

CARACTÉRISTIQUES TECHNIQUES

Série GEN GN310B (GN311B) Carte puissance 3 voies ± 1500 V DC CAT III et ± 2 A

CARACTÉRISTIQUES SPÉCIFIQUES

- Exactitude 0,015 % de la valeur, 0,02 % de la plage
- 3 voies puissance (U et I)
- 5 plages de tension jusqu'à ± 1500 V DC CAT III
- 7 plages de courant jusqu'à ± 2 A
- 2 voies numériques pour le couple et la vitesse
- Calculs en temps réel de RMS, P, S, Q, λ, η, cos φ, THD, i_alpha, i_ beta, etc.
- Calculs de puissance sur toute la bande passante
- Calculs de la puissance fondamentale
- Protection anti-repliement en accord de phase
- Sortie temps réel latence 1 ms
- 18 bits à une vitesse de 2 Méch/s (200 kéch/s)
- Déclenchement sur résultats de puissance temps réel

Fonctions et avantages du GN310B/GN311B

La carte puissance GN310B offre trois voies puissance, chacune constituée d'une entrée tension et d'une entrée courant (ou tension).

Les entrées tension sont proposées de ± 50 V à ± 1500 V en cinq plages, ce qui permet d'adapter les entrées pour qu'elles correspondent au mieux à votre niveau de signal afin d'atteindre une incertitude minimale

L'isolation de l'entrée tension a été testée jusqu'à 7,4 kV RMS et permet de réaliser des mesures fiables jusqu'à 1000 V RMS CAT IV et 1500 V DC CAT III.

Les entrées courant sont proposées de ± 75 mA à ± 2 A en sept plages et utilisent des résistances de charge internes pour pouvoir accepter tous les convertisseurs de courant à flux nul usuels du marché. Toutes les entrées courant peuvent être commutées en mode tension pour pouvoir brancher des pinces de courant ou des bobines Rogowski.

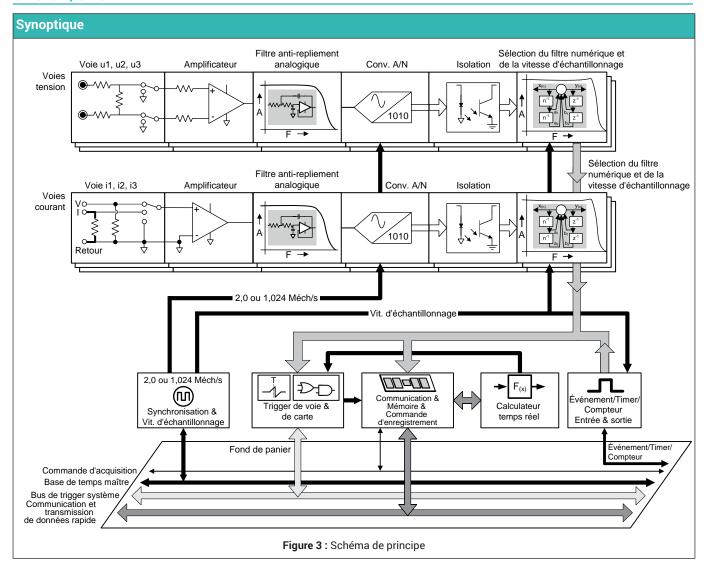
Les entrées courant sont isolées galvaniquement jusqu'à 60 V pour éviter les boucles de courant.

Des mesures de puissance sur toute la large bande permettent des calculs de rendement optimums, tandis que les filtres anti-repliement numériques Bessel/Butterworth ou Elliptiques multiniveaux uniques disponibles en option, qui utilisent 11 ou 12 ordres, garantissent un très bon accord de phase, un bruit ultra-faible et des résultats sans repliement, même dans des environnements bruvants. Les guatre voies Timer/Compteur et l'adaptateur couple/vitesse de rotation G070A permettent d'avoir une interface directe avec des couplemètres HBM ou d'autres capteurs de vitesse/couple. La base de données de formules temps réel permet de réaliser des analyses prédéfinies ou personnalisées. Des calculs de puissance tels RMS, P, Q, S, cos φ, λ ou η sont disponibles, que ce soit pour des signaux à large bande ou uniquement des composantes fondamentales. Des formules avancées permettent d'effectuer des transformations en temps réel afin d'obtenir des espaces vectoriels α et β ou bien des courants d, q d'un système d'entraînement électrique. Tous les résultats peuvent être transférés vers un système d'automatisation en temps réel à l'aide de l'interface de programmation GEN DAQ et des interfaces optionnelles CAN FD ou EtherCAT® (1 ms de latence) de l'appareil de base.

805494_05_F00_00 09/10/2023

GN310B/GN311B

Aperçu des fonctions					
Modèle	GN310B	GN311B			
Vitesse d'échantillonnage max. par voie	2 Méch/s	200 kéch/s			
Mémoire par carte	2 Go				
Voies analogiques	6				
Filtres anti-repliement	Filtre anti-repliement analogique à bande passa numérique surveillant la vitesse d'échantillonna	nte fixe combiné à un filtre anti-repliement ge			
Résolution du convertisseur A/N	18 bits				
Isolation	Voie à voie et voie à châssis				
Type d'entrée	Haute tension : entrée analogique, isolée, différentielle symétrique Courant / basse tension : entrée analogique, isolée, différentielle asymétrique				
Pinces de courant / sondes de tension passives	Les voies tension ne prennent en charge que des sondes spécialement conçues Les voies courant utilisées en mode tension prennent en charge des pinces de courant				
Capteurs	Les voies courant utilisées en mode courant prennent en charge des convertisseurs de courant				
TEDS	Non pris en charge				
Calculateurs temps réel reposant sur la base de données de formules (option)	Grand choix de programmes mathématiques pro déclenchement possible sur des résultats calcu	ogrammables par l'utilisateur avec lés			
Événement numérique/Timer/Compteur	16 événements numériques et 4 voies Timer/Co	mpteur			
Transmission de données standard (CPCI jusqu'à 200 Mo/s)	Non prise en charge				
Transmission de données rapide (PCIe jusqu'à 1 Go/s)	Prise en charge				
Largeur de slot	1				


Appareils de base pris en charge						
	GEN2tB	GEN4tB	GEN7tA / GEN7tB	GEN17tA / GEN17tB	GEN3iA	GEN7iA / GEN7iB
GN310B/GN311B			0	ui		
Interface de programmation GEN DAQ		0	ui		Ou	i ⁽¹⁾
EtherCAT®	Non		Oui		No	on
CAN / CAN FD		0	ui		No	on

⁽¹⁾ Fermer Perception pour permettre l'accès à l'interface de programmation GEN DAQ.

2

Capteurs et sondes analogiques pris en charge					
Mode Amplificateur	Capteurs et sondes analogiques pris en charge	Fonctionnalités, câblage et accessoires			
Mesure de puissance	 Convertisseurs de courant Pinces de courant Tensions électriques, différentielles et asymétriques Sondes de tension asymétriques actives Sondes de tension différentielles actives 	 3 voies puissance (tension et courant) Entrée tension : ± 50 V à ± 1500 V Entrée courant continu pour : ± 75 mA à ± 2,0 A Tension comme entrée courant : ± 50 mV à ± 20 V Sonde certifiée 5 kV (valeur RMS) Pinces de courant 			

Capteurs numériques pris en charge (entrée niveau	Capteurs numériques pris en charge (entrée niveau TTL)						
Type d'entrée timer-compteur	Capteurs numériques pris en charge	Fonctions					
Signal Direction Réinitia- lisation 3/4 Comptage croissant Comptage décroissant Réinitia- lication Figure 1: Horloge unidirectionnelle et bidirectionnelle	 Couplemètres HBM Couplemètres Capteurs de vitesse Capteurs de position 	 Mesure d'angle Mesure de la fréquence / vitesse de rotation Mesure comptage/position Fréquence de comptage jusqu'à 5 MHz Filtre numérique sur les signaux d'entrée Plusieurs options de réinitialisation Le RT-FDB peut ajouter une voie calculée Fréquence/Vitesse basée sur la mesure de l'angle 					
Signal Direction 1	 Couplemètres HBM Couplemètres Capteurs de vitesse Capteurs de position 	 Mesure d'angle Mesure de la fréquence / vitesse de rotation Mesure comptage/position Fréquence de comptage jusqu'à 2 MHz Filtre numérique sur les signaux d'entrée Comptage à précision simple, double et quadruple Suivi des transitions pour éviter les dérives de comptage Plusieurs options de réinitialisation Le RT-FDB peut ajouter une voie calculée Fréquence/Vitesse basée sur la mesure de l'angle 					

Caractéristiques et incertitude de mesure

Les caractéristiques techniques sont établies en utilisant une température ambiante de 23 °C.

Pour améliorer l'incertitude de mesure, le système pourrait être réajusté à une température ambiante spécifique afin de minimiser l'impact de la dérive de température.

Toute source d'erreur de l'amplificateur analogique suit la courbe = ax + b.

- a % d'erreur de la valeur, représente l'erreur qui augmente de façon linéaire en raison de l'augmentation de la tension d'entrée ; elle est souvent appelée erreur de gain.
- b % d'erreur de la plage, représente l'erreur lors de la mesure de 0 V ; elle est souvent appelée erreur d'offset.

Pour l'incertitude de mesure, ces erreurs peuvent être considérées comme des sources d'erreur indépendantes.

Le bruit n'est pas une source d'erreur indépendante en dehors des caractéristiques standards.

Les caractéristiques relatives au bruit sont ajoutées séparément si vous avez besoin d'une exactitude dynamique échantillon par échantillon. Ajouter l'erreur de bruit (valeur efficace) uniquement pour l'incertitude de mesure échantillon par échantillon.

Pour l'exactitude de la puissance, par exemple, l'erreur de bruit (valeur efficace) est déjà comprise dans les caractéristiques de puissance.

Les limites Réussite/Échec sont des caractéristiques à distribution rectangulaire. Par conséquent, l'incertitude de mesure est égale à 0,58 * valeur spécifiée.

Ajout/retrait ou échange de cartes

Les caractéristiques indiquées s'appliquent à des cartes étalonnées et utilisées dans le même appareil de base, avec la même configuration de l'appareil de base et les mêmes slots que ceux dans lesquels les cartes se trouvaient lors de l'étalonnage.

Si des cartes sont ajoutées, retirées ou changées de position, les conditions thermiques qui s'y appliquent changent, ce qui entraîne des erreurs de dérive thermique supplémentaires. L'erreur maximale attendue peut atteindre deux fois l'erreur de valeur et de plage spécifiée et la réjection de mode commun peut être réduite de 10 dB.

Il est donc fortement conseillé de procéder à un nouvel étalonnage après toute modification de la configuration.

Shunt 0,33 Ω : ± 75 mA, :	150 mA. ± 300) mA. ± 0.6 A et ± 1.2	Α		
5. maint 6,660 is 1 = 1 0 min , 1	DC	1 Hz < f ≤ 25 kHz	25 kHz < f ≤ 100 kHz	100 kHz < f ≤ 200 kHz	200 kHz < f ≤ 500 kHz
Erreur de valeur DC et tous les facteurs de puissance	0,015 % ⁽¹⁾	0,015 % + 0,04(fkHz) %	1,015 %	0,015 % + 0,01(fkHz) %	2,015 % + 0,04(fkHz - 200 kHz) 9
Erreur de plage DC	0,02 % + 2,5 mW ⁽²⁾		-		
Erreur de plage 0,5 < fact. puissance <= 1		0,02 %	0,02 %	0,02 %	0,02 %
Erreur de plage 0,01 ≤ fact. puissance ≤ 0,5		0,04 %	0,04 %	0,04 %	0,04 %
Shunt 0,1 Ω: ± 1,0 A et ±	2,0 A				
	DC	1 Hz < f ≤ 25 kHz	25 kHz < f ≤ 100 kHz	100 kHz < f ≤ 200 kHz	200 kHz < f ≤ 500 kHz
Erreur de valeur DC et tous les facteurs de puissance	0,02 %	0,02 + 0,04(fkHz) %	1,02 %	0,02 + 0,01(fkHz) %	2,02 % + 0,04 (fkHz - 200 kHz) 9
Erreur de plage DC	0,04 % + 2,5 mW	-	-	-	
Frreur de plage),5 < fact. puissance <= 1		0,04 %	0,04 %	0,04 %	0,04 %
	ussite/Échec 1	Hz à 2 kHz		Limites Réussite/É	chec 1 kHz à 200 kHz
0,10 0,08 0,08 0,06 0,04 0,04			2,00 [%] 1,50 [%] 1,00	% de la valeur	
0,00 1 11 F) 100 réquence du signa		0,00	10 Frá	100 du signal [kHz]

Figure 4 : Limites Réussite/Échec puissance (shunt 0,33 Ω), Large bande et 0,5 \leq facteur de puissance \leq 1

- (1) Pour la plage \pm 75 mA, l'erreur de valeur DC est 0,02 %
- (2) Pour la plage \pm 75 mA, l'erreur de plage DC est 0,04 % + 2,5 mW

Exemples d'incertitude de mesure puissance

Pour les puissances DC, la plage de puissance est définie de 0 W à, maximum, la tension continue * le courant continu. Pour les puissances RMS uniquement, c'est-à-dire lorsque les ondes sinusoïdales de tension et de courant sont utilisées sans déformations harmoniques, la puissance RMS maximum serait 0 à (tension continue max. / V2) * (courant continu max. / V2). Cependant, dans les applications réelles, ces signaux présentent de grandes déformations, la puissance RMS maximale est donc plus difficile à déterminer.

Les caractéristiques indiquées pour les puissances DC et RMS sont donc toutes basées sur la plage de puissance calculée pour les signaux DC. Cela donne des caractéristiques cohérentes, en particulier si les deux composantes DC et RMS existent dans le même signal de puissance à mesurer.

Comme l'étalonnage de la puissance est un étalonnage de chaîne, les caractéristiques individuelles pour la tension et le courant peuvent être exclues de l'incertitude de mesure de la puissance.

Comparaison de la même valeur dans deux plage	Plage de puissance		
400 W DC		600 W	1200 W
Erreur de valeur	0,58 * 0,015 % de la valeur	34,8 mW	34,8 mW
Erreur de plage	0,58 * (0,02 % de la plage + 2,5 mW)	71,05 mW	140,65 mW
Erreur totale	$\sqrt{\text{erreur_valeur}^2 + \text{erreur_plage}^2}$	79,11 mW	144,89 mW
Valeur de l'incertitude (k = 1)	Erreur totale / valeur * 100 %	0,0198 %	0,0362 %
250 W RMS à 10 kHz et facteur de puissance 1		600 W	1200 W
Erreur de valeur	0,58 * (0,015 + (0,04 * kHz)) % de la valeur	602 mW	602 mW
Erreur de plage	0,58 * 0,02 % de la plage	69,6 mW	139,2 mW
Erreur totale	$\sqrt{\text{erreur_valeur}^2 + \text{erreur_plage}^2}$	606,0 mW	617,9 mW
Valeur de l'incertitude (k = 1)	Erreur totale / valeur * 100 %	0,242 %	0,247 %

6

Vue d'ensemble des limites Réussite/Échec puissance : shunt 0,33 Ω

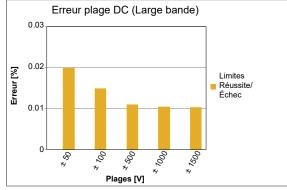
(Large bande et 0,5 ≤ facteur de puissance <= 1).

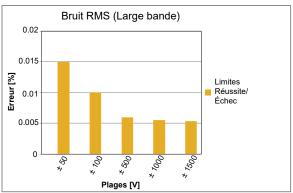
Toutes les valeurs sont calculées sur la base des spécifications des Limites Réussite/Échec puissance Large bande. La valeur indiquée représente l'imprécision maximum existant à la fin de la bande de fréquence. Pour obtenir des valeurs plus précises, utilisez les calculs spécifiés dans le tableau, comme indiqué dans les Limites Réussite/Échec puissance Large bande.

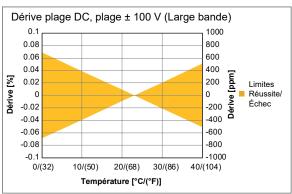
bande. Plag	es de puissar	nce			Fréqu	ence du sigr	nal (f)			
Tension	Courant	Alimenta- tion	DC	1 Hz < f ≤ 100 Hz	0,1 kHz < f ≤ 1 kHz	1 kHz < f ≤ 10 kHz	10 kHz < f ≤ 100 kHz	100 kHz < f ≤ 200 kHz	200 kHz < f ≤ 500 kHz	
	± 1,2 A DC [0,84 A RMS]	1800 W	0,015 % 0,020 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,6 A [0,42 A RMS]	900 W	0,015 % 0,020 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
± 1500 V DC [1060 V RMS]	± 0,3 A [0,21 A RMS]	450 W	0,015 % 0,021 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,15 A [0,10 A RMS]	225 W	0,015 % 0,021 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,075 A [0,05 A RMS]	112,5 W	0,020 % 0,041 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 1,2 A DC [0,84 A RMS]	1200 W	0,015 % 0,020 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,6 A [0,42 A RMS]	600 W	0,015 % 0,020 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
± 1000 V DC [700 V RMS]	± 0,3 A [0,21 A RMS]	300 W	0,015 % 0,021 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,15 A [0,10 A RMS]	150 W	0,015 % 0,022 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,075 A [0,05 A RMS]	75 W	0,020 % 0,043 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 1,2 A DC [0,84 A RMS]	600 W	0,015 % 0,020 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,6 A [0,42 A RMS]	300 W	0,015 % 0,021 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
± 500 V DC [350 V RMS]	± 0,3 A [0,21 A RMS]	150 W	0,015 % 0,022 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,15 A [0,10 A RMS]	75 W	0,015 % 0,023 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,075 A [0,05 A RMS]	37,5 W	0,020 % 0,047 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 1,2 A DC [0,84 A RMS]	120 W	0,015 % 0,022 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,6 A [0,42 A RMS]	60 W	0,015 % 0,024 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
± 100 V DC [70 V RMS]	± 0,3 A [0,21 A RMS]	30 W	0,015 % 0,028 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,15 A [0,10 A RMS]	15 W	0,015 % 0,037 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,075 A [0,05 A RMS]	7,5 W	0,020 % 0,073 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 1,2 A DC [0,84 A RMS]	60 W	0,015 % 0,024 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,6 A [0,42 A RMS]	30 W	0,015 % 0,028 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
± 50 V DC [35 V RMS]	± 0,3 A [0,21 A RMS]	15 W	0,015 % 0,037 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,15 A [0,10 A RMS]	7,5 W	0,015 % 0,053 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage
	± 0,075 A [0,05 A RMS]	3,75 W	0,020 % 0,107 %	0,019 % 0,020 %	0,055 % 0,020 %	0,415 % 0,020 %	1,015 % 0,020 %	2,015 % 0,020 %	14,015 % 0,020 %	valeur plage

Vue d'ensemble des limites Réussite/Échec puissance : shunt 0,1 Ω

(Large bande et 0,5 ≤ facteur de puissance <= 1).

