 50 Hz 4 kS/s Wideband 1 kHz 400 Hz 200 Hz 100 Hz 40 Hz 625 Hz 2.5 kS/s Wideband 250 Hz 125 Hz 62.5 Hz 25 Hz 2 kS/s Wideband 500 Hz 200 Hz 100 Hz 50 Hz 20 Hz 1.25 kS/s Wideband 312.5 Hz 125 Hz 62.5 Hz 31.25 Hz 12.5 Hz 1 kS/s Wideband 250 Hz 100 Hz 50 Hz 25 Hz 10 Hz 500 S/s Wideband 125 Hz 50 Hz 25 Hz 12.5 Hz 5 Hz 4 Hz 400 S/s Wideband 100 Hz 40 Hz 20 Hz 10 Hz Wideband 2.5 Hz 250 S/s 62.5 Hz 25 Hz 12.5 Hz 6.25 Hz

50 Hz

25 Hz

10 Hz

12.5 Hz

31.25 Hz

20 Hz

10 Hz

5 Hz

4 Hz

12.5 Hz

10 Hz

5 Hz

2 Hz

2.5 Hz

6.25 Hz

5 Hz

3.125 Hz

2.5 Hz

1.25 Hz

1 Hz

200 S/s

125 S/s

100 S/s

50 S/s

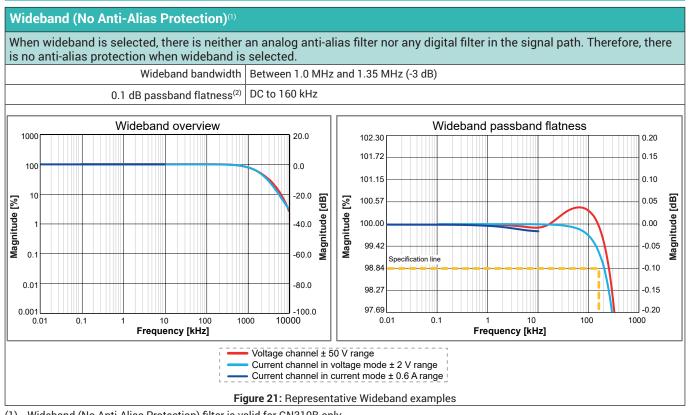
40 S/s

Wideband

Wideband

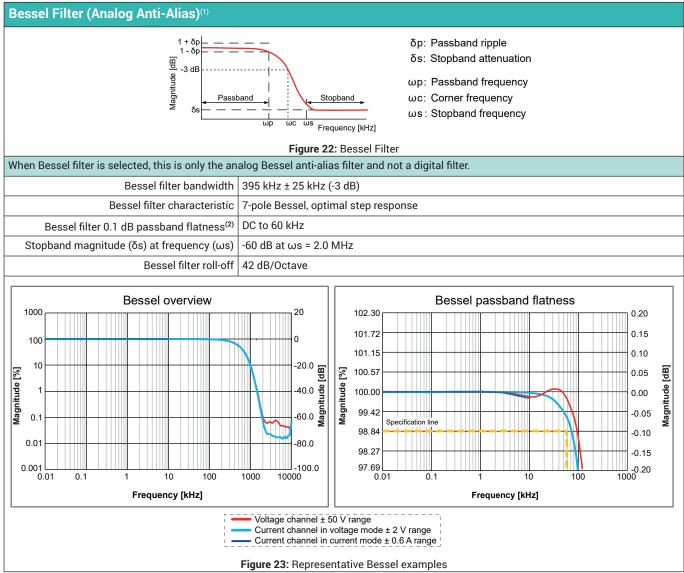
Wideband

Wideband

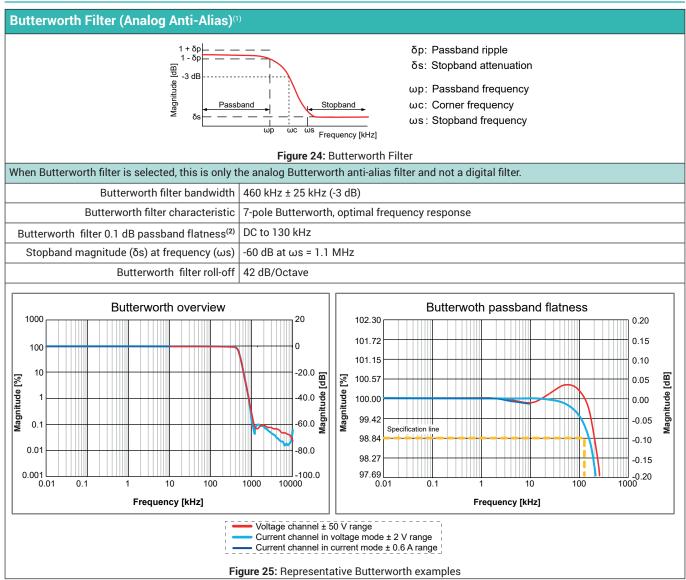

Wideband

2 Hz 1.25 Hz

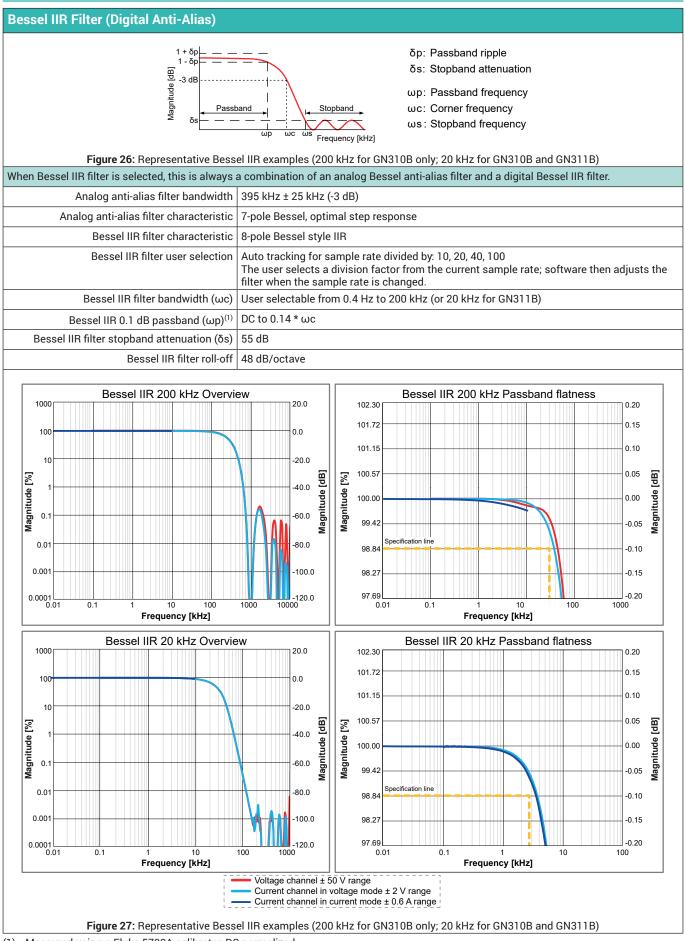
1 Hz


0.5 Hz

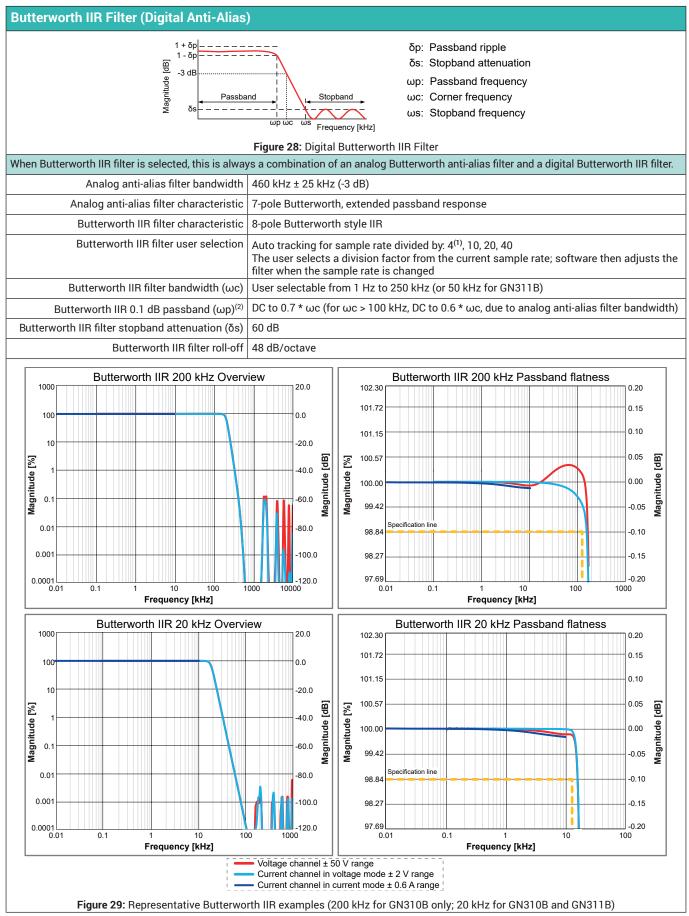
0.4 Hz


(1) Wideband (No Anti-Alias Protection) filter is valid for GN310B only.

(2) Measured using a Fluke 5700A calibrator, DC normalized.

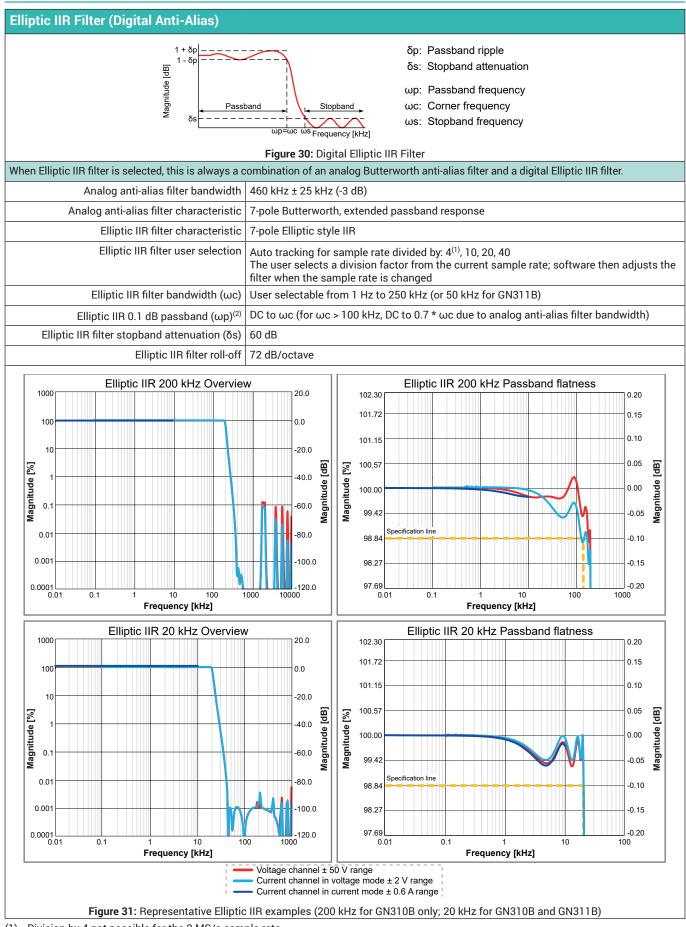

(1) Analog Anti-Alias Bessel filter is valid for GN310B only.

(2) Measured using a Fluke 5700A calibrator, DC normalized.



(1) Analog Anti-Alias Butterworth filter is valid for GN310B only.

(2) Measured using a Fluke 5700A calibrator, DC normalized.



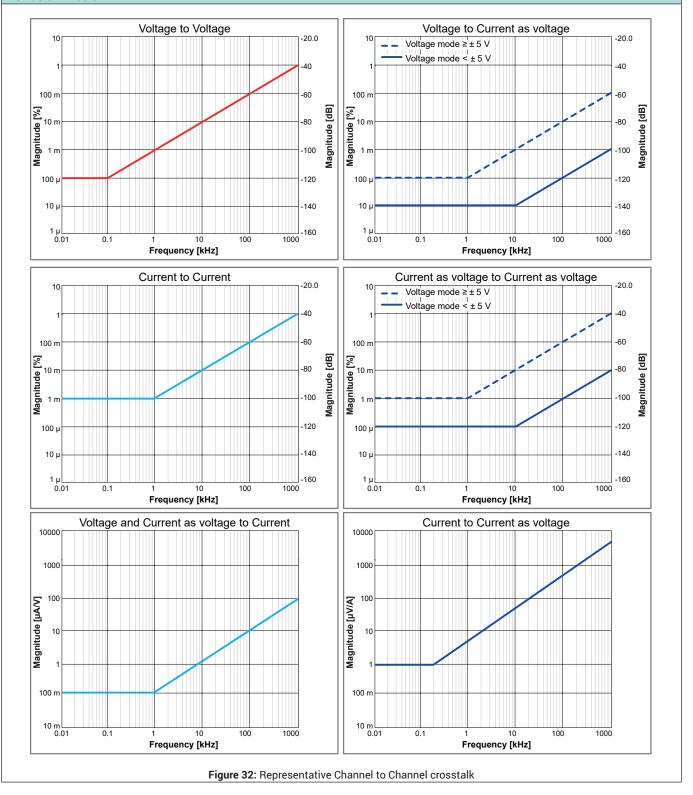
(1) Measured using a Fluke 5700A calibrator, DC normalized

(1) Division by 4 not possible for the 2 MS/s sample rate

(2) Measured using a Fluke 5700A calibrator, DC normalized

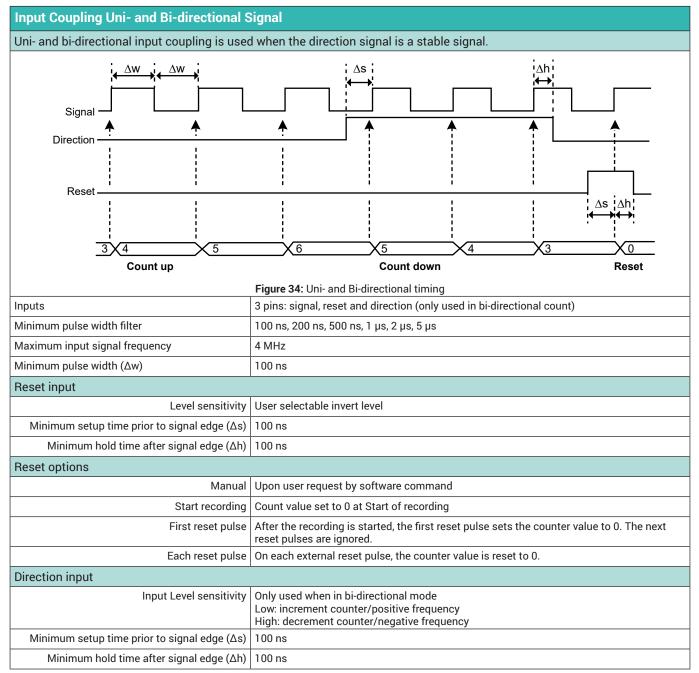
⁽¹⁾ Division by 4 not possible for the 2 MS/s sample rate

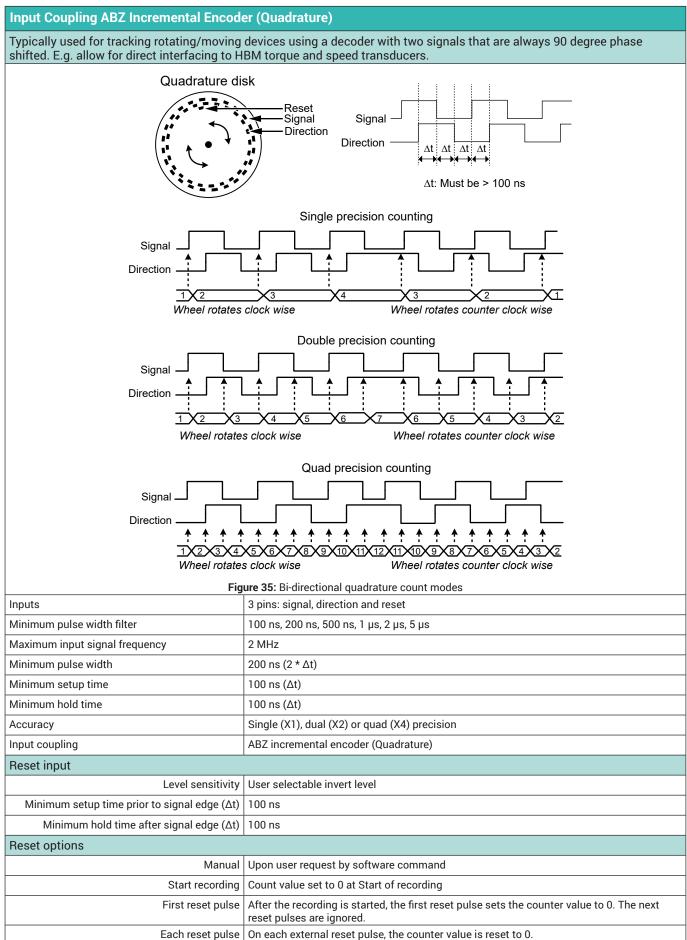
(2) Measured using a Fluke 5700A calibrator, DC normalized


Channel to Channel Phase Match

Using different filter selections (Wideband/Bessel IIR/Butterworth IIR/etc.) or different filter bandwidths results in phase mismatches between channels. All specifications are Pass/Fail limits for sine wave signals with frequency f, measured at 2 MS/s sample rate.