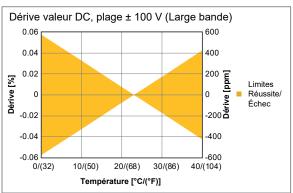

Toutes les valeurs sont calculées sur la base des spécifications des Limites Réussite/Échec puissance Large bande. La valeur indiquée représente l'imprécision maximum existant à la fin de la bande de fréquence. Pour obtenir des valeurs plus précises, utilisez les calculs spécifiés dans le tableau, comme indiqué dans les Limites Réussite/Échec puissance Large bande.

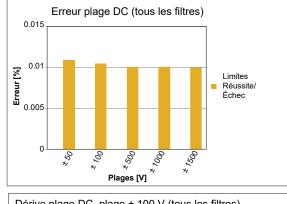

Plag	Plages de puissance			Fréquence du signal (f)						
Tension	Courant	Alimenta- tion	DC	1 Hz < f ≤ 100 Hz	0,1 kHz < f ≤ 1 kHz	1 kHz < f ≤ 10 kHz	10 kHz < f ≤ 100 kHz	100 kHz <f≤ 200 kHz</f≤ 	200 kHz < f ≤ 500 kHz	
± 1500 V DC	± 2,0 A [1,40 A RMS]	3000 W	0,020 % 0,040 %	0,020 % 0,040 %	0,060 % 0,040 %	0,420 % 0,040 %	1,020 % 0,040 %	2,020 % 0,040 %	14,020 % 0,040 %	valeur plage
[1060 V RMS]	± 1,0 A [0,70 A RMS]	1500 W	0,020 % 0,040 %	0,020 % 0,040 %	0,060 % 0,040 %	0,420 % 0,040 %	1,020 % 0,040 %	2,020 % 0,040 %	14,020 % 0,040 %	valeur plage
± 1000 V DC	± 2,0 A [1,40 A RMS]	2000 W	0,020 % 0,040 %	0,020 % 0,040 %	0,060 % 0,040 %	0,420 % 0,040 %	1,020 % 0,040 %	2,020 % 0,040 %	14,020 % 0,040 %	valeur plage
[700 V RMS]	± 1,0 A [0,70 A RMS]	1000 W	0,020 % 0,040 %	0,020 % 0,040 %	0,060 % 0,040 %	0,420 % 0,040 %	1,020 % 0,040 %	2,020 % 0,040 %	14,020 % 0,040 %	valeur plage
± 500 V DC	± 2,0 A [1,40 A RMS]	1000 W	0,020 % 0,040 %	0,020 % 0,040 %	0,060 % 0,040 %	0,420 % 0,040 %	1,020 % 0,040 %	2,020 % 0,040 %	14,020 % 0,040 %	valeur plage
[350 V RMS]	± 1,0 A [0,70 A RMS]	500 W	0,020 % 0,041 %	0,020 % 0,040 %	0,060 % 0,040 %	0,420 % 0,040 %	1,020 % 0,040 %	2,020 % 0,040 %	14,020 % 0,040 %	valeur plage
± 100 V DC	± 2,0 A [1,40 A RMS]	200 W	0,020 % 0,041 %	0,020 % 0,040 %	0,060 % 0,040 %	0,420 % 0,040 %	1,020 % 0,040 %	2,020 % 0,040 %	14,020 % 0,040 %	valeur plage
[70 V RMS]	± 1,0 A [0,70 A RMS]	100 W	0,020 % 0,043 %	0,020 % 0,040 %	0,060 % 0,040 %	0,420 % 0,040 %	1,020 % 0,040 %	2,020 % 0,040 %	14,020 % 0,040 %	valeur plage
± 50 V DC	± 2,0 A [1,40 A RMS]	100 W	0,020 % 0,043 %	0,020 % 0,040 %	0,060 % 0,040 %	0,420 % 0,040 %	1,020 % 0,040 %	2,020 % 0,040 %	14,020 % 0,040 %	valeur plage
[35 V RMS]	± 1,0 A [0,70 A RMS]	50 W	0,020 % 0,045 %	0,020 % 0,040 %	0,060 % 0,040 %	0,420 % 0,040 %	1,020 % 0,040 %	2,020 % 0,040 %	14,020 % 0,040 %	valeur plage

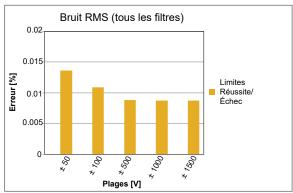

8

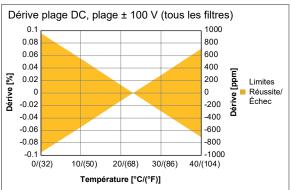
Voies tension			
Voies	3 haute tension		
Connecteurs	Connecteurs banane (plastique) de 4 mm entièrement isolés, 2 par voie (rouge et noir)		
Type d'entrée	Entrée analogique différentielle symétrique isolée		
Impédance d'entrée	5 MΩ ± 1 % // 4 pF ± 20 %		
Modes de couplage d'entrée	DC, GND		
Plages	± 50 V, ± 100 V, ± 500 V, ± 1000 V et ± 1500 V		
Offset (décalage)	± 50 % avec 1000 paliers (0,1 %) Plage ± 1000 V, décalage ± 25 % La plage ± 1500 V a un décalage fixe de 0 %		
Classification CAT			
Entrée différer	ntielle 1500 V DC CAT III, 1000 V CAT IV		
Entrée à ch	nâssis 1000 V CAT III, 600 V CAT IV		
Mode commun (référence à la terre du	système)		
Réjection de mode commun ((CMR) > 60 dB à 80 Hz (valeur typique 80 dB)		
Tension de mode commun	1000 V RMS		
	Figure 5 : Réponse en mode commun (voies tension)		
Tension d'entrée différentielle maximale sa détérioration	ns 2000 V RMS		
Temps de récupération après saturation	Retour à une exactitude de 0,1 $\%$ en moins de 5 μ s après une saturation de 200 $\%$		

Caractéristiques de tension (Large bande) - DC				
Limites Réussite/Échec				
0,01 % de la valeur				
0,01 % de la plage \pm 10 mV				
± 25,0 ppm/°C (± 14 ppm/°F)				
± 30,0 ppm/°C (± 17 ppm/°F)				
0,005 % de la plage ± 10 mV				




Figure 6 : Caractéristiques de tension (Large bande)


Caractéristiques de tension (Large bande) - AC


Toutes les valeurs sont calculées à l'aide des caractéristiques concernant l'imprécision des voies tension. La valeur indiquée représente l'imprécision maximum existant à la fin de la bande de fréquence. Pour des valeurs plus précises, utiliser la fonction mathématique indiquée dans le tableau des caractéristiques concernant l'imprécision des voies tension.

Plage de tension	Fréquence du signal (f)						
	1 Hz < f ≤ 100 Hz	100 Hz < f ≤ 1 kHz	1 kHz < f ≤ 20 kHz	20 kHz < f ≤ 100 kHz	100 kHz < f ≤ 200 kHz	200 kHz < f ≤ 500 kHz	
Toutes les plages (±50 V, ±100 V, ±500 V, ±1000 V,	0,010 %	0,025 %	max. 0,806 % ; (0,025 + 0,6*log(fkHz)) %	max. 1,225 % ; (0,025 + 0,6*log(fkHz)) %	max. 3,225 % ; (0,020*(fkHz) - 0,775) %	max. 9,225 % ; (0,020*(fkHz) - 0,775) %	valeur
±1500 V)	0,010 %	0,010 %	0,010 %	0,010 %	0,010 %	0,010 %	plage

	Limites Réussite/Échec
Erreur de valeur DC	0,01 % de la valeur
Erreur de plage DC	0,01 % de la plage ± 1 mV
Dérive de l'erreur valeur DC	± 20,0 ppm/°C (± 11 ppm/°F)
Dérive de l'erreur plage DC	± 40,0 ppm/°C (± 22 ppm/°F)
Bruit RMS (avec terminaison 50 Ω)	0,008 % de la plage ± 5 mV
Erreur plage DC (tous les filtres	Bruit RMS (tous les filtres)

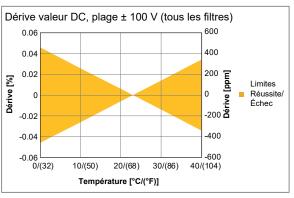
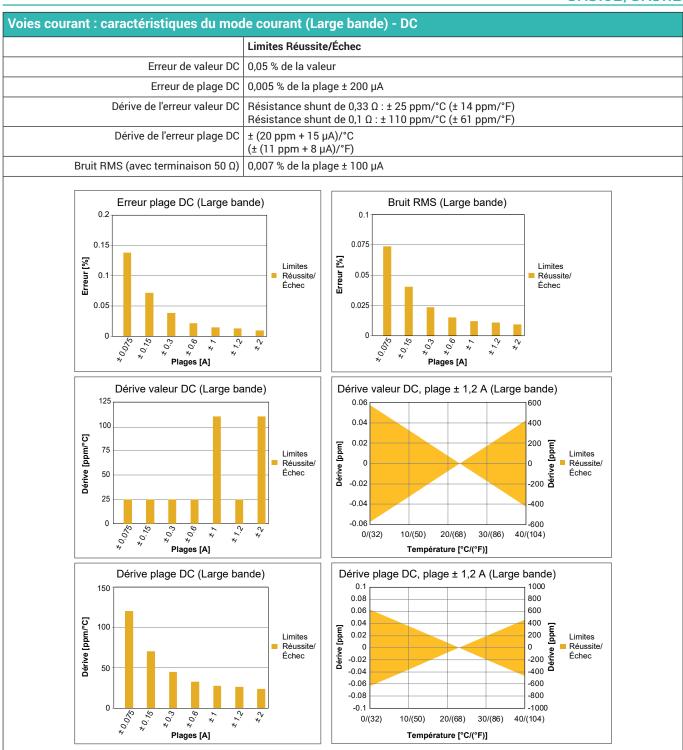
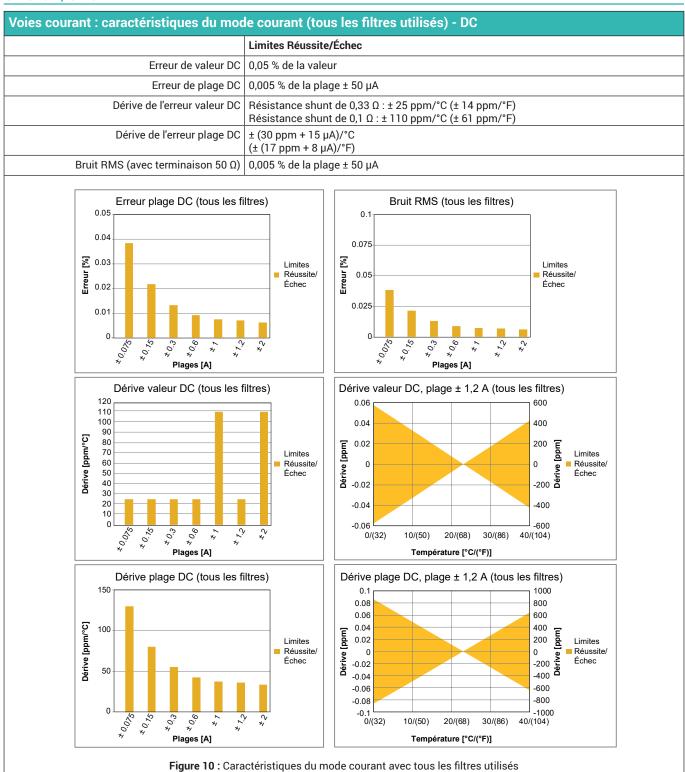



Figure 7 : Caractéristiques de tension avec tous les filtres utilisés


GN310D/GN311D				
Voies courant : mode courant				
Voies	3 courant			
Connecteurs	Connecteur LEMO, 1 par voie			
Type d'entrée	Analogique différentielle asymétrique isolée			
Impédance d'entrée	< 0,6 Ω (résistance shunt plus protection)			
Modes de couplage d'entrée	DC, GND (chemin du courant reste fermé)			
Plages	± 0,075 A, ± 0,15 A, ± 0,3 A, ± 0,6 A, ± 1,0 A, ± 1,2 A, ± 2,0 A			
Offset (décalage)	Décalage 0 % (pas de correction du décalage)			
Résistances shunt intégrées	0,33 Ω, 5 ppm/°C (± 0,075 A, ± 0,15 A, ± 0,3 A, ± 0,6 A, ± 1,2 A) 0,1 Ω, 20 ppm/°C (± 1,0 A, ± 2,0 A)			
Mode commun (référence à la terre du syste	eme)			
Réjection de mode commun (CMR)	< 10 μA/V à 80 Hz			
Tension de mode commun max. 30 V RMS				
100,001	Fréquence [kHz]			
	ponse en mode commun (voies courant : mode courant)			
Courant maximal sans détérioration ± 2,5 A DC Protection interne par fusibles CTP réarmables. Remarque : lorsqu'ils se déclenchent, les fusibles CTP ont besoin de temps pour refafin de satisfaire l'impédance d'entrée spécifiée.				
Tension d'isolement	60 V DC			

12

B05494_05_F00_00 09/10/2023 13

Figure 9 : Caractéristiques du mode courant Large bande

Vue d'ensemble des limites Réussite/Échec des voies courant, mode courant - AC

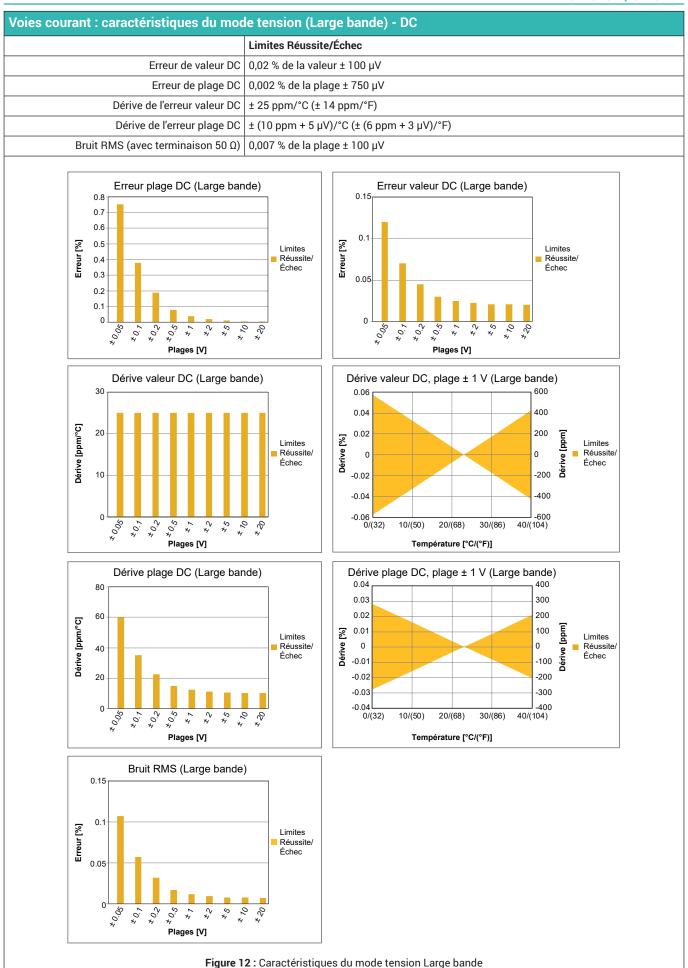
Toutes les valeurs sont calculées à l'aide des caractéristiques concernant l'imprécision des voies courant, mode courant. La valeur indiquée représente l'imprécision maximum existant à la fin de la bande de fréquence. Pour des valeurs plus précises, utiliser la fonction mathématique indiquée dans le tableau des caractéristiques concernant l'imprécision des voies courant, mode courant.