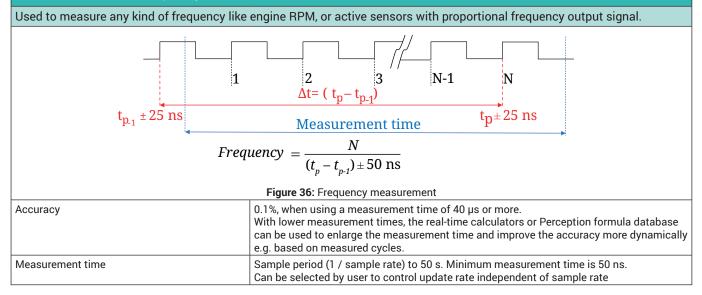
z Mo/ s sample rate.			~
	f ≤ 1 kHz	1 kHz < f ≤ 10 kHz	10 kHz < f ≤ 100 kHz
Wideband			
Channels within group	± 0.01°	± 0.03°	± 0.1°
Channels between groups on card	± 0.02°	± 0.1°	± 0.7°
GN310B Channels within mainframe	± 0.02°	± 0.1°	± 0.8°
Bessel IIR, Filter frequency 200 kHz		·	
Channels within group	± 0.01°	± 0.04°	± 0.3°
Channels between groups on card	± 0.02°	± 0.1°	± 1.0°
GN310B Channels within mainframe	± 0.02°	± 0.1°	± 1.2°
Butterworth IIR, Filter frequency 200 kHz			
Channels within group	± 0.01°	± 0.04°	± 0.3°
Channels between groups on card	± 0.02°	± 0.1°	± 1.0°
GN310B Channels within mainframe	± 0.02°	± 0.1°	± 1.2°
Elliptic IIR, Filter frequency 200 kHz	• •	` 	
Channels within group	± 0.01°	± 0.04°	± 0.3°
Channels between groups on card	± 0.02°	± 0.1°	± 1.0°
GN310B Channels within mainframe	± 0.02°	± 0.1°	± 1.2°
GN310B channels across mainframes	Defined by synchronization m	ethod used (None, IRIG, GPS, N	Aaster/Sync, PTP)


Channel to Channel Crosstalk


Channel to channel crosstalk is measured with a 50 Ω termination resistor on the input and uses sine wave signals adjacent channel(s). Crosstalk from current channels (current mode or voltage mode) to voltage channels is too small to measure, well below -100 dB.

Digital Event/Timer/Counter

The Digital Event/Timer/Counter input conn data sheet.	ector is located on the mainframe. For exact layout and pinning see mainframe			
	20 MHz			
Signal Pulse width filter Input Direction Pulse width filter Coupling Up/I Reset Pulse width filter	Update Measurement Sample Rate			
	Storage			
	Figure 33: Timer/Counter block diagram			
Digital input events	16 per card			
Levels	TTL input level, user programmable invert level			
Inputs	1 pin per input, some pins are shared with Timer/Counter inputs			
Overvoltage protection	± 30 V DC continuously			
Minimum pulse width	100 ns			
Maximum frequency	5 MHz			
Digital output events	2 per card			
Levels	TTL output levels, short circuit protected			
Output event 1	User selectable: Trigger, Alarm, set High or Low			
Output event 2 User selectable: Recording active, set High or Low				
Digital output event user selections				
Trigger	1 high pulse per trigger (on every channel trigger of this card only) 12.8 μs minimum pulse width 200 μs ± 1 μs ± 1 sample period pulse delay			
Alarm	High when alarm condition of card is activated, low when not activated 200 μ s ± 1 μ s ± 1 sample period alarm event delay			
Recording active	High when recording, low when in idle or pause mode Recording active output delay of 450 ns			
Set High or Low	Output set High or Low; can be controlled by Custom Software Interface (CSI) extensions; delay depends on specific software implementation			
Timer/Counter	4 per card			
Levels	TTL input levels			
Inputs	3 pins: signal, reset and direction All pins are shared with digital event inputs			
Input coupling	Uni-directional, Bi-directional and ABZ incremental encoder (Quadrature)			
Measurement modes	Count (C) Angle (0 to 360 degrees) Frequency (Δcount / Δt) RPM (Δcount / Δt / 60 s)			
Timer accuracy	± 25 ns (20 MHz)			
Measurement time	1 to n samples (User selectable maximum Δt)			
Measurement time and reading update rate	Measurement time sets the maximum update rate of the Measurement values			
Measurement time and minimum frequency	Minimum measured frequency or RPM = 1 / Measurement time			



Measurement Mode Angle

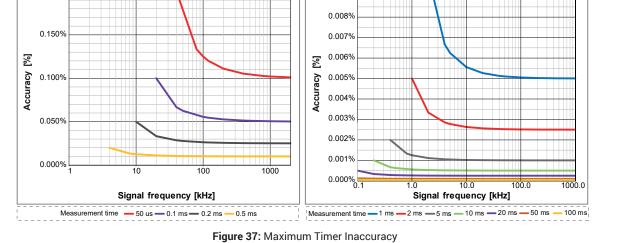
In angle measurement mode the counter will use a user defined maximum angle and revert back to zero when this count value is reached. Using the reset input the measured angle can be synchronized to the mechanical angle. The real-time calculators can extract the RPM from the measured angle independent from the mechanical synchronization.

Angle options	
Reference	User selectable. Enables the use of the reset pin to reference the mechanical angle to the measured angle
Angle at reference point	User defined to specify mechanical reference point
Reset pulse	Angle value is reset to user defined "angle at reference point" value
Pulses per rotation	User defined to specify the encoder/count resolution
Maximum pulses per rotation	32767
Maximum RPM	30 * sample rate (Example: Sample rate 10 kS/s means maximum 300 k RPM)

Measurement Mode Frequency/RPM

Measurement Mode Count/Position

Count/position mode is typically used for tracking movement of device under test.


To reduce the sensitivity for count/position errors due to clock glitches use the minimum pulse width filter or enable the ABZ in stead of uni-/bipolar input coupling.

Counter range	0 to 2 ³¹ ; uni-directional count
	-2 ³¹ to +2 ³¹ - 1; bi-directional count

Maximum Timer Inaccuracy

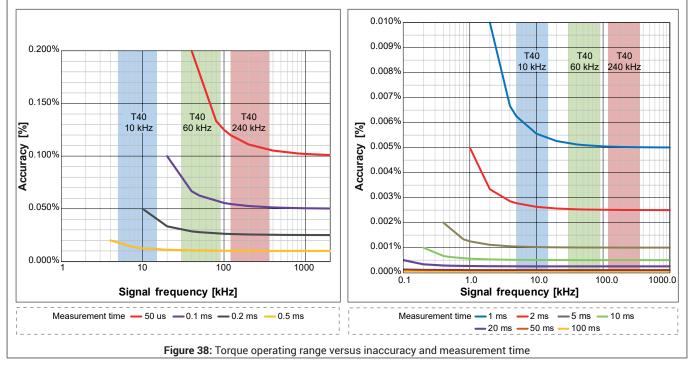
Timer accuracy is a tradeoff between update rate and minimum required accuracy. This table shows the relationships between measured signal frequency, selected measurement time (update rate) and timer accuracy. The inaccuracy distribution is to be considered rectangular.

	-	considered	rectangular				1 6	. 50		
Calculat	e the inaccura	acy by using:	Inacc	uracy = :	$\pm \left(\frac{1}{1} \right)$		l frequency frequency -1)		$\frac{1}{2}$	100%
					\ INTEG	ER ((signal)	requency -1)	* measurem	ent time)/	
Mea- sure-	Higher signal frequencies: Signal frequency (2 MHz down to 10 kHz)									
ment	2 MHz	1 MHz	500 kHz	400 kHz	200 kHz	100 kHz	50 kHz	40 kHz	20 kHz	10 kHz
1 µs	±10.000%									
2 µs	±3.333%	±5.000%								
5 µs	±1.111%	±1.250%	±1.333%	±2.000%						
10 µs	±0.526%	±0.556%	±0.625%	±0.667%	±1.000%					
20 µs	±0.256%	±0.263%	±0.278%	±0.286%	±0.333%	±0.500%				
50 µs	±0.101%	±0.102%	±0.103%	±0.105%	±0.111%	±0.125%	±0.133%	±2.000%		
0.1 ms	±0.050%	±0.051%	±0.051%	±0.051%	±0.053%	±0.056%	±0.063%	±0.067%	±0.100%	
0.2 ms		±0.0	25%		±0.026%	±0.026%	±0.028%	±0.029%	±0.033%	±0.050%
0.5 ms			±0.010%			±0.010%	±0.010%	±0.0011%	±0.0011%	±0.0013%
1 ms			±0.0050%			±0.0051%	±0.0051%	±0.0051%	±0.0053%	±0.0056%
2 ms				±0.00	025%				±0.0026%	±0.0026%
5 ms					±0.00	010%				
10 ms					±0.00	005%				
20 ms					±0.00	025%				
50 ms					±0.00	010%				
100 ms					±0.00	005%				
Mea-			Lov	ver signal free	quencies: Sig	nal frequency	(40 Hz to 5 k	Hz)		
sure- ment	5 kHz	4 kHz	2 kHz	1 kHz	500 Hz	400 Hz	200 Hz	100 Hz	50 Hz	40 Hz
0.5 ms	±0.0133%	±0.0200%								-
1 ms	±0.0063%	±0.0067%	±0.0100%							
2 ms	±0.0028%	±0.0029%	±0.0033%	±0.0050%						
5 ms	±0.0010%	±0.0011%	±0.0011%	±0.0013%	±0.0013%	±0.0020%				
10 ms	±0.00051%	±0.00051%	±0.00053%	±0.00056%	±0.00063%	±0.00067%	±0.00100%			
20 ms	±0.00025%	±0.00025%	±0.00026%	±0.00026%	±0.00028%	±0.00029%	±0.00033%	±0.00050%		
50 ms	±0.00010%	±0.00010%	±0.00010%	±0.00010%	±0.00010%	±0.00011%	±0.00011%	±0.00130%	±0.00013%	±0.000209
100 ms	±0.000050%	±0.000050%	±0.000050%	±0.000051%	±0.000051%	±0.000051%	±0.000053%	±0.000056%	±0.000063%	±0.0000679
	0.200% -					0.010%				

Torque Measurement Uncertainty using Frequency Measurements

When using the Timer/Counter channels to measure torque, the measurement uncertainty introduced by the timer inaccuracies can be calculated using the following examples based on HBK T40 torque transducers. The T40 torque transducer comes with 3 variants for frequency output: 10 kHz, 60 kHz or 240 kHz center frequency. From the data sheets you can extract the minimum and maximum frequency output like table below.

T40 Variant	-Full Scale frequency output	+Full Scale frequency output
T40 - 10 kHz	5 kHz	15 kHz
T40 - 60 kHz	30 kHz	90 kHz
T40 - 240 kHz	120 kHz	360 kHz


Overlay these operating ranges on top of the timer inaccuracy plots of Figure 37 will result in Figure 38 (see below).

- Remains the step to balance the update rate (torque bandwidth) versus the torque accuracy required.
- Calculate the inaccuracy using the -Full Scale frequency output and desired measurement time.
- Using a minimum of 60 RPM the following inaccuracies are calculated.

Selected measurement time	Maximum inaccuracy: T40 - 240 kHZ	Maximum inaccuracy: T40 - 60 kHZ	Maximum inaccuracy: T40 - 10 kHZ
50 μs (left red curve)	0.1200%	0.1500%	Not possible
100 µs (left purple curve)	0.0546%	0.0750%	Not possible
500 µs (left orange curve)	0.0101%	0.0107%	0.0125%
1 ms (right blue curve)	0.0050%	0.0052%	0.0063%
2 ms (right red curve)	0.0025%	0.0025%	0.0028%
5 ms (right grey curve)	0.0010%	0.0010%	0.0010%

For K=1 (70% probability) use the specified rectangular distribution and the maximum inaccuracy numbers and calculate:

Measurement uncertainty = Maximum inaccuracy ~ 0.58 (Conversion for rectangular distribution)			Lribulion)
Measurement uncertainty K=1 (About 70% probability)	Maximum inaccuracy: T40 - 240 kHZ	Maximum inaccuracy: T40 - 60 kHZ	Maximum inaccuracy: T40 - 10 kHZ
50 μs (left red curve)	0.0696%	0.0870%	Not possible
100 μs (left purple curve)	0.0316%	0.0435%	Not possible
500 µs (left orange curve)	0.0059%	0.0062%	0.00725%
1 ms (right blue curve)	0.0029%	0.0029%	0.00365%
2 ms (right red curve)	0.00145%	0.0015%	0.00162%
5 ms (right grey curve)	0.00058%	0.0006%	0.00058%

Speed (RPM) Measurement Uncertainty using Frequency Measurements

When using the Timer/Counter channels to measure speed (RPM), the measurement uncertainty introduced by the timer inaccuracies can be calculated using the following example. In the datasheet of the speed sensor locate the specified number of pulse per rotation to calculate the frequency range of the sensor output: Minimum frequency = minimum RPM used during testing * number of pulse per rotation / 60 sec				
Minimum frequency = min Maximum frequency = man	nimum RPM used ximum RPM used	during testing * number during testing * number	of pulse per rotation of pulse per rotation	/ 60 sec / 60 sec
Speed Sensor pulse per rotati		Frequency at 60 RPM	Frequency at 10 000 RPM	Frequency at 20 000 RPM
	180	180 Hz	30 kHz	60 kHz
	360	360 Hz	60 kHz	120 kHz
	1024	1024 Hz	170.7 kHz	341.3 kHz
 Remains the step to bala Using the graphs find the As examples the followin 	nce the update rate crossings of the ov	r inaccuracy plots of Figure 37 v (torque bandwidth) versus the t erlayed operating frequencies w found in the graphs (at 60 RPM)	orque accuracy required. ith the measurement time cur 	ves.
Selected measurement time		180 pulse sensor	360 pulse sensor	1024 pulse sensor
	2 ms (red curve)		Can't record at 60 RPM	0.00256%
	5 ms (grey curve)		0.0018%	0.0010%
	0 ms (Green curve)	<u> </u>	0.0006%	0.00051%
		gular distribution and the maxin ccuracy * 0.58 (Conversi		
Measurement uncertainty K=1 (About 70% probability)	y - Haximam ina	180 pulse sensor	360 pulse sensor	1024 pulse sensor
	2 ms (red curve)	Can't record at 60 RPM	Can't record at 60 RPM	0.00148%
	5 ms (grey curve)	Can't record at 60 RPM	0.00104%	0.00059%
1	0 ms (Green curve)	0.00052%	0.00035%	0.00030%
Accuracy [%]	0.008%		1024 pulses	
	0.002%	1.0 10.0 Signal frequency).0
 		-1 ms -2 ms -5 ms -10 ms sor operating range versus inacc		

Simultaneous Dynamic Torque Ripple and Accurate Torque Efficiency Measurement				
If a high update rate is required to measure e.g. dynamic torque ripple yet for efficiency a high accuracy is required use both a measurement time of 50 µs as well as a RT-FDB function to calculate the mean value for each electric cycle. The measured torque signal coming from the timer counter will be 0.15 to 0.17% accurate, while the torque calculate for the electric cycle (typically being 1 ms or less) results in 0.0075% accuracy. As both signals are simultaneously available, the dynamic signal allows you to analyse the torque ripple behaviour, the electric cycle signal will be extremely accurate for efficiency calculations.				
Torque sensor Timer counter				
	Real-time math c @CycleMean(M_raw; "us Real-time math c @CycleMean(M_raw; Cy	er defined") on cycle		instantaneous torque over user defined time
Figure 40: Simultaneous dynamic and accurate torque calculations				
ePower signals	Application use	Dynamic respons	e	Accuracy
M_raw	Torque ripple	Highest		Lowest
M_inst	Torque mean	Average		Average
M	Efficiency calculation	Lowest		Highest

Alarm Output	
Event channel alarm modes	High or low level check
Cross channel alarms	Logical OR of alarms from all measured channels
Alarm output	Active during valid alarm condition, output supported through mainframe
Alarm output level	High or low user selectable
Alarm output delay	515 μs ± 1 μs + maximum 1 sample period. Default 516 μs, compatible with standard behavior. Minimum selectable delay is the smallest delay available for all acquisition cards used within the mainframe. Delay equal to Trigger Out delay.
Selection per card	User selectable On/Off
Analog channel alarm modes	
Basic	Above or below level check
Dual	Outside or within bounds check
Analog channel alarm levels	
Levels	Maximum 2 level detectors
Resolution	16 bit (0.0015%) for each level

Triggering			
Channel trigger/qualifier	1 per channel; fully independent per channel, software selectable either trigger or qualifier		
Pre- and post-trigger length	0 to full memory		
Maximum trigger rate	400 triggers per second		
Maximum delayed trigger	1000 seconds after a trigger occurred		
Manual trigger (Software)	Supported		
External Trigger In			
Selection per card	User selectable On/Off		
Trigger In edge	Rising/Falling mainframe selectable, identical for all cards		
Minimum pulse width	500 ns		
Trigger In delay	± 1 µs + maximum 1 sample period		
Send to External Trigger Out	User can select to forward External Trigger In to the External Trigger Out BNC		
External Trigger Out			
Selection per card	User selectable On/Off		
Trigger Out level	High/Low/Hold High; mainframe selectable, identical for all cards		
Trigger Out pulse width	High/Low: 12.8 µs Hold High: Active from first mainframe trigger to end of recording Pulse width created by mainframe; For details, please refer to the mainframe data sheet		
Trigger Out delay	Selectable (10 μ s to 516 μ s) ± 1 μ s + maximum 1 sample period Default 516 μ s, compatible with standard behavior. Minimum selectable delay is the smallest delay available for all acquisition cards used within the mainframe		
Cross channel triggering			
Measurement channels	Logical OR of triggers from all measured signals Logical AND of qualifiers from all measured signals		
Calculated channels	Logical OR of triggers from all calculated signals (RT-FDB) Logical AND of qualifiers from all calculated signals (RT-FDB)		
Analog channel trigger levels			
Levels	Maximum 2 level detectors		
Resolution	16 bit (0.0015%) for each level		
Direction	Rising/Falling; single direction control for both levels based on selected mode		
Hysteresis	0.1 to 100% of Full Scale; defines the trigger sensitivity		
Pulse detect/reject	Disable/Detect/Reject selectable. Maximum pulse width 65 535 samples		
Analog channel trigger modes			
Basic	POS or NEG crossing; single level		
Dual Level	One POS and one NEG crossing; two individual levels, logical OR		
Analog channel qualifier modes			
Basic	Above or below level check. Enable/Disable trigger with single level		
Dual	Outside or within bounds check. Enable/Disable trigger with dual level		
Event channel trigger			
Event channels	Individual event trigger per event channel		
Levels	Trigger on rising edge, falling edge or both edges		
Qualifiers	Active High or Active Low for every event channel		