Résistance de shunt	Fréquence du signal (f)				
	1 Hz < f ≤ 100 Hz	100 Hz < f ≤ 1 kHz	1 kHz < f ≤ 10 kHz		
Limite Réussite/Échec à 0,33 Ω					
Shunt 0,33 Ω ⁽¹⁾	0,010 %	max. 0,21 %	max. 0,41 %		
	const.	(0,21 + 0,2*log(fkhz)) %		valeur	
	0,010 %	0,010 %	0,010 %	plage	
Limite Réussite/Échec à 0,1 Ω					
Shunt 0,1 Ω $^{(2)}$	0,010 %	max. 0,31 %	max. 0,61 %		
	const.	(0,31 + 0,3*log(fkhz)) %		valeur	
	0,020 %	0,020 %	0,020 %	plage	

⁽¹⁾ ± 75 mA, ± 150 mA, ± 300 mA, $\pm 0,6$ A et $\pm 1,2$ A

⁽²⁾ $\pm 1.0 \text{ A et } \pm 2.0 \text{ A}$

3 tension
Connecteur LEMO, 1 par voie
Analogique différentielle asymétrique isolée
1 MΩ ± 1 % // 40 pF ± 10 %
DC, GND
± 50 mV, ± 0,1 V, ± 0,2 V, ± 0,5 V, ± 1 V, ± 2 V, ± 5 V, ± 10 V, ± 20 V
± 50 % avec 1000 paliers (0,1 %) La plage ± 20 V a un décalage fixe de 0 %


Mode commun (référence à la terre du système)

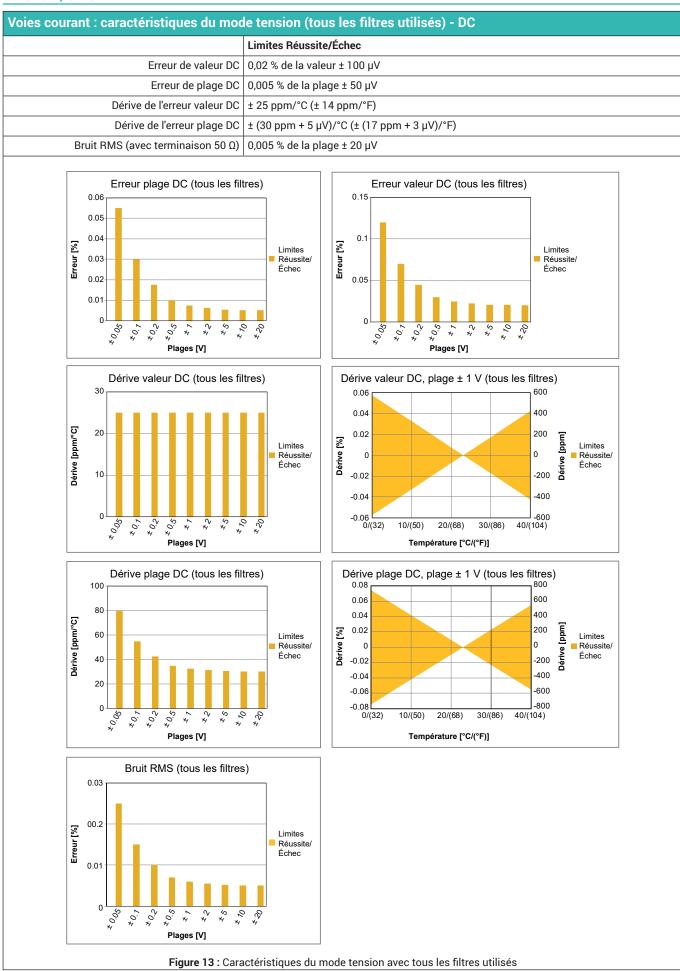

Plages	Inférieures à ± 5 V	Supérieures ou égales à ± 5 V	
Réjection de mode commun (CMR)	> 80 dB à 80 Hz (valeur typique 100 dB)	> 60 dB à 80 Hz (valeur typique 80 dB)	
Tension de mode commun max.	30 V RMS		

Figure 11 : Réponse en mode commun (voies courant : mode tension)

Modification de l'impédance de surtension	L'activation du système de protection contre les surtensions entraîne une diminution de l'impédance d'entrée. La protection contre les surtensions est désactivée tant que la tension d'entrée reste inférieure à 200 % de la plage d'entrée sélectionnée.
Courant maximal sans détérioration	± 35 V DC
Tension d'isolement	60 V DC
Temps de récupération après saturation	Retour à une exactitude de 0,1 % en moins de 5 µs après une saturation de 200 %

18

Vue d'ensemble des limites Réussite/Échec des voies courant, mode tension - AC

Toutes les valeurs sont calculées à l'aide des caractéristiques concernant l'imprécision des voies courant, mode tension. La valeur indiquée représente l'imprécision maximum existant à la fin de la bande de fréquence. Pour des valeurs plus précises, utiliser la fonction mathématique indiquée dans le tableau des caractéristiques concernant l'imprécision des voies courant, mode tension.

	1 Hz < f ≤ 1 kHz	1 kHz < f ≤ 10 kHz	1 kHz < f ≤ 20 kHz	20 kHz < f ≤ 100 kHz	100 kHz < f ≤ 200 kHz	200 kHz < f ≤ 500 kHz	
	0,01	0,010 %		0,550 %	2,550 %	8,550 %	valeur
± 0,05 V DC [35 mV RMS]	const.		(0,006*(fkl-	(0,006*(fkHz) - 0,05) %		(0,02*(fkHz) - 1,45) %	
[OO IIIV TIIVIO]			0,06	50 %			plage
	0,01	10 %	0,070 %	0,550 %	2,550 %	8,550 %	
± 0,1 V DC [70 mV RMS]	COI	const.		lz) - 0,05) %	(0,02*(fkH	z) - 1,45) %	valeur
[10 IIIV TIIVIO]			0,03	30 %			plage
	0,01	0,010 %		0,550 %	2,550 %	8,550 %	
± 0,2 V DC [140 mV RMS]	const.		(0,006*(fkHz) - 0,05) % (0,02*(fkHz) - 1,45) %			valeur	
[140 IIIV TIMO]	0,015 %					plage	
	0,010 % const.		0,070 %	0,550 %	2,350 %	7,750 %	
± 0,5 V ≤ plage < ± 5 V			(0,006*(fkHz) - 0,05) %		(0,02*(fkHz) - 1,45) %		valeur
			0,0	0 %			plage
Plage ≥ ±5 V	0,010 %	0,410 %	0,530 %	0,810 %	2,610 %	8,010 %	valeur
	const.	const. (0,0		1 + 0,4*log(fkHz)) %		(0,018*(fkHz) - 0,99) %	
	0,010 %				plage		

Connecteur courant et affectation des broches GN310B/GN311B Connecteur face avant GN310B/GN311B LEMO EPG.1B.304.HLN Connecteur homologue LEMO FGG.1B.304.CLAD52 (voir les détails pour la sélection de la bague de serrage du câble)*

Figure 14: Connecteur LEMO homologue FGG.1B.304.CLAD52

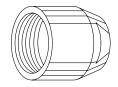
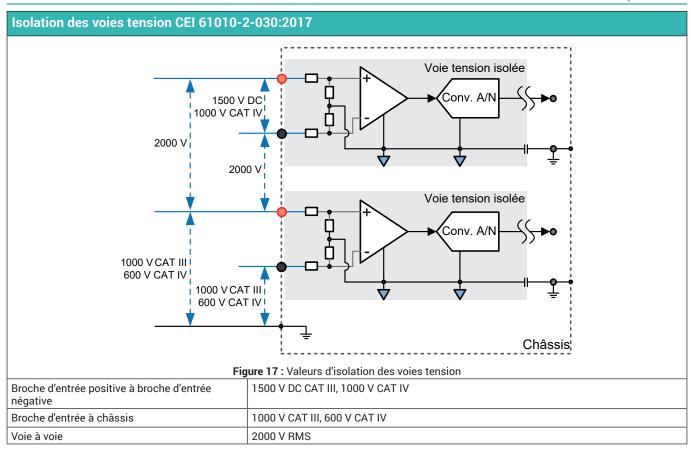


Figure 15 : Configuration de la bague de serrage du câble


* Sélection de la bague de serrage du câble :	Diamètre minimum du câble ØB	Diamètre maximum du câble ØB	
M27	2,2 mm	2,7 mm	
M31	2,7 mm	3,1 mm	
D42	3,1 mm	4,2 mm	
D52	4,2 mm	5,2 mm	
D62	5,2 mm	6,2 mm	
D72	6,2 mm	7,2 mm	
D76	7,2 mm	7,6 mm	

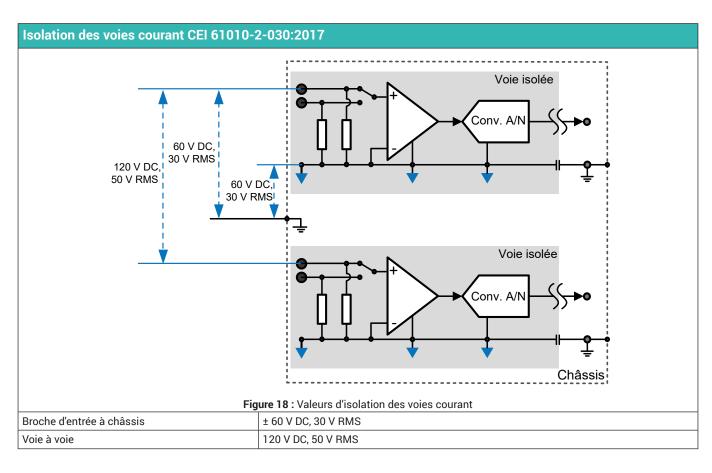


Figure 16 : Vue soudure connecteur de câble

.,	1,2
Nom du signal (couleur câble/ connecteur)	Numéro de broche
Entrée courant (blanc/bleu)	1
Entrée tension (marron/rouge)	2
Terre/blindage (jaune/jaune)	3
Retour entrée/terre isolée (vert/noir)	4

20

Test de l'isolation et du type d'entrée (vo	oie tension)		
Tests d'isolation CEI 61010-1 et CEI 61010-2	2-030		
Voie à voie	7400 V RMS pendant 5 s 4400 V RMS pendant 60 s		
Voie à châssis	7400 V RMS pendant 5 s 4400 V RMS pendant 60 s		
Différentiel	8250 V RMS pendant 5 s 2200 V RMS pendant 60 s 3200 V DC pendant 60 s		
Impulsion différentielle	Peak de 12 kV avec une résistance série de 2 Ω Temps de montée 1,2 μ s, amplitude réduite de 50 % en 50 μ s		
Impulsions voie à voie	Peak de 7 kV avec une résistance série de 2 Ω Temps de montée 1,2 μs, amplitude réduite de 50 % en 50 μs		
Impulsions voie à châssis	Peak de 8 kV avec une résistance série de 2 Ω Temps de montée 1,2 μs, amplitude réduite de 50 % en 50 μs		
Amplitude	Upeak— 50 %— 1μs 50 μs Temps—		
	Figure 19 : Exemple d'impulsion 1,2/50 μs		

Conversion analogique/numérique	
Vitesse d'échantillonnage ; par voie	0,1 éch/s à 2 Méch/s (GN310B) ou 0,1 éch/s à 200 kéch/s (GN311B)
Résolution conv. A/N ; un conv. A/N par voie	18 bits
Type de convertisseur analogique-numérique	Convertisseur à approximations successives (SAR) ; Analog Devices AD4003BCPZ
Précision de la base de temps	Définie par l'appareil de base : ± 3,5 ppm ; altération après 10 ans ± 10 ppm

Filtres anti-repliement

Remarque sur les voies de synchronisme de phase. Chaque caractéristique de filtrage et/ou bande passante de filtre choisie a sa propre réponse de phase. L'utilisation de réglages de filtre différents (Large bande / Bessel / Butterworth / Bessel IIR / Butterworth IIR / Elliptique IIR) ou de différentes bandes passantes de filtrage peut entraîner des incohérences de phase entre les voies.

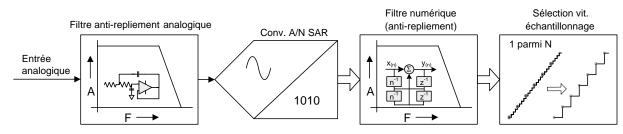


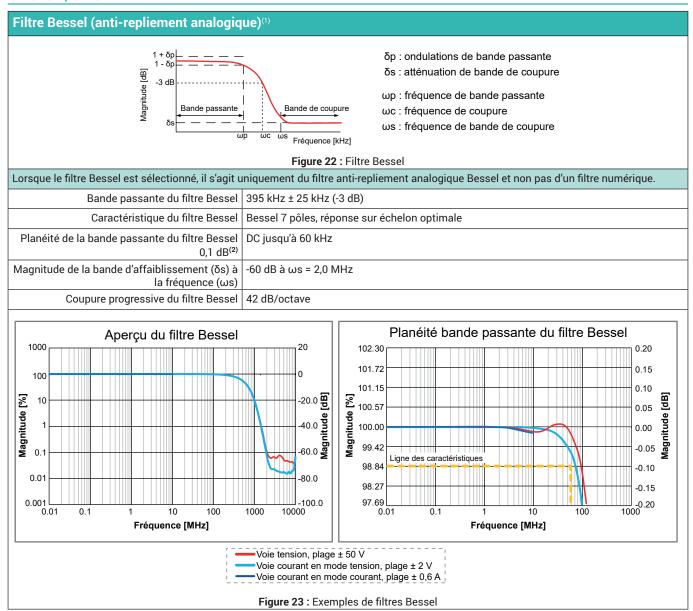
Figure 20 : Synoptique de filtres anti-repliement analogiques et numériques combinés

Tout repliement est empêché par un filtre anti-repliement analogique raide à fréquence fixe intégré dans la façade du convertisseur analogique-numérique. Le convertisseur A/N utilise toujours une vitesse d'échantillonnage fixe. Cette vitesse d'échantillonnage fixe du convertisseur analogique-numérique évite d'avoir recours à des fréquences de filtrage différentes pour l'anti-repliement analogique. Juste derrière le convertisseur A/N, un filtre numérique de haute précision est utilisé comme protection anti-repliement avant que le sous-échantillonnage numérique ne soit réalisé pour obtenir la vitesse d'échantillonnage souhaitée par l'utilisateur. Le filtre numérique est programmé sur une fraction de la vitesse d'échantillonnage utilisateur et suit automatiquement toute sélection de la vitesse d'échantillonnage effectuée par l'utilisateur. Comparé aux filtres anti-repliement analogiques, le filtre numérique programmable offre des avantages supplémentaires tels qu'un filtre d'ordre supérieur avec une coupure progressive raide, un plus grand choix de caractéristiques de filtrage, une sortie numérique exempte de bruit et aucun déphasage supplémentaire entre voies utilisant les mêmes paramètres de filtrage.

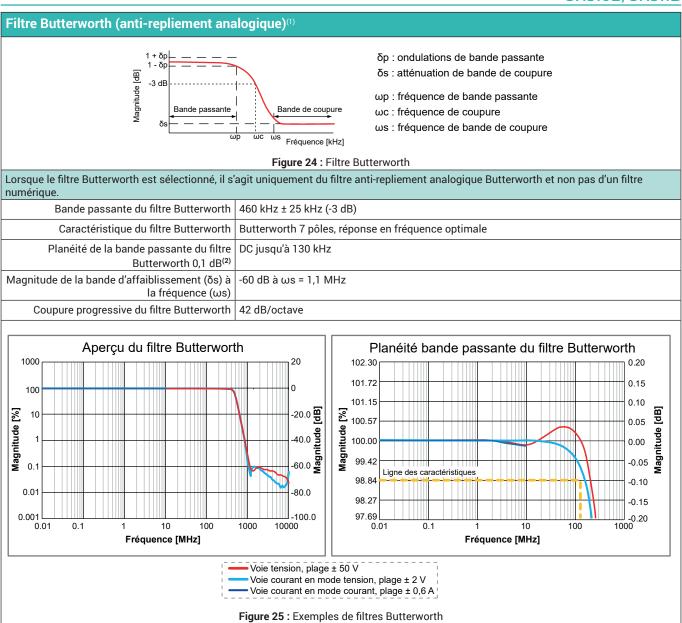
Large bande ⁽¹⁾	Lorsque le filtre Large bande est sélectionné, il n'y a ni filtre anti-repliement analogique, ni filtre numérique appliqué au signal. Il n'y a donc pas de protection anti-repliement lorsque le filtre Large bande est sélectionné. Le filtre Large bande ne doit pas être utilisé lors de l'analyse des données enregistrées dans un domaine fréquentiel.
Bessel (Fc à -3 dB) ⁽¹⁾	Ce filtre Bessel analogique peut être utilisé pour réduire les signaux supérieurs de la bande passante, en particulier à la vitesse d'échantillonnage maximale de 2 Méch/s ou 200 kéch/s. Pour les vitesses d'échantillonnage plus faibles, il est préférable d'utiliser le filtre IIR numérique pour empêcher le repliement. Les filtres Bessel sont généralement utilisés lors de l'analyse des signaux dans le domaine temporel. Ils sont particulièrement adaptés pour la mesure de signaux transitoires ou de signaux à flanc raide comme les ondes carrées ou les réponses sur échelon.
Butterworth (Fc à -3 dB) ⁽¹⁾	Ce filtre Butterworth analogique peut être utilisé pour réduire les signaux supérieurs de la bande passante, en particulier à la vitesse d'échantillonnage maximale de 2 Méch/s ou 200 kéch/s. Pour les vitesses d'échantillonnage plus faibles, il est préférable d'utiliser le filtre IIR numérique pour empêcher le repliement. Les filtres Butterworth sont généralement utilisés lors de l'analyse de signaux (quasiment) sinusoïdaux dans le domaine temporel ou de signaux dans le domaine fréquentiel.
Bessel IIR (Fc à -3 dB)	Lorsque le filtre Bessel IIR est sélectionné, il s'agit toujours d'une combinaison d'un filtre anti-repliement analogique Bessel avec un filtre Bessel IIR numérique qui permet d'éviter l'anti-repliement à des vitesses d'échantillonnage faibles. Les filtres Bessel sont généralement utilisés lors de l'analyse des signaux dans le domaine temporel. Ils sont particulièrement adaptés pour la mesure de signaux transitoires ou de signaux à flanc raide comme les ondes carrées ou les réponses sur échelon.
Butterworth IIR (Fc à -3 dB)	Lorsque le filtre Butterworth IIR est sélectionné, il s'agit toujours d'une combinaison d'un filtre anti-repliement analogique Butterworth avec un filtre Butterworth IIR numérique qui permet d'éviter l'anti-repliement à des vitesses d'échantillonnage faibles. Ce filtre est particulièrement adapté pour le domaine fréquentiel. Lors d'une analyse dans le domaine temporel, ce filtre convient particulièrement pour les signaux correspondant (pratiquement) à des ondes sinusoïdales.
Elliptique IIR (Fc à -0,1 dB)	Lorsque le filtre Elliptique IIR est sélectionné, il s'agit toujours d'une combinaison d'un filtre anti-repliement analogique Butterworth avec un filtre Elliptique IIR numérique qui permet d'éviter l'anti-repliement à des vitesses d'échantillonnage faibles. Ce filtre est particulièrement adapté pour le domaine fréquentiel. Lors d'une analyse dans le domaine temporel, ce filtre convient particulièrement pour les signaux correspondant (pratiquement) à des ondes sinusoïdales.

(1) Les filtres anti-repliement Large bande et analogique sont uniquement valides pour le GN310B.

805494_05_F00_00 09/10/2023 23


Sélection de la bande passante et des caractéristiques de filtrage par rapport à la vitesse d'échantillonnage

Le filtrage numérique avant décimage garantit un résultat de grande qualité, sans repliement, à bruit ultra-faible et en synchronisme de phase.


	Large bande		umériques (sans rep e convertisseur anal		sation d'un filtre anti-	repliement
	Aucun filtre anti-repliement	Butterworth IIR Elliptique IIR	Bessel IIR Butterworth IIR Elliptique IIR	Bessel IIR Butterworth IIR Elliptique IIR	Bessel IIR Butterworth IIR Elliptique IIR	Bessel IIR
Vitesses d'échantillonnage sélectionnables par l'utilisateur		1/4 Fe	1/10 Fe	1/20 Fe	1/40 Fe	1/100 Fe
2 Méch/s	Large bande		200 kHz	100 kHz	50 kHz	20 kHz
1 Méch/s	Large bande	250 kHz	100 kHz	50 kHz	25 kHz	10 kHz
500 kéch/s	Large bande	125 kHz	50 kHz	25 kHz	12,5 kHz	5 kHz
400 kéch/s	Large bande	100 kHz	40 kHz	20 kHz	10 kHz	4 kHz
250 kéch/s	Large bande	62,5 kHz	25 kHz	12,5 kHz	6,25 kHz	2,5 kHz
200 kéch/s	Large bande	50 kHz	20 kHz	10 kHz	5 kHz	2 kHz
125 kéch/s	Large bande	25 kHz	12,5 kHz	6,25 kHz	2,5 kHz	1,25 kHz
100 kéch/s	Large bande	20 kHz	10 kHz	5 kHz	2 kHz	1 kHz
50 kéch/s	Large bande	12,5 kHz	5 kHz	2,5 kHz	1,25 kHz	500 Hz
40 kéch/s	Large bande	10 kHz	4 kHz	2 kHz	1 kHz	400 Hz
25 kéch/s	Large bande	6,25 kHz	2,5 kHz	1,25 kHz	625 Hz	250 Hz
20 kéch/s	Large bande	5 kHz	2 kHz	1 kHz	500 Hz	200 Hz
12,5 kéch/s	Large bande	2,5 kHz	1,25 kHz	625 Hz	312,5 Hz	125 Hz
10 kéch/s	Large bande	2 kHz	1 kHz	500 Hz	250 Hz	100 Hz
5 kéch/s	Large bande	1,25 kHz	500 Hz	250 Hz	125 Hz	50 Hz
4 kéch/s	Large bande	1 kHz	400 Hz	200 Hz	100 Hz	40 Hz
2,5 kéch/s	Large bande	625 Hz	250 Hz	125 Hz	62,5 Hz	25 Hz
2 kéch/s	Large bande	500 Hz	200 Hz	100 Hz	50 Hz	20 Hz
1,25 kéch/s	Large bande	312,5 Hz	125 Hz	62,5 Hz	31,25 Hz	12,5 Hz
1 kéch/s	Large bande	250 Hz	100 Hz	50 Hz	25 Hz	10 Hz
500 éch/s	Large bande	125 Hz	50 Hz	25 Hz	12,5 Hz	5 Hz
400 éch/s	Large bande	100 Hz	40 Hz	20 Hz	10 Hz	4 Hz
250 éch/s	Large bande	62,5 Hz	25 Hz	12,5 Hz	6,25 Hz	2,5 Hz
200 éch/s	Large bande	50 Hz	20 Hz	10 Hz	5 Hz	2 Hz
125 éch/s	Large bande	31,25 Hz	12,5 Hz	6,25 Hz	3,125 Hz	1,25 Hz
100 éch/s	Large bande	25 Hz	10 Hz	5 Hz	2,5 Hz	1 Hz
50 éch/s	Large bande	12,5 Hz	5 Hz	2,5 Hz	1,25 Hz	0,5 Hz
40 éch/s	Large bande	10 Hz	4 Hz	2 Hz	1 Hz	0,4 Hz

Large bande (aucune protection anti-repliement)(1) Lorsque le filtre Large bande est sélectionné, il n'y a ni filtre anti-repliement analogique, ni filtre numérique appliqué au signal. Il n'y a donc pas de protection anti-repliement lorsque le filtre Large bande est sélectionné. Bande passante du filtre Large bande | Entre 1,0 MHz et 1,35 MHz (-3 dB) DC jusqu'à 160 kHz Planéité de la bande passante 0,1 dB⁽²⁾ Aperçu du filtre Large bande Planéité bande passante du filtre Large bande 1000 20,0 102,30 0,20 101,72 0,15 100 0,0 101,15 Magnitude [dB] -20,0 10 Magnitude [%] Magnitude [%] 100,57 0,05 100,00 0,00 99,42 -0,05 -60,0 igne des caractéristiques 98,84 -0,10 0,01 -80,0 98.27 -0,15 97,69 -0,20 0,001 -100,0 10 1 Fréquence [kHz] 0,01 0,1 1000 10000 0,01 0.1 100 1000 Fréquence [kHz] Voie tension, plage ± 50 V Voie courant en mode tension, plage ± 2 V Voie courant en mode courant, plage ± 0,6 A Figure 21 : Exemples de filtres Large bande

- (1) Le filtre Large bande (aucune protection anti-repliement) est uniquement valide pour GN310B.
- (2) Mesurée à l'aide d'un calibreur Fluke 5700A, normalisée en DC.

- (1) Le filtre anti-repliement analogique Bessel est uniquement valide pour le GN310B.
- (2) Mesurée à l'aide d'un calibreur Fluke 5700A, normalisée en DC.

- (1) Le filtre anti-repliement analogique Butterworth est uniquement valide pour GN310B.
- (2) Mesurée à l'aide d'un calibreur Fluke 5700A, normalisée en DC.

805494_05_F00_00 09/10/2023 27

Filtre Bessel IIR (anti-repliement numérique) δp: ondulations de bande passante δs: atténuation de bande de coupure Magnitude ωp: fréquence de bande passante ωc: fréquence de coupure ωs: fréquence de bande de coupure Figure 26: Exemples de filtres Bessel IIR (200 kHz uniquement pour GN310B; 20 kHz pour GN310B et GN311B) Lorsque le filtre Bessel IIR est sélectionné, il s'agit toujours d'une combinaison d'un filtre anti-repliement analogique Bessel avec un filtre Bessel IIR numérique. Bande passante du filtre anti-repliement 395 kHz ± 25 kHz (-3 dB) analogique Caractéristique du filtre anti-repliement Bessel 7 pôles, réponse sur échelon optimale analogique Caractéristique du filtre Bessel IIR IIR de style Bessel 8 pôles Sélection utilisateur pour le filtre Bessel IIR Suivi automatique à la vitesse d'échantillonnage divisée par : 10, 20, 40, 100 L'utilisateur sélectionne un facteur diviseur à partir de la vitesse d'échantillonnage actuelle, puis le logiciel ajuste le filtre lors du changement de la vitesse d'échantillonnage. Sélectionnable par l'utilisateur de 0,4 Hz à 200 kHz (ou 20 kHz pour GN311B) Bande passante du filtre Bessel IIR (ωc) DC jusqu'à 0,14 * ωc Bande passante Bessel IIR 0,1 dB $(\omega p)^{(1)}$ Atténuation de bande de coupure du filtre 55 dB Bessel IIR (δs) 48 dB/octave Coupure progressive du filtre Bessel IIR Aperçu du filtre Bessel IIR 200 kHz Planéité bande passante du filtre Bessel IIR 200 kHz 1000 20,0 101.72 0.15 100 0.0 101.15 0.10 -20.0 100,57 0.05 Magnitude [%] Magnitude [%] lagnitude [dB 40,0 **Nagnitude** 100,00 0,00 -60,0 99.42 -0,05 -80,0 0,0 -0,10 98,86 0,00 -100,0 -0,15 0,0001 0,01 -120,0 10000 97.69 -0.20 100 1000 100 Fréquence [kHz] Fréquence [kHz] Aperçu du filtre Bessel IIR 20 kHz Planéité bande passante du filtre Bessel IIR 20 kHz 1000 20,0 102.30 0.20 101,72 0,15 100 0,0 -20,0 % 100,57 0,05 Magnitude [%] lagnitude [dB] 40,0 Magnitude itude 100,00 0,00 -60,0 0, 0,01 0,08 Voie tension, plage ± 50 V 98.84 -0.10 Voie courant en mode tension, plage ± 2 V 0.00° -100.0 -0,15 Voie courant en mode courant, plage ± 0,6 A 0,0001 ---97,69 -0.20 -120.0 100 10 1000 0.01 0.1 10 Fréquence [kHz] Fréquence [kHz] Figure 27: Exemples de filtres Bessel IIR (200 kHz uniquement pour GN310B; 20 kHz pour GN310B et GN311B)

(1) Mesurée à l'aide d'un calibreur Fluke 5700A, normalisée en DC

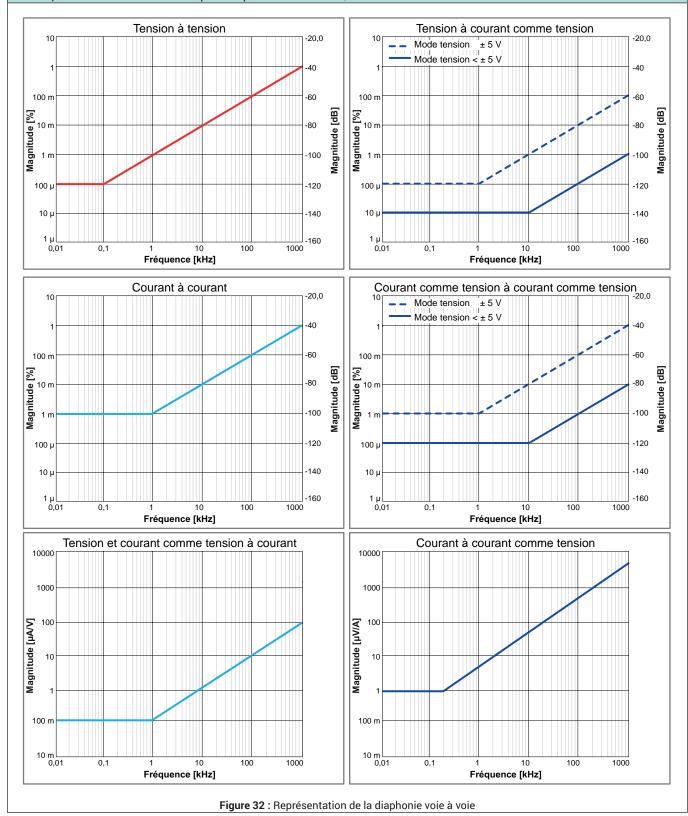
Filtre Butterworth IIR (anti-repliement numérique) p : ondulations de bande passante s : atténuation de bande de coupure Magnitude [dB] -3 dF p : fréquence de bande passante c : fréquence de coupure Bande passante Bande de coupure s : fréquence de bande de coupure Fréquence [kHz] Figure 28: Filtre Butterworth IIR numérique Lorsque le filtre Butterworth IIR est sélectionné, il s'agit toujours d'une combinaison d'un filtre anti-repliement analogique Butterworth avec un filtre Butterworth IIR numérique 460 kHz ± 25 kHz (-3 dB) Bande passante du filtre anti-repliement analogique Caractéristique du filtre anti-repliement Butterworth 7 pôles, réponse en bande passante étendue analogique Caractéristique du filtre Butterworth IIR IIR de style Butterworth 8 pôles Sélection utilisateur pour le filtre Butterworth IIR Suivi automatique à la vitesse d'échantillonnage divisée par : 4⁽¹⁾, 10, 20, 40 L'utilisateur sélectionne un facteur diviseur à partir de la vitesse d'échantillonnage actuelle, puis le logiciel ajuste le filtre lors du changement de la vitesse d'échantillonnage Bande passante du filtre Butterworth IIR (ωc) Sélectionnable par l'utilisateur de 1 Hz à 250 kHz (ou 50 kHz pour GN311B) DC jusqu'à 0,7 * ω c (pour ω c > 100 kHz, DC jusqu'à 0,6 * ω c, en raison de la bande Bande passante Butterworth IIR 0,1 dB $(\omega p)^{(2)}$ passante du filtre anti-repliement analogique) Atténuation de bande de coupure du filtre Butterworth IIR (δs) Coupure progressive du filtre Butterworth IIR 48 dB/octave Aperçu du filtre Butterworth IIR 200 kHz Planéité bande passante du filtre Butterworth IIR 200 kHz 1000 20,0 0,20 101,72 0,15 100 0.0 0,10 101.15 -20.0 Nagnitude [dB] Magnitude [%] 100,57 0,05 EB Magnitude [%] 40,0 tude 0.00 0,1 -60,0 -0.05 0.0 -80.0 98,84 -0,10100,0 98.2 -0.1597,69 -0,20 0,0001 -120,0 10000 1000 0.01 100 1000 Fréquence [kHz] Fréquence [kHz] Aperçu du filtre Butterworth IIR 20 kHz Planéité bande passante du filtre Butterworth IIR 20 kHz 20.0 101,72 0,15 0.0 100 101.15 0.10 -20,0 100,57 Magnitude [dB] [%] 0,05 agnitude [%] 40,0 Magnitude tude 0,00 100.00 0,1 -60,0 99.42 -0.05 Voie tension, plage ± 50 V -80,0 -0,10 Voie courant en mode tension. plage ± 2 V 0.001 100.0 -0,15 Voie courant en mode courant plage ± 0,6 A 0,0001 0,01 97,69 -0,20 Fréquence [kHz] Fréquence [kHz] Figure 29: Exemples de filtres Butterworth IIR (200 kHz uniquement pour GN310B; 20 kHz pour GN310B et GN311B)

- (1) La division par 4 n'est pas possible pour la vitesse d'échantillonnage 2 Méch/s
- (2) Mesurée à l'aide d'un calibreur Fluke 5700A, normalisée en DC

805494_05_F00_00 09/10/2023 29

Filtre Elliptique IIR (anti-repliement numérique) p : ondulations de bande passante s : atténuation de bande de coupure Magnitude [dB] p : fréquence de bande passante c : fréquence de coupure Bande passante Bande de coupure s : fréquence de bande de coupure Figure 30 : Filtre Elliptique IIR numérique Lorsque le filtre Elliptique IIR est sélectionné, il s'agit toujours d'une combinaison d'un filtre anti-repliement analogique Butterworth avec un filtre Elliptique IIR numérique. Bande passante du filtre anti-repliement 460 kHz ± 25 kHz (-3 dB) analogique Caractéristique du filtre anti-repliement Butterworth 7 pôles, réponse en bande passante étendue analogique Caractéristique du filtre Elliptique IIR IIR de style Elliptique 7 pôles Sélection utilisateur pour le filtre Elliptique IIR Suivi automatique à la vitesse d'échantillonnage divisée par : 4⁽¹⁾, 10, 20, 40 L'utilisateur sélectionne un facteur diviseur à partir de la vitesse d'échantillonnage actuelle, puis le logiciel ajuste le filtre lors du changement de la vitesse d'échantillonnage Bande passante du filtre Elliptique IIR (ωc) Sélectionnable par l'utilisateur de 1 Hz à 250 kHz (ou 50 kHz pour GN311B) DC jusqu'à ωc (pour ωc > 100 kHz, DC jusqu'à 0,7 * ωc, en raison de la bande passante du Bande passante Elliptique IIR 0,1 dB (ωp)(2) filtre anti-repliement analogique) Atténuation de bande de coupure du filtre Elliptique IIR (δs) Coupure progressive du filtre Elliptique IIR 72 dB/octave Aperçu du filtre Elliptique IIR 200 kHz Planéité bande passante du filtre Elliptique IIR 200 kHz 1000 20.0 102.30 101.72 0,15 100 0.0 0.10 101,15 -20.0 0,05 e E 2 lagnitude [dB] <u></u> 100,57 40,0 Magnitude Magnitude itude 0,00 100,00 0, 60,0 -0,05 **2** 99.42 0,0 -80.0 -0,10 98,8 0,001 100,0 -0,15 98,27 -120,0 10000 -0,20 97,69 0,0001 1000 0.1 100 100 0.01 10 Fréquence [kHz] Fréquence [kHz] Aperçu du filtre Elliptique IIR 20 kHz Planéité bande passante du filtre Elliptique IIR 20 kHz 1000 20,0 101.72 0.15 0,0 100 101.15 0.10 -20,0 10 100,57 0,05 e B /agnitude [dB] 8 Nagnitude [%] 40,0 Magnitude itude 0,00 100,00 0,1 -60,0 -0,05 **2** 99.42 Voie tension, plage ± 50 V -80,0 0,0 -0,10 Voie courant en mode tension plage ± 2 V 0.001 -100,0 -0,15 98,2 . Voie courant en mode courant plage ± 0,6 A 0,0001 97,69 -0,20 120,0 0,1 Fréquence [kHz] Figure 31: Exemples de filtres Elliptiques IIR (200 kHz uniquement pour GN310B; 20 kHz pour GN310B et GN311B)

- (1) La division par 4 n'est pas possible pour la vitesse d'échantillonnage 2 Méch/s
- (2) Mesurée à l'aide d'un calibreur Fluke 5700A, normalisée en DC


Synchronisme de phase voie à voie

L'utilisation de réglages de filtre différents (Large bande / Bessel IIR / Butterworth IIR / etc.) ou de différentes bandes passantes de filtrage entraîne des incohérences de phase entre les voies. Toutes les caractéristiques sont des valeurs limites Réussite/Échec pour des signaux sinusoïdaux d'une fréquence f, qui ont été mesurées à une vitesse d'échantillonnage de 2 Méch/s.

	f ≤ 1 kHz	1 kHz < f ≤ 10 kHz	10 kHz < f ≤ 100 kHz
Large bande			
Voies au sein d'un groupe	± 0,01°	± 0,03°	± 0,1°
Voies entre groupes sur la carte	± 0,02°	± 0,1°	± 0,7°
Voies GN310B dans l'appareil de base	± 0,02°	± 0,1°	± 0,8°
Bessel IIR, fréquence de filtrage 200 kHz			
Voies au sein d'un groupe	± 0,01°	± 0,04°	± 0,3°
Voies entre groupes sur la carte	± 0,02°	± 0,1°	± 1,0°
Voies GN310B dans l'appareil de base	± 0,02°	± 0,1°	± 1,2°
Butterworth IIR, fréquence de filtrage 200 kH	lz		
Voies au sein d'un groupe	± 0,01°	± 0,04°	± 0,3°
Voies entre groupes sur la carte	± 0,02°	± 0,1°	± 1,0°
Voies GN310B dans l'appareil de base	± 0,02°	± 0,1°	± 1,2°
Elliptique IIR, fréquence de filtrage 200 kHz			
Voies au sein d'un groupe	± 0,01°	± 0,04°	± 0,3°
Voies entre groupes sur la carte	± 0,02°	± 0,1°	± 1,0°
Voies GN310B dans l'appareil de base	± 0,02°	± 0,1°	± 1,2°
Voies GN310B sur plusieurs appareils de base	Dépend de la méthode de syn	chronisation utilisée (Aucune,	IRIG, GPS, Maître/Sync, PTP)

Diaphonie voie à voie

La diaphonie voie à voie est mesurée en plaçant une résistance de terminaison de 50Ω sur l'entrée et en appliquant des signaux sinusoïdaux à la voie ou aux voies adjacente(s). La diaphonie entre les voies courant (mode courant ou mode tension) et les voies tension est trop faible pour être mesurée ; elle est bien inférieure à -100 dB.