On-board Memory		
Per card	2 GB (1 GS @ 16 bits, 500 MS @ 18 bits storage)	
Organization	Automatically distributed amongst channels enabled for storage or real-time calculations	
Memory diagnostics	Automatic memory test when system is powered on but not recording	
Storage sample size	User selectable 16 or 18 bits 16 bits, 2 bytes/sample 18 bits, 4 bytes/sample	

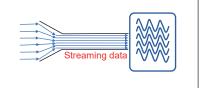
Real-time Formula Database Calculators The real-time formula database (RT-FDB) offers an extensive set of math routines to enable almost any real-time mathematical challenge. The database structure enables the user to define a list of mathematical equations similar to the Perception review formula database. The maximum supported sample rate is 2 MS/s. Different versions of Perception can enable more or less features as described in this table. CycleInterval Cycle Source (m) Cycle Channel ADC Data / CvcleDetect / CvcleEvent **Digital Event Inputs** າກກ 1 Ν Cycle Based Calculator Calculated Channel Source F(x) Trigger Detector rogrammab Math L1 To Channel &7 Card Trigger Source N Ζ. L2 Recordina Sample Based Calculator Memory Calculated Channe Source F(x) Trigger Detector ogrammable Math L1 To Channel & Source N Card Trigger L2 ŧ Figure 41: Real-time formula database (RT-FDB) calculators The real-time formula database supports the following list of calculations (Details of each calculation are described in the Perception manual). Determines the periodic real-time calculation speed by either setting a timer or using a Cycle Source real-time cycle detect Number of cycle sources 4; this is the maximum number of cycle sources that can be used per card in RT-FDB context. Cycle Source: Timer Timer duration 0.5 ms (2 kHz) to 1 s (1 Hz) Cycle Source: Cycle detect Real-time monitors one input channel using a signal level, hysteresis and direction to Level crossing determine the cyclic nature of the signal Cycle count Sets the counted number of cycles used for periodic calculation output Cycle period Maximum Cycle period that can be detected: 1 s (1 Hz) Minimum Cycle period that can be detected: 0.5 ms (2 kHz) Calculations are stopped when the Cycle period gets outside its maximum- and minimum Cycle period (<0.5 ms or > 1 s). Cycle Source: Cycle Event Real-time monitors up to 2 Digital Input Events using the rising or falling edge to determine the cyclic nature of the event Cycle Source: External Cycle Event Real-time monitors External Event Input using the rising or falling edge to determine the cyclic nature of the event **Trigger detector** Trigger output delay Triggers are delayed by 100 ms on calculated signals. The trigger time is corrected internally so that the sweep triggering is correct. This reduces the maximum sweep length by 100 ms.

	e Formula Database Calculat		
Group	Available RT-FDB functions		
Basic			
	+ (add)	* (multiply)	
	- (subtract)	/ (divide)	
Boolean			
	AlarmOnLevel	Not	ToAsyncBoolean
	And	NotEqual	TriggerArmOnBooleanChange
	Equal	OneShotTimer	TriggerOnBooleanChange
	GreaterEqualThan	Or	TriggerOnLevel
	GreaterThan	OutsideBand	Xor
	InsideBand	SetAlarm	
		StartStopTriggerOnBooleanChange	
		StopTriggerOnBooleanChange	
Cycle			I
	CycleArea	CycleFundamentalPhase	CycleNOP
	CycleBusDelay	CycleFundamentalRMS	CyclePeak2Peak
	CycleCount	CycleHarmonicPhase	CyclePhase
	CycleCrestFactor	CycleHarmonicRMS	CycleRMS
	CycleDetect	CycleInterval	CycleRPM
		-	
	CycleEnergy	CycleMax	CycleSampleCount
	CycleEvent	CycleMean	CycleStdDev
	CycleFrequency	CycleMin	CycleTHD
			ExternalCycleEvent
eDrive		1	1
	AronConversion	EfficiencyValue	SpaceVector
	DQ0Transformation	HarmonicsIEC61000	SpaceVectorInv
	EfficiencyMode	PowerLoss	
Enhanced			
	Abs	LessEqualThan	RadiansToDegrees
	Atan	LessThan	SampleCount
	Atan2	Max	Sin
	Cos	Min	Sqrt
	DegreesToRadians	Minus	Tan
	Integrate	Modulo	
	IntegrateGated	PureDFT	
Fieldbus		·	
	SetScalarFromFieldbus		
Filter		·	
	FilterBesselBP	FilterButterworthBP	FilterChebyshevBP
	FilterBesselHP	FilterButterworthHP	FilterChebyshevHP
	FilterBesselLP	FilterButterworthLP	FilterChebyshevLP
	HWFilter		
Math		l	
Math	NumComplogMoor	TimedMean	
	NumSamplesMean		
	NumSamplesStdDev	TimedStdDev	
Signal generation			
	Ramp		
	Sinewave		

Patent Number : 7,868,886

Real-time extraction of basic signal parameters.

Supports real-time live scrolling and scoping waveform displays as well as real-time meters while recording.During recording reviews, it enhances speed for displaying and zooming extremely large recordings and it reduces the
calculation time for statistical values on large data sets.Analog channelsMaximum, Minimum, Mean, Peak to Peak, Standard Deviation and RMS values


7 thatog charmens	Maximum, Minimum, Mean, Fear to Fear, Standard Deviation and Timo values
Event/Timer/Counter channels	Maximum, Minimum and Peak to Peak values

Data Recording Modes	
On start of acquisition Channel 1 Channel n Streaming data PNRF file on drive	Data recording to PC or mainframe drive. Data recording to a drive is limited by an aggregate sample rate , the recording time is limited by the size of drive . Note: As the aggregate sample rate limit depends on Ethernet speed and storage drive used, as well as the PC and drive not being used for other purposes as data recording, it is strongly recommended for higher aggregate sample rates to test the chosen setup prior to performing your test.
Wait for trigger Channel 1 Channel n Streaming data PNRF file on drive	Triggered data recording to PC or mainframe drive. Trigger data recording to a drive is limited by an aggregate sample rate , the recording time is limited by the size of drive. Note : As the aggregate sample rate limit depends on Ethernet speed and storage drive used, as well as the PC and drive not being used for other purposes as data recording, it is strongly recommended for higher aggregate sample rates to test the chosen setup prior to performing your test. Not recommended for transient/one time only/destructive tests.
Wait for trigger to trigger memory first	Triggered data recording to trigger memory on the acquisition card. Triggered data recording to trigger memory has no sample rate limits , the recording time is limited by the size of trigger memory . Triggered data recorded in trigger memory is moved to a drive as quickly as possible. Note : This data recording mode guarantees the data will always be recorded according to the user defined settings. Recommended for transient/one time only/destructive tests.
On start of acquisition reduced rate and wait for trigger to trigger memory first Channel 1 Channel n Channel n Channel n Channel n Channel n Channel n Channel n	Data recording to PC or mainframe drive and simultaneous triggered data recording to trigger memory on the acquisition card. The reduced rate data recording to a drive is limited by an aggregate sample rate and the recording time is limited by the size of drive . The triggered data recording to trigger memory has no sample rate limits , the triggered data recording time is limited by the size of trigger memory . The triggered data recording time is limited by the size of trigger memory . The triggered data recorded in trigger memory is moved to a drive as quickly as possible. As this data move happens simultaneously with the reduce rate data recording, it uses bandwidth of the aggregate sample rate. Note: As the aggregate sample rate limit depends on Ethernet speed and storage drive used, as well as the PC and drive not being used for other purposes as data recording, it is strongly recommended for higher aggregate sample rates as well as higher number of triggers per second to test the chosen setup prior to performing your test.