Événement numérique/Timer/Compteur

Le connecteur d'entrée Événement numérique/Timer/Compteur se trouve sur l'appareil de base. Pour son emplacement exact et l'affectation de ses broches, voir les caractéristiques techniques de l'appareil de base.

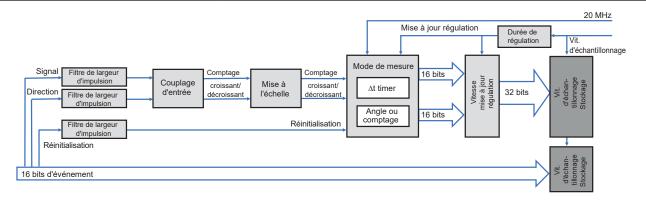


Figure 33 : Synoptique Timer/Compteur

	rigate oo : cynoptique rimer, compteur	
Événements d'entrée numériques	16 par carte	
Niveaux	Niveau d'entrée TTL, niveau d'inversion programmable par l'utilisateur	
Entrées	1 broche par entrée, certaines broches sont partagées avec les entrées Timer/Compteur	
Protection contre les surtensions	± 30 V DC en permanence	
Largeur d'impulsion minimale	100 ns	
Fréquence maximale	5 MHz	
Événements de sortie numériques	2 par carte	
Niveaux	Niveaux de sortie TTL, protégés contre les courts-circuits	
Événement de sortie 1	Sélectionnable par l'utilisateur : trigger, alarme, réglage sur Haut ou Bas	
Événement de sortie 2	Sélectionnable par l'utilisateur : enregistrement actif, réglage sur Haut ou Bas	
Sélections utilisateur pour l'événement de s	ortie numérique	
Trigger	1 impulsion haute par trigger (sur chaque trigger de voie de cette carte uniquement) Largeur d'impulsion minimale de 12,8 μs 200 μs ± 1 μs + retard d'impulsion de ± 1 période d'échantillonnage	
Alarme	Haut lorsque la condition d'alarme de la carte est activée, Bas lorsqu'elle est désactivée 200 μ s \pm 1 μ s + retard d'événement d'alarme de \pm 1 période d'échantillonnage	
Enregistrement actif	Impulsion haute lors de l'enregistrement, impulsion basse en mode inactif ou pause Retard de sortie de l'enregistrement actif 450 ns	
Réglage sur Haut ou Bas	Sortie réglée sur Haut ou Bas ; contrôle possible par des extensions d'interfaces logicielles personnalisées (CSI, Custom Software Interface) ; le retard dépend de l'implémentation logicielle	
Timer/Compteur	4 par carte	
Niveaux	Niveaux d'entrée TTL	
Entrées	3 broches : signal, réinitialisation et direction Toutes les broches sont partagées avec les entrées d'événement numériques	
Couplage d'entrée	Unidirectionnel, bidirectionnel et codeur incrémental ABZ (en quadrature)	
Modes de mesure	Comptage (C) Angle (0 à 360 degrés) Fréquence (Δcomptage / Δt) Vitesse de rotation (Δcomptage / Δt / 60 s)	
Exactitude du timer	± 25 ns (20 MHz)	
Durée de mesure	1 à n échantillons (Δt maxi. sélectionnable par l'utilisateur)	
Durée de mesure et vitesse de mise à jour des valeurs	La durée de mesure définit la vitesse de mise à jour maximum des valeurs mesurées	
Durée de mesure et fréquence minimale	Fréquence ou vitesse de rotation minimale mesurée = 1 / durée de mesure	

Couplage d'entrée signal unidirectionnel et bidirectionnel Le couplage d'entrée unidirectionnel et bidirectionnel est utilisé lorsque le signal de direction est stable. Signal Direction Réinitialisation Comptage croissant Comptage décroissant Réinitialisation Figure 34: Horloge unidirectionnelle et bidirectionnelle Entrées 3 broches : signal, réinitialisation et direction (utilisée uniquement pour le comptage bidirectionnel) Filtre de largeur d'impulsion minimale 100 ns, 200 ns, 500 ns, 1 μs, 2 μs, 5 μs Fréquence maximale du signal d'entrée 4 MHz Largeur d'impulsion minimale (Δw) 100 ns Entrée de réinitialisation Sensibilité niveau Niveau d'inversion sélectionnable par l'utilisateur Temps de positionnement minimum avant le flanc du signal (∆s) Temps de maintien minimum après le flanc du 100 ns signal (Δh) Options de réinitialisation À la demande de l'utilisateur via une commande logicielle Manuel Début de l'enregistrement Valeur de comptage mise à 0 au début de l'enregistrement Après le début de l'enregistrement, la première impulsion de réinitialisation met la valeur Première impulsion de réinitialisation du compteur à 0. Les impulsions de réinitialisation suivantes sont ignorées. Chaque impulsion de réinitialisation La valeur du compteur est remise à 0 à chaque impulsion de réinitialisation externe. Entrée de direction Sensibilité niveau d'entrée Utilisée uniquement en mode bidirectionnel Bas: augmentation du compteur / fréquence positive Haut : réduction du compteur / fréquence négative Temps de positionnement minimum avant le 100 ns flanc du signal (∆s) Temps de maintien minimum après le flanc du 100 ns signal (∆h)

Couplage d'entrée codeur incrémental ABZ (en quadrature)

Utilisé généralement pour surveiller les appareils en rotation/mouvement à l'aide d'un décodeur avec deux signaux qui sont toujours en quadrature de phase. Permet par ex. d'avoir une interface directe avec des couplemètres et des capteurs de vitesse de HBM.

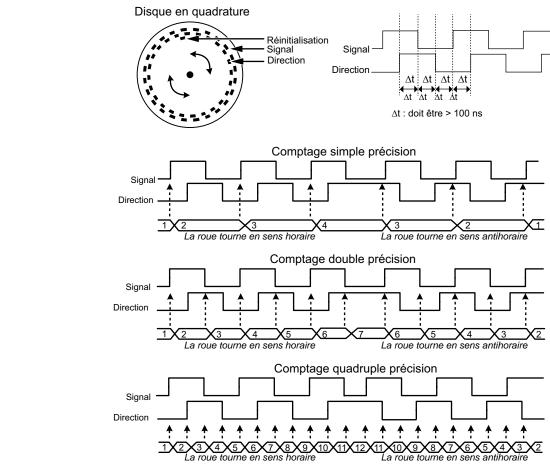


Figure 35: Modes de comptage bidirectionnel en quadrature

3.		
Entrées	3 broches : signal, direction et réinitialisation	
Filtre de largeur d'impulsion minimale	100 ns, 200 ns, 500 ns, 1 μs, 2 μs, 5 μs	
Fréquence maximale du signal d'entrée	2 MHz	
Largeur d'impulsion minimale	200 ns (2 * Δt)	
Temps de positionnement minimum	100 ns (Δt)	
Temps de maintien minimum	100 ns (Δt)	
Exactitude	Précision simple (X1), double (X2) ou quadruple (X4)	
Couplage d'entrée	Codeur incrémental ABZ (en quadrature)	
Entrée de réinitialisation		
Sensibilité niveau	Niveau d'inversion sélectionnable par l'utilisateur	
Temps de positionnement minimum avant le flanc du signal (Δt)	100 ns	
Temps de maintien minimum après le flanc du signal (Δt)	100 ns	
Options de réinitialisation		
Manuel	À la demande de l'utilisateur via une commande logicielle	
Début de l'enregistrement	Valeur de comptage mise à 0 au début de l'enregistrement	
Première impulsion de réinitialisation	Après le début de l'enregistrement, la première impulsion de réinitialisation met la valeur du compteur à 0. Les impulsions de réinitialisation suivantes sont ignorées.	
Chaque impulsion de réinitialisation	La valeur du compteur est remise à 0 à chaque impulsion de réinitialisation externe.	

Mode de mesure Angle

En mode de mesure Angle, le compteur utilise un angle maximum défini par l'utilisateur et revient à zéro lorsque cette valeur de comptage est atteinte. L'angle mesuré peut être synchronisé avec l'angle mécanique grâce à l'entrée de réinitialisation. Les calculateurs temps réel peuvent extraire la vitesse de rotation de l'angle mesuré indépendamment de la synchronisation mécanique.

Options d'angle	
Référence	Sélectionnable par l'utilisateur. Permet d'utiliser la broche de réinitialisation pour relier l'angle mécanique à l'angle mesuré
Angle au point de référence	Défini par l'utilisateur pour spécifier le point de référence mécanique
Impulsion de réinitialisation	La valeur de l'angle est réglée sur la valeur "Angle au point de référence" définie par l'utilisateur
Impulsions par tour	Valeur définie par l'utilisateur pour spécifier la résolution du codeur / du comptage
Impulsions maximum par tour	32 767
Vitesse de rotation maximum	30 * vitesse d'échantillonnage (exemple : une vitesse de 10 kéch/s correspond à 300 000 tr/min maximum)

Mode de mesure Fréquence/Vitesse de rotation

Utilisé pour mesurer n'importe quel type de fréquence, par exemple le régime moteur ou des capteurs actifs ayant un signal de sortie à fréquence proportionnelle.

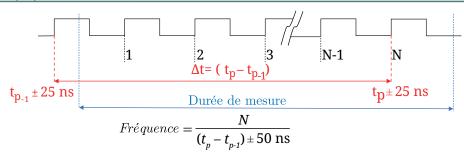


Figure 36 : Mesure de fréquence

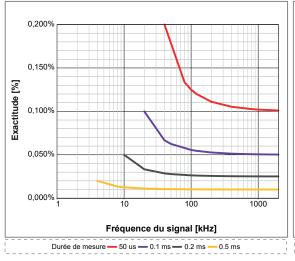
rigure 30 : Mesure de frequence		
Exactitude	0,1 %, avec une durée de mesure de 40 µs ou plus. Avec des durées de mesure inférieures, il est possible d'utiliser les calculateurs temps réel ou la base de données de formules de Perception pour augmenter la durée de mesure et améliorer l'exactitude de façon plus dynamique, par exemple en se basant sur des cycles mesurés.	
Durée de mesure	Période d'échantillonnage (1/vitesse d'échantillonnage) jusqu'à 50 s. La durée de mesure minimum est de 50 ns. Peut être sélectionnée par l'utilisateur pour commander la vitesse de mise à jour indépendamment de la vitesse d'échantillonnage	

Mode de mesure Comptage/Position

Le mode Comptage/Position sert surtout à surveiller le mouvement de l'appareil testé.

Pour réduire la sensibilité aux erreurs de comptage/position dues à des problèmes d'horloge, utiliser le filtre de largeur d'impulsion minimale ou activer l'ABZ au lieu du couplage d'entrée unipolaire/bipolaire.

d'impulsion minimale ou activer l'ABZ au lieu du couplage d'entree unipolaire/bipolaire.	
Plage du compteur	0 à 2 ³¹ ; comptage unidirectionnel
	-2 ³¹ à +2 ³¹ - 1 ; comptage bidirectionnel


Inexactitude maximale du timer

L'exactitude du timer est un compromis entre la vitesse de mise à jour et l'exactitude minimum requise. Le tableau cidessous présente la relation entre la fréquence du signal mesuré, la durée de mesure sélectionnée (vitesse de mise à jour) et l'exactitude du timer. La distribution de l'inexactitude doit être considérée comme étant rectangulaire.

Calculer l'inexactitude en	Inexactitude = ±	(Fréquence du signal * 50 ns)	* 100 %
utilisant :	mexactitude - 1	INT ((Fréquence du signal-1) * Durée de mesure)	100 70

	Fréquences supérieures du signal : fréquence du signal (2 MHz à 10 kHz)									
Mesure	2 MHz	1 MHz	500 kHz	400 kHz	200 kHz	100 kHz	50 kHz	40 kHz	20 kHz	10 kHz
1 μs	±10,000 %									
2 µs	±3,333 %	±5,000 %								
5 μs	±1,111 %	±1,250 %	±1,333 %	±2,000 %						
10 µs	±0,526 %	±0,556 %	±0,625 %	±0,667 %	±1,000 %					
20 µs	±0,256 %	±0,263 %	±0,278 %	±0,286 %	±0,333 %	±0,500 %				
50 µs	±0,101 %	±0,102 %	±0,103 %	±0,105 %	±0,111 %	±0,125 %	±0,133 %	±2,000 %		
0,1 ms	±0,050 %	±0,051 %	±0,051 %	±0,051 %	±0,053 %	±0,056 %	±0,063 %	±0,067 %	±0,100 %	
0,2 ms	±0,025 % ±0,026 % ±0,026 %			±0,028 %	±0,029 %	±0,033 %	±0,050 %			
0,5 ms	±0,010 % ±0,010 % ±0,010 % ±0,0011 %				±0,0011 %	±0,0011 %	±0,0013 %			
1 ms	±0,0050 % ±0,0051 % ±0,0051 % ±0,0051 % ±0,0053 % ±0,0056 %						±0,0056 %			
2 ms	±0,0025 % ±0,0026 % ±0,0026 %						±0,0026 %			
5 ms					±0,00	010 %				
10 ms	±0,0005 %									
20 ms	±0,00025 %									
50 ms	±0,00010 %									
100 ms	±0,00005 %									
			Fréquen	ces inférieure	es du signal :	fréquence du	signal (40 Hz	à 5 kHz)		
Mesure			ĺ							

N4	Fréquences inférieures du signal : fréquence du signal (40 Hz à 5 kHz)									
Mesure	5 kHz	4 kHz	2 kHz	1 kHz	500 Hz	400 Hz	200 Hz	100 Hz	50 Hz	40 Hz
0,5 ms	±0,0133 %	±0,0200 %								
1 ms	±0,0063 %	±0,0067 %	±0,0100 %							
2 ms	±0,0028 %	±0,0029 %	±0,0033 %	±0,0050 %						
5 ms	±0,0010 %	±0,0011 %	±0,0011 %	±0,0013 %	±0,0013 %	±0,0020 %				
10 ms	±0,00051 %	±0,00051 %	±0,00053 %	±0,00056 %	±0,00063 %	±0,00067 %	±0,00100 %			
20 ms	±0,00025 %	±0,00025 %	±0,00026 %	±0,00026 %	±0,00028 %	±0,00029 %	±0,00033 %	±0,00050 %		
50 ms	±0,00010 %	±0,00010 %	±0,00010 %	±0,00010 %	±0,00010 %	±0,00011 %	±0,00011 %	±0,00130 %	±0,00013 %	±0,00020 %
100 ms	±0,000050 %	±0,000050 %	±0,000050 %	±0,000051 %	±0,000051 %	±0,000051 %	±0,000053 %	±0,000056 %	±0,000063 %	±0,000067 %

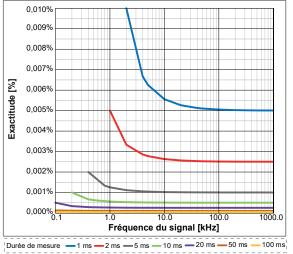


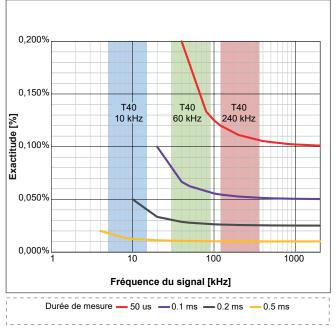
Figure 37: Inexactitude maximale du timer

Incertitude de mesure du couple en utilisant les mesures de fréquence

Lorsque les voies Timer/Compteur sont utilisées pour mesurer le couple, l'incertitude de mesure introduite par les inexactitudes du timer peut être calculée à l'aide des exemples suivants basés sur les couplemètres T40 d'HBK. Le couplemètre T40 est disponible en 3 variantes pour la sortie fréquence : 10 kHz, 60 kHz ou 240 kHz en fréquence centrale. Les sorties fréquence minimum et maximum sont indiquées dans les caractéristiques techniques, comme indiqué dans le tableau suivant.

Variante du T40	-Sortie fréquence pleine échelle	+Sortie fréquence pleine échelle
T40 - 10 kHz	5 kHz	15 kHz
T40 - 60 kHz	30 kHz	90 kHz
T40 - 240 kHz	120 kHz	360 kHz

En superposant ces plages utiles aux courbes d'inexactitude du timer de la Figure 37, on obtient la Figure 38 (voir ci-dessous).


- Il reste à équilibrer la vitesse de mise à jour (bande passante du couple) par rapport à l'exactitude requise pour le couple.
- Calculer l'inexactitude en utilisant la -sortie fréquence pleine échelle et la durée de mesure souhaitée.
- Les inexactitudes suivantes sont calculées en utilisant une vitesse de rotation minimale de 60 tr/min.

Durée de mesure sélectionnée	Inexactitude maximum : T40 - 240 kHz	Inexactitude maximum : T40 - 60 kHz	Inexactitude maximum : T40 - 10 kHz
50 μs (courbe rouge à gauche)	0,1200 %	0,1500 %	Impossible
100 μs (courbe violette à gauche)	0,0546 %	0,0750 %	Impossible
500 μs (courbe orange à gauche)	0,0101 %	0,0107 %	0,0125 %
1 ms (courbe bleue à droite)	0,0050 %	0,0052 %	0,0063 %
2 ms (courbe rouge à droite)	0,0025 %	0,0025 %	0,0028 %
5 ms (courbe grise à droite)	0,0010 %	0,0010 %	0,0010 %

Pour K = 1 (probabilité de 70 %), utiliser la distribution rectangulaire spécifiée et les valeurs d'inexactitude maximum pour calculer :

Incertitude de mesure = inexactitude maximum * 0,58 (facteur de conversion pour la distribution rectangulaire)

Incertitude de mesure K = 1 (probabilité d'environ 70 %)	Inexactitude maximum : T40 - 240 kHz	Inexactitude maximum : T40 - 60 kHz	Inexactitude maximum : T40 - 10 kHz
50 μs (courbe rouge à gauche)	0,0696 %	0,0870 %	Impossible
100 μs (courbe violette à gauche)	0,0316 %	0,0435 %	Impossible
500 μs (courbe orange à gauche)	0,0059 %	0,0062 %	0,00725 %
1 ms (courbe bleue à droite)	0,0029 %	0,0029 %	0,00365 %
2 ms (courbe rouge à droite)	0,00145 %	0,0015 %	0,00162 %
5 ms (courbe grise à droite)	0,00058 %	0,0006 %	0,00058 %

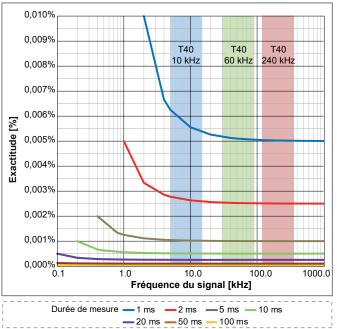


Figure 38 : Plage utile du couple en fonction de l'inexactitude et de la durée de mesure

38

Incertitude de mesure de la vitesse (tr/min) en utilisant les mesures de fréquence

Lorsque les voies Timer/Compteur sont utilisées pour mesurer la vitesse (tr/min), l'incertitude de mesure introduite par les inexactitudes du timer peut être calculée à l'aide de l'exemple suivant.

Prendre le nombre d'impulsions par rotation spécifié dans les caractéristiques techniques du capteur de vitesse pour calculer la plage de fréquence de la sortie du capteur :

Fréquence min. = vitesse de rotation min. utilisée durant l'essai * nombre d'impulsions par rotation / 60 s Fréquence max. = vitesse de rotation max. utilisée durant l'essai * nombre d'impulsions par rotation / 60 s

Impulsions du capteur de vitesse par rotation	Fréquence à 60 tr/min	Fréquence à 10 000 tr/min	Fréquence à 20 000 tr/min
180	180 Hz	30 kHz	60 kHz
360	360 Hz	60 kHz	120 kHz
1024	1024 Hz	170,7 kHz	341,3 kHz

En superposant ces plages utiles aux courbes d'inexactitude du timer de la Figure 37, on obtient la Figure 39 (voir ci-dessous).

- Il reste à équilibrer la vitesse de mise à jour (bande passante du couple) par rapport à l'exactitude requise pour le couple.
- En utilisant les graphiques, trouver les intersections entre les fréquences de fonctionnement superposées et les courbes de la durée de mesure.
- À titre d'exemple, les intersections suivantes peuvent être trouvées dans les graphiques (à 60 tr/min).

Durée de mesure sélectionnée	Capteur à 180 impulsions	Capteur à 360 impulsions	Capteur à 1024 impulsions
2 ms (courbe rouge)	Enregistrement impossible à 60 tr/min	Enregistrement impossible à 60 tr/min	0,00256 %
5 ms (courbe grise)	Enregistrement impossible à 60 tr/min	0,0018 %	0,0010 %
10 ms (courbe verte)	0,0009 %	0,0006 %	0,00051 %

Pour K = 1 (probabilité de 70 %), utiliser la distribution rectangulaire spécifiée et les valeurs d'inexactitude maximum pour calculer:

Incertitude de mesure = inexactitude maximum * 0,58 (facteur de conversion pour la distribution rectangulaire)

Incertitude de mesure K = 1 (probabilité d'environ 70 %)	Capteur à 180 impulsions	Capteur à 360 impulsions	Capteur à 1024 impulsions
2 ms (courbe rouge)	Enregistrement impossible à 60 tr/min	Enregistrement impossible à 60 tr/min	0,00148 %
5 ms (courbe grise)	Enregistrement impossible à 60 tr/min	0,00104 %	0,00059 %
10 ms (courbe verte)	0,00052 %	0,00035 %	0,00030 %

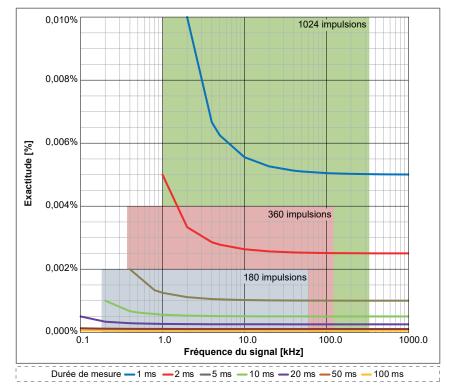
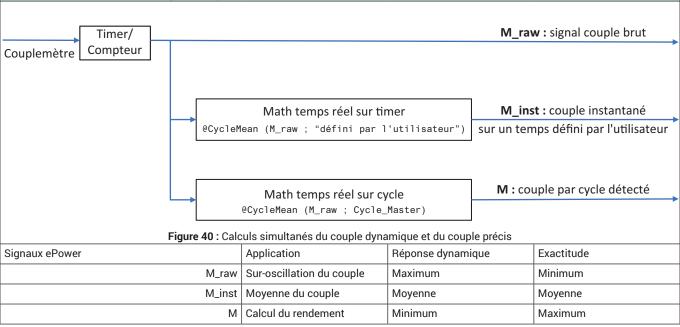



Figure 39 : Plage utile de la vitesse de rotation en fonction de l'inexactitude et de la durée de mesure

805494_05_F00_00 09/10/2023 39

Mesure simultanée de la sur-oscillation dynamique du couple et du rendement précis du couple

Si une vitesse de mise à jour élevée est nécessaire pour mesurer la sur-oscillation dynamique du couple, par exemple, utiliser une durée de mesure de 50 µs et une fonction RT-FDB pour calculer la valeur moyenne pour chaque cycle électrique. Le signal du couple mesuré provenant de la voie Timer/Compteur aura une exactitude de 0,15 à 0,17 % tandis que le calcul du couple pour le cycle électrique (généralement inférieur ou égal à 1 ms) permet d'avoir une exactitude de 0,0075 %. Comme les deux signaux sont disponibles simultanément, le signal dynamique vous permet d'analyser le comportement de sur-oscillation du couple. Le signal du cycle électrique sera alors extrêmement précis pour les calculs de rendement.

Sortie d'alarme	
Modes d'alarme des voies Événement	Contrôle du niveau Haut ou Bas
Alarmes multivoies	OU logique pour les alarmes de toutes les voies mesurées
Sortie d'alarme	Active pendant une condition d'alarme valide, sortie prise en charge via l'appareil de base
Niveau de la sortie d'alarme	Haut ou Bas, sélectionnable par l'utilisateur
Retard de sortie d'alarme	515 µs ± 1 µs + 1 période d'échantillonnage au maximum. 516 µs par défaut, compatible avec le comportement standard. Le retard minimum pouvant être sélectionné est le plus petit retard disponible pour toutes les cartes d'acquisition utilisées dans l'appareil de base. Retard égal au retard de la sortie Trigger OUT.
Sélection par carte	Activation/désactivation sélectionnable par l'utilisateur
Modes d'alarme des voies analogiques	
De base	Contrôle : au-dessus ou en dessous du niveau
Double	Contrôle : à l'extérieur ou à l'intérieur des limites
Niveaux d'alarme des voies analogiques	
Niveaux	Au maximum 2 détecteurs de niveau
Résolution	16 bits (0,0015 %) pour chaque niveau

40 09/10/2023 B05494_05_F00_00

	GNSTOD/GNSTID
Déclenchement	
Qualifieur/trigger de voie	1 entièrement indépendant par voie ; trigger ou qualifieur sélectionnable par logiciel
Étendue pré- et post-trigger	0 % à 100 % du bloc mémoire
Taux de déclenchement maximum	400 triggers par seconde
Retard de déclenchement maximum	1000 secondes après un trigger
Trigger manuel (logiciel)	Pris en charge
Trigger externe IN	
Sélection par carte	Activation/désactivation sélectionnable par l'utilisateur
Flanc Trigger IN	Montant/Descendant, sélectionnable par l'appareil de base, identique pour toutes les cartes
Largeur d'impulsion minimale	500 ns
Retard Trigger IN	± 1 μs + 1 période d'échantillonnage au maximum
Envoyer à Trigger externe OUT	L'utilisateur peut choisir de transmettre l'entrée Trigger externe IN au connecteur BNC de la sortie Trigger externe OUT
Trigger externe OUT	
Sélection par carte	Activation/désactivation sélectionnable par l'utilisateur
Niveau de la sortie Trigger OUT	Haut/Bas/Maintenir haut ; sélectionnable par l'appareil de base, identique pour toutes les cartes
Largeur d'impulsion de la sortie Trigger OUT	Haut/Bas : 12,8 µs Maintenir haut : actif du premier trigger de l'appareil de base jusqu'à la fin de l'enregistrement Largeur d'impulsions créée par l'appareil de base ; pour plus d'informations, se référer aux caractéristiques techniques de l'appareil de base
Retard de la sortie Trigger OUT	Sélectionnable (10 µs à 516 µs) ± 1 µs + 1 période d'échantillonnage au maximum 516 µs par défaut, compatible avec le comportement standard. Le retard minimum pouvant être sélectionné est le plus petit retard disponible pour toutes les cartes d'acquisition utilisées dans l'appareil de base
Déclenchement multivoies	
Voies de mesure	OU logique pour les triggers de tous les signaux mesurés ET logique pour les qualifieurs de tous les signaux mesurés
Voies calculées	OU logique pour les triggers de tous les signaux calculés (RT-FDB) ET logique pour les qualifieurs de tous les signaux calculés (RT-FDB)
Niveaux des triggers de voies analogiques	
Niveaux	
Résolution	16 bits (0,0015 %) pour chaque niveau
Direction	Montante/Descendante ; contrôle de direction unique pour les deux niveaux en fonction du mode sélectionné
Hystérésis	0,1 à 100 % de la pleine échelle ; définit la sensibilité des triggers
Détection/rejet d'impulsion	Possibilité de sélectionner Désactiver/Détection/Rejet. Période maximum : 65 535 échantillons
Modes des triggers de voies analogiques	
De base	Passage POS ou NEG ; un seul niveau
Double niveau	Un passage POS et un passage NEG ; deux niveaux individuels, OU logique
Modes des qualifieurs de voies analogiques	
De base	Contrôle : au-dessus ou en dessous du niveau. Activation/désactivation du trigger avec un seul niveau
Double	Contrôle : à l'extérieur ou à l'intérieur des limites. Activation/désactivation du trigger avec deux niveaux
Trigger de voie d'événement	
Voies d'événement	Trigger d'événement individuel par voie d'événement
Niveaux	Trigger sur flanc montant, flanc descendant ou les deux
Qualifieurs	Actif Haut ou Actif Bas pour chaque voie d'événement

GN310B/GN311B

Mémoire embarquée	
Par carte	2 Go (1 Géch avec sauvegarde 16 bits, 500 Méch avec sauvegarde 18 bits)
Organisation	Répartition automatique entre les voies activées pour le stockage ou les calculs en temps réel
Diagnostic mémoire	Test automatique de la mémoire lorsque le système est sous tension, mais n'enregistre pas
Taille d'un échantillon de stockage	16 ou 18 bits, sélectionnable par l'utilisateur 16 bits, 2 octets/échantillon 18 bits, 4 octets/échantillon

42

Calculateurs temps réel reposant sur la base de données de formules

La base de données de formules temps réel (RT-FDB) propose un grand choix de programmes mathématiques permettant de résoudre quasiment n'importe quel problème mathématique en temps réel. La structure de la base de données permet à l'utilisateur de définir une liste d'équations mathématiques semblable à la base de données de formules de Perception. La vitesse d'échantillonnage maximale prise en charge est de 2 Méch/s.

Selon la version de Perception, vous pouvez exécuter plus ou moins de fonctions que celles décrites dans le tableau cidessous.

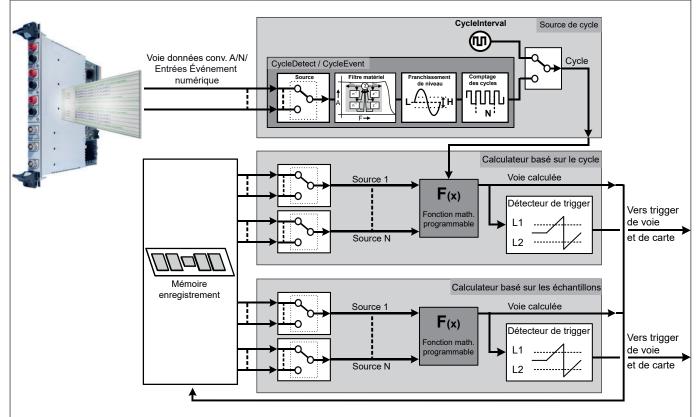


Figure 41 : Calculateurs temps réel avec base de données de formules (RT-FDB)

rigate 41 . Calcula	neuro tempo reel aveo base de domices de formales (111 1 bb)				
La base de données de formules temps réel prend manuel Perception).	d en charge la liste suivante de calculs (chaque calcul est décrit plus en détail dans le				
Source de cycle	Détermine la vitesse de calcul périodique en temps réel, soit en définissant un timer, soit en utilisant une détection de cycle en temps réel				
Nombre de sources de cycle	4 ; il s'agit du nombre maximum de sources de cycle pouvant être utilisées par carte avec la RT-FDB.				
Source de cycle : timer					
Durée du timer	0,5 ms (2 kHz) à 1 s (1 Hz)				
Source de cycle : détection de cycle					
Franchissement de niveau	Surveillance en temps réel d'une voie d'entrée à l'aide d'un niveau de signal, de l'hystérésis et de la direction afin de déterminer le cycle du signal				
Comptage des cycles	Définit le nombre de cycles comptabilisé utilisé pour produire des calculs périodiques				
Période de cycle	Période de cycle maximum pouvant être détectée : 1 s (1 Hz) Période de cycle minimum pouvant être détectée : 0,5 ms (2 kHz) Les calculs cessent lorsque la période de cycle sort de la plage définie par les périodes de cycle minimale et maximale (< 0,5 ms ou > 1 s).				
Source de cycle : événement	Surveille en temps réel jusqu'à 2 entrées numériques Événement à l'aide du flanc montant ou du flanc descendant afin de déterminer la nature cyclique de l'événement				
Source de cycle : événement externe	Surveille en temps réel une entrée externe Événement à l'aide du flanc montant ou du flanc descendant afin de déterminer la nature cyclique de l'événement				
Détecteur de trigger	Détecteur de trigger				
Retard de sortie de trigger	Les triggers sont retardés de 100 ms sur les signaux calculés. Le temps de trigger est corrigé en interne de façon à ce que le déclenchement du sweep soit correct. Cela réduit la durée de sweep maximale de 100 ms.				

Calculate	urs temps réel reposant sui	la base de données de formules	
Groupe		Fonctions RT-FDB disponibles	_
De base		· · · · · · · · · · · · · · · · · · ·	
De Buoc	+ (addition)	* (multiplication)	
	- (soustraction)	/ (division)	
Booléen			
Dooleen	AlarmOnLevel	Not	ToAsyncBoolean
	And	NotEqual	TriggerArmOnBooleanChange
	Equal	OneShotTimer	TriggerOnBooleanChange
	GreaterEqualThan	Or	TriggerOnLevel
	GreaterThan	OutsideBand	Xor
	InsideBand	SetAlarm	
		StartStopTriggerOnBooleanChange	
		StopTriggerOnBooleanChange	
Cycle			
- ,	CycleArea	CycleFundamentalPhase	CycleNOP
	CycleBusDelay	CycleFundamentalRMS	CyclePeak2Peak
	CycleCount	CycleHarmonicPhase	CyclePhase
	CycleCrestFactor	CycleHarmonicRMS	CycleRMS
	CycleDetect	CycleInterval	CycleRPM
	CycleEnergy	CycleMax	CycleSampleCount
	CycleEvent	CycleMean	CycleStdDev
	CycleFrequency	CycleMin	CycleTHD
			ExternalCycleEvent
eDrive			
CDIIVC	AronConversion	EfficiencyValue	SpaceVector
	DQ0Transformation	HarmonicsIEC61000	SpaceVectorInv
	EfficiencyMode	PowerLoss	
Étendu			
Ltenau	Abs	LessEqualThan	RadiansToDegrees
	Atan	LessThan	SampleCount
	Atan2	Max	Sin
	Cos	Min	Sqrt
	DegreesToRadians	Minus	Tan
	Integrate	Modulo	
	IntegrateGated	PureDFT	
Bus de			
terrain			
	SetScalarFromFieldbus		
Filtres			
	FilterBesselBP	FilterButterworthBP	FilterChebyshevBP
	FilterBesselHP	FilterButterworthHP	FilterChebyshevHP
	FilterBesselLP	FilterButterworthLP	FilterChebyshevLP
	HWFilter		
Math			
	NumSamplesMean	TimedMean	
	NumSamplesStdDev	TimedStdDev	
Génération des signaux			
Signaux	Ramp		
	Sinewave		

44

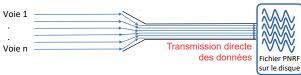
Statstream® temps réel

Numéro de brevet : 7 868 886

Extraction en temps réel des paramètres de base des signaux.

Prend en charge le défilement et l'affichage des courbes en temps réel, ainsi que les vumètres temps réel lors de

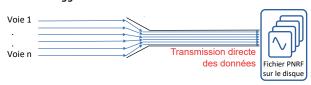
l'enregistrement.


Lors de la lecture d'enregistrements, cette fonction améliore la vitesse pour l'affichage et le zoom de très gros enregistrements. Il réduit également le temps de calcul des valeurs statistiques sur une grande quantité de données.

Voies analogiques Maximum, Minimum, Moyenne, Crête-crête, Écart type et valeurs efficaces (RMS)

Voies Événement/Timer/Compteur Maximum, Minimum et Crête-crête

Modes d'enregistrement des données


Au démarrage de la mesure

Enregistrement des données sur PC ou disque de l'appareil de base. L'enregistrement sur un disque est limité par une **vitesse d'échantillonnage globale**, la durée d'enregistrement est limitée par la **taille du disque**.

Note : comme la limitation de la vitesse d'échantillonnage globale dépend du débit Ethernet et du disque de stockage utilisé, ainsi que du fait que le PC et le disque ne doivent pas être utilisés à d'autres fins que l'enregistrement des données, il est fortement recommandé, pour des vitesses d'échantillonnage élevées, de tester la configuration choisie avant d'effectuer l'essai.