Doto I) o o o reline	Compared
Data	leooranig	Compared

	Aggregate sample rate limit	Maximum recorded data	Direct recording to drive	Trigger memory first	Trigger required to start recording		
On start of acquisition	Yes	Free drive space	Yes	No	No		
Wait for trigger	Yes	Free drive space	Yes	No	Yes		
Wait for trigger to trigger memory first	No	Trigger memory	No	Yes	Yes		
On start of acquisition reduced rate and	Reduced rate: Yes	Free drive space	Yes	No	No		
wait for trigger to trigger memory first	Sample rate: No	Trigger memory	No	Yes	Yes		

Aggregate sample rate limits when using streaming data

The maximum aggregate streaming rate per mainframe is defined by mainframe type and solid state drive, Ethernet speed, PC drive and other PC parameters.

When an aggregate sample rate is higher than the aggregate streaming rate of the system is selected, the memory on each acquisition card acts as a FIFO. As soon as this FIFO fills up, the recording is suspended (no data is recorded temporarily). During this period, the FIFO memory is transferred to a drive. When all FIFO's are empty, the recording is automatically resumed. User notifications are added to the recording file for post recording identification of suspended recording.

						1310B/GN311B
Triggered Recording Definiti	ons					
The details in this table apply to • Wait for trigger):					
• Wait for trigger to trigger memor						
On start of acquisition reduced r	ate and wait for trigg	er to trigger memory	first			
Sweep		Trig Pre-trigger	ger Bei	Stop- tween-trigger	trigger Post-trigger	
		Pre-trigger	De	tween-trigger	Post-trigger	I
ل م		•		•	•	
				Sweep		
	Defined by a trigger trigger signal.	signal, pre- and post-	trigger	data and optio	nally between-trigger o	lata and/or stop
Triggered data segments						
Pre-trigger data		nal is received before e-trigger data recorde			trigger data is recorder duced to the available p	
Post-trigger data	Data recorded after Note: The recording <i>begins on</i> " selection		er sign Ita can	al. be re-started c	or delayed depending o	n the " <i>post-trigger</i>
Between-trigger data		o re-trigger(s) or while een-trigger data is not			trigger. based on the timing of	the trigger or stop-
Trigger signals						
Trigger signal		e pre-trigger and start			a recording.	
	See table section "F A trigger signal can simple to complex F		" for mo input t	ore details. rigger, analog a	and digital channels as	well as using
Stop-trigger signal	See table section "F	Post-trigger begins on	" for mo	ore details.	-trigger begins on stop nd simple to complex F	
Post-trigger begins on						
First trigger				Trigger		
		Pre-trigger: 10.00	ms		st-trigger: 20.00 ms	
						l
	Any trigger received Between-trigger dat	al ends the pre-trigger I during the post-trigg a does not exist in thi o contains pre- and the	er data s mode	recording is ig	arts the recording of th nored.	e post-trigger data.
Every trigger		Pre-trigger: 10.00 ms	Trigger [·]	Trigger	Trigger Post-trigger: 20.00 ms	
						I
	Any trigger received All recorded post-tri	l during the post-trigg	er data the tin	recording rest ne of the trigge	the recording of the po- arts the recording of po- er is added to the betwee er data.	ost-trigger data.
Stop-trigger			Trigger	twoon-trigger	Stop-trigger	
		Pre-trigger: 10.00 ms	De	tween-trigger	Post-trigger: 20.00 ms	
	stop-trigger then en Any trigger received Any stop-trigger rec	ds the between-trigge I during the between-t ceived during the pre-t	er data i rigger a rigger a	recording and and and post-trigger and post-trigger	s the between-trigger o starts the post-trigger er data recording is igno er data recording is igno	data recording. ored.
	The resulting sweep	contains pre-, betwe	en- and	the post-trigg	er data.	

Trigger Memory Filled While Recording	Trigger Memory Filled While Recording						
The trigger memory is limited in size and can easily get filled when using high sample rates combined with high trigger rates. This section explains how triggers are handled when the trigger memory is completely filled.							
Post-trigger begins on	Sweep recording selection						
First trigger	A new sweep is only recorded if both pre- and post-trigger data fits in the free trigger memory at the time a trigger signal is received. When not enough free trigger memory is available, only the trigger time and trigger source get recorded (No pre- or post data is recorded).						
Every trigger	A new sweep is started using the same rules as for the first trigger mode. If during the post-trigger recording a new trigger is received, the sweep is only extended with new post-trigger data if the additional post-trigger data fits the available free trigger memory. When not enough trigger memory is available, the already recorded pre-, between and post-trigger data for the previously received trigger(s) will be recorded.						
Stop-trigger signal	A new sweep is only recorded if both pre-, 2.5 ms between and post-trigger data fits in the free trigger memory at the time a trigger signal is received. If no stop-trigger signal is received before the trigger memory fills up, the sweep recording is automatically stopped at the time the trigger memory is completely filled.						

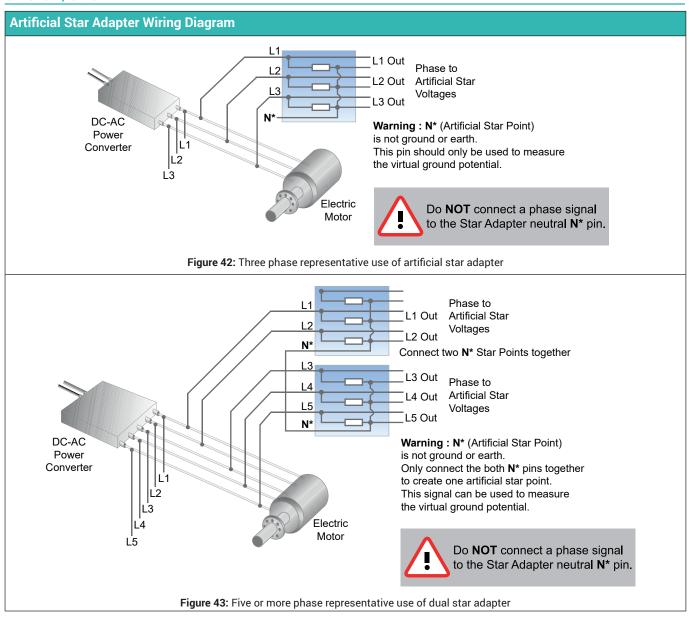
 The details in this table apply to Wait for trigger Wait for trigger to trigger memory On start of acquisition reduced rate 	y first	or trigger to trigger memory first			
		or trigger to trigger memory first			
	On start of tri	-	Wait for trigger		
Triggered data recording	Limited recor		Use available	e size of drive	
Sample rate	Unlimited sar	nple rates	Low to medium sample rates (Depending on system used)		
Channel count	Unlimited cha	annel count	Low to medium channel counts (Depending on system used)		
Maximum number of sweeps					
In trigger memory	2000		Not applicab	le	
In PNRF recording file	200 000		1		
Sweep parameters	Minimum	Maximum	Minimum	Maximum	
Pre-trigger length	0	Trigger memory of acquisition card	0	Available free drive space	
Post-trigger length	0	Trigger memory of acquisition card	0	0	
Sweep length	10 samples	IO samples Trigger memory of acquisition card		Available free drive space	
Maximum sweeps rate	400/s	·	Not applicab	le	
Minimum time between-triggers	2.5 ms		Not applicable		
Dead time between sweeps	0 ms		Not applicable		

Data Recording Detail	s ⁽¹⁾								
16 Bit Resolution									
Data Recording Mode	On start of acquisition & Wait for trigger		Wait for trigger to trigger memory first		On start of acquisition reduced rate and wait for trigger to trigger memory first				
	Enabled channels		En	abled chann	els	Er	habled chann	els	
	1 Ch	6 Ch	6 Ch & events	1 Ch	6 Ch	6 Ch & events	1 Ch	6 Ch	6 Ch & events
Max. trigger memory		not used		1 GS	166 MS	142 MS	800 MS	133 MS	113 MS
Max. trigger sample rate	not used			MS/s (GN310) kS/s (GN31			MS/s (GN310 0 kS/s (GN31		
Max. reduced FIFO	1 GS	166 MS	142 MS		not used		199 MS	33 MS	28 MS
Max. (reduced) sample rate		MS/s (GN310) kS/s (GN31		not used			Trigg	Trigger sample rate / 2	
Max. aggregate reduced streaming rate	2 MS/s 4 MB/s	12 MS/s 24 MB/s	14 MS/s 28 MB/s		not used		2 MS/s 4 MB/s	12 MS/s 24 MB/s	14 MS/s 28 MB/s
18 Bit Resolution									
Data Recording Mode		tart of acquis & Vait for trigge		Wait for tr	igger to trigg first	er memory	On start of acquisition reduced rate and wait for trigger to trigge memory first		r to trigger
	+	abled chann		En	abled chann	els	Enabled channels		
	1 Ch	6 Ch	6 Ch & events Timer/ Counter	1 Ch	6 Ch	6 Ch & events Timer/ Counter	1 Ch	6 Ch	6 Ch & events Timer/ Counter
Max. trigger memory		not used		500 MS	83 MS	44 MS	400 MS	66 MS	35 MS
Max. trigger sample rate	not used		2 MS/s (GN310B) 200 kS/s (GN311B)		2 MS/s (GN310B) 200 kS/s (GN311B)				
Max. reduced FIFO	500 MS	83 MS	55 MS	not used		99 MS	16 MS	10 MS	
Max. (reduced) sample rate	2 MS/s (GN310B) 200 kS/s (GN311B)		not used		Trigger sample rate / 2				
Max. aggregate reduced streaming rate	2 MS/s 8 MB/s	12 MS/s 48 MB/s	18 MS/s 72 MB/s	not used		2 MS/s 8 MB/s	12 MS/s 48 MB/s	18 MS/s 72 MB/s	