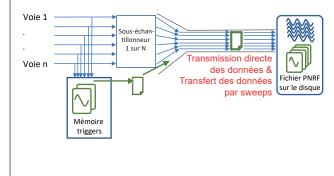
Attente du trigger

Enregistrement des données sur PC ou disque de l'appareil de base. L'enregistrement déclenché par trigger sur un disque est limité par une **vitesse d'échantillonnage globale**, la durée d'enregistrement est limitée par la taille du disque.

Note: comme la limitation de la vitesse d'échantillonnage globale dépend du débit Ethernet et du disque de stockage utilisé, ainsi que du fait que le PC et le disque ne doivent pas être utilisés à d'autres fins que l'enregistrement des données, il est fortement recommandé, pour des vitesses d'échantillonnage élevées, de tester la configuration choisie avant d'effectuer l'essai.

Non recommandé pour les essais de transitoires / uniques / destructifs.

Attente du trigger, d'abord vers mémoire triggers



Enregistrement déclenché par trigger des données de mesure vers la mémoire triggers sur la carte d'acquisition de données.

L'enregistrement déclenché par trigger des données de mesure vers la mémoire triggers n'a pas de limites liées à la vitesse d'échantillonnage, la durée d'enregistrement est limitée par la taille de la mémoire triggers. Les données enregistrées dans la mémoire triggers sont transférées vers un disque aussi vite que possible.

Note : ce mode d'enregistrement garantit que les données seront toujours enregistrées selon les réglages définis par l'utilisateur. Recommandé pour les essais de transitoires / uniques / destructifs.

Au démarrage de la mesure, vitesse réduite et attente du trigger, d'abord vers mémoire triggers

Enregistrement des données sur PC ou disque de l'appareil de base et enregistrement simultané déclenché par trigger des données de mesure vers la mémoire triggers sur la carte d'acquisition de données.

L'enregistrement de données à vitesse réduite sur un disque est limité par une vitesse d'échantillonnage globale, la durée d'enregistrement est limitée par la taille du disque. L'enregistrement déclenché par trigger des données de mesure vers la mémoire triggers n'a pas de limites liées à la vitesse d'échantillonnage, la durée d'enregistrement est limitée par la taille de la mémoire triggers. Les données enregistrées dans la mémoire triggers sont transférées vers un disque aussi vite que possible. Comme ces données sont transférées en même temps que l'enregistrement des données de mesure à vitesse réduite, le système utilise la bande passante de la vitesse d'échantillonnage globale.

Note: comme la limitation de la vitesse d'échantillonnage globale dépend du débit Ethernet et du disque de stockage utilisé, ainsi que du fait que le PC et le disque ne doivent pas être utilisés à d'autres fins que l'enregistrement des données, il est fortement recommandé, pour des vitesses d'échantillonnage élevées et un nombre important de triggers par seconde, de tester la configuration choisie avant d'effectuer l'essai.

Comparaison des modes d'enregistrement					
	Limitation vitesse d'échantill. globale	Données enregistrées max.	Enregistrement direct sur disque	D'abord vers mémoire triggers	Trigger requis pour démarrer l'enregistrement
Au démarrage de la mesure	Oui	Espace libre sur le disque	Oui	Non	Non
Attente du trigger	Oui	Espace libre sur le disque	Oui	Non	Oui
Attente du trigger, d'abord vers mémoire triggers	Non	Mémoire triggers	Non	Oui	Oui
Au démarrage de la mesure, vitesse	Vitesse réduite : Oui	Espace libre sur le disque	Oui	Non	Non
réduite et attente du trigger, d'abord vers mémoire triggers	Vit. échantill. : Non	Mémoire triggers	Non	Oui	Oui

La vitesse d'échantillonnage globale est une limite lorsque les données sont transmises directement vers le disque

La vitesse de transmission directe globale maximale par appareil de base est définie par le type d'appareil de base et le disque SSD, le débit Ethernet, le disque du PC ainsi que d'autres paramètres du PC.

Lorsque la vitesse d'échantillonnage globale sélectionnée est supérieure à la vitesse de transmission directe globale du système, la mémoire sur chaque carte d'acquisition de données fonctionne comme une mémoire FIFO. Dès que cette mémoire FIFO est pleine, l'enregistrement est suspendu (l'enregistrement des données est provisoirement arrêté). Pendant cette période, la mémoire FIFO est transférée vers un disque. Lorsque toutes les mémoires FIFO sont vides, l'enregistrement reprend automatiquement. Des notifications utilisateur sont ajoutées au fichier d'enregistrement pour permettre d'identifier les suspensions d'enregistrement après l'enregistrement.

Définitions relatives aux enregistrements déclenchés par trigger Les détails fournis dans ce tableau concernent les modes suivants : Attente du trigger Attente du trigger, d'abord vers mémoire triggers Au démarrage de la mesure, vitesse réduite et attente du trigger, d'abord vers mémoire triggers Trigger d'arrêt Post-trigger Pré-trigger Entre triggers Sweep Défini par un signal trigger, données pré-trigger et post-trigger, ainsi qu'éventuellement données entre triggers et/ou signal trigger d'arrêt. Segments de données enregistrés par trigger Données pré-trigger Données enregistrées avant un signal trigger. Note: si un signal trigger est reçu avant que toutes les données pré-trigger ne soient enregistrées, le trigger est accepté et le volume de données pré-trigger enregistré est automatiquement réduit aux données pré-trigger disponibles à l'instant du trigger. Données post-trigger Données enregistrées après un trigger ou un signal trigger d'arrêt. Note: l'enregistrement des données post-trigger peut être redémarré ou retardé en fonction de la sélection "Le post-trigger commence" Données enregistrées suite à un ou plusieurs re-trigger(s) ou en attendant le trigger d'arrêt. Données entre triggers La longueur des données entre triggers n'est pas spécifiée, mais est ajoutée selon l'horloge des signaux triggers ou triggers d'arrêt. Signaux triggers Ce signal met fin à l'enregistrement de données pré-trigger et démarre l'enregistrement de données post-Signal trigger triager. Voir la partie "Le post-trigger commence" dans le tableau pour plus de détails. Il est possible de configurer un signal trigger sur un trigger d'entrée externe, des voies analogiques et numériques, ainsi que d'utiliser des formules RT-FDB simples à complexes. Signal trigger d'arrêt Ce signal démarre l'enregistrement des données post-trigger lorsque le mode "Le post-trigger commence au trigger d'arrêt" est sélectionné. Voir la partie "Le post-trigger commence" dans le tableau pour plus de détails. Il est possible de configurer un signal trigger d'arrêt sur un trigger d'entrée externe et sur des formules RT-FDB simples à complexes. Le post-trigger commence Au premier trigger Trigge Pré-trigger: 10,00 ms Post-trigger: 20,00 ms Le premier signal trigger met fin à l'enregistrement des données pré-trigger et démarre l'enregistrement des données post-trigger. Tout trigger reçu durant l'enregistrement des données post-trigger est ignoré. Les données entre triggers n'existent pas dans ce mode. Le sweep qui en résulte contient les données pré-trigger et les données post-trigger. À chaque trigger Pré-trigger: 10,00 ms Post-trigger: 20,00 ms Le premier trigger met fin à l'enregistrement des données pré-trigger et démarre l'enregistrement des données post-trigger. Tout trigger recu durant l'enregistrement des données post-trigger redémarre l'enregistrement des données post-trigger. Toutes les données post-trigger enregistrées à l'instant du trigger sont ajoutées aux données entre

48 09/10/2023 B05494_05_F00_00

trigger.

Le sweep qui en résulte contient les données pré-trigger, les données entre triggers et les données post-

Définitions relatives aux enregistrements déclenchés par trigger

Les détails fournis dans ce tableau concernent les modes suivants :

- · Attente du trigger
- · Attente du trigger, d'abord vers mémoire triggers
- Au démarrage de la mesure, vitesse réduite et attente du trigger, d'abord vers mémoire triggers

Le signal trigger met fin à l'enregistrement des données pré-trigger et démarre l'enregistrement des données entre triggers. Le trigger d'arrêt met ensuite fin à l'enregistrement des données entre triggers et démarre l'enregistrement de données post-trigger.

Tout **trigger** reçu durant l'enregistrement des données entre triggers et l'enregistrement des données post-trigger est ignoré.

Tout **trigger d'arrêt** reçu durant l'enregistrement des données pré-trigger et l'enregistrement des données post-trigger est ignoré.

Le sweep qui en résulte contient les données pré-trigger, les données entre triggers et les données post-trigger.

Mémoire triggers pleine lors de l'enregistrement

La mémoire triggers a une taille limitée. Elle devient vite pleine lorsque des vitesses d'échantillonnage élevées sont combinées à des taux de déclenchement élevés. Cette section explique comment les triggers sont gérés lorsque la mémoire triggers est pleine.

triggers est pleine.	33 3 .
Le post-trigger commence	Sélection de l'enregistrement des sweeps
Au premier trigger	Un nouveau sweep n'est enregistré que si l'espace libre dans la mémoire triggers est suffisant pour accueillir à la fois les données pré-trigger et post-trigger lorsqu'un signal trigger est reçu. Si l'espace libre est insuffisant, seules l'heure et la source du trigger sont enregistrées (pas les données pré-trigger et post-trigger).
À chaque trigger	Un nouveau sweep est démarré en suivant les mêmes règles que pour le mode d'enregistrement au premier trigger. Si un nouveau trigger est reçu durant l'enregistrement des données post-trigger, le sweep est uniquement étendu avec les nouvelles données post-trigger, dans la mesure où l'espace libre dans la mémoire triggers est suffisant pour les données post-trigger supplémentaires. Si l'espace libre est insuffisant, le système enregistre les données pré-trigger, les données entre triggers et les données post-trigger déjà enregistrées pour le ou les trigger(s) reçu(s) précédemment.
Au signal trigger d'arrêt	Un nouveau sweep n'est enregistré que si l'espace libre dans la mémoire triggers est suffisant pour les données pré-trigger, celles sur 2,5 ms entre triggers et les données post-trigger lorsqu'un signal trigger est reçu. Si aucun signal trigger d'arrêt n'est reçu avant que la mémoire triggers ne soit pleine, l'enregistrement des sweeps est automatiquement arrêté dès que la mémoire triggers est pleine.

Limites de l'enregistrement déclenché par trigger

Les détails fournis dans ce tableau concernent les modes suivants :

- Attente du trigger
- Attente du trigger, d'abord vers mémoire triggers

Au démarrage de la mesure, vitesse réduite et attente du trigger, d'abord vers mémoire triggers						
	Attente du t	rigger, d'abord vers mémoire triggers				
		age de la mesure, vitesse réduite et rigger, d'abord vers mémoire triggers		Attente du trigger		
Enregistrement de données déclenché par trigger	Durée d'enreg	gistrement limitée	Utiliser la taille du disque disponible			
Vitesse d'échantillonnage	Vitesse d'éch	antillonnage illimitée	Vitesses d'échantillonnage faibles à moyennes (en fonction du système utilisé)			
Nombre de voies	Nombre de vo	pies illimité		voies faibles à moyens du système utilisé)		
Nombre maximum de sweeps						
Dans la mémoire triggers	2000		Non applicable			
Dans le fichier d'enregistrement PNRF	200 000	200 000		1		
Paramètres des sweeps	Minimum	Maximum	Minimum	Maximum		
Longueur pré-trigger	0	Mémoire triggers de la carte d'acquisition de données	0	Espace libre sur le disque		
Longueur post-trigger	0	Mémoire triggers de la carte d'acquisition de données	0	0		
Longueur des sweeps	10 échantillons	Mémoire triggers de la carte d'acquisition de données	1 minute	Espace libre sur le disque		
Taux de sweeps maximum	400/s	400/s		Non applicable		
Temps minimum entre triggers	2,5 ms	2,5 ms		Non applicable		
Temps mort entre sweeps	0 ms		Non applicable			

50 09/10/2023 B05494_05_F00_00

Détails sur l'enregistrement des données de mesure(1) Résolution de 16 bits Au démarrage de la mesure, vitesse Au démarrage de la mesure Mode d'enregistrement Attente du trigger, d'abord vers réduite et attente du trigger, d'abord des données Attente du trigger mémoire triggers vers mémoire triggers Voies activées Voies activées Voies activées 6 voies et 6 voies et 6 voies et événeévéneévéne-1 voie 6 voies ments 1 voie 6 voies ments 1 voie 6 voies ments Mémoire triggers max. inutilisé 1 Géch 166 Méch 142 Méch 800 Méch 133 Méch 113 Méch 2 Méch/s (GN310B) 2 Méch/s (GN310B) Vit. d'échantillonnage triggers max. inutilisé 200 kéch/s (GN311B) 200 kéch/s (GN311B) FIFO réduite max. 1 Géch 166 Méch 142 Méch inutilisé 199 Méch 33 Méch 28 Méch Vit. d'échantillonnage 2 Méch/s (GN310B) 200 kéch/s (GN311B) (réduite) max. inutilisé Vit. d'échantillonnage trigger / 2 Vit. de transmission directe réduite globale 12 Méch/s 14 Méch/s 14 Méch/s 2 Méch/s 2 Méch/s 12 Méch/s 4 Mo/s 24 Mo/s 28 Mo/s inutilisé 4 Mo/s 24 Mo/s 28 Mo/s Résolution de 18 bits Au démarrage de la mesure, vitesse Au démarrage de la mesure Mode d'enregistrement Attente du trigger, d'abord vers réduite et attente du trigger, d'abord des données Attente du trigger mémoire triggers vers mémoire triggers Voies activées Voies activées Voies activées 6 voies et 6 voies et 6 voies et événeévéneévénements ments ments Timer/ Timer/ Timer/ 1 voie 6 voies Compteur 1 voie 6 voies Compteur 1 voie 6 voies Compteur inutilisé 500 Méch Mémoire triggers max. 83 Méch 44 Méch 400 Méch 66 Méch 35 Méch Vit. d'échantillonnage 2 Méch/s (GN310B) 2 Méch/s (GN310B) 200 kéch/s (GN311B) triggers max. inutilisé 200 kéch/s (GN311B) FIFO réduite max. 500 Méch 83 Méch 55 Méch inutilisé 99 Méch 16 Méch 10 Méch 2 Méch/s (GN310B) Vit. d'échantillonnage 200 kéch/s (GN311B) inutilisé Vit. d'échantillonnage trigger / 2 (réduite) max. Vit. de transmission 12 Méch/s 18 Méch/s 12 Méch/s directe réduite globale 2 Méch/s 2 Méch/s 18 Méch/s max. 8 Mo/s 48 Mo/s 72 Mo/s inutilisé 8 Mo/s 48 Mo/s 72 Mo/s

⁽¹⁾ Terminologie utilisée en accord avec le logiciel Perception.

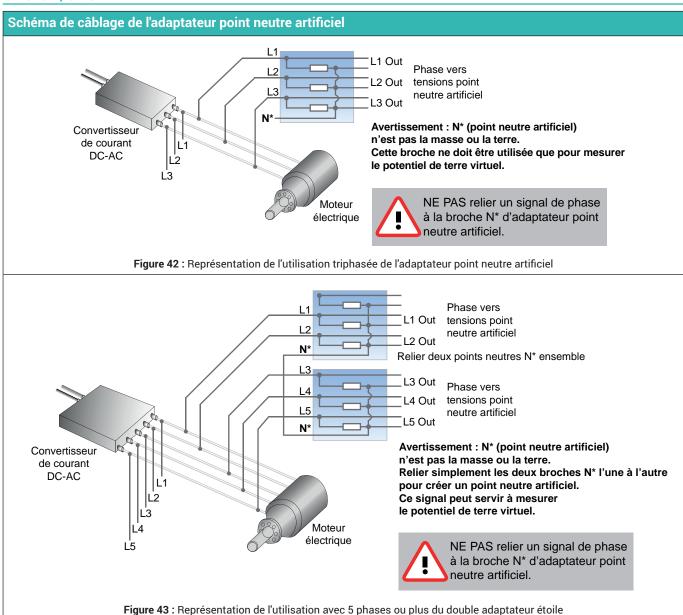
GN310B/GN311B

Conditions ambiantes				
Plage de température				
Pour fonctionnement	-20 °C à +55 °C (-4 °F à +131 °F)			
Hors fonctionnement (stockage)	-25 °C à +70 °C (-13 °F à +158 °F)			
Protection thermique	Arrêt automatique au-delà de +85 °C (185 °F) avec avertissements à partir de +75 °C (+167 °F)			
Humidité relative de l'air	0 % à 80 % ; sans condensation ; pour fonctionnement			
Classe de protection	IP20			
Altitude	2000 m (6562 ft) maximum au-dessus du niveau de la mer ; pour fonctionnement			
Chocs : CEI 60068-2-27				
Pour fonctionnement	15 g/11 ms demi-sinusoïdal ; 3 axes, 1000 chocs en direction positive et négative			
Hors fonctionnement	35 g/6 ms demi-sinusoïdal ; 3 axes, 3 chocs en direction positive et négative			
Vibrations : CEI 60068-2-64				
Pour fonctionnement	2 g RMS, ½ h ; 3 axes, 5 aléatoires jusqu'à 500 Hz			
Hors fonctionnement	3 g RMS, 1 h ; 3 axes, 5 aléatoires jusqu'à 500 Hz			
Essais d'environnement en fonctionnement				
Essai à froid CEI 60068-2-1 Test Ad	-20 °C (-4 °F) pendant 2 heures			
Test en chaleur humide CEI 60068-2-3 Test Ca	+55 °C (+131 °F), humidité > 93 % Hr pendant 4 jours			
Essais d'environnement hors fonctionneme	nt (stockage)			
Essai à froid CEI 60068-2-1 Test Ab	-25 °C (-13 °F) pendant 72 heures			
Essai de chaleur sèche CEI 60068-2-2 Test Bb	+70 °C (+158 °F), humidité < 50 % Hr pendant 96 heures			
Essai de variation de température CEI 60068-2-14 Test Na	-25 °C à +70 °C (-13 °F à +158 °F) 5 cycles, taux de 2 à 3 minutes, durée de séjour 3 heures			
Test cyclique chaleur humide CEI 60068-2-30 Test Db variante 1	+25 °C/+55 °C (+77 °F/+131 °F), humidité > 95/90 % Hr 6 cycles, durée du cycle 24 heures			

52 09/10/2023 B05494_05_F00_00

Normes harmonisées pour conformité CE et UKCA, en fonction des directives suivantes(1)					
	Directive basse tension : 2014/35/UE Directive sur la compatibilité électromagnétique (CEM) : 2014/30/UE				
Sécurité électrique					
EN 61010-1 (2017)	Règles de sécurité pour appareils électriques de mesurage, de régulation et de laboratoire - Règles générales				
EN 61010-2-030 (2017)	Règles particulières pour les circuits de test et de mesure				
Compatibilité électron	nagnétique (CEM)				
EN 61326-1 (2013)	Appareils électriques de mesurage, de régulation et de laboratoire - Exigences relatives à la CEM - Partie 1 : exigences générales				
Émission					
EN 55011	Appareils industriels, scientifiques et médicaux - Caractéristiques des perturbations radioélectriques Perturbation conduite ; classe B ; perturbation rayonnée : classe A				
EN 61000-3-2	Limites pour les émissions de courant harmonique : classe D				
EN 61000-3-3	Limitation des variations de tension, des fluctuations de tension et du papillotement dans les réseaux publics d'alimentation basse tension				
Immunité					
EN 61000-4-2	Essai d'immunité aux décharges électrostatiques (ESD) ; décharge de contact ± 4 kV / décharge dans l'air ± 8 kV : critère de performance B				
EN 61000-4-3	Essai d'immunité aux champs électromagnétiques rayonnés aux fréquences radioélectriques ; 80 MHz à 2,7 GHz avec AM 10 V/m, 1000 Hz : critère de performance A				
EN 61000-4-4	Essai d'immunité aux transitoires électriques rapides en salves Secteur ± 2 kV avec réseau de couplage. Voie ± 2 kV avec pince capacitive : critère de performance B				
EN 61000-4-5	Essai d'immunité aux ondes de choc Secteur ± 0,5 kV/± 1 kV phase-phase et ± 0,5 kV/± 1 kV/± 2 kV voie phase-terre ± 0,5 kV/± 1 kV avec réseau de couplage : critère de performance B				
EN 61000-4-6	Immunité aux perturbations conduites, induites par les champs radioélectriques 150 kHz à 80 MHz, AM de 1000 Hz ; 10 V RMS au niveau du secteur, 3 V RMS au niveau de la voie, les deux avec une pince : critère de performance A				
EN 61000-4-11	Essais d'immunité aux creux de tension, coupures brèves et variations de tension Creux : critère de performance A ; coupures : critère de performance C				

(1) The manufacturer declares on its sole responsibility that the product is in conformity with the essential requirements of the applicable UK legislation and that the relevant conformity assessment procedures have been fulfilled.