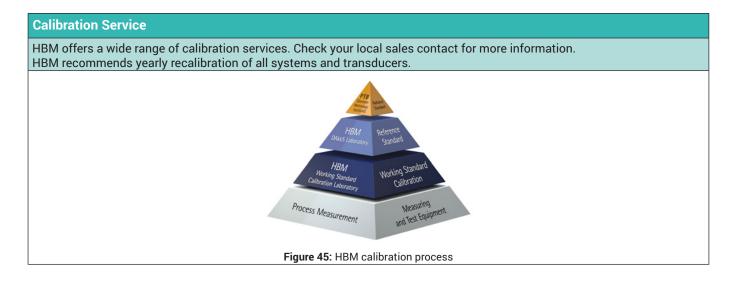
(1) Terminology used in alignment with Perception software.

Environmental Specifications	
Temperature Range	
Operational	-20 °C to +55 °C (-4 °F to +131 °F)
Non-operational (Storage)	-25 °C to +70 °C (-13 °F to +158 °F)
Thermal protection	Automatic shutdown above +85 °C (185 °F) with notifications starting at +75 °C (+167 °F)
Relative humidity	0% to 80%; non-condensing; operational
Protection class	IP20
Altitude	Maximum 2000 m (6562 ft) above sea level; operational
Shock: IEC 60068-2-27	
Operational	Half-sine 15 g/11 ms; 3-axis, 1000 shocks in positive and negative direction
Non-operational	Half-sine 35 g/6 ms; 3-axis, 3 shocks in positive and negative direction
Vibration: IEC 60068-2-64	
Operational	2 g RMS, ½ h; 3-axis, random 5 to 500 Hz
Non-operational	3 g RMS, 1 h; 3-axis, random 5 to 500 Hz
Operational Environmental Tests	
Cold test IEC60068-2-1 Test Ad	-20 °C (-4 °F) for 2 hours
Damp heat test IEC 60068-2-3 Test Ca	+55 °C (+131 °F), humidity > 93% RH for 4 days
Non-Operational (Storage) Environmental T	ests
Cold test IEC-60068-2-1 Test Ab	-25 °C (-13 °F) for 72 hours
Dry heat test IEC-60068-2-2 Test Bb	+70 °C (+158 °F) humidity < 50% RH for 96 hours
Change of temperature test IEC60068-2-14 Test Na	
Damp heat cyclic test IEC60068-2-30 Test Db variant 1	+25 °C/+55 °C (+77 °F/+131 °F), humidity > 95/90% RH 6 cycles, cycle duration 24 hours

Harmonized Standa	Harmonized Standards for CE and UKCA Compliance, According to the Following Directives ⁽¹⁾						
Low Voltage Directive (LVD): 2014/35/EU Electromagnetic Compatibility Directive (EMC): 2014/30/EU							
Electrical Safety							
EN 61010-1 (2017)	Safety requirements for electrical equipment for measurement, control, and laboratory use - General requirements						
EN 61010-2-030 (2017)	Particular requirements for testing and measuring circuits						
Electromagnetic Com	patibility						
EN 61326-1 (2013)	Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements						
Emission							
EN 55011	Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics Conducted disturbance: class B; Radiated disturbance: class A						
EN 61000-3-2	Limits for harmonic current emissions: class D						
EN 61000-3-3	Limitation of voltage changes, voltage fluctuations and flicker in public low voltage supply systems						
Immunity							
EN 61000-4-2	Electrostatic discharge immunity test (ESD); contact discharge ± 4 kV/air discharge ± 8 kV: performance criteria B						
EN 61000-4-3	Radiated, radio-frequency, electromagnetic field immunity test; 80 MHz to 2.7 GHz using 10 V/m, 1000 Hz AM: performance criteria A						
EN 61000-4-4	Electrical fast transient/burst immunity test Mains ± 2 kV using coupling network. Channel ± 2 kV using capacitive clamp: performance criteria B						
EN 61000-4-5	Surge immunity test Mains ± 0.5 kV/± 1 kV Line-Line and ± 0.5 kV/± 1 kV/± 2 kV Line-earth Channel ± 0.5 kV/± 1 kV using coupling network: performance criteria B						
EN 61000-4-6	Immunity to conducted disturbances, induced by radio-frequency fields 150 kHz to 80 MHz, 1000 Hz AM; 10 V RMS @ mains, 3 V RMS @ channel, both using clamp: performance criteria A						
EN 61000-4-11	Voltage dips, short interruptions and voltage variations immunity tests Dips: performance criteria A; Interruptions: performance criteria C						

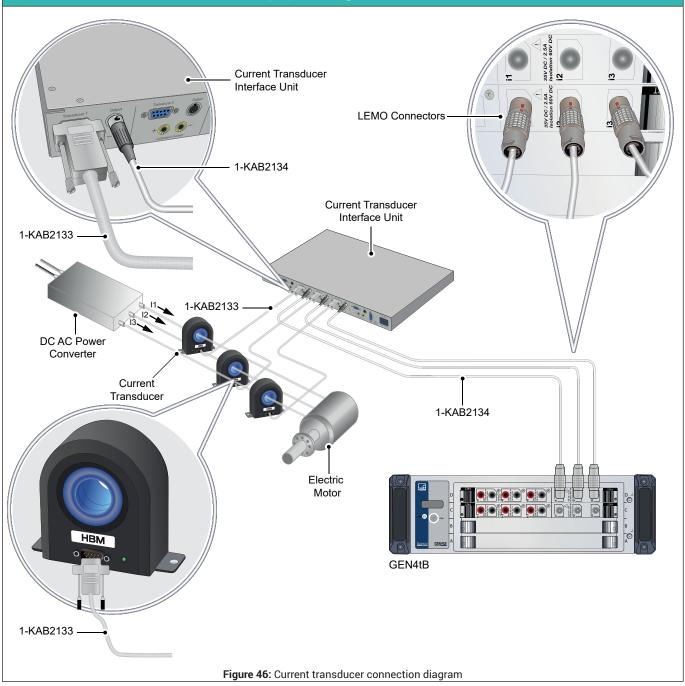

(1) Let The manufacturer declares on its sole responsibility that the product is in conformity with the essential requirements of the applicable UK legislation and that the relevant conformity assessment procedures have been fulfilled.

Manufacturer.


Hottinger Brüel & Kjaer GmbH Im Tiefen See 45 64293 Darmstadt Germany

Importer:

Hottinger Bruel & Kjaer UK Ltd. Technology Centre Advanced Manufacturing Park Brunel Way Catcliffe Rotherham South Yorkshire S60 5WG United Kingdom



Perception and eDrive Training Pro	ogram
a	hbm c a d e m y CDrive testing
	Figure 44: Perception on-site training
HBM offers paid professional training and	support programs on all API interfaces (PNRF reader, RPC and CSI). Training programs are based
on C#, are on-site or are at a central HBM lo	ocation. On-site training can be specific for each customer. Support can be the development of a nswering questions from software engineers.
S-TRAIN1-GEN_PERC	First day on-site basic training on GEN DAQ/PERCEPTION. Example content: Basic usage, hardware setup, acquisition. Training can be customized for specific training needs.
S-TRAIN2-GEN_PERC	Second day on-site enhanced training on GEN DAQ/PERCEPTION. Training can be customized for specific training needs.
S-TRAIN1-eDRIVE	First day on-site basic training on eDrive application specifics. Example content: Basic usage, hardware setup, acquisition. Training can be customized for specific training needs.
S-TRAIN2-eDRIVE	Second day on-site enhanced training on eDrive application specifics. Training can be customized for specific training needs.
1-PERC-CSI-TRAIN	Two day on-site Perception CSI training for software programmers During the training software programmers learn how to get started using the CSI template, make changes to the Perception user interface, to add new mathematical routines to the Formula Database or to add User Keys etc. The exact training details can be fully customized to the programmers needs including reviews and examples how to create the exact CSI changes of choice. Basic Microsoft® Visual Studio software C# programming skills are required before joining this training. More dedicated detailed training is available on request.
1-PERC-CSI-PROJ	One day eMail/Phone support for Perception CSI or RPC programmers. Get support from a HBM senior software engineer. Support can range anywhere from answering "how-to"; question, assisting in analyzing any kind of (performance) issue to generating basic getting started example code fragments.