Manufacturer.

Hottinger Brüel & Kjaer GmbH Im Tiefen See 45 64293 Darmstadt

Germany

Importer.

Hottinger Bruel & Kjaer UK Ltd. Technology Centre Advanced Manufacturing Park Brunel Way Catcliffe Rotherham South Yorkshire S60 5WG United Kingdom

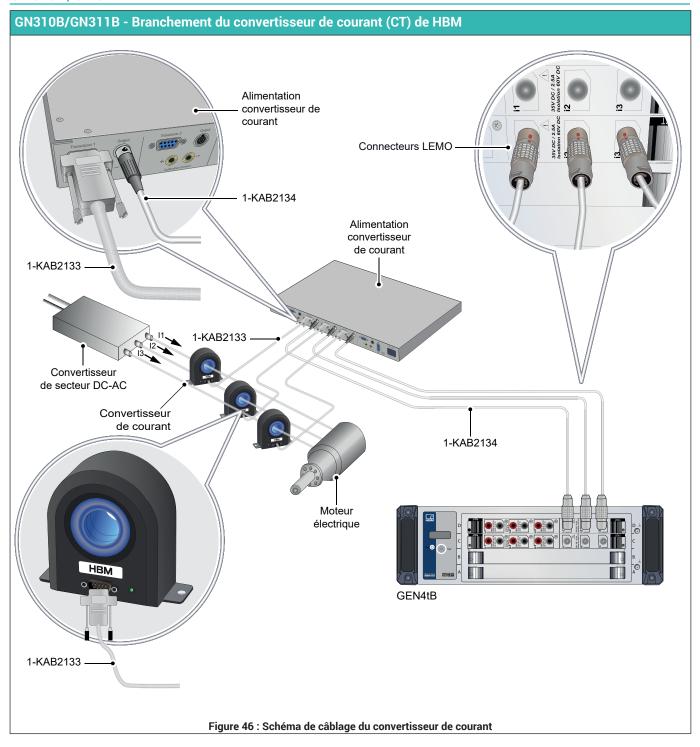
09/10/2023 B05494_05_F00_00

Programme de formation Perception et eDrive

Figure 45: Formation sur site sur Perception

HBM propose des programmes de formation professionnelle payants et des programmes d'assistance sur toutes les interfaces API (lecteur PNRF, RPC et CSI). Les programmes de formation sont basés sur C#, se déroulent sur site ou dans une agence HBM. La formation sur site peut être personnalisée pour chaque client. L'assistance peut porter sur le développement d'une application logicielle entièrement personnalisée ou consister à répondre aux questions des ingénieurs en logiciels.

S-TRAIN1-GEN_PERC	Première journée de formation basique sur site sur GEN DAQ/PERCEPTION. Exemple de contenu : utilisation basique, configuration du matériel, acquisition. La formation peut être personnalisée pour répondre à des besoins spécifiques.
S-TRAIN2-GEN_PERC	Seconde journée de formation avancée sur site sur GEN DAQ/PERCEPTION. La formation peut être personnalisée pour répondre à des besoins spécifiques.
S-TRAIN1-eDRIVE	Première journée de formation basique sur site sur les spécificités de l'application eDrive. Exemple de contenu : utilisation basique, configuration du matériel, acquisition. La formation peut être personnalisée pour répondre à des besoins spécifiques.
S-TRAIN2-eDRIVE	Seconde journée de formation approfondie sur site sur les spécificités de l'application eDrive. La formation peut être personnalisée pour répondre à des besoins spécifiques.
1-PERC-CSI-TRAIN	Formation de deux jours sur site sur la CSI Perception destinée aux programmeurs. Durant cette formation, les programmeurs apprennent à utiliser le modèle CSI, à apporter des modifications à l'interface utilisateur de Perception, à ajouter de nouveaux calculs mathématiques à la base de données de formules ou encore à ajouter des touches utilisateur, etc. Les détails de la formation peuvent être entièrement personnalisés selon les besoins des programmeurs et comprendre des révisions et des exemples sur la façon de créer exactement les modifications souhaitées de la CSI. Pour suivre cette formation, il est nécessaire de disposer de compétences de programmation de base en C# Microsoft® Visual Studio. Une formation détaillée plus spécialisée peut être obtenue sur demande.
1-PERC-CSI-PROJ	Assistance par e-mail/téléphone d'une journée pour les programmeurs de RPC ou CSI Perception. Obtenez l'aide d'un ingénieur en logiciels expérimenté de HBM. L'assistance peut aller de la réponse à une simple question "Comment" à la génération d'exemples de fragments de code de base pour la prise en main, en passant par une aide pour l'analyse de toute sorte de problème (de performance).


Service d'étalonnage

HBM propose une large gamme de services d'étalonnage. Contactez le représentant commercial local pour plus d'informations.

HBM vous recommande de ré-étalonner tous les systèmes et capteurs une fois par an.

Figure 44 : Processus d'étalonnage de HBM

09/10/2023 B05494_05_F00_00

Convertisseurs de courant, à commander séparément

Convertisseurs de courant haute précision ultra-stables de type fluxgate pour des mesures isolées non intrusives

Figure 47 : Convertisseurs de courant, bloc d'alimentation et câbles HBM

	3	· · · · · · · · · · · · · · · · · · ·		
Vue d'ensemble de la famille de convertisseurs de courant				
Туре	Courant maximum	Bande passante (-3 dB)	Taille de l'ouverture	N° de commande
CTS50ID	75 A DC / 50 A RMS	1000 kHz	27,6 mm	1-CTS50ID
CTS200ID	300 A DC / 200 A RMS	500 kHz	27,6 mm	1-CTS200ID
CTS400ID	600 A DC / 400 A RMS	300 kHz	27,6 mm	1-CTS400ID
CTS600ID	900 A DC / 600 A RMS	500 kHz	27,6 mm	1-CTS600ID
CTM1200ID	1500 A DC / 1200 A RMS	400 kHz	45,0 mm	1-CTM1200ID
CTT50ID	75 A DC / 50 A RMS	2000 kHz	20,7 mm	1-CTT50ID
CTT100ID	150 A DC / 100 A RMS	2000 kHz	20,7 mm	1-CTT100ID
CTT200ID	285 A DC / 200 A RMS	2000 kHz	20,7 mm	1-CTT200ID
CTN1000ID	1500 A DC / 1000 A RMS	400 kHz	41,0 mm	1-CTN1000ID

Article		Description	N° de commande
Unité d'interface CT	Copy Copy Copy Copy Copy Copy Copy Copy	Unité d'interface pour jusqu'à six convertisseurs de courant. Connecteurs d'entrée D-Sub 9 broches conformes aux standards du secteur. Connecteurs de sortie XLR multibroches. Permet l'accès aux enroulements d'étalonnage des convertisseurs via des connecteurs banane 4 mm. LED en façade pour indiquer le fonctionnement normal de chaque convertisseur. Tension d'entrée continue 100 - 240 V AC 50/60 Hz. Tension d'entrée 120 - 370 V DC. Hauteur 1U pour montage en rack 19".	1-CTPSIU-6-1U
Câbles CT	50	Câble de raccordement conforme aux standards du secteur pour convertisseurs de courant. Câble blindé 9 conducteurs à faible résistance avec un connecteur D-SUB 9 broches à chaque extrémité. Prend en charge l'alimentation, l'état, la sortie courant et l'entrée courant d'étalonnage. Longueurs : 2, 5, 10 et 20 mètres (6, 16, 32 et 65 ft)	1-KAB2133-2 1-KAB2133-5 1-KAB2133-10 1-KAB2133-15 1-KAB2133-20
Câble d'entrée banane		Câble blindé pour voies courant 1-GN31xB. Câble de dérivation LEMO avec connecteurs banane 4 mm pour courant continu (bleu), tension comme courant (rouge), terre/retour isolé(e) (noir) et blindage (jaune). Ce câble est blindé pour réduire l'impact typique des perturbations électromagnétiques générées par les alimentations à forte puissance de coupure. Lonqueur disponible : 1 m (3,3 ft)	1-KAB2136-1

GN310B/GN311B

Pinces de coura	Pinces de courant (options, à commander séparément)			
Article		Description	N° de commande	
Pince de courant AC/DC i30s		Pince de courant AC/DC à effet Hall ; 30 mA à 30 A DC ; 30 mA à 20 A AC RMS ; DC-100 kHz ; câble de sortie BNC de 2 m (6.5 ft), avec adaptateur pour fiche banane de sécurité 4 mm, nécessite une pile de 9 V.	1-G912	
Pince de courant AC SR661		Pince de courant AC; 100 mA à 1200 A AC RMS; 1 Hz - 100 kHz; câble de sortie de 2 m (6.5 ft) avec BNC de sécurité.	1-G913	
Pince de courant AC M1V20-2		Pince de courant AC de haute précision ; 50 mA à 20 A ; 30 Hz - 40 kHz ; câble de sortie de 2 m (6.5 ft) avec BNC métallique.	1-G914	

58 09/10/2023 B05494_05_F00_00

Informations re	Informations relatives à la commande				
Article		Description	N° de commande		
Analyseur de puissance isolé 2 Méch/s		Carte d'entrées avec 3 voies puissance (tension et courant) prenant en charge des convertisseurs A/N 18 bits à 2 Méch/s et une mémoire de 2 Go. Entrées tension allant de ± 50 V à ± 1500 V DC. Entrées courant utilisant des résistances shunt intégrées allant de ± 75 mA à ± 2 A ou de +/- 50 mV à +/- 20 V pour l'utilisation de pinces de courant. Testée jusqu'à 7,4 kV, l'isolation permet de réaliser des mesures fiables jusqu'à 1000 V CAT IV ou 1500 V DC. Les entrées tension utilisent des connecteurs banane 4 mm entièrement isolés tandis que les entrées courant utilisent un connecteur LEMO. Inclut la base de données de formules temps réel pour des calculs échantillon à échantillon ou bien basés sur le cycle avec déclenchement sur des résultats calculés. Pris en charge par Perception v8.00 ou version ultérieure.	1-GN310B		
Analyseur de puissance isolé 200 kéch/s		Carte d'entrées avec 3 voies puissance (tension et courant) prenant en charge des convertisseurs A/N 18 bits à 200 kéch/s et une mémoire de 2 Go. Entrées tension allant de ± 50 V à ± 1500 V DC. Entrées courant utilisant des résistances shunt intégrées allant de ± 75 mA à ± 2 A ou de +/- 50 mV à +/- 20 V pour l'utilisation de pinces de courant. Testée jusqu'à 7,4 kV, l'isolation permet de réaliser des mesures fiables jusqu'à 1000 V CAT IV ou 1500 V DC. Les entrées tension utilisent des connecteurs banane 4 mm entièrement isolés tandis que les entrées courant utilisent un connecteur LEMO. Inclut la base de données de formules temps réel pour des calculs échantillon à échantillon ou bien basés sur le cycle avec déclenchement sur des résultats calculés. Pris en charge par Perception v8.00 ou version ultérieure.	1-GN311B		

Sondes de tension spéciales, à commander séparément				
Article		Description	N° de commande	
Sonde différentielle 5 kV RMS, 20 MΩ, 50:1	90	5 kV RMS, 20 MΩ, 50:1, précision élevée de 0,2 %, sonde différentielle à utiliser en combinaison avec des cartes d'acquisition GN610B, GN611B (HVD50R-61x), GN310B et GN311B (HVD50R-31x). Le système de surveillance de mise à la terre intégré améliore la sécurité de l'utilisateur et protège les entrées de la série GEN contre les surcharges de l'isolation.	HVD50R-61x HVD50R-31x Commandée auprès du service Systèmes personnalisés ⁽¹⁾	
Câble haute tension 5 kV RMS		Le câble haute tension (HVC) est une rallonge pour câbles de mesure avec des tensions jusqu'à 5 kV RMS. Cet appareil est conçu pour être relié avec un câble à la borne d'entrée de la sonde différentielle haute précision HVD10, HVD50R-61x et HVD50R-31x. Le HVC est conçu conformément à la norme CEI 61010-031:2015 pour 1000 V RMS CAT IV et 1500 V DC CAT IV.	HVC Commandé auprès du service Systèmes personnalisés ⁽¹⁾	

⁽¹⁾ Contactez l'équipe chargée des systèmes personnalisés à l'adresse suivante : <u>customsystems@hbkworld.com</u> Demandez un devis / des informations sur des produits spéciaux pour la série GEN.

Accessoires, à commander séparément				
Article		Description	N° de commande	
Adaptateur point neutre artificiel		L'adaptateur point neutre artificiel est une carte de communication enfichable pour la mesure de signaux triphasés avec les cartes GN310B/GN311B. Cet adaptateur est conçu pour la mesure de signaux triphasés en créant un point neutre artificiel/virtuel.	1-3PH-STR-1K0- CAT2	
1000 V CAT IV / 1 500 V DC CAT III Fils d'essai blindés isolés 3 conducteurs		Le câble utilise des connecteurs banane renforcés pour : • Mesure sur 3 phases (noir/marron/gris) ou sur une seule phase neutre-phase • Connecteur blindage (jaune) Le câble est blindé pour réduire l'impact typique des perturbations électromagnétiques générées par les convertisseurs haute puissance, ainsi que pour réduire les émissions dues aux temps de montée des tensions de commutation du convertisseur mesurées avec ce câble. Longueurs disponibles : 1,5 m (4.92 ft), 3,0 m (9.84 ft), 6,0 m (19.7 ft),12 m (39.4 ft), 20 m (65,6 ft)	1-KAB2139-1.5 1-KAB2139-3 1-KAB2139-6 1-KAB2139-12 1-KAB2139-20	
Câble XLR vers LEMO pour GN31XB		Câble de liaison pour raccorder l'unité d'interface CT à la carte puissance GN31xB. Utilise des connecteurs XLR et LEMO pour raccorder directement la sortie courant à la carte d'acquisition GEN. Longueur 2 m (6 ft)	1-KAB2134-2	
Câble d'entrée banane		Câble blindé pour voies courant 1-GN31xB. Câble de dérivation LEMO avec connecteurs banane 4 mm pour courant continu (bleu), tension comme courant (rouge), terre/retour isolé(e) (noir) et blindage (jaune). Ce câble est blindé pour réduire l'impact typique des perturbations électromagnétiques générées par les alimentations à forte puissance de coupure. Longueur disponible : 1 m (3,3 ft)	1-KAB2136-1	
Câble d'entrée tension BNC femelle		Câble blindé pour voies courant en mode tension des cartes 1-GN31xB. Câble de dérivation LEMO avec connecteur BNC femelle pour raccorder aisément des pinces de courant, par exemple. Le connecteur BNC femelle se branche sur la broche d'entrée tension de la voie courant. Ce câble est blindé d'un côté pour réduire l'impact typique des perturbations électromagnétiques générées par les alimentations à forte puissance de coupure.	1-KAB2140-3	
Câble d'entrée tension BNC mâle		Câble blindé pour voies courant en mode tension des cartes 1-GN31xB. Câble de dérivation LEMO avec connecteur BNC mâle pour raccorder aisément des pinces de courant, par exemple. Le connecteur BNC mâle se branche sur la broche d'entrée tension de la voie courant. Ce câble est blindé d'un côté pour réduire l'impact typique des perturbations électromagnétiques générées par les alimentations à forte puissance de coupure. Longueur disponible : 2 m (6,6 ft)	1-KAB2137-2	
Câble d'entrée à extrémité libre		Câble blindé pour voies courant 1-GN31xB. Câble de dérivation LEMO avec câbles à extrémités libres pour courant continu, tension comme courant, terre/retour isolé(e) et blindage (les différents fils sont étiquetés). Peut être utilisé pour ajouter des connecteurs personnalisés et/ou être soudé à des points de mesure. Ce câble est blindé pour réduire l'impact typique des perturbations électromagnétiques générées par les alimentations à forte puissance de coupure. Longueur disponible : 3 m (9,8 ft)	1-KAB2138-3	

09/10/2023 B05494_05_F00_00

Hottinger Brüel & Kjaer GmbH

Im Tiefen See 45 · 64293 Darmstadt · Germany Tel. +49 6151 803-0 · Fax +49 6151 803-9100 www.hbkworld.com · info@hbkworld.com