B05491_05_E00_00 10/08/2023

GN310B/GN311B HBM Current Transducer (CT) Wire Diagram

Current Transducers, to be ordered separately

Ultra-stable, high precision fluxgate technology current transducers for non-intrusive, isolated measurement

Figure 47: HBM current transducers, power supply and cables

Туре	Maximum current	Bandwidth (-3 dB)	Aperture size	Order No.		
CTS50ID	75 A DC / 50 A RMS	1000 kHz	27.6 mm	1-CTS50ID		
CTS200ID	300 A DC / 200 A RMS	500 kHz	27.6 mm	1-CTS200ID		
CTS400ID	600 A DC / 400 A RMS	300 kHz	27.6 mm	1-CTS400ID		
CTS600ID	900 A DC / 600 A RMS	500 kHz	27.6 mm	1-CTS600ID		
CTM1200ID	1500 A DC / 1200 A RMS	400 kHz	45.0 mm	1-CTM1200ID		
CTT50ID	75 A DC / 50 A RMS	2000 kHz	20.7 mm	1-CTT50ID		
CTT100ID	150 A DC / 100 A RMS	2000 kHz	20.7 mm	1-CTT100ID		
CTT200ID	285 A DC / 200 A RMS	2000 kHz	20.7 mm	1-CTT200ID		
CTN1000ID	1500 A DC / 1000 A RMS	400 kHz	41.0 mm	1-CTN1000ID		

Current Transducers Interface and Cables, to be ordered separately				
Article		Description	Order No.	
CT Interface unit		Interface unit for up to six current transducers. Industry standard D-SUB 9 pin input connectors. Multi-pin XLR output connectors. Supports transducer calibration winding access through 4 mm banana plugs. Front LEDs to indicate normal operation of each transducer. 100 - 240 V AC 50/60 Hz AC input voltage. 120 - 370 V DC input voltage. 1U height 19" rack mountable.	1-CTPSIU-6-1U	
CT cables		Industry standard current transducer connection cable. Shielded, low ohmic 9 wire cable with D-SUB 9 connectors on both ends. Supports power, status, current output and calibration current input. Lengths: 2, 5, 10 and 20 meters (6, 16, 32 and 65 ft)	1-KAB2133-2 1-KAB2133-5 1-KAB2133-10 1-KAB2133-15 1-KAB2133-20	
Banana input cable		Shielded cable for 1-GN31xB current channels. LEMO breakout cable with direct current (blue), voltage as current (red), isolated ground/return (black) and shield (yellow) 4 mm banana connectors. The cable is shielded to minimize the typical impact of electromagnetic disturbance generated by high power switching power supplies. Available length: 1 m (3.3 ft)	1-KAB2136-1	

Current Probes	Current Probes (Options, to be ordered separately)				
Article		Description	Order No.		
AC/DC current clamp i30s		AC/DC Hall effect current probe; 30 mA to 30 A DC; 30 mA to 20 A AC RMS; DC-100 kHz; BNC output cable 2 m (6.5 ft), incl. adapter for 4 mm safety banana, requires 9 V battery.	1-G912		
AC current clamp SR661		AC current probe; 100 mA to 1200 A AC RMS; 1 Hz - 100 kHz; safety BNC output cable 2 m (6.5 ft).	1-G913		
AC current clamp M1V20-2		Highly accurate AC current probe; 50 mA to 20 A; 30 Hz - 40 kHz; metal BNC output cable 2 m (6.5 ft).	1-G914		

Ordering Information				
Article		Description	Order No.	
Isolated Power Analyzer 2 MS/s		Input card with 3 power channels (Voltage & Current) supporting 18 bit ADCs at 2 MS/s and 2 GB memory. Voltage inputs range from ± 50 V to ± 1500 V DC. Current inputs using built-in shunts range from ± 75 mA to ± 2 A or +/-50 mV to +/- 20 V for current clamp usage. Tested up to 7.4 kV, the isolation allows for safe measurements up to 1000 V CAT IV or 1500 V DC. Voltage inputs use 4 mm fully isolated banana plugs while current inputs use a LEMO connector. Includes the real-time formula data base for sample to sample as well as cycle based calculations and triggering on calculated results. Supported by Perception v8.00 and higher.	1-GN310B	
Isolated Power Analyzer 200 kS/s		Input card with 3 power channels (Voltage & Current) supporting 18 bit ADCs at 200 kS/s and 2 GB memory. Voltage inputs range from ± 50 V to ± 1500 V DC. Current inputs using built-in shunts range from ± 75 mA to ± 2 A or +/-50 mV to +/- 20 V for current clamp usage. Tested up to 7.4 kV, the isolation allows for safe measurements up to 1000 V CAT IV or 1500 V DC. Voltage inputs use 4 mm fully isolated banana plugs while current inputs use a LEMO connector. Includes the real-time formula data base for sample to sample as well as cycle based calculations and triggering on calculated results. Supported by Perception v8.00 and higher.	1-GN311B	

Special Voltage Probes, to be ordered separately				
Article		Description	Order No.	
5 kV RMS, 20 MΩ, 50:1 differential probe	00	5 kV RMS, 20 M Ω , 50:1, 0.2% high precision, differential probe to be used in combination with GN610B, GN611B (HVD50R- 61x), GN310B and GN311B (HVD50R-31x) acquisition cards. The built-in earthing monitor system increases safety of the user and protects the GEN series inputs for isolation overloads.	HVD50R-61x HVD50R-31x Ordered from custom systems ⁽¹⁾	
5 kV RMS High Voltage Cable		The High Voltage Cable (HVC) is an extension for measurement cables with voltages up to 5 kV RMS. This device is designed to be connected with a cable on the input terminal of the high precision differential probe HVD10, HVD50R-61x and HVD50R-31x. The HVC is designed according IEC 61010-031:2015 compliant to 1000 V RMS CAT IV and 1500 V DC CAT IV.	HVC Ordered from custom systems ⁽¹⁾	

(1) Contact custom systems at: <u>customsystems@hbkworld.com</u> Request quote/information for special products for GEN series.

Accessories, to be ordered separately				
Article		Description	Order No.	
Artificial star adapter		The artificial star adapter is a plug-on interface card to measure 3-phase signals with the GN310B/GN311B cards. This adapter is intended for measuring 3-phase signals while creating a virtual/artificial star point.	1-3PH-STR-1K0- CAT2	
1000 V CAT IV / 1500 V DC CAT III 3-wire Isolated shielded test leads		 The cable uses safety-shrouded banana plugs for. 3-phase measurement (Black/Brown/Grey) or single-phase neutral to line Shield connector (Yellow) The cable is shielded to minimize the typical impact of electromagnetic disturbance generated by high-power inverters, as well as to minimize emissions from the rise times of the switching inverter voltages measured with this cable. Available lengths: 1.5 m (4.92 ft), 3.0 m (9.84 ft), 6.0 m (19.7 ft),12 m (39.4 ft), 20 m (65,6 ft) 	1-KAB2139-1.5 1-KAB2139-3 1-KAB2139-6 1-KAB2139-12 1-KAB2139-20	
KLR to LEMO cable for GN31XB		CT interface unit to GN31xB DAQ power card connection cable. Uses XLR and LEMO connectors for a direct current output connection to the GEN DAQ card. Length 2 m (6 ft)	1-KAB2134-2	
Banana input cable		Shielded cable for 1-GN31xB current channels. LEMO breakout cable with direct current (blue), voltage as current (red), isolated ground/return (black) and shield (yellow) 4 mm banana connectors. The cable is shielded to minimize the typical impact of electromagnetic disturbance generated by high power switching power supplies. Available length: 1 m (3.3 ft)	1-KAB2136-1	
Female BNC voltage input cable		Shielded cable for 1-GN31xB current channels in voltage mode. LEMO breakout cable with female BNC for ease of connecting e.g. current probes. The female BNC is connected to the Voltage input pin of the current channel. The cable is one side shielded to minimize the typical impact of electromagnetic disturbance generated by high power switching power supplies.	1-KAB2140-3	
Male BNC voltage nput cable		Shielded cable for 1-GN31xB current channels in voltage mode. LEMO breakout cable with male BNC for ease of connecting e.g. current probes. The male BNC is connected to the Voltage input pin of the current channel. The cable is one side shielded to minimize the typical impact of electromagnetic disturbance generated by high power switching power supplies. Available length: 2 m (6.6 ft)	1-KAB2137-2	
Open end input cable		Shielded cable for 1-GN31xB current channels. LEMO breakout cable with direct current, voltage as current, isolated ground/return and shield open end cables (the individual wires are labeled). Can be used to add custom connectors and/or soldered to measurement points. The cable is shielded to minimize the typical impact of electromagnetic disturbance generated by high power switching power supplies. Available length: 3 m (9.8 ft)	1-KAB2138-3	

Hottinger Brüel & Kjaer GmbH

Im Tiefen See 45 · 64293 Darmstadt · Germany Tel. +49 6151 803-0 · Fax +49 6151 803-9100 www.hbkworld.com · info@hbkworld.com

Subject to modifications. All product descriptions are for general information only. They are not to be understood as a guarantee of quality or durability.